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We study the canonical structure of the real first order formulation of general relativity on a null foliation.
We use a tetrad decomposition which allows us to elegantly encode the nature of the foliation in the norm of
a vector in the fiber bundle. The resulting constraint structure shows some peculiarities. In particular, the
dynamical Einstein equations propagating the physical degrees of freedom appear in this formalism as
second class tertiary constraints, which puts them on the same footing as the Hamiltonian constraint of
Ashtekar’s connection formulation. We also provide a framework to address the issue of zero modes in
gravity, in particular, to study the nonperturbative fate of the zero modes of the linearized theory. Our
results give a new angle on the dynamics of general relativity and can be used to quantize null
hypersurfaces in the formalism of loop quantum gravity or spin foams.
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I. INTRODUCTION

Null hypersurfaces play a pivotal role in the physical
understanding of general relativity, from the characteriza-
tion of gravitational radiation and exact solutions [1–5] to
the structure of isolated horizons and black holes [6].
Therefore, it is natural to ask whether one gets some
interesting results if they are used for the canonical
formulation, namely, if one performs the 3þ 1 decom-
position and the canonical analysis with respect to a
foliation of spacetime which is not spacelike, as usual,
but lightlike or null. This is the idea of the light-front
approach, which has been put forward by Dirac [7] and has
been extensively developed in the context of QCD and field
theories in Minkowski spacetime leading to interesting
results in describing their quantum properties (see [8–10]
for reviews).
In the context of gravity less has been done in this

direction, although already in his pioneering work [1]
Sachs showed that using a double-null foliation the con-
straints imposing diffeomorphism invariance simplify,
and constraint-free data can be accessed as the conformal
structure of the two-dimensional spacelike metric
embedded in the hypersurface. This remarkable feature
could in principle be used to reduce the canonical dynamics
to physical degrees of freedom only, which would obvi-
ously have a tremendous impact for both the classical
theory and quantization attempts.
Partial success using a null foliation in general relativity

is hindered by the more complicated canonical structure
caused by the fact that the induced metric on a null
hypersurface is degenerate. In particular, there is no natural
projector nor induced affine connection. One way to
address this difficulty is to use the double-null foliation
of Sachs, which was promoted later into a 2þ 2 formalism
[11], where one picks up two independent null directions

and foliates spacetime by the two-dimensional spacelike
surfaces orthogonal to both directions. In this framework
the Hamiltonian formulation in metric variables was carried
out in [12]. Its key feature is that the Hamiltonian constraint
is second class, and does not generate gauge symmetries.
This can be intuitively understood because the condition
that the hypersurface is null acts as a gauge-fixing con-
dition, and is consistent with the fact that there are no local
infinitesimal deformations mapping a null hypersurface
into a neighboring null hypersurface. The presence of
second class constraints makes the canonical formulation
quite complicated, and neither the reduced phase space has
been constructed nor the Dirac brackets explicitly evalu-
ated, revealing the symplectic structure to be quantized.
The canonical analysis of general relativity is simplified

using Ashtekar variables [13,14], that is, a densitized
cotriad and a self-dual Lorentz connection. The light-front
formulation in Ashtekar variables was constructed in
[15,16] and further investigated using the 2þ 2 formalism
in [17–19]. These formulations expose additional features
of the light-front theory, including the nice property that the
first class part of the constraint algebra forms a Lie algebra,
with proper structure constants, given by the semidirect
product of the hypersurface diffeomorphisms and the
internal symmetry group. However, a difficulty with this
approach is posed by the reality conditions needed for
Lorentzian signature [20,21]. These conditions become
especially problematic at the quantum level where no
consistent way of implementing them has been found so
far.1 A way to avoid this complication is to work with real
connection variables, as it is done in the modern approaches
to quantum gravity via loop and spin foam techniques
[25–27]. Therefore, it would be desirable to extend the

1See [22–24] for some attempts in this direction.
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previous Hamiltonian analysis of general relativity on a null
foliation to such a real formulation. This is precisely the
goal of this paper.
Such an extension is useful for several reasons. First, to

contribute a new attack line to the problem of finding a
reduced canonical formalism in terms of physical degrees
of freedom only. Second, to analyze the initial value
problem and identify the constraint-free data in terms of
a real Lorentz connection. Finally, framing the theory in
these variables would make it possible to try a light-front
quantization of gravity using the techniques of loop
quantum gravity or spin foams, in particular, defining a
dynamics for the null twisted geometries introduced
in [28].
With these motivations in mind, in this paper we study

the light-front formulation of general relativity in the first
order tetrad formalism, where the Einstein action takes the
following form2:

S½e;ω� ¼ 1

4

Z
M

εIJKLeI ∧ eJ ∧
�
FKLðωÞ − Λ

6
eK ∧ eL

�
:

ð1:1Þ

Here eI is the tetrad 1-form and FIJðωÞ¼dωIJþωI
K∧ωKJ

is the curvature of the spin connection ωIJ. The canonical
analysis of this action using a spacelike foliation can be
found, for instance, in [29] (for an analysis of tetrad gravity
in the second order formalism, see [30]). On the other hand,
the canonical analysis on a null foliation has not been
studied before and we fill this gap here.3 The immediate
advantage of working with tetrads is that one can use the
standard 3þ 1 splitting and reproduce all features of the
2þ 2 formalism used in the literature from the natural
double-null foliation of the Minkowski metric in the fiber
space. In particular, the nature of the foliation can be
controlled by the norm of an internal space vector, and in
the null case one can describe the degenerate induced
metric on the hypersurface while keeping the triad invert-
ible, a property which makes the canonical variables and
calculations more transparent.
Our first result is to fully characterize the system of

constraints, and to show that the reduced phase space has
two dimensions per point of the null hypersurface, con-
sistently with 2 local degrees of freedom of gravity.4 As in
other light-front formulations, the Hamiltonian constraint
is second class, whereas first class constraints generate a
genuine Lie algebra given by the semidirect product of the

spatial diffeomorphisms and the internal gauge group
associated with the isometries of a null hyperplane. The
system possesses secondary constraints, familiar to people
working with Plebanski formulation of general relativity
and capturing a part of the torsionless condition in the
canonical framework, but also two tertiary constraints.
These are shown to be precisely the dynamical equations
propagating the 2 physical degrees of freedom. The fact
that dynamical equations are turned into constraints is a
unique feature of combining a first order formalism with a
null foliation.
Our analysis also sheds light on a few other issues. In

particular, the gauge fixing used to write the action on the
light front leads to the apparent loss of one field equation.
This issue has been dealt with by either adding the missing
equation by hand [12] or extending the phase space and
slightly modifying the action [15]. We demonstrate that in
the first order formalism the apparently missing equation
is automatically obtained via the stabilization procedure.
Thus, the original action contains all of Einstein’s equa-
tions, and no modification like those proposed in the
literature is needed.
Another important issue which we discuss concerns zero

modes. As is well known from the light-front analysis of
field theories in Minkowski spacetime, specifying a unique
solution in the light-front formalism may also require, on
top of initial conditions of the physical fields, some
additional data in the form of their zero modes. This issue
becomes especially pressing at quantum level, where the
zero modes are expected to carry nontrivial properties of
the vacuum. To the best of our knowledge, it has not been
tackled before in the literature on general relativity, and we
address it here for the first time.
Except for the analysis of zero modes, we restrict our

attention to local considerations. In particular, key dynami-
cal questions such as the actual extension of the null sheet
before caustics form, the analysis of boundary and asymp-
totic conditions, or the inclusion of matter will be discussed
in future work. In practice, this means that we allow
ourselves to perform integration by parts, and neglect
boundary terms.
The paper is organized as follows. First, we recall some

features of the light-front field theories which might be
unfamiliar to some of the researchers working in general
relativity and quantum gravity. Then in Sec. III we
introduce the 3þ 1 decomposition, formulate the condition
ensuring that the foliation is lightlike, and analyze how this
affects the nature of the Lagrangian equations of motion.
The canonical analysis is presented in Sec. IV where we
find and classify all constraints of the theory. Next, in
Sec. V we discuss various peculiarities of the resulting
formulation. Finally, Sec. VI is devoted to conclusions.
A few appendixes contain additional helpful information.
Thus, in Appendix Awe review the light-front formulation
of a scalar field theory. In Appendix B we provide explicit

2Notice that we chose units 8πG ¼ 1, instead of the more
common choice of normalizing 16πG. This is in order to avoid a
number of factors of 2 in the canonical analysis.

3In [31] the authors do study the action (1.1) on the light front,
but they do not perform its canonical analysis.

4This counting on the light front may be unfamiliar to some
readers, and it is explained in Sec. II.
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expressions for the inverse tetrad and the metric induced
by our 3þ 1 decomposition. Appendix C presents explicit
results for the constraint algebra used in the course of our
canonical analysis. And finally in Appendix D we analyze
the effect of a gauge fixing of constraint systems on their
Lagrangian equations of motion.
According to our conventions, the metric has mostly plus

signature. In particular, the flat Minkowski metric is
ηIJ ¼ diagð−1; 1; 1; 1Þ. Components of spacetime tensors
are labeled by greek indices μ; ν;… ¼ 0; 1; 2; 3. Their
spatial components are labeled by Latin indices from the
beginning of the alphabet a; b;… ¼ 1; 2; 3. Components of
the tangent space tensors are labeled by capital Latin
indices I; J;… ¼ 0; 1; 2, whereas their spatial parts are
labeled by Latin indices from the middle of the alphabet
i; j;… ¼ 1; 2; 3. The Levi-Civita symbol with flat indices
is normalized as ε0123 ¼ 1. On the other hand, for the
antisymmetric tensor density with spacetime indices we
set ε0abc ¼ εabc. This opposite sign convention avoids a
cumbersome minus sign in the definition of the determinant
of the tetrad. Finally, the symmetrization and antisymmet-
rization of indices is denoted respectively by ð··Þ and ½··�,
and includes the normalization weight 1=2.

II. GENERIC FEATURES OF THE
LIGHT-FRONT FORMALISM

Before considering the gravitational case, where null
hypersurfaces are dynamical, we would like to recall some
generic features of the light-front formalism in Minkowski
spacetime, which will be of help in understanding the
gravitational case. In particular, it will allow us to highlight
the presenceof zeromodes and the role they play, and theway
degrees of freedom are counted in the canonical framework.
The idea of using a null foliation for the canonical

analysis dates back to Dirac [7]. He suggested introducing
light-front coordinates in one of the Lorentzian planes, for
example

x� ¼ 1ffiffiffi
2

p ðx0 � x3Þ; ð2:1Þ

and to consider one of them, say xþ, as the time coordinate
for the canonical analysis. A distinguishing property of
such choice is that the hypersurfaces xþ ¼ const have a
maximal number of isometries: because the induced metric
has one degenerate direction, the isometry group has seven
generators, as opposed to the six generators for a spacelike
hypersurface x0 ¼ const.
This fact makes field theories on the light front very

specific. Indeed, some peculiarities can be noticed already
from the mass shell condition. Taking as an example the
case of a scalar field theory, one finds that in coordinates
(2.1) it becomes a linear equation for the momentum
variable p− playing the role of the energy in the light-front
frame:

p− ¼ ðp⊥Þ2 þm2

2pþ : ð2:2Þ

As a consequence, the physical vacuum is always
trivial and coincides with the state with vanishing
energy-momentum Pμ ¼ 0. Indeed, whereas in the conven-
tional approach the vacuum is modified by interactions and
the true vacuum can be a state with nonvanishing energy, on
the light front the relation (2.2) implies that any physical
state of a (massive) particle must have positive longitudinal
momentum pþ > 0. Hence, a physical vacuum with a
nonzero energy P− and vanishing momentum cannot exist.
The triviality of the vacuum is a tremendous technical

advantage, and many of the successes of light-front
quantization derive from it. However, it raises the question
of how nonperturbative effects such as spontaneous sym-
metry breaking can be incorporated. It turns out that such
nontrivial effects are hidden in the zero mode sector
of the theory, describing the modes ϕ0 with vanishing
longitudinal momentum pþ, or in other words, satisfying
∂−ϕ0 ¼ 0 [32]. The special role of these modes is clearly
seen already in the mass shell condition (2.2), which is ill
defined at pþ ¼ 0. Regularizing this divergence requires in
turn a careful choice of boundary conditions at x− → �∞,
see e.g. [33]. Boundary conditions effectively play a subtle
role in the light-front formalism, as different choices may
lead to different physical results via the change in the
dynamics of the zero mode sector.
Another generic feature of the light-front formalism,

which is more directly relevant for the present paper, is the
appearance of constraints in the canonical analysis. To see
how they arise, it is sufficient to consider the standard
kinetic term for the scalar field ϕ. Picking xþ as a time
variable, it becomes linear in the “velocities” ∂þϕ, since

1

2
ðð∂0ϕÞ2 − ð∂3ϕÞ2Þ ¼ ∂þϕ∂−ϕ: ð2:3Þ

Hence, if the interaction does not depend on derivatives
of the field, the conjugate momentum π ≔ δL=δ∂þϕ is
independent of velocities, and one gets the constraint

Ψ ≔ π − ∂−ϕ ¼ 0: ð2:4Þ

Furthermore, it is easy to check that this constraint is
second class since it does not commute with itself,

fΨðxÞ;ΨðyÞg ¼ −2∂x−δ
ð3Þðx − yÞ: ð2:5Þ

This in turn implies that the field itself is noncommutative
and the correct symplectic structure is given by a Dirac
bracket, with typical form

fϕðxÞ;ϕðyÞgD ¼ Δ−1ðx; yÞ; ð2:6Þ
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where Δ is the operator on the rhs of (2.5). In the
momentum representation the commutator is proportional
to 1=pþ which gives rise to the same divergence as the one
appearing in the mass shell condition (2.2) showing again
the special role of the zero modes. In some theories the
concrete form of the above constraints and commutators
can be a bit different, but the general mechanism remains
essentially the same. In particular, in the linearized approxi-
mation the physical modes of both gauge theories and
gravity satisfy exactly the same relation (2.4).
Notice that in the above example the momentum π can be

excluded by means of the light-front constraint (2.4). As a
result, one gets a one-dimensional phase space described by
the field ϕ only, with the nontrivial symplectic structure
given by the Dirac bracket (2.6). Thus, the (infinite)
dimension of the phase space matches the number of
degrees of freedom, without the usual factor 2 of the
equal-time approach, and this conclusion turns out to be
valid for any theory on the light front.
Since we are talking about infinite-dimensional spaces, it

is actually not surprising that the 2n-dimensional phase
space of one formulation can be packed into n dimensions
in the other. It is nonetheless instructive to see explicitly
how the mapping goes. To that end, let us consider the
decomposition of the field ϕðxÞ into Fourier modes. The
standard decomposition reads

ϕðxÞ ¼
Z

d3 ~p½aðpÞeipixi−iωx0 þ a�ðpÞe−ipixiþiωx0 �; ð2:7Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
. The presence of the two terms, or

equivalently the complexity of aðpÞ, explains the bidimen-
sionality of the usual phase space. On the other hand, in the
light cone coordinates the decomposition is given by

ϕðxÞ ¼
Z

dpþd2p⊥
h
bðpþ; p⊥Þeiðp·xÞ⊥−ipþx−−iðp

⊥Þ2þm2

2pþ xþ
i
ð2:8Þ

with bð−pÞ ¼ b�ðpÞ. The presence of only one term,
which corresponds to the one dimensionality of the
light-front phase space, can be traced back to the fact that,
in contrast to the usual case, the linear mass shell condition
(2.2) restricts the spectrum of the light cone momentum
to the half positive light cone. The map relating the two
decompositions is given by

bðpþ;p⊥Þ ¼ a

�
1ffiffiffi
2

p
�
pþ−

ðp⊥Þ2þm2

2pþ

�
;p⊥

�
; pþ > 0;

ð2:9Þ

and maps the positive half axis of pþ into the whole real
line of p3.

Finally, let us go back to the issue of zero modes. As we
discuss in Appendix A, generically at classical level the
zero modes turn out to be determined by the field equations
appearing as additional second class constraints. However,
a special situation arises for massless theories, and this can
be understood easily on physical grounds. The particularity
of this case can be seen from the fact that at each point in
spacetime there is a particle worldline which is parallel to
the light-front hypersurface (see Fig. 1). Thus, it never
intersects the initial value surface of the light-front
formulation and therefore is not determined by the initial
data. We call the corresponding modes of the fields global
zero modes as they have vanishing momenta pþ ¼ p⊥ ¼ 0
or, equivalently, are independent of all hypersurface
coordinates.
It is clear that to uniquely determine the evolution, the

initial data should be supplemented with the global zero
modes. It turns out that the canonical formulation ensures
this in an interesting way: in the massless theory, the global
zero mode of the light-front constraint (2.4) is first class,
and the corresponding undetermined Lagrange multiplier
provides the additional missing data. In the massive case,
the zero mode is instead converted into second class by the
presence of another constraint, which is the one imposing
an equation on the zero mode of the field itself and making
the initial value problem on the light front well defined.
For the interested reader, details of this constraint analysis
are reported in Appendix A, including the special two-
dimensional case where the two notions of zero modes
obviously coincide.

FIG. 1 (color online). The past light cone of an event in
spacetime. All worldlines intersect the light-front hypersurface
in a finite time, except the one parallel to it. The latter corresponds
to the global zero mode.
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III. NULL FOLIATION VIA TETRADS

We set up the canonical analysis following the standard
Arnowitt-Deser-Misner (ADM) formalism for a spacelike
3þ 1 splitting. We assume the spacetime manifold to be of
the form M ¼ R × Σ where Σ is noncompact,5 and take
adapted coordinates xμ ¼ ðt; xaÞ. However, in contrast to
the ADM formulation, we choose the level sets of the time
parameter to be null hypersurfaces.
This choice has an immediate consequence on the theory.

The crucial difference between general relativity and field
theories is that the metric and thus the causal structure of
spacetime are dynamical. Therefore, whereas in field
theories the choice of a null foliation is merely a choice
of coordinates, in general relativity this is a (partial) gauge-
fixing condition: requiring that the level sets of a coordinate
t are null fixes one of the metric components,

g00 ¼ g−1ðdt; dtÞ ¼ 0: ð3:1Þ

Thus, gravity on the light front is a partially gauge-fixed
theory.6

This gauge implies that the leaves Σ are null, which
means that their induced metric is degenerate and there is
no natural affine structure. It turns out that these technical
difficulties can be elegantly dealt with using tetrads. In the
section below we show how the gauge (3.1) can be nicely
implemented in the tetrad formalism and which conse-
quences it implies on the Lagrangian equations of motion
derived from the action (1.1).

A. Decomposition of the tetrad

Our starting point is the general tetrad decomposition
introduced in [34], and used in the Lorentz covariant
approach to loop quantum gravity [35,36],

e0 ¼ Ndtþ χiEi
adxa; ei ¼ NaEi

adtþ Ei
adxa: ð3:2Þ

Here Ei
a is the triad, N and Na are related to the lapse and

shift functions, and χi describes the remaining three
components of the tetrad. This decomposition generalizes
the one commonly used in the canonical analysis in tetrad
variables, which is adapted to the ADM variables by
aligning e0 with dt and thereby setting χi ¼ 0, a choice
referred to as “time gauge” in the literature. A drawback
of this generalization is that, not being adapted to the

coordinates, N and Na do not coincide with the lapse
and shift Lagrange multipliers. Instead, as we explain
below, they are related to them by a linear transformation.
On the other hand, it is the introduction of the additional
variables χi that allows us to put the theory on the light front
in an elegant way. The reason is that χi controls the normal
to the hypersurface t ¼ const and thus the foliation.
Equivalently, the hypersurface normal can be encoded in
the following vector in the internal space with the flat
Minkowski metric

xI ¼ ð1; χiÞ: ð3:3Þ

In particular, the norm of this vector controls the nature of
the foliation: it is spacelike, lightlike, or timelike if x2 is less
than, equal to, or larger than 0. To see this, it is sufficient to
look at the induced metric on Σ, which is found to be

qab ≔ X ijEi
aE

j
b; X ij ≔ ðδij − χiχjÞ: ð3:4Þ

It has the signature ðþ þ þÞ, ð0þþÞ, or ð−þþÞ in the
above three cases, respectively. Alternatively, one can
compute the inverse metric obtained from (3.2), which
gives g00 ∝ χ2 − 1. The fact that changing χ2 we can
change the type of the foliation allows us to describe all
of them in a uniform way. For instance, in [37] the
decomposition (3.2) was used to get the spectrum of
the area operator in loop quantum gravity for timelike
surfaces. Here we are rather interested in the lightlike case,
which in terms of the variables introduced by this decom-
position reads

χ2 ¼ 1 or x2 ¼ 0: ð3:5Þ

Thus, the light-front condition (3.1) becomes a condition
on the norm of the internal space vector. When it holds, the
matrix X ij becomes a projector, and so does qab, with the
null eigenvector given by

∂− ¼ Ea
i χ

i∂a: ð3:6Þ

Note that, despite the degeneracy of the induced metric
(3.4) for χ2 ¼ 1, the triad Ei

a can always be assumed to be
invertible, and used to map hypersurface indices to internal
indices. We see this as another advantage of our formalism.
The inverse triad will be denoted as usual by Ea

i , and allows
us to define the induced metric with mixed and contra-
variant indices,

qab ¼ X i
jE

a
i E

j
b; qab ¼ X ijEa

i E
b
j : ð3:7Þ

The latter should not be mistaken for a submatrix of gμν,
whose expression is reported explicitly in (B3). Furthermore,
we use the triad determinant

ffiffiffi
h

p
≔ detEi

a ≠ 0 to define

5Boundary conditions do play a nontrivial role on the light
front. We will comment on this below.

6Implementing the gauge fixing in the action leads to the
apparent loss of the Einstein equation corresponding to the
variation of the action with respect to g00. This was noticed in
[12,15] and it was suggested to modify the gauge-fixed action so
as to restore the “lost” equation. However, as we will show in
Sec. V B, no modification is necessary in the first order
formalism, as the desired equation is obtained by means of the
stability conditions.
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tensor densities, and, as is customary in the literature, we
keep track of the density weights using tildes, e.g.

~Ea
i ¼

ffiffiffi
h

p
Ea
i ; N

~
¼ 1ffiffiffi

h
p N: ð3:8Þ

A payoff for the universality of (3.2) is that it is not
adapted to the choice of coordinates. Due to this, the
functions N and Na there appearing are not immediately
the lapse and shift functions which solder the 3þ 1
decomposition and appear as Lagrange multipliers for
the Hamiltonian and the vector constraints in the
decomposition of the action. One way of establishing
the relation between them is to compute the metric
associated with (3.2),

gμν ¼
�
−N2 þ Ei

aEi
bN

aNb Ei
bE

i
cNc − NEi

bχi

Ei
aEi

cNc − NEi
aχi qab

�
; ð3:9Þ

and to find the linear change of variables that puts it in the
ADM form. For generic χi, this is achieved via [34]

N ¼ N þ Ei
aχiN a; Na ¼ N a þ Ea

i χ
iN ; ð3:10Þ

where N and N a are the proper lapse and shift functions.
This is confirmed also by the canonical analysis, which
identifies them as the Lagrange multipliers of the diffeo-
morphism constraints. However, the redefinition (3.10) is
singular for χ2 ¼ 1, which means that in the lightlike case
the metric cannot be put in the ADM form. This is again a
consequence of the lack of a natural projector on a null
hypersurface. Nonetheless, it is possible to identify the
canonical lapse function N by computing the determinant
of the tetrad, which gives

e ¼ ðN − Ei
aχiNaÞ

ffiffiffi
h

p
: ð3:11Þ

This suggests defining the lapse via the same transforma-
tion (3.10) as for generic χi,

N ¼ N þ Ei
aχiNa: ð3:12Þ

As we show below, this definition matches the identifica-
tion of the lapse as a Lagrange multiplier. On the other
hand, there is no canonical definition for the shift vector.7

We choose it to be simply Na as in the original decom-
position (3.2). Further details on the 3þ 1 decomposition,

such as expressions for the inverse tetrad, the metric, and its
inverse can be found in Appendix B.
The tetrad formalism allows us to elegantly recover the

2þ 2 formalism of [11]. To that end, observe that by taking
the parity or time-reversed transform of xI we obtain a
pair of null vectors that foliate Minkowski spacetime via
two-dimensional spacelike planes. Denote this pair

xI� ¼ ð�1; χiÞ: ð3:13Þ

Then one can easily write projectors on the double-null
Minkowski foliation, and map them to the tangent space via
the tetrad. This operation provides us with a projector ⊥μ

ν

on the two-dimensional spacelike surface S contained
in Σ and its complement δμν −⊥μ

ν projecting on the
timelike surface spanned by the image of (3.13). Since
Σ is defined by the level sets of t, we have in particular
that ⊥a

b ¼ qab.

B. Field equations

Before performing the canonical analysis, it is useful to
look at the effects of the light-front condition from the
perspective of the covariant field equations. This will allow
us to identify the splitting into constraints and dynamical
equations, in particular exposing the fact that with the
gauge fixing (3.1) the lapse function is determined in terms
of other fields. The field equations obtained from (1.1) read

T I
μν ≔ D½μeIν� ¼ 0; ð3:14Þ

Gμ
I ≔ Gμ

I þ ΛeμI ¼ 0; ð3:15Þ

where D ¼ dþ ω is the covariant derivative and
Gμ

I ¼ ðeμKeρI − 1
2
eμI e

ρ
KÞeσLFKL

ρσ is the Einstein tensor. The
first set of equations is the torsion-free condition or Cartan
(second structure) equation and, provided that the tetrad is
invertible, it is uniquely solved by the Levi-Civita con-
nection ωIJðeÞ. The 16 tetrad equations can be split into 10
equations for the symmetric Einstein tensor, and 6 equa-
tions imposing the vanishing of the antisymmetric part of
the Ricci tensor. The latter vanishes automatically in the
absence of torsion, thus reducing the field equations to
Einstein’s equations.

1. Cartan equations

Let us look first at the Cartan equations imposing the
vanishing of the torsion. Using the 3þ 1 decomposition
(3.2), the 24 equations (3.14) split as follows:

T i
ab ¼ ∂ ½aEi

b� þ ωij
½aEb�;j þ ω0i

½aE
j
b�χj; ð3:16aÞ

T 0
ab ¼ ∂ ½aðEi

b�χiÞ þ ω0i
½aEb�;i; ð3:16bÞ

7As will be clear below when we present the Hamiltonian form
of the action, the existence of a canonical choice for lapse, and the
arbitrariness of a shift vector, is related to the fact that there is
a canonical expression for the constraint generating spatial
diffeomorphisms, whereas we lack such an expression for the
Hamiltonian constraint. The reason is that the latter includes a
projection of the curvature on the hypersurface Σ, but such a
projector cannot be defined in a unique way.
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T i
0a ¼ ∂tEi

a − ∂aðNbEi
bÞ þ ωij

0 Ea;j þ ω0i
0 E

j
aχj − ωij

a NbEb;j

− ω0i
a ðN þ NbEj

bχjÞ; ð3:16cÞ

T0
0a ¼ ∂tðEi

aχiÞ− ∂aðN þNbEi
bχiÞ þω0i

0 Ea;i −ω0i
a NbEb;i:

ð3:16dÞ
The first two sets of equations, (3.16a) and (3.16b), do not
depend on time derivatives or on ωIJ

0 and therefore they will
be identified as 9þ 3 ¼ 12 constraints in the canonical
theory. As we will see, they correspond to six constraints
related to the gauge transformations in the tangent space
and to six secondary second class constraints. The remain-
ing equations, (3.16c) and (3.16d), contain time derivatives,
and canonically are expected to correspond to Hamiltonian
equations of motion. However, combining (3.16d) in the
appropriate way with other equations, it is possible to
obtain the following result:

Ei
a½∂tχi þ ωij

0 χj þ X ijω
0j
0 − Nbð∂bχi þ ωij

b χj þ X ijω
0j
b Þ�

− ∂aN þNω0i
a χi ¼ 0: ð3:17Þ

Contracting (3.17) with Ea
i χ

i and imposing the light-front
condition (3.5), one finds

Ea
i χ

ið∂a logN − ω0j
a χjÞ ¼ 0: ð3:18Þ

This result shows that, whereas generically all three
equations (3.17) are Hamiltonian equations of motion,
precisely on the light front one of them becomes indepen-
dent of time derivatives and should rather be interpreted as
an equation for the lapse function. Since the latter is the
Lagrange multiplier of the Hamiltonian constraint, this
means that the constraint will be second class. This is a
well-known conclusion (see [12,15,17]), which is consis-
tent with the fact that in gravity the light-front condition
appears as a partial gauge fixing. The above analysis shows
that the symmetry which is gauge fixed corresponds to
the time diffeomorphisms generated by the Hamiltonian
constraint.
Note that the equation (3.18) fixing the lapse is differ-

ential so that it does not fix N uniquely. The differential
operator acting on the lapse is nothing else but ∂−. Thus,
the undetermined part of N is the typical zero mode on the
light front. We will explain its appearance in Sec. V C.
Finally, it is useful to discuss what happens if one

considers the theory where all components of the vector χi

are taken to be not dynamical variables, but fixed functions.
This means simply that one fixed the boost gauge freedom
in the tangent space. In this case, from the canonical point
of view, the three equations (3.17) are generically inter-
preted not as equations of motion, but as equations on ωIJ

0

which play the role of the Lagrange multipliers. This is in
agreement with the gauge fixing of the three boosts which
converts three first class constraints into second class.

However, as above, on the light front the interpretation
changes. Equation (3.18) is not only independent of time
derivatives, but also of ωIJ

0 . Thus, instead of three equations
on ωIJ

0 , one has two on ωIJ
0 and one on N . As a result, we

expect that on the light front only two constraints generat-
ing local Lorentz transformations in the tangent space are
converted into second class. This can be traced back nicely
to the fact that the stability group of a null surface has one
more generator compared to the spacelike case.

2. Tetrad equations

Next, we turn to the tetrad equations (3.15). They can be
decomposed as

eG0
0 ¼ −

1

4
εijkε

abcEi
aF

jk
bc þ Λ

ffiffiffi
h

p
; ð3:19aÞ

eG0
i ¼

1

4
εijkε

abcðEl
aχlF

jk
bc − 2Ej

aF0k
bcÞ − Λ

ffiffiffi
h

p
χi; ð3:19bÞ

eGa
0 ¼

1

4
εijkε

abcðNdEi
dF

jk
bc−2Ei

bF
jk
0cÞ−Λ

ffiffiffi
h

p
Na; ð3:19cÞ

eGa
i ¼ −

1

4
εijkε

abcððN þ NdEl
dχlÞFjk

bc − 2Ej
dN

dF0k
bc

− 2El
bχlF

jk
0c þ 4Ej

bF
0k
0cÞ þ Λ

ffiffiffi
h

p
ðNEa

i þ NaχiÞ:
ð3:19dÞ

It is easy to see that Eqs. (3.19a) and (3.19b) are
independent of time derivatives and the variables playing
the role of Lagrange multipliers. Thus, in the canonical
formulation they will correspond to the four constraints
responsible for the diffeomorphism symmetry.
Furthermore, let us assume that the torsionless condition

has been solved, so that the Einstein tensor Gμν ¼ Gμ
I e

Iν is
symmetric. Its ten components can then be conveniently
projected along the timelike and spacelike sheets using the
2þ 2 formalism. As is well known [11,12,15,19], among
the projected equations one can identify a trivial equation,
immediately satisfied as a consequence of the gauge fixing
(3.1), three subsidiary equations holding everywhere pro-
vided they hold on a given hypersurface, and two dynami-
cal equations. The latter provide the dynamics for the
conformal metric of the two-dimensional surface S, which
carries the physical degrees of freedom of gravity in this
formalism. These two equations are denoted as⊥ ~Gab in the
literature, meaning the traceless part of the projection on S.
Although in the following we will not use all this
machinery, we do need the two dynamical equations which,
in terms of our tetrad (3.2), can be shown to be given by

⊥ ~Gab ¼Πab
cd ½GcdþNdGc0þNcG0dþNcNdG00�; ð3:20Þ

where
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Πab
cd ≔ qaðcq

b
dÞ −

1

2
qabqcd ð3:21Þ

is the traceless part of the projector on S defined on
symmetric tensors. This projector will play an important
role also in our story distinguishing the sector where the
light-front condition affects the canonical structure.

IV. CANONICAL ANALYSIS

In this sectionwe present the canonical analysis of the first
order formulation of general relativity on a null foliation.
Our starting point is the Hilbert-Palatini action (1.1) where
the tetrad is taken to be in the form (3.2). Thus, as in the usual
ADM analysis [38], instead of eIμ, our dynamical variables
will be Ei

a, N , Na, χi and the components of the spin
connection. However, one can take a few shortcuts which
streamline the analysis.Wewill nowdescribe these shortcuts
and simultaneously outline the resulting canonical structure
without going into the calculational details presented in the
following subsections.
a. Since the lapse N , shift Na, and time components of

the spin connection ωIJ
0 appear in the action only

linearly and without time derivatives, one can exclude
them from the phase space and consider them as
Lagrange multipliers from the very beginning. The
corresponding primary constraints, which we denote
by Da, H, and GIJ, respectively, generate gauge
symmetries of the theory consisting of spacetime
diffeomorphisms and local Lorentz rotations in the
tangent space.

b. Other components of the tetrad also enter the action
without time derivatives. But instead of imposing the
constraints that their momenta vanish, one can profit
from the fact that one works in the first order
formalism and use them to construct the momenta
for ωIJ

a . However, since ωIJ
a have 18 components,

whereas Ei
a, χi provide only 12, the resulting

momenta, which we denote ~Pa
IJ, have to satisfy 6

constraints Φab. These are primary constraints to be
added to the Hamiltonian description of the action.
They are quadratic in ~Pa

IJ, and are referred to as
simplicity constraints, as they imply that, as an internal
2-form, ~Pa

IJ is simple.8

c. It is often convenient to break a part of the internal
gauge symmetry and treat from the start χi as a fixed
vector.9 In particular, this fixes uniquely the type of
foliation, as seen above, and in such a setup the
light-front condition (3.5) is just a condition on the

gauge fixing. If we do so, we lose three independent
momenta, namely, the gauge fixing of χi gives rise to
three additional constraints on the momenta conjugate
to ωIJ

a . Combining them with Φab, one arrives at nine
constraints, which is nothing but simplicity constraints
in their linear form [43,44], and can be conveniently
written as Φa

I with xIΦa
I ¼ 0.

Thus one arrives at the following picture. Having fixed
the variables χi, first order gravity can be formulated on the
2 × 18 dimensional phase space with 3þ 1þ 6þ 9 ¼ 19
primary constraints. Then, following Dirac’s algorithm, one
has to study the stability of the constraints under time
evolution. The analysis turns out to be significantly differ-
ent in the null case than in the previously treated spacelike
and timelike cases.
If χ2 ≠ 1, the stabilization of the primary constraints

leads to six secondary constraints, denoted Ψab, forming
second class pairs with six of the primary simplicity
constraints [29]. Furthermore, three of the Gauss con-
straints GIJ do not commute with the remaining primary
simplicity and become second class, consistent with the
fact that conditions on the χi gauge fix three boosts in the
tangent space. The situation is summarized by the follow-
ing scheme, where the arrows indicate which and how
many constraints are mutually noncommuting:

As a result, one has 7 first class and 18 second class
constraints leaving behind the four-dimensional phase
space, as it should be for 2 physical degrees of freedom.
If χ2 ¼ 1, the stability analysis is quite different. As will

be shown below, one again finds six secondary constraints
Ψab, but their stabilization now leads to two further, tertiary
constraints, which we denote as Υab. (They satisfy a certain
projection condition which leaves only two independent
components.) The structure of nonvanishing commutators
also changes and leads to the following diagram:

Compared to the spacelike case, one can note the following
differences:
a. Only two of the Gauss constraints GIJ do not commute

with the primary simplicity. Hence only two boosts
are used to gauge fix χi. The third component, the
norm of χi, provides a gauge-fixing condition for the

8They play a prominent role in the construction of spin foam
models of quantum gravity, where they coincide with the spatial
part of the discrete covariant simplicity constraints [39–41].

9Such a gauge fixing is fine also at quantum level and it is
needed anyway once one tries to quantize the theory via, for
instance, the path integral technique [42].
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Hamiltonian constraint which now becomes second
class. Four Gauss constraints remain first class, con-
sistent with the four generators of the Lorentz group
preserving the hypersurface geometry.

b. Similarly, only four of the secondary constraints
do not commute with the primary simplicity. The
remaining two constraints turn out to be mutually
noncommuting.

c. The new tertiary constraints do not commute with
those primary simplicity constraints which previously
did not commute with Ψab.

Altogether, this gives 7 first class and 20 second class
constraints, and the symplectic reduction produces a two-
dimensional phase space. As we explained in Sec. II, this is
precisely what one needs to describe 2 degrees of freedom
on the light front. Concerning the geometric interpretation
of the constraints, we notice that, as in the complex self-
dual formulation of [15], the first class part of the algebra is
a genuine Lie algebra, given by the semidirect product of
the spatial diffeomorphisms and the internal gauge group
associated with the isometries of a null hyperplane. In
particular, the hypersurface diffeomorphisms have a par-
ticularly simple form, unlike in the metric case (cf. [12]).
In the rest of this section we provide the details leading to

the above picture. We will use Lorentz covariant notations
despite a part of this symmetry being explicitly broken by
the gauge choice of χi. This allows us to write down all the
equations in a concise form and to keep them as close as
possible to the spacelike case. A noncovariant description
where the direction identified by χi is explicitly singled out
can also be useful, as it provides a more geometric insight
into the role played by different components of the tetrad
and the connection. We report the main features of such
analysis in Sec. IV E.

A. Hamiltonian

As a first step, we put the action (1.1) in Hamiltonian
form. Plugging the decomposition (3.2), (3.12) into (1.1)
and integrating by parts, we get

S ¼
Z
M

d4x

�
~Pa
IJ∂tω

IJ
a þ ωIJ

0 Da
~Pa
IJ − Na ~Pb

IJFIJ
ab

þNe
�
1

2
~Pa
I
~Pb
JFIJ

ab − Λh
��

; ð4:1Þ

where we defined

~Pa
IJ ¼

1

4
εabcεIJKLeKb e

L
c ¼ ~Pa

½Ixþ;J�; ð4:2Þ

~Pa
I ¼ ð0; ~Ea

i Þ: ð4:3Þ

The field ~Pa
I here introduced is not covariant, we will

comment on this in a moment. The fields ωIJ
0 , N

a, and Ne

appear linearly and without time derivatives and therefore
play the role of the Lagrange multipliers. The phase
space is parametrized by ωIJ

a and ~Pa
IJ with the symplectic

structure given by

fωIJ
a ðxÞ; ~Pb

KLðyÞg ¼ δbaδ
IJ
KLδ

3ðx; yÞ: ð4:4Þ

The momenta ~Pa
IJ are constructed from the triad Ei

a and the
vector χi which, according to our strategy explained above,
is considered to be nondynamical. Due to the mismatch
between the number of components, ~Pa

IJ should satisfy nine
constraints. Indeed, it is easy to see that (4.2) implies

εIJ
KL ~Pa

KLxJþ ¼ 0; ð4:5Þ

whereas contraction of this equation with xIþ vanishes
identically for any ~Pa

IJ.
This analysis makes it clear that there are four sets of

primary constraints imposed on the kinematical phase
space:

GIJ ≔ Da
~Pa
IJ ¼ 0;

Ca ≔ − ~Pb
IJFIJ

ab ¼ 0;

H ≔
1

2
~Pa
I
~Pb
J

�
FIJ
ab −

Λ
3
εabcε

IJKLxKþ ~Pc
L

�
¼ 0;

Φa
I ≔ εIJ

KL ~Pa
KLxJþ ¼ 0: ð4:6Þ

As anticipated above, the Hamiltonian constraint is written
in terms of the noncovariant field ~Pa

I . In fact, it cannot be
written using the covariant ~Pa

IJ in a direct way. In order to
do that, we have to introduce the unit timelike vector
τI ¼ ð1; 0Þ ¼ 1

2
ðxIþ − xI−Þ, which allows us to write

~Pa
I ¼ −2 ~Pa

IJτ
J: ð4:7Þ

In other words, to write the constraint, we have to project
out the 0 component of the canonical field, which can only
be achieved including both null vectors, xIþ and xI−. This is
the price one should pay for describing the null foliation in
the covariant framework and is related to the lack of a
canonical choice for the shift vector.
As in the spacelike case, it is convenient to redefine the

constraint Ca to

Da ≔ Ca þ ωIJ
a GIJ ¼ ∂bð ~Pb

IJω
IJ
a Þ − ~Pb

IJ∂aω
IJ
b ; ð4:8Þ

which turns out to be the true generator of three-
dimensional diffeomorphisms. This in turn can be achieved
by redefining the Lagrange multiplier in the action as

ωIJ
0 ¼ nIJ þ NaωIJ

a : ð4:9Þ
Thus, using the standard notation for smeared constraints,
the total Hamiltonian generating the time evolution reads as

FIRST ORDER GRAVITY ON THE LIGHT FRONT PHYSICAL REVIEW D 91, 064043 (2015)

064043-9



−Htot ¼ GðnÞ þDðNÞ þHðNe Þ þ ΦðζÞ: ð4:10Þ

B. Primary constraints

The next step is the analysis of the stability conditions
for all primary constraints. Since the Hamiltonian is a linear
combination of these constraints, their time evolution
follows from their algebra, which can be found in
Appendix C. As reported there in (C1), it turns out that
the only weakly nonvanishing commutators are those with
the primary simplicity constraints Φa

I . They lead to the
following stability conditions.
First, for the Gauss law we have10

_GIJ ¼ fGIJ; Htotg

≈ −
1

2
εIJKLxLþðð ~PaxþÞζKa − ~Pa;KðxþζaÞÞ ¼ 0: ð4:11Þ

Taking into account that the Lagrange multiplier ζIa by
definition does not have components along xIþ [i.e. it can be
chosen to satisfy ðζax−Þ ¼ 0], it can be algebraically
decomposed as follows:

ζIa ¼
�
ηIJ −

1

2
xIþxJ−

�
ðλab ~Pb

J þ εabc ~P
b
Jκ

cÞ; ð4:12Þ

where six components of the symmetric matrix λab and
three components of κa encode nine independent compo-
nents of ζIa. Substituting (4.12) into (4.11), one finds a
condition on κa,

εIJKLxKþ ~Pa
Lεabcð ~PbxþÞκc ¼ 0; ð4:13Þ

which is solved by κa ¼ κeð ~PaxþÞ, where κ is an arbitrary

function. Thus, the stability condition fixes two compo-
nents of ζIa which, as a result, takes the form

ζIa ¼
�
ηIJ −

1

2
xIþxJ−

�
ðλab ~Pb

J þ κeεabc ~Pb
Jð ~PcxþÞÞ: ð4:14Þ

The next constraint to consider is Da. Its stability
condition reads

_Da ¼ fDa; Htotg ≈ εIJKLζ
I
b
~Pb;JxKþ∂axLþ ¼ 0; ð4:15Þ

which is again an equation on ζIa. However, it is identically
satisfied upon substitution of (4.14). Thus, the stability of
the diffeomorphism constraint does not impose any new
conditions.

Now we turn to the simplicity constraint. Its stability
condition gets contributions from all commutators and is
given by

_Φa
I ¼ fΦa

I ; Htotg ¼ 1

2
εNJ

KLxJþnKLðδNI ð ~PaxþÞ − ~Pa;Nxþ;IÞ
− NbεIJKL ~P

a;JxKþ∂bxLþ þ εIJ
KLxJþDbðNe ~Pa

K
~Pb
LÞ ¼ 0:

ð4:16Þ

To elucidate the content of this condition, let us contract11 it
with ~Pb

I and split the resulting tensor into symmetric and
antisymmetric parts in the free indices ab. The symmetric
part is

Ne εI
JKLxIþ ~Pða

J
~Pc
KDc

~PbÞ
L ¼ 0; ð4:17Þ

and since the lapse cannot be vanishing, this equation
generates six secondary constraints. The antisymmetric part
reads

εabcεI
JKLxIþð ~Pb

Jð ~PcxþÞnKL þ Nd ~Pb
J
~Pc
K∂dxþ;L

þ ~Pb
JDdðNe ~Pc

K
~Pd
LÞÞ ¼ 0; ð4:18Þ

and can be further split. Contraction with ð ~PaxþÞ kills the
first two terms, and one remains with a scalar differential
equation for the lapse function,

εabcð ~PaxþÞεIJKLxIþ ~Pb
JDdðNe ~Pc

K
~Pd
LÞ ¼ 0: ð4:19Þ

The remaining two components of (4.18) fix two compo-
nents of the Lagrange multipliers nIJ of the Gauss con-
straint. These equations can be easily identified with the
decomposition of Cartan’s equations studied in Sec. III B 1,
in particular (4.19) coincides on the constraint surface with
Eq. (3.18) for the lapse.
Finally, we have to analyze the stability of the

Hamiltonian constraint H. It gives

_H ¼ fH; Htotg ≈ εIJ
KL ~Pa

K
~Pb
LDbðxJþζIaÞ ¼ 0: ð4:20Þ

Substituting (4.14) for ζIa, one obtains that the term with λab
is proportional to the secondary constraint Ψab so that the
stability condition reduces to an equation fixing κ:

εabcεI
JKL ~Pc

K
~Pd
LDdðκexIþ ~Pb

Jð ~PaxþÞÞ

≈ 2
ffiffiffi
h

p
ð∂að ~Ea

i χ
iκÞ þ κ ~Ea

i χ
iω0j

a χjÞ ¼ 0: ð4:21Þ
10To show this, one needs to use the property

x½IþεJ�KL
M
~Pa
LxMþ ¼ −

1

2
εIJLMxMþ ðδKL ð ~PaxþÞ − ~Pa

LxKþÞ:
11Recall that xIþΦa

I ≡ 0, thus this contraction does not lose any
equation.
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Note that both (4.19) and (4.21) are linear differential
equations with the differential operator given by ∂−. This is
relevant for the analysis of zero modes in Sec. V C.
Thus, at this stage we fixed six Lagrange multipliers

(the lapse Ne , two components of nIJ, and three compo-
nents of ζIa) and generated six secondary constraints (4.17).
We now move to the next step and impose stability of the
secondary constraints.

C. Secondary constraints

To stabilize the secondary constraints coming from
(4.17), let us first rewrite them in terms of canonical
variables. Using (4.2) and (4.7), this can be done as
follows12:

Ψab ≔ 4εIJKL ~Pða
IMτ

M ~Pc
JNτ

NDc
~PbÞ
KL ¼ 0: ð4:22Þ

The commutation relations of Ψab with other constraints
can be found in (C3). As a result, the stability condition for
the secondary constraints gets two nonvanishing contribu-
tions: from the commutators with the primary simplicity
and the Hamiltonian constraint. Furthermore, upon sub-
stitution of (4.14), the contribution proportional to κ
vanishes and one remains with the following condition:

Mab;cdλcd −
1

2
Ne εðacdFMN

cd x−;M ~PbÞ
N ¼ 0; ð4:23Þ

where we introduced the matrix

Mab;cd ¼ εðacgεbÞdfqgf ð4:24Þ

defined by the induced metric qab. The crucial feature of
this matrix is that, being considered as an operator on the
space of symmetric tensors, it has a two-dimensional
kernel. Indeed, it satisfies the following property:

Mab;cdΠgf
cd ¼ 0; ð4:25Þ

where Πab
cd is the projector (3.21) on the two-dimensional

subspace of symmetric tensors which are traceless and
orthogonal to ð ~PaxþÞ ¼ ð ~EaχÞ. This property can be traced
back to the degeneracy of the induced metric and is a direct
consequence of the light-front condition.
Due to (4.25), the stability condition (4.23) can be split

into two parts. If one projects it using the projector

orthogonal to Πab
cd , then one obtains an equation fixing

λab, or more precisely its four components encoding the
trace part and the part along the null vector of the induced
metric, that is ð ~EbχÞλab. On the other hand, under the
projection by Πab

cd the first term vanishes and one finds that
the stability condition generates two tertiary constraints:

ϒab ≔
1

2
Πab

cdε
ðcgfFMN

gf x−;M ~PdÞ
N

¼ 1

2
Πab

cdE
ðc
i ε

dÞgfðF0i
gf − χjF

ij
gfÞ ¼ 0: ð4:26Þ

As a consequence, the two components of the Lagrange
multiplier λab singled out by the projector, which we denote
λ̂ab ¼ Πcd

abλ̂cd, remain free.
This is the main difference of the canonical analysis on

the light front with the one done on a spacelike foliation. In
that case the matrix Mab;cd is nondegenerate so that the
stabilization of the secondary constraints fixes all Lagrange
multipliers of the primary simplicity and the analysis stops
at this point. As we see, on the light front the situation is
different and we have to perform one step more by
stabilizing the new constraints (4.26).

D. Tertiary constraints

To complete the analysis, we need to ensure the stability
of the tertiary constraints. The explicit form of the stability
condition is rather long due to the complicated form of the
commutation relations between ϒab and the primary
constraints, but it is not necessary for our purposes.
Indeed, if the stabilization of ϒab does not generate any
further constraints, the stability condition must fix the two
components of the Lagrange multiplier λ̂ab which have
remained free up to now. Thus, it is sufficient to prove that
the equation of the form�

Υab;
Z

d3xηIJ λ̂cd ~P
c
IΦd

J

�
¼ � � � ð4:27Þ

is solvable with respect to λ̂ab. Evaluating the Poisson
bracket, one finds

Πab
cdε

cgfεIJKL ~P
d
I xL−Dfð ~Pr

JxKþλ̂grÞ: ð4:28Þ

Let us concentrate on the terms where the derivative hits
λ̂gr. Using the properties of the projector, these terms can be
simplified to

2hΠab
cdε

cgfεdrpðEpχÞΠst
gr∂f λ̂st ¼ −2Πab;cd∂−λ̂cd: ð4:29Þ

Thus, the stability condition takes the following schematic
form:

∂−λ̂ab þOðλ̂Dð� � �ÞÞ ¼ � � � ; ð4:30Þ

12Here we used the symmetry properties of the indices to bring
xIþ appearing in (4.17) inside the derivative, and directly traded
for ~Pa

IJ using (4.2). Direct substitution of (4.7) leads to a slightly
different expression, and thus some different commutation
relations. However, the two constraints defined in this way differ
by terms proportional to the simplicity constraints Φa

I , which
have been already stabilized, and therefore lead to the same
canonical structure.
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and indeed can be solved with respect to λ̂ab, up to a
possible zero modes of the operator ∂−, as typical for
light-front field theories.
This result ends the stabilization procedure. The con-

straints can be now classified into first and second class
either using their Poisson bracket algebra reported in
Appendix C or looking at which Lagrange multipliers
have been fixed and which have remained free. The only
nontrivial part of this classification concerns the secondary
constraints Ψab. Since the matrixMab;cd (4.24) has rank 4,
only four of them do not commute with the primary
simplicity constraints, and are thus immediately second
class. The remaining two components commute with all
primary constraints. They may not commute with the
tertiary constraints, but commutation can be achieved by
adding an appropriate combination of the primary simplic-
ity. However, it turns out that they are noncommuting
themselves. Indeed, let us extract from the commutator
(C4) the part corresponding to these two components. This
can be done by substitution of the smearing functions of the
form μ̂ab ¼ Πcd

abμ̂cd. Then the commutator becomes

fΨðμ̂Þ;Ψðν̂Þg¼−
Z

d3x½h3=2Πab
cdε

cgfεdrpðEpχÞ

×Πst
grðν̂st∂fμ̂ab− μ̂ab∂fν̂stÞþOðμ̂ ν̂Dð� � �ÞÞ�

¼
Z

d3x½
ffiffiffi
h

p
Πab;cdðν̂cd∂−μ̂ab− μ̂ab∂−ν̂cdÞ

þOðμ̂ ν̂Dð� � �ÞÞ�: ð4:31Þ

As in (4.30), the Poisson bracket is given by a linear
differential operator with the principal part given by ∂−.
Thus, up to zero modes, this operator is invertible. As a
result, all secondary constraints are second class and one
arrives at the diagram and the counting of the constraints
presented at the beginning of this section. It is also easy to
verify from (C1) that, as in [15,18], the first class part of the
constraint algebra, represented by the spatial diffeomor-
phisms and the four Lorentz transformations generating
isometries of the null hypersurface, form a Lie algebra with
true structure constants.
Before we finish this section, note that the commutator

(4.31) is analogous to the commutator (2.5) in scalar field
theory on the light front. This shows that the two secondary
constraints singled out by the projectorΠab

cd are the standard
light-front second class constraints appearing for the
physical degrees of freedom, in perfect agreement with
the fact that the graviton has two propagating modes. This
identification will be even more apparent in the noncovar-
iant formulation discussed in the next subsection.

E. Noncovariant analysis

The canonical structure presented above and the role of
different constraints, in particular, become clearer if we

give up the covariant formulation used so far, and introduce
variables adapted to the existence of a fixed direction χi in
the tangent space. Then, instead of parametrizing the phase
space by the spatial components of the spin connection
and their conjugate momenta satisfying the simplicity
constraints, we can solve these constraints explicitly and
diagonalize the resulting kinetic term. This gives a direct
access to the interpretation of various components of the
physical fields.
Our starting point is the same 3þ 1 decomposed action

(4.1) where now we substitute the explicit expression for
the momenta ~Pa

IJ given from (4.2) by

~Pa
IJ ¼

( ðIJÞ ¼ ð0iÞ∶ 1
2
~Ea
i ;

ðIJÞ ¼ ðijÞ∶ ~Ea
½iχj�:

ð4:32Þ

The kinetic term is then diagonalized by the same change of
connection variables as in the spacelike case [34]:

ω0i
a ¼ ηia − ωij

a χj;

ωij
a ¼ εijk

�
rkl þ

1

2
εklmω

m

�
Eel
a: ð4:33Þ

Thus, we traded ωIJ
a for ηia, ωi, and symmetric rij. In terms

of the new variables the kinetic term takes the canonical
form Z

d4x½ ~Ea
i ∂tη

i
a þ χi∂tω

i�; ð4:34Þ

whereas the primary constraints (4.6) and (4.8) [except the
simplicity which has been explicitly solved by (4.32)] are
given by

Ri≔ εijkGjk ¼ ∂aðεijk ~Ea
j χ

kÞ−εij
kηja ~Ea

k − εij
kωjχk;

Li≔ 2G0i¼ ∂a
~Ea
i þð ~Ea

i χj− ~Ea
j χiÞηja−X ijω

j;

Da ¼ ∂bðηia ~Eb
i Þ− ~Eb

i ∂aη
i
bþωi∂aχi;

H¼ 1

2
~Ea
i
~Eb
jF

ij
ab−Λh

¼− ~Ea
i ∂aω

i−
1

2
hωi∂aðh−1 ~Ea

i Þ− εijk ~Ea
i Eel

b
rkl∂a

~Eb
j

þ ~Ea
i
~Eb
jη

i
½aη

j
b�−

1

2
~Ea
iω

iηjaχj−
1

2
~Ea
i η

i
aω

jχj−
1

4
X ijω

iωj

− εijk ~Ea
i χkrjlηla−

1

2
Mij;klrijrkl−Λh: ð4:35Þ

Writing down the Hamiltonian constraint, we used the
matrix

Mij;kl ¼ εðikmεjÞlnXmn; ð4:36Þ

which is nothing else but the lift of the matrix (4.24) to
the tangent space, namely,Mij;kl ¼ h−1Ei

aE
j
bM

ab;cdEk
cEl

d.
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Hence, for χ2 ¼ 1 it also has a two-dimensional kernel
which will play a crucial role in the following analysis.
From the kinetic term (4.34), we see that ~Ea

i is the
momentum conjugate to ηia, χi is the momentum for ωi, and
rij has vanishing momentum, which we denote as πij.
Furthermore, we wish at this point to gauge fix χi. Since ωi
is a dynamical variable, we keep its conjugate momentum
as χi, and instead introduce a gauge-fixing function for this
momentum, which will be called χ̂i. Thus, the list of
primary constraints (4.35) must be completed by

Φij ≔ πij ¼ 0;

φi ≔ χi − χ̂i ¼ 0; ð4:37Þ
where the gauge-fixing function satisfies the condition
χ̂2 ¼ 1 so as to put the theory on the light front.
The canonical analysis goes precisely along the same

lines as the covariant one, and we do not report the
details here. However, this noncovariant analysis shows
the detailed mechanism of what changes on the light front,
thanks to the explicit appearance of Mij;kl in the
Hamiltonian constraint. For generic χi, H is quadratic in
all rij, the components of the connection having vanishing
momenta.On the light front this is not true anymore due to the
degeneracy ofMij;kl, and two components of rij enter only
linearly. As a result, the secondary constraints, obtained as

Ψij ¼ ∂H
∂rij ¼ −εðikl ~Ea

kEejÞ
b
∂a

~Eb
l þ εðikl ~Ea

kχlη
jÞ
a −Mij;klrkl

ð4:38Þ
and related to (4.22) by contraction with the triad
Ψij ¼ h−1Ei

aE
j
bΨ

ab, do not depend on these two compo-
nents. Thus, whereas for generic χi all of the Ψij’s can be
solvedwith respect to rij, now the twoconstraints obtainedby
applying the projector on S, that is

Ψ̂ij ¼ Πij
klΨ

kl; ð4:39Þ

should rather be considered as equations on ηia, which are the
momenta for the physical degrees of freedom of the metric.
The twomissing components of rij are instead fixed using the
tertiary constraints. The two constraints Ψ̂ij are in fact the
gravity version of the light-front constraint (2.4). We see that
they appear here as secondary constraints, and not primary
ones, as was in the example of the scalar field theory. This is a
direct consequence of having used a first order action.
Another important difference with respect to the space-

like canonical analysis concerns the field conjugate to χ2.
From (4.34), it is clear that this is the component of the spin
connection given by χiωi. One can easily verify [see (4.35)]
that, precisely at χ2 ¼ 1, the only place where it appears
is the Hamiltonian constraint. This explains why this
gauge corresponds to the gauge fixing of the symmetry

generated by H and not the boosts, as was the case for
generic values of χi.

V. PECULIARITIES ON THE LIGHT FRONT

In this section we collect and discuss various subtle issues
arising in the light-front formulation of the first order gravity
which appear to be specific to the combination of the light-
front condition with the dynamical nature of spacetime.

A. Origin of the tertiary constraints

The most striking feature of the canonical analysis
presented in the previous section is the presence of the
tertiary constraints ϒab (4.26). It is natural to ask what
Lagrangian equations of motion are described by these
constraints. Since they are expressed in terms of the
curvature tensor, it is natural to expect that the constraints
arise from Einstein’s equations. In fact, as we demonstrate
in this section, they appear from a combination of
Einstein’s equations with Bianchi identities

Bμ;I ≔ εμνρσeν;JFIJ
ρσ ¼ 0: ð5:1Þ

First, let us perform the 3þ 1 decomposition of the
Bianchi identities

B0;0 ¼ εabcEi
aF0i

bc; ð5:2aÞ
B0;i ¼ εabcEj

aðFij
bc þ χjF0i

bcÞ; ð5:2bÞ

Ba;0 ¼ εabcð2Ei
bF

0i
0c − NdEi

dF
0i
bcÞ; ð5:2cÞ

Ba;i ¼ εabcð2Ej
bðFij

0c þ χjF0i
0cÞ

− NdEj
dðFij

bc þ χjF0i
bcÞ −NF0i

bcÞ: ð5:2dÞ

Then it is straightforward to check that

Eða
i ðBbÞ;i þ NbÞB0;iÞ − 2eεijkEða

j χkðGbÞ
i þ NbÞG0

i Þ
¼ −NEða

i ε
bÞcdðF0i

cd − χjF
ij
cdÞ

þ 2Eða
i ε

bÞcdEj
cX jkðFik

0d − NgFik
gdÞ: ð5:3Þ

Furthermore, a simple manipulation shows that

Eða
i ε

bÞcdEj
cX jkε

ikm ¼ Mab;cdEem
c : ð5:4Þ

Therefore, upon applying the projector Πab
cd to the identity

(5.3), the last term vanishes, whereas the first term on the
rhs gives precisely the tertiary constraints. Thus, we
conclude that

ϒab ¼ 1

2N
Πab

cdE
c
i ½2eεijkχjðGd

k þ NdG0
kÞ − Bd;i − NdB0;i�:

ð5:5Þ
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Furthermore, it turns out that the two Einstein equations
described by the tertiary constraints are precisely the
dynamical equations (3.20). Indeed, it is straightforward
to show that for vanishing torsion

ϒab ¼ − 2hNΠab
cdεgfrg

cfg0rð⊥ ~GdgÞ: ð5:6Þ

Thus, the tertiary constraints of the first order formalism
coincide with the propagating equations of the metric
formalism. The fact that dynamical equations become
constraints is a feature of combining the use of connection
variables with a null foliation. Heuristically, this happens
because both the first order formalism and the choice of a
null coordinate as time reduce by one the degree of time
derivatives in the field equations. Technically, the crucial
role of the light-front condition manifests in the fact that
one needs to use the degeneracy of the matrix Mab;cd in
order to cancel the last term in (5.3).

B. Lost equation

The distinguishing feature of gravity is the dynamical
nature of spacetime. Therefore, as was explained in
Sec. III A, studying a null foliation in general relativity
requires imposing the gauge condition g00 ¼ 0. Plugging
this condition into the action, one of Einstein’s equations is
apparently lost: the new action depends only on nine
variables and the equation obtained by variation with
respect to g00 is clearly missing. This issue was studied
in [12] using the metric formalism, and in [15] using
Ashtekar variables. As a remedy, it was suggested to extend
the phase space and simultaneously add a set of constraints
which would reintroduce by hand the missing equation.
However, we did not consider such ad hocmodifications in
our paper, and yet our canonical analysis reproduces all
field equations. The reason for this automatic consistency
lies in the use of a first order action, as we now discuss.
Let us consider first the simpler case of a finite dimen-

sional system.We assume that it has some gauge symmetry,
and an action that can be put in a first order form. Then, the
crucial observation is that even if we eliminate a variable
through a certain gauge fixing, the action still depends on its
conjugated variable. As a result, the Hamiltonian formu-
lation of the gauge-fixed action is still based on the same
phase space as the original one. The only difference is that
the gauge-fixing condition converts one of the original first
class constraints into second class. Therefore, its Lagrange
multiplier is fixed by the stability procedure, and it is this
key step that allows us to recover the Lagrangian equation
associated with the gauge-fixed variable. This mechanism
is illustrated in detail in Appendix D.
For field theories, however, there is an additional

complication that may arise. Suppose that the Poisson
bracket of the gauge-fixing condition φ with the gauge-
fixed constraint C♭ produces a differential operator∇ with a
nontrivial kernel,

fC♭;φðμÞg ¼ ∇μ; ∃μ0 ≠ 0∶ ∇μ0 ¼ 0: ð5:7Þ

Of course, this means that the gauge freedom generated
by C♭ has not been completely fixed by the gauge condition.
In this situation, the missing equation can be recovered
only up to the zero mode μ0.
This is precisely what happens in first order gravity

on the light front. In this case, the pair constraint/gauge
fixing is given by the Hamiltonian constraint and light-
front condition, so in the above notations, C♭ ¼ H and
φ ¼ χ2 − 1. To evaluate (5.7), observe that the variable
canonically conjugate to χ2 is χiωi, see Sec. IV E. Using the
expression for the Hamiltonian constraint from (4.35), one
finds

fH; χ2g ¼ δH
δðχωÞ ¼ −

ffiffiffi
h

p
½∂− þ ð∂aðEa

i χ
iÞ

þ Ea
i χ

iηjaχjÞ� þ χiG0i: ð5:8Þ
Thus, one indeed obtains a linear differential operator
which does have a nontrivial kernel.
Notice, however, that up to the last term, which vanishes

on the constraint surface, one gets the same differential
operator which appears in Eq. (4.21) fixing the Lagrange
multiplier ~κ. This should not be a surprise since ~κ plays the
role of μ in (5.7). Thus, the zero mode of the operator (5.8)
and the potentially missing part of Einstein’s equations
coincide with the zero mode of this Lagrange multiplier.
In the next subsection we argue that this zero mode should
actually be forbidden by boundary conditions. This means
that κ must be set to zero and all Einstein’s equations follow
from the canonical analysis.

C. Residual diffeomorphisms and zero modes

So far our analysis has been purely local. However, as
discussed in Sec. II, an important part of the dynamics on
the light front can be hidden in the sector of zero modes. It
is therefore relevant to ask whether this sector exists, and
what role it plays if it does, in the case of general relativity.
However, in gravity the analysis of zero modes is made
complicated by the highly nonlinear dynamics, the generic
appearance of caustics and of spacetime singularities
limiting the extent of the null sheet, and other phenomena
which manifest the geometric origin of the gravitational
interaction. Furthermore, the experience with field theories
shows that zero modes are strongly affected by the choice of
boundary conditions, and in this paperwe do not discuss this
issue in detail. Nonetheless, we would like to make a few
general comments on the existence of zero modes in the first
order formalism presented here and propose a preliminary
analysis, mostly ignoring all these troublesome issues.
Our prime interest is to understand whether the infinite

dimensional phase space derived so far should be supple-
mented with a (measure zero) sector of zero modes
undetermined by the initial conditions, as is the case for
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massless field theories on Minkowski spacetime, including
linearized gravity. To this end, we need to understand the
constraint structure of this sector. In particular, if the zero
mode of some second class constraint turns out to be first
class, this can signify that the initial conditions may not fix
the solution uniquely and additional data, typically encoded
in the zero mode of the corresponding Lagrange multiplier,
should be taken into account. Specifically, it may poten-
tially happen for those constraints whose Lagrange multi-
pliers are determined by differential equations with the
principal part given by ∂−, or, more generally, whose
second class nature follows from commutation relations
involving this operator. In our case we have eight candi-
dates which satisfy this criterium. Using the noncovariant
notations of Sec. IV E and lifting all objects to the tangent
space using the triad, these eight candidates are
a. the Hamiltonian constraint H;
b. the primary constraint χiφi ≡ φ defined in (4.37),

which plays the role of the light-front condition;
c. two primary constraints Φ̂ij ¼ Πij

klΦ
kl, two secondary

constraints Ψ̂ij, and two tertiary constraints ϒij.
Their zero modes require special attention because the first
two constraints have the commutation relation given by the
differential operator (5.8) and the commutators of the other
constraints are encoded in (4.30) and (4.31) which have a
similar form as well.
First, the appearance of the Hamiltonian constraint in

this list has a simple interpretation: the light-front condition
(3.5) or (3.1), realized canonically by the constraint φ, does
not completely fix time diffeomorphisms and there exists a
residual gauge symmetry. Indeed, an infinitesimal diffeo-
morphism transformation of g00 is found to be

δξg00 ¼ 2g0μ∇μξ
0 ¼ −2N −1∂−ξ

0; ð5:9Þ

where we used (B3). This result shows that the diffeo-
morphisms with the transformation parameter satisfying
∂−ξ

0 ¼ 0 leave the gauge (3.1) invariant and appear as
residual gauge transformations.13 Whether the residual
transformations are an actual symmetry of the theory

and the zero mode of H is first class depends on the
concrete form of the boundary conditions. We postpone for
future work a more detailed analysis of this issue. In any
case, such a zero mode would be a usual gauge symmetry
which does not require specification of any additional
information beyond the initial conditions.
Next, it is easy to see that the constraint φ cannot have a

first class zero mode. If it were the case, it would generate a
symmetry transformation, which shifts one of the compo-
nents of the spin connection, namely, χiωi, and leaves the
other variables intact. However, such a symmetry would be
in contradiction with the Cartan equations which uniquely
determine the connection in terms of the tetrad. This
implies that a nonvanishing solution of (4.21) is incon-
sistent with any reasonable boundary conditions and that
the Lagrange multiplier κ must vanish.
The most nontrivial is the set of constraints consisting of

Φ̂ij, Ψ̂ij, and ϒij. It describes the dynamics in the sector
corresponding to the physical gravitational modes (trans-
verse and traceless). In particular, as was noticed above, Ψ̂ij

are the standard light-front constraints determining the
momenta for the physical modes, whereas ϒij in the metric
formalism become the equations describing their propaga-
tion. Thus, this is precisely the sector where zero modes are
expected to appear. Since these constraints form the chain
primary → secondary → tertiary in the stabilization pro-
cedure, they must be simultaneously either first or second
class. Furthermore, it is well known that all constraints
appearing as a result of the stabilization procedure of one
first class constraint realize the same Lagrangian gauge
symmetry, which is generated at the canonical level by the
sum of all these constraints smeared with the same
parameter, but differentiated by an increasing number of
time derivatives. Therefore, even if our zero modes turn out
to be first class, they realize not six, but only two
Lagrangian gauge symmetries corresponding to the follow-
ing combined canonical generator14:

ϒðϵ0Þ þ Ψ̂ðNe −1∂þϵ0Þ − Φ̂ðNe −1∂þðNe −1∂þϵ0ÞÞ: ð5:10Þ

The existence of such symmetries depends on the con-
sistency of the solutions of (4.30) and (4.31) with boundary
conditions. By analogy with the case of four-dimensional
massless theories one may expect that only global zero
modes can arise here. If this is the case, the parameter ϵ0 in
the above generator can be a function of the light-front
time xþ only.

VI. CONCLUSIONS

In this paper we extended the canonical analysis of
general relativity on a null foliation to a first order action in

13Notice the apparent mismatch between this condition on ξ0

and the equation on the lapse (3.18) due to the presence of a
connection-dependent term in the latter. The lapse is the Lagrange
multiplier for the Hamiltonian constraint, which is usually
associated with the generator of time diffeomorphisms, and it
might be tempting to identify it with ξ0. However, the correct
generator of the Lagrangian symmetry (5.9) in the canonical
formulation is given by the total Hamiltonian [45,46]

D0ðξ0Þ ¼
Z

d3xξ0Htot:

This means that the smearing function appearing in the generator
in front of the Hamiltonian constraint is the product ξ0N . It is this
function that should satisfy (3.18) and it does, provided ∂−ξ

0 ¼ 0
and N fulfils (3.18).

14The appearance of the lapse in the arguments of constraints is
due to the way the secondary and tertiary constraints are defined.
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terms of real connection variables. A characteristic feature
of our analysis is the use a tetrad decomposition suitable for
an arbitrary foliation, whose nature (spacelike, timelike, or
null) is encoded in the norm of an internal vector. In
particular, this allows us to work with a nondegenerate triad
and to be close as much as possible to the formalism
underlying the loop approach to quantum gravity. It is also
possible to relate this formulation to the double-null or
2þ 2 formalism of [11], which makes some geometric
properties manifest, by using the natural double-null
foliation carried by the local Minkowski metric of the
fiber bundle.
The canonical structure of the theory is rather elaborate,

with a stabilization procedure that stops only at the level of
tertiary constraints, and a few novelties in the geometric
meaning of the constraints and their correspondence to
Lagrangian equations. In particular, the tertiary constraints
turn out to originate from the two Einstein equations
propagating the physical degrees of freedom. This gives
them the same status as the Hamiltonian constraint, to
which they also have a resembling expression.
Finally, we provided a framework for discussing the

issue of zero modes in gravity on the light front. In
particular, we showed that the existence of zero modes
not captured by initial data on a null hypersurface is related
to the fact that some second class constraints have first class
zero modes. If this happens, the data to be added to initial
conditions are contained in the zero modes of the corre-
sponding Lagrange multipliers. In the case of gravity we
identified the constraints where these effects can potentially
appear. Furthermore, we found that the standard light-front
conditions of the linearized theory appear as a part of
the secondary simplicity constraints, and discussed how
boundary conditions affect the existence of zero modes at
nonperturbative level.
Given these results, there are many directions in which

this work could be developed. First, one can try to explicitly
evaluate the Dirac brackets and formulate the dynamics on
reduced phase space. It would then be interesting to
compare the resulting structure with the one proposed in
[47–49]. A related issue is to study the constraint-free data
in our formulation. Indeed, we pushed forward in this
paper the use of a single null hypersurface, whereas the
constraint-free data are typically described using two null
hypersurfaces and a spacelike surface defined at their
intersection. To that end it is also useful to translate our
results to the Newman-Penrose formalism. This can be
easily done, and for instance, Bondi’s complex shear can be
identified with a projection of ηia on the spacelike surface S.
This relation may also be used to better understand the

boundary conditions to be imposed on our fields and their
asymptotic properties. In particular, our local analysis
should be connected with the familiar notions of asymp-
totic flatness and data on future null infinity Iþ. This will
allow us to make contact with previous quantization

attempts [50–52], but also with recent perturbative develop-
ments [53,54]. Furthermore, the boundary conditions are
crucial to determine the structure of the zero mode sector of
the theory, whose importance we discussed at length in the
main text.
Finally, our results can also be used to develop a

dynamical treatment of null spin networks [28], and as a
starting point for spin foam models with null boundaries.
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APPENDIX A: SCALAR FIELD THEORY
ON THE LIGHT FRONT

Some features of the canonical structure of field theories
on the light front are not easily found in the literature.
To illustrate some of the phenomena which played a role
in the main text, in particular the issue of zero modes and
their treatment at the canonical level, we take in this
appendix the example of a scalar field theory. We split
the discussion into two parts. First, the two-dimensional
massless case, which is special in many respects. Then, the
four-dimensional case.

1. Free massless scalar in two dimensions

The two-dimensional massless scalar field represents one
of the simplest field theories. It is described by the wave
equation

∂þ∂−ϕ ¼ 0; ðA1Þ

which is trivially solved in terms of two arbitrary functions
of the light cone coordinates

ϕ ¼ ϕþðxþÞ þ ϕ−ðx−Þ: ðA2Þ

From the usual canonical point of view these two functions
or, more precisely, their symmetric and antisymmetric
combinations, are related to the initial values of the field
and its conjugate momentum, respectively. Our aim here is
to understand how they appear in the light-front formu-
lation of this trivial theory.
The starting point is the action in the coordinates (2.1)

S ¼
Z

dxþdx−∂þϕ∂−ϕ: ðA3Þ

Thinking about xþ as a time coordinate, one arrives, as was
already mentioned in the main text, to the constraint
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Ψ ≔ π − ∂−ϕ ¼ 0; ðA4Þ

where π is the momentum conjugate to ϕ. As a result, the
Hamiltonian in such a formulation is simply proportional to
this constraint:

H ¼
Z

dx−λΨ; ðA5Þ

where λ is the corresponding Lagrange multiplier. Using
the canonical Poisson bracket

fϕðx−Þ; πðy−Þg ¼ δðx−; y−Þ; ðA6Þ
the stability condition of Ψ is found to be

∂þΨ ¼ fΨ; Hg ¼ −2∂−λ ¼ 0: ðA7Þ

Thus, it partially fixes the Lagrange multiplier requiring
that it is independent of the spatial coordinate x−:

λ ¼ λ0ðxþÞ: ðA8Þ
This indicates that the zero mode of the constraint Ψ
coupled to the Lagrange multiplier λ0 is first class, whereas
the remaining part of the constraint is second class. This is
consistent with the Poisson bracket

fΨðλÞ;Ψðλ0Þg ¼
Z

dx−ðλ0∂−λ − λ∂−λ
0Þ ðA9Þ

which is identical to the result (2.5) presented in the
main text.
From this analysis we conclude that the phase space of

the light-front theory is one dimensional. Thus, on the
initial value surface we have to provide only the field itself,
but not its conjugate momentum which is fixed by the light-
front constraintΨ. These data can be clearly identified with
the function ϕ−ðx−Þ in (A2). But where is the second
function ϕþ hidden in this formalism? As it turns out, it is
encoded in the zero mode λ0 of the Lagrange multiplier.
Indeed, the Hamiltonian equation of motion

∂þϕ ¼ fϕ; Hg ¼ λ0ðxþÞ ðA10Þ

identifies λ0 with the derivative of ϕþ. Since λ0 multiplies
the first class part of the constraint, which is given by

Ψ0 ≔
Z

Ψdx− ¼
Z

πdx−; ðA11Þ

it is an arbitrary function of xþ which must supplement the
initial conditions to fix a solution uniquely. In this way the
presence of the gauge symmetry realized byΨ0 allows us to
describe the degrees of freedom not captured by the data on
the null hypersurface.
One might wonder how this can be, given that the

presence of a gauge symmetry usually implies a reduction
of degrees of freedom. In particular, specification of the

corresponding Lagrange multiplier is usually interpreted
just as a gauge fixing. On the light front the situation is
different due to a different physical interpretation of the
quantities affected by the gauge symmetry. Whereas for the
standard gauge symmetry such quantities are considered as
unobservable, in the case of the gauge symmetry generated
by the zero mode of the light-front constraint this is not
true. For instance, although the function ϕþ in (A2)
transforms under the action of the first class constraint
Ψ0, it is nonetheless an observable and solutions differing
by values of ϕþ are physically inequivalent. Thus, on the
light front one should distinguish between the usual first
class constraints and the ones describing the physical
zero modes.

2. Scalar field in four dimensions

Let us now turn to the four-dimensional scalar theory
allowing also for a nonvanishing mass and a nontrivial
potential. In the light cone coordinates, the action func-
tional for such a theory is given by

S¼
Z

dxþdx−d2x⊥
�
∂þϕ∂−ϕ−

1

2
ð∂⊥ϕÞ2−

m2

2
ϕ2−VðϕÞ

�
:

ðA12Þ

It gives rise to the same light-front constraint Ψ (A4) as in
the two-dimensional massless case and with the same
commutation relations (A9). The Hamiltonian however
acquires now additional contributions due to the mass,
the potential, and the orthogonal dimensions

H ¼
Z

dx−d2x⊥
�
1

2
ð∂⊥ϕÞ2 þ

m2

2
ϕ2 þ VðϕÞ þ λΨ

�
:

ðA13Þ
This changes the stability condition of Ψ which now
becomes an inhomogeneous differential equation on the
Lagrange multiplier

ð∂2⊥ −m2Þϕ − V 0ðϕÞ − 2∂−λ ¼ 0: ðA14Þ

As in the previous subsection, it can be solved with respect
to λ up to its zero mode λ0ðxþÞ which remains free. This
indicates that the zero mode of the constraint (A11) again
might be first class. However, the inhomogeneity of the
equation leads to new features. Integrating the stability
condition (A14) over the whole line of x−, one kills the last
term and ends up with an equation which should be
interpreted as a new secondary constraint:

Σ ≔
Z

dx−ðð∂2⊥ −m2Þϕ − V 0ðϕÞÞ ¼ 0: ðA15Þ

This is the so-called zero mode constraint [32,55] which
determines the zero mode of the scalar field in terms of the
other modes. In the absence of the potential, it requires that
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this zero mode vanishes. Otherwise, it can become non-
trivial and give rise to various phenomena such as sponta-
neous symmetry breaking.
At the next step we compute

fΣ;ΨðλÞg ¼
Z

dx−ðð∂2⊥ −m2Þ − V″ðϕÞÞλ: ðA16Þ

In particular, one finds that Σ does not commute with Ψ0.
15

Thus, they are both second class constraints and the
stabilization of Σ, which requires (A16) to vanish, fixes
the zero mode λ0 of the Lagrange multiplier. As a result, no
first class constraints arise in this case and a solution of the
theory is uniquely specified by the initial data for the scalar
field on the light front [33]. The only additional restriction is
that these data should satisfy the zeromode constraint (A15).
Finally, we note that the case of a massless field in four

dimensions represents a mixture of the structures presented
in this and the previous subsections. If we set m2 ¼ V ¼ 0,
one still gets the zero mode constraint (A15). However, in
contrast to the massive case, it satisfiesZ

Σd2x⊥ ¼ 0: ðA17Þ

Thus, the constraint does not restrict the global zero mode
which is independent of all spatial coordinates. Similarly,
from (A16) one finds that Σ commutes with

Ψgl
0 ≔

Z
Ψdx−d2x⊥; ðA18Þ

which means thatΨgl
0 is first class and the global zero mode

of λ remains an undetermined function of xþ, which should
be specified together with initial conditions. This is, in fact,
the expected result since in the massless case the global
zero mode propagates parallel to the light front as illus-
trated on Fig. 1.

APPENDIX B: DECOMPOSITION
OF THE METRIC

In the light-front gauge (3.5), the inverse tetrad can be
found to be

e0I ¼ −e−1
ffiffiffi
h

p
ηIJxJ; eaI ¼ e−1

ffiffiffi
h

p
NaηIJxJ þ h−1=2 ~Pa

I ;

ðB1Þ
where ~Pa

I is defined in (4.3) and e ¼ N
ffiffiffi
h

p
is the

determinant of the tetrad. The expressions for the
metric and its inverse easily follow from (3.2) and (B1),
respectively,

gμν ¼
�
−N 2þNaNbqab−2NNaEi

aχi qbcNc−NEi
bχi

qacNc−NEi
aχi qab

�
;

ðB2Þ

gμν ¼ 1

N

�
0 −Eb

i χ
i

−Ea
i χ

i NEa
i E

b
i þðNaEb

i þNbEa
i Þχi

�
: ðB3Þ

APPENDIX C: CONSTRAINT ALGEBRA

The commutators of the primary constraints on the
surface of the simplicity constraint Φa

I are given by

fGðnÞ;GðmÞg ¼ Gðn ×mÞ;
fDð ~NÞ;GðnÞg ¼ −GðNa∂anÞ;

fDð ~NÞ;Dð ~MÞg ¼ −Dð½ ~N; ~M�Þ;
fGðnÞ;HðNeÞg ¼ HðNenIJxIþxJ−Þ þDð ~UÞ þ GðUaωaÞ;

fDð ~NÞ;HðNeÞg ¼ −HðL ~NNeÞ; fHðNeÞ;HðMe Þg ¼ 0;

fGðnÞ;Φa
I g ¼ εIJ

KLxJþnKNxNþ ~Pa
L;

fDð ~NÞ;Φa
I g ¼ −NbεIJKL ~P

a;JxKþ∂bxLþ;

fHðNeÞ;Φa
I g ¼ εIJ

KLxJþDbðNe ~Pa
K
~Pb
LÞ; ðC1Þ

where

ðn ×mÞIJ ¼ nIKmKJ − nJKmKI;

½ ~N; ~M�a ¼ Nb∂bMa −Mb∂bNa;

L ~NNe ¼ Na∂aNe − Ne∂aNa;

Ua ¼ −NenIJτI ~Pa
J ¼ Nen0i ~Ea

i : ðC2Þ

The secondary constraints commute with the primary ones
as follows:

fΦðζÞ;Ψabg¼ð ~PðaζcÞð ~PbÞxþÞð ~PcxþÞ
þð ~PðaxþÞð ~PbÞ ~PcÞðζcxþÞ
−ð ~PðaxþÞð ~PbÞxþÞð ~PcζcÞ
−ð ~Pa ~PbÞð ~PcxþÞðζcxþÞ;

fGðnÞ;Ψabg¼−nIJxIþxJ−Ψab−ðnIJτI ~Pða
J ÞεKLMNxKþ ~PbÞ

L GMN;

fDð ~NÞ;Ψabg¼Nd∂dΨabþ3∂dNdΨab−∂dNaΨdb−∂dNbΨad;

fHðNeÞ;Ψabg¼3Neð ~Pc
IDcτ

IÞΨab−2Neð ~Pða
I Dcτ

IÞΨbÞc

−2NeεIJKL ~Pða
I
~Pc
JDc

~PbÞ
K GLMτ

M

þh
2
NeεðacdFMN

cd x−;M ~PbÞ
N ; ðC3Þ

15In fact, their commutator diverges. This divergence arises
because we compute a commutator between two conjugate modes
of a continuum spectrum. A way to regularize it is to put
boundaries at finite x−, which eventually leads to the discrete
light cone quantization framework [56,57].

SERGEI ALEXANDROV AND SIMONE SPEZIALE PHYSICAL REVIEW D 91, 064043 (2015)

064043-18



whereas their mutual commutator reads

fΨðμÞ;ΨðνÞg ¼
Z

d3xεIJKLxKþεI
0J0K0L ~Pg

K0

× ½ðνcd ~Pc
J
~Pd
J0 ÞDgðμab ~Pa

I
~Pb
I0 Þ

− ðμab ~Pa
I
~Pb
I0 ÞDgðνcd ~Pc

J
~Pd
J0 Þ�: ðC4Þ

APPENDIX D: GAUGE FIXING AND
MISSING EQUATIONS

In the main text we raised the issue that a gauge fixing
leads to an apparent loss of one of the equations of motion.
In this appendix we show that when one works with a
first order action, the apparently missing equation is
recovered from the stabilization procedure. Without loss
of generality, we can assume that the system has the
following structure:

S½q; p;ω; χ� ¼
Z

dtðpi∂tqi þ χ∂tω −HTÞ;

HT ¼ Hðq; p;ω; χÞ þ λαCαðq; p;ω; χÞ; ðD1Þ
where ðqi; pi;ω; χÞ span the phase space, H is a
Hamiltonian, and Cα represent a set of first class constraints.
We distinguished a pair of conjugate variables ðω; χÞ
because our aim is to investigate the difference between
the system (D1) and the one obtained by a gauge fixing of
the variable χ. Namely, let us assume that the condition
χ ¼ χ̂ðq; p;ωÞ fixes the gauge symmetry generated by one
of the first class constraints, say C♭. Then the gauge-fixed
action becomes

Sg:f:½q; p;ω� ¼
Z

dtðpi∂tqi þ χ̂ðq; p;ωÞ∂tω

−Hg:f:ðq; p;ωÞ − λαCg:f:α ðq; p;ωÞÞ; ðD2Þ
where

Hg:f:ðq; p;ωÞ ¼ Hðq; p;ω; χ̂ðq; p;ωÞÞ;
Cg:f:α ðq; p;ωÞ ¼ Cαðq; p;ω; χ̂ðq; p;ωÞÞ: ðD3Þ

Since the gauge-fixed action does not depend on χ any-
more, we seem to lose one equation of motion of the
original system

δS
δχ

¼ ∂tω − ∂χHT ¼ 0: ðD4Þ

What is the fate of this equation in the gauge-fixed theory?

To understand this issue, one should proceed with the
Hamiltonian analysis of (D2). Then, in addition to the
constraints Cg:f:α , one finds another primary constraint,

φ ¼ χ − χ̂ðq; p;ωÞ; ðD5Þ

where χ is the momentum conjugate to ω. This constraint
should be added to the total Hamiltonian with a Lagrange
multiplier μ

Hg:f:
T ¼ Hg:f: þ λαCg:f:α þ μφ: ðD6Þ

The next step is the stability analysis of all primary
constraints. One finds

∂tφ ¼ fφ; Hg:f:
T g

¼ ∂ωHg:f: þ λα∂ωC
g:f:
α − fχ̂; Hg:f: þ λαCg:f:α g

¼ ∂ωHT − fχ̂; HTg ¼ 0; ðD7Þ

∂tC
g:f:
α ¼ fCg:f:α ; Hg:f:

T g
¼ fCα; HTgg:f: − ∂χCαfχ̂; HTg þ fCα; χ̂g∂χHT

þ μð∂ωCα − fCα; χ̂gÞ
≈ ð∂ωCα − fCα; χ̂gÞðμ − ∂χHTÞ ¼ 0; ðD8Þ

where we used the notation ff;ggg:f:¼∂qif∂pi
g−∂pi

f∂qig,
and to get the last line we took into account (D7) and the
stability of Cα in the non-gauge-fixed theory, which implies
that fCα; HTg ≈ 0. Since the gauge condition is supposed to
fix the symmetry generated by C♭, their commutator should
be nonvanishing, i.e.

fC♭; χ − χ̂g ¼ ∂ωC♭ − fC♭; χ̂g ≠ 0: ðD9Þ

Then it is easy to see that the condition (D7) fixes the
Lagrange multiplier λ♭, whereas the stability of all con-
straints Cg:f:α is achieved by fixing the Lagrange multiplier μ

μ ¼ ∂χHT: ðD10Þ
It is this result that ensures the equivalence of the two
systems because the Hamiltonian equation of motion for ω
in the gauge-fixed case

∂tω ¼ fω; Hg:f:
T g ¼ μ ¼ ∂χHT ðD11Þ

precisely coincides with the original equation (D4). Thus,
this equation is not lost, but it is still a part of the partially
gauge-fixed canonical formulation.
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