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We investigate general optical interferometry in stationary spacetimes focusing on quantum-optical
experiments in near-Earth environments. We provide a rigorous expression for the gravitationally induced
phase difference and adapt the parametrized post-Newtonian formalism for calculations of polarization
rotation. We investigate two optical versions of the Colella-Overhauser-Werner experiment and show that
the phase difference is independent of the post-Newtonian parameter γ, making it a possible candidate for
an optical test of the Einstein equivalence principle. Polarization rotation provides an example of the
quantum clock variable and, while related to the optical Lense-Thirring effects, shows a qualitatively
different behavior from them.
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I. INTRODUCTION

Quantum theory and general relativity are often described
as the two pillars of modern physics; this metaphor is apt in
more than oneway [1]. The two theories are built on different
foundations—probabilities that evolve in time cannot be
easily reconciled with a deterministic unfolding of events in a
dynamical spacetime. Their various aspects are verified with
a spectacular precision on scales ranging from cosmic
distances to fractions of a millimeter in the case of gravity
[2] and from 10−19 m to 143 km for quantummechanics [3].
The early Universe and late-time black holes are two

environments where both theories are expected to produce
large effects. However, apart from an obvious lack of a
complete quantum theory of gravity these regimes are
hardly accessible for precision measurements.
Once a causal structure is fixed, relativity and quantum

mechanics can “peacefully coexist” [4]. In fact, explicit
quantum effects and post-Newtonian gravity tend “to share
quarters by keeping clear of each other” [5]. Two of the four
classic tests of general relativity (light deflection and time
delay) are based on classical interferometry [6–8]. Even if a
quantum phenomenon, such as the Mössbauer effect, is
used to test the weight of photons [9,10], the influence of
gravity is modeled by classical electromagnetic waves on a
curved background [7,8].
Moving atomic clocks [11]—from the Hafele-Keating

experiment [12] to global positioning system satellites—are
described as time-keeping devices transported along well-
defined classical trajectories [13]. Moreover, when (non-
relativisitc) quantum mechanics is used to describe particle
motion, e.g, in neutron interferometry [14,15] or atomic
fountains [11,16], Newtonian gravity is sufficient [17,18].
This is the case even if matter-wave interferometry is used to

boundpossibleviolations ofEinstein’s equivalenceprinciple
[19] in the gravitational standard model extension [20].
From a theoretical point of view, there is a useful

hierarchy of models that describe the interplay between
quantum mechanics and gravity: beginning with nonrela-
tivistic quantum mechanics on a curved background
(level 0), through quantum fields propagating on a curved
background (level 1), to semiclassical gravity (level 2), and
stochastic semiclassical gravity (level 3) [21], and finally
different effective field theory treatments of matter-gravity
systems [22] and models based on the minimal length scale
expected in the canonical quantum gravity and/or modified
commutation relations [23].
While it is accepted that the modification at the first level

is due to obvious changes in the classical field modes on a
given curved background, it has not been experimentally
verified. The development of quantum technologies pro-
vides an opportunity to test explicit (and counterintuitive)
quantum effects, like macroscopic superpositions and
entanglement, and to investigate the interface between
gravity and quantum mechanics.
The quest for improved performance of gravitational

wave interferometers was one of the strong driving forces
behind quantum metrology [24]. Several quantum non-
demolition [25] readout schemes for gravitational wave
interferometers that are based on strongly nonclassical
states have been investigated theoretically and experimen-
tally. By the end of this decade the LIGO detectors may be
upgraded to enable the injection of squeezed light [26].
With this upgrade nonclassical states on a nontrivial
gravitational background become experimentally acces-
sible. In the field of atomic interferometry phase calcu-
lations [27] indicate that measuring non-Newtonian effects
may soon become possible.
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Recent programs that aim to deploy quantum cryptog-
raphy in space [28–31] provide a platform for single-
photon interferometry sensitive to relativistic effects. A
number of experiments have been envisaged in this setting.
The Quantum Encryption and Science Satellite
(QEYSSAT) mission, led by the Institute for Quantum
Computing in Waterloo, Canada, is being considered by the
Canadian Space Agency. Its main goal is a feasibility study
of space-based quantum cryptography. In its basic con-
figuration it consists of a ground station, where a photon
source is located, and a microsatellite in a noon-midnight
low-Earth orbit. Despite its simplified nature, the
QEYSSAT mission will also allow the testing of long
distance entanglement. In addition, a variety of quantum
optics experiments have been proposed that will test
different aspects of the relationship between quantum
theory and relativity [30]: they range from achievable with
current technology to clearly fantastic.
One of the proposed experiments—the optical version of

the Colella-Overhauser-Werner (COW) experiment [14]—
is considered in this article. In this experiment a large
Mach-Zender interferometer (MZI) is constructed and a
gravity-induced phase, resulting from the arms of an
interferometer passing through different gravitational
potentials, is measured. While back-of-the-envelope esti-
mates of the resulting phase shift can be made using the
mass-energy equivalence and coupling of the resulting
fictitious particle to Newtonian gravity [30], the general
relativistic effects are more subtle. Superpositions of a
photon traveling in different arms of the interferometer will
experience different time delays; if this difference is
comparable with the photon’s coherence time, the visibility
of the interference pattern will drop [32].
Gravity causes polarization to rotate. This frame-

dragging effect is known as a gravitomagnetic/Faraday/
Rytov-Skrotskiı̆ rotation [33–37]. We investigate a pos-
sibility to exploit this rotation for observing frame-dragging
effects, which are the last of the classical tests of general
relativity yet to be performed with sufficient accuracy [7,8].
The main difficulty with the usual experiments that aim to
detect frame-dragging is the necessity to isolate a much
larger geodetic effect due to the Earth’s mass from the
frame-dragging that is caused by its spin. However, in the
case of gravity-induced polarization rotation the net rota-
tion along a closed trajectory is insensitive to the geodetic
effect. It might be possible to measure this polarization
rotation and optically test frame-dragging effects.
Hence, our motivation is twofold. First, to investigate the

interferometric phase in a stationary spacetime and adapt it
to the near-Earth environment. While supporting and
qualifying previous results, the results presented here
can be used as a convenient starting point for more
sophisticated post-Newtonian analysis and higher-level
calculations that include the effects of quantum gravity.
Second, to study in detail polarization rotation, which is

interesting and important in its own right. Moreover, the
recently proposed interference of quantum clocks—
particles with evolving internal degrees of freedom—
provides an example of a quantum effect that cannot be
explained without the general relativistic notion of time
[38]. We discuss to what extent polarization rotation can be
considered as such a clock.
The rest of this article is organized as follows: in Sec. II

we briefly review the COW experiment, geometric optics,
and interferometry in a stationary spacetime, rigorously
deriving the resulting phase shift; in Sec. III we examine the
optical COW experiment in the near-Earth environment
giving concrete estimates for both the resulting phase shift
and gravity induced polarization rotation; and in Sec. IV we
discuss our results and comment on future directions.
To make the exposition more transparent we adopt the

following notation: a four-vector k has the components
kμ, μ ¼ 0; 1; 2; 3; the spacetime metric has the signature
−þþþ and is denoted by gμν; coordinates of an event are
labeled by xμ ¼ ðt; ~xÞ, where ~x stands for three spacelike
coordinates in any spacetime. A vector in a three-
dimensional Euclidian space is denoted as ~a, and it is
equipped with the usual Euclidian inner product ~x · ~y ¼
x1y1 þ x2y2 þ x3y3. A spatial metric γab, a; b ¼ 1; 2; 3 is
derived from gμν, and k denotes a three-vector on this space.
Accordingly, k̂ is a unit three-dimensional vector and n̂ is a
unit Euclidean vector. We define the coordinate distance as
r ≔

ffiffiffiffiffiffiffiffiffi
~x · ~x

p
. Unless it is stated otherwise we use an Earth-

centered inertial system.

II. INTERFEROMETRY
IN A STATIONARY SPACETIME

To motivate our work we begin by introducing the
optical COW experiment. Then we briefly review the main
features of geometric optics on a stationary curved back-
ground, providing equations that govern the propagation
and polarization rotation.

A. Optical COW experiment

The COW experiment [14] was the first experimental
demonstration of a gravitationally induced phase shift in a
quantum system. Silicon crystals were used to split, reflect,
and recombine a beam of neutrons, constructing a Mach-
Zender interferometer. The two paths taken by the neutrons
in this MZI correspond to the arms ABD and ACD of
Fig. 1. By changing the inclination angle δ of the
interferometer with respect to the horizontal plane a range
of phase shifts were obtained; with ζ ¼ π=2þ θ, the
resulting phase difference is given by

Δψ ¼ m2ghq sin δ
2πℏ2

¼ 2π

λ

gA sin δ
v2

; ð1Þ
where m, λ, v denote the neutron mass, de Broglie wave-
length, and velocity, respectively, A denotes the area
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enclosed by the two arms of the interferometer and g is the
free-fall acceleration at the surface of the Earth. Although
there have been many improvements to the original experi-
ment, a small discrepancy of 0.6%–0.8% remains [15].
In the optical version of the COWexperiment considered

by QEYSSAT, an optical MZI is constructed on a scale
sufficient for gravity to introduce an observable phase shift
along one of the paths. Such an experiment would involve
sending a beam of coherent light through a beam splitter,
with one of the sub-beams directly transmitted to a satellite
and the other sub-beam sent through an optical delay at the
Earth’s surface before being transmitted. The two beams
would be recombined at the satellite, completing the
interferometer. The effect of the two sub-beams traversing
paths with differing gravitational potentials, manifests itself
as a phase shift in the resulting interference pattern,
constituting a measurable effect of the gravitational red-
shift. The use of light rays instead of massive particles
allows interferometry on the scale of 105 m, which is not
currently achievable with matter interferometry.
Making use of the equivalence of energy and gravita-

tional mass E ¼ ℏω → mgc2, and Eq. (1), one obtains a
phase difference due to the gravitational redshift [30],

Δψ ¼ 2π

λ

ghq
c2

; ð2Þ

for a satellite located directly above a ground station, where
h is the height of the satellite, q is the length of the optical
delay, and c is the speed of light. Using the estimated
mission parameters of λ ¼ 800 nm, h ¼ 400 km, and
q ¼ 6 km we get a significant phase shift of Δψ ∼ 2 rad.

For the remainder of the article we consider a modified
version of the QEYSSAT experiment pictured in Fig. 1,
similar to the scheme considered in [38].
Semi-Newtonian arguments in the analysis of light

propagation in a gravitational field qualitatively agree with
the predictions of general relativity, but may be off by a
factor of two [7,39,40]. In addition to the gravitational
redshift, other effects, particularly the Doppler effect, are
important. We give a careful derivation of the redshift effect
in Sec. III A and discuss other effects in Sec. IV.

B. Geometric optics

As appropriate for a level 1 model (quantum fields on a
given classical background), light propagation is described
by the classical wave equation. Having in mind optical
applications, we use the short-wave approximation [41].
Writing the complex vector potential as

Aμ ¼ aμeiψ ; ð3Þ
we assume [41–43] that the four-vector aμ is a slowly
varying amplitude that is independent of the wavelength λ,
and the fast-varying phase (eikonal) ψ scales inversely
with λ.
The equations of geometric optics result from inserting

this vector potential into the wave equation and imposing
the Lorentz gauge. Thewave vector kμ ≔ ∂μψ, by definition,
is normal to hypersurfaces of constant phase ψ ; in addition,
the wave vector is null, kμkμ ¼ 0; hence, hypersurfaces of
constant ψ are null and their normals are also tangent vectors
to the null geodesics xμðσÞ they contain [43,44]

dxμ

dσ
¼ kμ; kμ∇μkν ¼ 0: ð4Þ

Here ∇μ is a covariant derivative compatible with the
background metric g, and σ is the affine parameter along
a geodesic. Light rays are null geodesics that generate
surfaces of constant phase.
The eikonal equation, which is a restatement of the null

condition, is given by

gμν
∂ψ
∂xμ

∂ψ
∂xν ¼ 0; ð5Þ

which is the Hamilton-Jacobi equation for a free massless
particle on a given background spacetime. Hence, when
discussing classical electromagnetic wave propagation, it is
sometimes convenient to refer to fictitious photons.
The polarization vector is defined as fμ ≔ aμ=

ffiffiffiffiffiffiffiffiffiffi
aμa�μ

p
, is

transversal to the null geodesic generated by kμ and is
parallel-propagated along it:

fμkμ ¼ 0; kμ∇μfν ¼ 0: ð6Þ

Thus, we treat photons as massless point particles that
move on the rays prescribed by geometric optics; the

FIG. 1 (color online). Experimental setup: in the Earth-centered
inertial frame (see Sec. III) the z axis is directed along the Earth’s

angular momentum ~J. An interferometer is positioned in the xz
plane and oriented at an angle ζ with respect to the z axis. The
arms AB and CD have a length q and are perpendicular to the
direction of g for ζ ¼ π=2þ θ. The arms AC and BD have length
h. For the relationship between coordinates, directions, and
physical distances see Sec. III A.
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subtleties of photon localization [45] are not relevant
for the discussion. In the geometrical approximation,
polarization can be described either in terms of a
two-dimensional Hilbert space or complex three- or
four-dimensional vectors, which are orthogonal to the
momentum (6) [30,46]; here we adopt the latter.

C. Phase

A key quantity in interferometry is the phase difference
at the point of detection between photons that take different
paths in the interferometer [41],

Δψðt; ~xÞ ≔ ψABDðt; ~xÞ − ψACDðt; ~xÞ; ð7Þ
where the subscripts refer to the path that the photon took.
Stationary spacetimes allow considerable simplification

of the eikonal equation due to the existence of a timelike
Killing vector field, which allows one to define conserved
energy (or frequency) of test particles [42–44]. In particu-
lar, a Schwarzschild metric in isotropic coordinates [43]
takes the form

ds2 ¼ −V2ðrÞc2dt2 þW2ðrÞd~x · d~x; ð8Þ
where

V ¼
�
1 −

rg
4r

�
=
�
1þ rg

4r

�
; W ¼

�
1þ rg

4r

�
2

; ð9Þ

and the gravitational radius is rg ≔ 2GM=c2. Its timelike
Killing vector is simply ξμ ¼ ∂=∂t. Hence,

kμξμ ¼ −V2k0 ¼ −ω∞=c ¼ −VωL=c ¼ const; ð10Þ

where ωL is the frequency measured by a local stationary
observer and ω∞ is the frequency at infinity.
In stationary spacetimes, solutions of the Hamilton-

Jacobi equation (5) for a free particle take the form

ψðt; ~xÞ ¼ −ω∞ðt − t0Þ þ ω∞Sð~x; ~x0Þ; ð11Þ
where ðt0; ~x0Þ is the starting point of the photon’s trajec-
tory; the explicit form of the function Sð~x; ~x0Þ does not
concern us here. The phase is constant along each ray
xμðσÞ. At a given moment of the coordinate time the three-
dimensional projections of the light rays are orthogonal to
the surfaces of constant S,

km
dxm

dl
¼ 0; ð12Þ

for any curve ~xðlÞ that is contained in the surface
Sð~x; ~x0Þ ¼ const.
Different families of constant phase hypersurfaces cor-

respond to different families of rays and different paths
correspond to different initial momenta of photons. We

distinguish trajectories that pass through the intermediate
points B or C in Fig. 1, as well as the related phases, by
appropriate subscripts. All time and phase differences are
calculated at the point D.
The constancy of phase along null geodesics implies

ω∞ðt − t0Þ ¼ ω∞SΓð~xðtÞ; ~x0Þ; ð13Þ

where the subscript Γ indicates a path that corresponds to a
particular set of initial conditions. As a result, the phase
difference between the two arms of the interferometer is

Δψðt; ~xDÞ ¼ ω∞SABCð~xD; ~xAÞ − ω∞SACDð~xD; ~xAÞ
¼ ω∞ðtABD − tACDÞ ¼ ω∞Δt; ð14Þ

where Δt is the difference in arrival coordinate times of
photons traveling along paths ABD and ACD. The proper
time difference of a stationary observer at some point is
related to the coordinate time difference at that point by the
relation

dτ ¼ ffiffiffiffiffiffi
g00

p
dt: ð15Þ

In the case of the Schwarzschild spacetime, this yields a
difference in the proper time given by Δτ ¼ VΔt. The
gravitationally induced phase difference is then

Δψ ¼ ωLΔτ: ð16Þ

This result is correct regardless of the validity of the post-
Newtonian approximation.

D. Polarization

Stationary spacetimes allow a convenient three-
dimensional representation of the evolution of the polari-
zation vector [34,47]. Static observers follow the
congruence of timelike Killing vectors that define a
projection from the spacetime manifold M onto a three-
dimensional space Σ3, π∶M → Σ3. In practice, this pro-
jection is performed by dropping the timelike coordinate of
an event, and vectors are projected via a push-forward
map: π�k ¼ k. For a static observer, the three spacelike
basis vectors of a local orthonormal tetrad are projected
into an orthonormal triad: π�em ¼ êm, with the property
êm · ên ¼ δmn.
The metric gμν on M can be written in terms of a three-

dimensional scalar h, a vector g with components gm, and a
three-dimensional metric γmn on Σ3 as

ds2 ¼ −hðdx0 − gmdxmÞ2 þ dl2; ð17Þ

where h ≔ −g00, gm ≔ −g0m=g00, and the three-
dimensional distance is dl2 ≔ γmndxmdxn, with
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γmn ¼ gmn −
g0mg0n
g00

: ð18Þ

The three-dimensional γmn-compatible covariant derivative
and the associated Christoffel symbols are denoted as Dm
and λmnl, respectively. Vector products and differential
operators are defined as appropriate duals.
Using the relationships between the three- and four-

dimensional covariant derivatives [42], the propagation
equations (4) and (6) in a stationary spacetime, results in
the following three-dimensional expressions [34,37]:

Dk̂
dσ

¼ Ω × k̂; ð19Þ

Df̂
dσ

¼ Ω × f̂; ð20Þ

where σ is an affine parameter along the curve with tangent
vector k ¼ dx=dσ. From Eqs. (19) and (20) we see that
both the propagation direction and polarization are rigidly
rotated, with an angular velocity given by [47]

Ω ¼ 2ω − ðω · k̂Þk̂ −Eg × k; ð21Þ

with the vector ðh;gÞT playing the role of a vector potential
for the gravitoelectric and gravitomagnetic field [48]:

Eg ¼ −
∇h
2h

; ω ¼ −
1

2
k0∇ × g: ð22Þ

The polarization vector f̂ is meaningful only with respect
to a basis of two standard linear polarization vectors b̂x and
b̂y, or their superpositions 1ffiffi

2
p ðb̂x � ib̂yÞ corresponding to

right- and left-circular polarization vectors, for each
momentum direction k̂. Accordingly, the net polarization
rotation along a photon’s trajectory depends on the evo-
lution of the standard polarization directions and is gauge
dependent [37].
In flat spacetime this basis is uniquely fixed by Wigner’s

little group construction [49,50]. It is realized with the help
of the conventionally defined standard rotations, which
rotate a standard reference momentum to a particular
direction. The reference momentum is chosen to be
directed along an arbitrarily defined z axis, with the
reference frame being completed by the x and y axes,
which define the two standard linear polarizations b̂xðẑÞ
and b̂yðẑÞ. A direction k̂ is described by the spherical
angles ðθ;ϕÞ. The standard rotation that brings the z axis to
k̂ is defined as a rotation around the y axis by RyðθÞ, that is
followed by a rotation RzðϕÞ around the z axis, so that
Rðk̂Þ ¼ RzðϕÞRyðθÞ. The standard polarizations vectors
associated with the direction k̂, are then defined as
b̂xðk̂Þ ≔ Rðk̂Þx̂ and b̂yðk̂Þ ≔ Rðk̂Þŷ.

However, on a general curved background the Wigner
construction must be performed at every point; i.e., the
standard polarization triad ðb̂x; b̂y; k̂Þ is different at every
location.
In the Schwarzschild spacetime, it is true that for any

closed phase space trajectory that a photon may travel, the
resulting phase difference Δχ between the the initial and
final polarization vector, or equivalently the angle of
rotation Δχ between the initial and final polarization basis,
is zero [33,35,36]; however, in general it is not true that this
phase vanishes along each segment of the trajectory. This
last statement is correct only for a particular gauge choice,
which is constructed for a general (stationary) spacetime as
follows: at each point in the spacetime we choose the
standard reference momentum, or equivalently the z axis of
our standard polarization triad, to be aligned with the local
free-fall acceleration with respect to a static observer.
Denoting its four-velocity by u, we obtain ẑ ≔ ŵ where
w ¼ −π�ð∇uuÞ. For a photon with wave vector k, we
choose the linear polarization vector b̂y to be pointed in the
direction ẑ × k̂, and finally we choose b̂x such that it
completes the orthonormal triad ðb̂x; b̂y; k̂Þ. This construc-
tion is known as the Newton gauge [37,47].
In the Schwarzschild spacetime the local free-fall direc-

tion w is given by the gravitoelectric field Eg, and the
gravitomagnetic field vanishes. Thus, from Eq. (21) we see
the angular velocity, at which the polarization f̂ and the
propagation direction k̂ of a photon rotate, is given by
Ω ¼ −Eg × k, and points along the b̂y direction. Such a
rotation does not introduce a phase Δχ [37], which can be
seen as follows. In the Schwarzschild spacetime, if a
photon propagates from point A to point B in the plane
defined by k̂ and b̂x, both its momentum k̂ and linear
polarization vector b̂x are rotated around the direction b̂y,
which is perpendicular to the plane of motion. This
rotation, is exactly the same as the rotation relating the
polarization triad at point A to the polarization triad at
point B, and consequently no phase in the polarization
vector is acquired.
In addition to being defined by local operations, the

Newton gauge has two useful properties: first, while it
does not rely on a weak-field approximation to define
the reference directions, it considerably simplifies the
post-Newtonian calculations, as we show in Sec. III B;
and second, if the trajectory is closed or self-intersecting,
the reference direction ŵ is the same at the points of the
intersection.
Suppose we consider two different beams of light

starting at point A, diverging, and meeting again at point
B, resulting in the propagation directions k̂1 and k̂2 at B—
as the typical situation in interferometry; even with a
common reference direction ŵ for the two beams, there
are several useful ways to quantify polarization rotation.
One simple way, which is employed in Sec. III B, is to
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compare the inner product of the polarization vectors of
each beam at B, which directly influences the resulting
interference pattern [41], with the inner product of the
initial polarization vectors at A. We discuss an alternative
comparison method in Appendix A.

III. INTERFEROMETRY IN THE PPN
APPROXIMATION

The parametrized post-Newtonian (PPN) approximation
[6,7,43,48,51] is a systematic method for studying a system
of slowly moving bodies bound together by weak gravi-
tational forces. This method admits a broad class of metric
theories of gravity, including general relativity as a special
case, and is particularly well suited for Solar system
experiments. In this regime GM=r ∼ v2 is small, where
v is the velocity of a massive test particle or of some
component of a gravitating body. The PPN formalism
constitutes a method for obtaining corrections to the
Newtonian motions of a system, resulting from the metric
theory in question, to higher orders in GM=r. The order of
expansion is conveniently labeled by the parameter ϵ, that is
taken to unity at the end of the calculation [43]. The scale is
set by the upper bound on the gravitational potential, which
is defined to be of the order ϵ2, e.g. at the center of the Sun
the gravitational potential is ∼10−5.
While performing calculations in the PPN formalism we

will treat all vectors and vector products as Euclidian. Note
that unit vectors such as f̂ associated with the metric γab,
are not necessarily unit vectors in Euclidian space,
~f · ~f ≠ 1.
Electromagnetic radiation and massless particles are

not affected by Newtonian gravity. The leading post-
Newtonian contributions (corrections to trajectories, time
differences, and phases) are of order ϵ2 in the PPN
expansion [6,7,43]; to take into account gravitomagnetic
effects we need contribution up to ϵ3.
The PPN expansion of the metric of a single slowly

rotating quasirigid gravitating body, assuming that the
underlying theory of gravity is conservative and does
not have preferred frame effects [7,43], up to terms of
order ϵ3 is given by

ds2 ¼ −V2ðrÞc2dt2 þ ~R · d~xcdtþW2ðrÞd~x · d~x; ð23Þ
where

VðrÞ ¼ 1 − ϵ2
U
c2

; WðrÞ ¼ 1þ ϵ2γ
U
c2

; ð24Þ

where the Newtonian gravitational potential −U ¼
−GMQðr; θÞ=r≃ −GM=r depends on the mass M and
higher multipoles [6,48] (we take Q≃ 1), and

~R ¼ −ϵ32ð1þ γÞ G
c3

~J × ~x
r3

; ð25Þ

where ~J is the angular momentum of the rotating body. To
simplify our calculations, we choose the z axis to be along
the direction of angular momentum.
The PPN parameter γ determines how local straight lines

are bent relative to far away asymptotic straight lines. In
general relativity γ ¼ 1, which is confirmed experimentally
with an uncertainty less than a fraction of a percent [2,8].
To obtain the leading contributions to the phase and

polarization rotation, the photon trajectories only need to be
expanded up to ϵ2,

~xðtÞ ≕ ~xð0ÞðtÞ þ ϵ2~xð2ÞðtÞ ¼ ~bþ n̂cðt − t0Þ þ ϵ2~xð2ÞðtÞ;
ð26Þ

where ~b is the initial coordinate and n̂ is the Newtonian
(zeroth order in ϵ) propagation direction. The equations of
motion become [7]

d2~x⊥ð2Þ
dt2

¼ ð1þ γÞð ~∇U − n̂ðn̂ · ~∇UÞÞ; ð27Þ

dx∥ð2Þ
dt

¼ −ð1þ γÞU
c
; ð28Þ

where the parallel and perpendicular components of the
second-order term are defined as

x∥ð2Þ ≔ ~xð2Þ · n̂; ~x⊥ð2Þ ≔ ~xð2Þ − n̂ð~xð2Þ · n̂Þ: ð29Þ

The coordinate time that it takes light to travel from ~b to
~x in the gravitational field of a massive body is longer than
it would in the Newtonian gravity,

cΔt ¼ j~x − ~bj þ ð1þ γÞGM
c2

ln
rþ ~x · n̂

rb þ ~b · n̂
; ð30Þ

where rb ¼ j~bj, and the second-order terms are the Shapiro
time delay [52].

A. Phase

The phase difference is obtained by using the above
result for the time of flight in Eq. (14). We introduce the
coordinate difference

lAB ≔ j~xA − ~xBj; ð31Þ
so the coordinate time interval for the time of flight along
one arm is

ctAB ¼ lAB þ ð1þ γÞ rg
2
ln
rB þ ~xB · n̂AB
rA þ ~xA · n̂AB

: ð32Þ

A physical path difference is obtained by following the
trajectories in a three-dimensional space. The length of a
segment AB is
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LAB ¼
Z

B

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γmndxmdxn

p
¼

Z
tB

tA

W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d~x
dt

·
d~x
dt

r
dt; ð33Þ

where the integration is performed along the trajectory AB.
In the first PPN approximation, it reduces to

LAB ¼
Z

tB

tA

�
1þ γ

UðrðtÞÞ
c2

��
cþ

dx∥ð2Þ
dt

�
dt

¼ ctAB −
rg
2
ln
rB þ ~xB · n̂AB
rA þ ~xA · n̂AB

: ð34Þ

As indicated on Fig. 1, the interferometer lies in the xz
plane. Taking the coordinates of point A to be

~xA ¼ ðb sin θ; 0; b cos θÞT; ð35Þ

and the directions along different arms of the interferom-
eter, e.g. AB, etc., to be

n̂AB ¼ n̂CD ¼ ðsin ζ; 0; cos ζÞT; ð36Þ

n̂AC ¼ n̂BD ¼ ð− cos ζ; 0; sin ζÞT; ð37Þ

results in the coordinates of the two mirrors at B and C and
the detector at point D as

~xB ¼ ~xA þ qn̂AB; ~xC ¼ ~xA þ hn̂AC;

~xD ¼ ~xB þ hn̂AC: ð38Þ

In what follows, we assume b ≫ h; q.
The coordinate path difference between the two arms is

Δl ≔ j~xC − ~xAj þ j~xD − ~xCj − j~xB − ~xAj − j~xD − ~xBj:
ð39Þ

Assuming that the physical locations of mirrors are such
that the coordinates of Eq. (38) are exact up to second order
in ϵ, resulting inΔl ¼ 0, and taking the leading terms in the
expansion over the inverse powers of b, we obtain

Δlt ≔ tABD − tACDjΔl¼0

≈ ð1þ γÞGM
c3

hq
b2

ðsinðζ − θÞ − cosðζ − θÞÞ: ð40Þ

Taking into account that the free-fall acceleration near the
surface is g ¼ GM=b2, we obtain in the leading order

Δlψ ¼ ωð1þ γÞ g
c3

hqðsinðζ − θÞ − cosðζ − θÞÞ: ð41Þ

To simplify the exposition, we consider the case where
the MZI is oriented so the AB arm is perpendicular to the
local free-fall acceleration, i.e. ζ ¼ π=2þ θ, hence,

Δlt ¼ ð1þ γÞ ghq
c2

Δlψ ¼ ð1þ γÞω ghq
c3

: ð42Þ

Now we evaluate the phase difference if the physical
lengths of the two arms are the same, LABD ¼ LACD. The
travel times tAC and tBD differ by a term proportional to
hq2=b3 up to second-order in ϵ, which can be neglected
relative to the difference in the time of flight along the
horizontal segments. If LAB ¼ LCD, then ΔL ¼ 0 and

ΔLt ¼
ghq
c2

; ΔLψ ¼ ω
ghq
c3

: ð43Þ

The factor of two between the results given in Eqs. (42) and
(43) corresponds to the difference in setting up the actual
experiments, as we discuss in Sec. IV.

B. Polarization rotation

A combination of general results and the PPN expansion
considerably simplifies our analysis. The polarization
vector may be expanded along each segment of the
photon’s trajectory as

fmðtÞ ¼ fmð0Þ þ ϵ2fmð2ÞðtÞ þ ϵ3fmð3ÞðtÞ þOðϵ4Þ; ð44Þ

where the fmð0Þ term represents the flat spacetime contri-
bution, which remains constant along the enitre trajectory.
The evolution of the polarization vector along the trajectory
is given by Eq. (20). In order to evaluate the three-
dimensional covariant derivative appearing in the left-hand
side of Eq. (20), we must expand the three-dimensional
Christoffel symbols λmnl as

λmnl ¼ ϵ2λmnlð2Þ þOðϵ4Þ; ð45Þ

where we have made use of the fact that the third-order
term, ϵ3γmnlð3Þ, vanishes in the PPN coordinates [7]. We can

now expand the left-hand side of Eq. (20) up to third-order
in ϵ as a function of coordinate time

Dfm

dσ
¼Dfm

dt
dt
dσ

¼ ϵ2
�dfmð2Þ

dt
þcλmijð2Þn

ifjð0Þ

�
ω∞

c2
þ ϵ3

dfmð3Þ
dt

ω∞

c2
: ð46Þ

The right-hand side of Eq. (20) may be expanded as

ð ~Ω × f̂Þm ¼ ϵ2ð ~Ωð2Þ × f̂ð0ÞÞm þ ϵ3ð ~Ωð3Þ × f̂ð0ÞÞm þOðϵ4Þ:
ð47Þ

As a result of the above, the second and third order terms
of the polarization vector evolve independently. In the
Newton gauge, there is no rotation relative to the polari-
zation basis at second-order in ϵ. This is because at this
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order in the expansion the PPN metric in Eq. (23) and the
far field Schwarzschild metric are identical, and as was
discussed in Sec. II D, employing the Newton gauge in the
Schwarzschild spacetime results in the vanishing net
polarization on any segment of the trajectory. Hence, the
polarization at any point up to the order ϵ2 can be recovered
from the metric and the photon momentum at that point.
From Eq. (21), we may expand the third-order term as

ð ~Ω × ~fÞmð3Þ ¼ ðð2~ωð3Þ − ð~ωð3Þ · k̂ð0ÞÞk̂ð0ÞÞ × f̂ð0ÞÞm; ð48Þ

where ~ωð3Þ is obtained by expanding Eq. (22),

~ωð3Þ ¼
ω∞

c
ð1þ γÞ

2

GJ
c3r5

0
B@

3xz

3yz

3z2 − r2

1
CA; ð49Þ

where x, y, z are functions of the coordinate time t and
describe the trajectory to zeroth order in ϵ. The resulting
equation for the evolution of the third order contribution to
the polarization vector is given by

d~fð3Þ
dt

¼ ð1þ γÞ
2

GJ
c3r5

~Ξð3Þ × f̂ð0Þ; ð50Þ

where along the AB and CD arms of the interferometer

~Ξð3Þ ¼

0
BB@

ðr2−3z2Þsin2ζþ3xzcos2ζþ9xz

0

cos2ζðr2−3z2Þ−3ðr2þxzsin2ζ−3z2Þ

1
CCA ð51Þ

and along the AC and BD arms

~Ξð3Þ ¼ −

0
BB@

sin2ζðr2 − 3z2Þ− 3xz cos2ζþ 9xz

0

cos2ζðr2 − 3z2Þ− 3r2 þ 6xz sinζ cosζþ 9z2

1
CCA:

ð52Þ

To account for the effect the reflection of the photons at
mirrors B and C has on the polarization vector, we expand
the inward pointing normal of mirror B as

~lB ¼

0
B@

sin ðζ þ π=4Þ
0

cos ðζ þ π=4Þ

1
CA − ϵ2

γrgffiffiffi
2

p
rB

0
B@

1

0

0

1
CAþOðϵ4Þ; ð53Þ

and mirror C as

~lC ¼−

0
BB@

sin ðζþ π=4Þ
0

cosðζþ π=4Þ

1
CCAþ ϵ2

γrgffiffiffi
2

p
rB

0
B@
1

0

0

1
CAþOðϵ4Þ: ð54Þ

We then make use of a simple model of reflection and its
effect on the polarization vector: the polarization compo-
nent that is directed along l̂ is unchanged, and the
component that is orthogonal to l̂ changes sign [41].
Explicitly, the reflected polarization vector f̂r is given in
terms of the incident polarization vector f̂i by

f̂r ¼ 2ðf̂i · l̂Þl̂ − f̂i: ð55Þ

Since the corrections to the normals are of order ϵ2 and
from the above equation we can see we will be projecting ϵ3

terms in the polarization vector along them, we only need
their zeroth order in ϵ expressions, i.e. the flat space
normals. Admittedly, this is a simple model of reflection
valid for an ideal mirror. Properties of actual mirrors are
described by their Mueller matrices that depend on the
wavelength, incidence angle and have only approximate
symmetries [53].
To highlight the effect of polarization rotation, the

light that follows the path ABD is chosen to be initially
polarized along the direction b̂ðk̂ABÞ≃ b̂yðn̂ABÞ ¼ ŷ, i.e.,
perpendicular to the plane of the interferometer, and the
light that follows the path ACD to be polarized in the plane
of the interferometer along the direction b̂xðn̂ACÞ ¼
− cos ζx̂þ sin ζẑ. Without the gravitomagnetic effects,
the two beams ABD and ACD, would remain with
orthogonal polarizations and no interference would be
observed.
For simplicity we choose ζ ¼ θ þ π=2, so that the AC

arm of the interferometer lies along the radial direction, and
integrating Eqs. (50) and along the ABD arm of the
interferometer results in the polarization vector

~fABD ¼ f̂ABDð0Þ þ ϵ3
GJð1þ γÞ
8b3c3

0
BB@

8h cos 2θ þ qηðθÞ
0

−8h sin 2θ þ qηð−θÞ

1
CCA

þOðϵ4Þ; ð56Þ

where ηðθÞ ≔ 6ðcos2θþ sin 2θÞ þ 5ðcos4θþ sin4θÞ þ 5;
and along the ACD arm

~fACD ¼ f̂ACDð0Þ þ ϵ3
GJð1þ γÞ

b3c3

0
B@

0

2q cos θ − h sin θ

0

1
CA

þOðϵ4Þ: ð57Þ
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In the above equations we disregarded the ϵ2 order
contributions to polarization, as they lie in the planes
defined by the corresponding k̂ and f̂ and do not contribute
to the quantities of interest.
As discussed at the end of Sec II D, to observe the effect

of polarization rotation we compare the inner product of the
initial polarization vectors at point A, which vanish since
the initial polarizations were chosen to be orthogonal, with
the inner product of polarization vectors at D:

f̂ABD · f̂ACD ¼ W2~fABD · ~fACD

¼ −
ð1þ γÞGJ
8b3c3

½ð8hþ qÞ sin θ
þ ð8h − 5qÞ cos θ
þ 5qðsin 3θ þ cos 3θÞ� þOðϵ4Þ: ð58Þ

Choosing favorable values for θ and ζ, and taking q ¼
100 km and h ¼ 10 km, we find ~fABD · ~fACD is approx-
imately 2 × 10−17, which corresponds to a rotation of the
initial polarization vector by roughly 4 pico arcseconds.

IV. IMPLICATIONS

We now discuss interesting possibilities that the effects
considered above offer, as well as experimental challenges
in their implementation.

A. Redshift and interferometric phase

1. Experimental issues

The phase difference given in Eq. (43), agrees with the
results of [30,38]. This scenario corresponds to the optical
COW experiment with the arms AB and CD realized as
optical fibre delay lines. The condition LAB ¼ LCD can be,
at least in principle, also realized with a free-space
propagation by suitably adjusting the mirrors at B and
C. The factor of ð1þ γÞ≃ 2 highlights the difference
between the physical distance and the difference in coor-
dinates. The standard time-delay analysis assumes that the
sender and receiver are far from the gravitating body, while
some trajectories pass close to it [6,7,43,52]. In this case,
some of the coordinate differences actually represent
physical distances, and the resulting phase difference is
given by expressions similar to Eq. (42).
The phase difference due to the gravitational redshift is

not directly observable in either satellite or ground-based
experiments; it needs to be separated from other effects.
Consider first a satellite-based experiment. Our treatment is
similar to the analysis that was performed for Gravity Probe
A [54,55]. For a photon that was emitted from the ground
station with frequency ωG and detected at the satellite, the
frequency ωS measured onboard is

ωS − ωG

ωG
¼ −

UG −US

c2
−
v2G − v2S

c2

−
ð~vS − ~vGÞ · n̂GS

c
þOðc−3Þ; ð59Þ

where vG and vS are velocities of the ground station and the
satellite in the Earth-centered inertial frame, −UG and −US
are the Newtonian gravitational potentials at the ground
station and satellite, respectively, and n̂GS is the propaga-
tion direction at the ground station. Assuming the satellite
is in a low Earth orbit and neglecting influence of the
Earth’s multipole moments gives

Δω
ω

≃ −
gh
c2

−
v2G − v2S

c2
−
ð~vS − ~vGÞ · n̂GS

c
; ð60Þ

where h is hight of the satellite above the ground, g is the
free-fall acceleration, and ω ¼ ωG ≈ ωS. The first term on
the right-hand side of Eq. (60) is the gravitational redshift,
the second term represents the time dilation due to the
relative motion of the satellite and ground station, and the
third term results from the linear Doppler effect, which is
about 105 times larger than the other terms. Since the
experiment relies on accumulating phase along different
paths, unlike Gravity Probe A, there is no obvious way to
effectively cancel the linear Doppler effect [54].
In addition, since v ∼

ffiffiffiffiffiffiffiffiffi
gR⊕

p
, where R⊕ ≈ 6; 378 km,

the time dilation dominates the redshift by a factor of
ðR⊕=hÞ ∼ 20. Making this ratio of the order of unity was
the reason for launching Gravity Probe A to an altitude of
10,000 km in a nearly vertical trajectory [55].
To obtain an interference pattern one has to adjust the

phase difference Δψ between the arms of the interferom-
eter. In ground-based experiments [14,38] this is achieved
by rotating the interferometer in the vertical plane. The
analysis of the proposed QEYSSAT trajectory [56] shows
that quantum communication will be possible for a range of
elevations and inclination angles naturally occurring along
it, thus enabling it to collect data corresponding to different
phase differences. However, to extract the signal from the
noise, a sensitivity to phase changes smaller than 10−7 is
required, as well as precise information of the satellite’s
position and velocity.
Since the area enclosed by arms of a ground-based MZI

[38] is much smaller than in a satellite experiment, the
expected phase difference (for h ∼ 100 m, q ∼ 6 km) is
Δψ ∼ 10−4. However, the Doppler effect is negligible, and
the main competing effects are caused by the Earth’s
rotation. The leading terms in the PPN metric of
Eq. (23) of an isolated, quasirigid Earth that rotates
uniformly around its z axis become in the comoving
coordinates

POST-NEWTONIAN GRAVITATIONAL EFFECTS IN … PHYSICAL REVIEW D 91, 064041 (2015)

064041-9



V2ðrÞ ¼ 1 −
2U
c2

þΩ2
⊕ðx2 þ y2Þ

c2
; ð61Þ

~R ¼ −2ð1þ γÞ G
c3

~J × ~x
r3

− 2
~x × ~Ω⊕

c
; ð62Þ

W2ðrÞ ¼ 1þ 2γ
U
c2

; ð63Þ

where Ω⊕ is the angular velocity of Earth’s rotation.
Orienting plane of the MZI along a meridian eliminates

the Sagnac effect [57] (we discuss it in Sec. IV B), while
near the surface the redshift contribution from the
Newtonian potential is larger than that of rotation by a
factor of 300.

2. Applications

As appropriate for the level 1 [21] analysis, light
propagation was analyzed classically. A phase shift that
is proportional to frequency leads to a reduction of the
interferometric visibility, if the width of the wave-packet is
not negligible. While this naturally can be explained within
the theory of classical coherence [41], this analysis does not
hold for single-photon experiments that explore wave-
particle duality [38]. Difference in flight times provide
the which-way information (a particle property) and, thus,
reduces the visibility (a wave property) [58].
Even without observing this decoherence, a MZI is a

convenient platform for observing wave-particle duality.
Indeed, if a photon is first split by beam splitter A, travels
inside an interferometer, and is finally recombined at a
second beam splitterD before detection. Then if the second
beam splitter is present, we observe interference fringes,
indicating the photon behaved as a wave traveling in both
arms of the MZI. If, on the other hand, the beam splitter at
D is absent, we randomly register a click in only one of the
two detectors, concluding that the photon traveled along a
single arm, indicating particle properties.
In Wheeler’s delayed-choice experiment [59] one ran-

domly chooses whether or not to insert the second beam
splitter when the photon is already inside the interferometer
and before it reaches D. The rationale behind the delayed
choice is to avoid a possible causal link between the
experimental setup and the photon’s behavior: the photon
should not “know” beforehand if it has to behave like
a particle or like a wave. The choice of inserting or
removing the beam splitter is either classically controlled
by a random number generator [60], or by an axillary
quantum system [61].
The set-up we considered naturally lends itself to the

largest scale delayed-choice experiment to date, as well the
phase shift results from an entirely different physical
situation. Quantum mechanics does not predict any new
phenomena for spatially extended superpositions. However,
certain modifications, like spontaneous localization models,

do involve effects that may become important at large
distances [30]. Such an experiment could potentially be
used to put more stringent constraints on these models.
Discussion so far assumed the exact validity of the

Einstein equivalence principle (EEP) [7,8,43]. Since the
EEP is a necessary element of any metric theory of gravity,
the PPN formalism does not include a free parameter for the
strength of its violation. From a phenomenological point of
view, we can introduce a parameter α that characterizes a
possible violation, such that we can set

g00 ¼ −1þ ð1þ αÞU=c2 þ � � � ; ð64Þ

which results in a modification of the gravitational
redshift [8],

Δω
ω

¼ ð1þ αÞΔU
c2

: ð65Þ

Experiments performed in different systems, such as
[9,12,19,55,62], resulted in bounds jαj ≲ 10−6 − 10−8.
The standard model extension [20] is a framework to

analyze possible violations of Lorentz symmetry. It takes the
standard model of particle physics and adds a variety of
tensorial quantities, combined with both fermionic and
bosonic fields. The resulting terms in the action are not
necessarily renormalizable and explicitly violate local
Lorentz invariance. The latter is a key part of the EEP
and, thus, violations of the EEP are expected in such
models. Numerous experiments are performed and
re-interpreted [63] to obtain bounds on various Lorentz-
violating terms. Experiments with atomic clocks that have
led to the tightest bounds on α, naturally focus on the
fermionic sector and the associated Lorentz-violating terms
[19,62]. In fact, light is taken to propagate in the usual
way [19].
The optical COW experiment offers a different system,

where the quantum clock is realized by a single photon.
Tests of light deflection and time delay are interpreted as
giving a bound on jγ − 1j [7,8]. However, the phase shift in
the optical COW experiment Eq. (43) is independent of γ
and, hence, the difference with general relativity can be
directly interpreted in terms of the degree of violation α of
the EEP.

B. Clocks and polarization

Having additional internal degrees of freedom in a
system which act like a clock can affect the observed
interference [32] if the evolution of this clock is affected by
the gravitational time dilation. While photons have no
proper time, polarization provides a similar clock. Unlike
various clocks proposed for massive particles, polarization
couples to gravity similarly to the spatial degree of free-
dom. As with other clocks, the ability to control the internal
degrees of freedom allows one to improve visibility of the
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interference pattern and observe features that would be
absent without gravity. In the case of polarization, such an
experiment can be sensitive only to the angular momentum
contribution from the gravitational field (Lense-Thirring
effect), and different from the Sagnac interferometric
experiments, where the gravitational contribution to the
phase from the geodetic and frame-dragging terms appear
together [6].
The Sagnac effect [57] results in a phase shift between

one counterpropagating wave with respect to another wave
of the same mode in a rotating ring interferometer; the shift
is proportional to the angular velocity of rotation ~Ω of the
interferometer platform, the area enclosed by the interfer-

ometer ~A, and the frequency c=λ of the wave:

Δψ ¼ 8π ~Ω · ~A
λc

: ð66Þ

Ring laser interferometers are very sensitive devices with a
variety of uses, including a proposed measurement of post-
Newtonian effects [64]. Approximating the Earth as a rigid
sphere of a uniform density with a radius R, rotating at a
constant angular velocity Ω⊕, the phase difference between
the two waves of frequency ω, including the leading PPN
corrections, can be represented as [6]

Δψ ¼ 4ω

c2
AðΩ⊕ cosζþΩLTþΩGÞ≕ΔψSþΔψPN; ð67Þ

where ζ is the angle between the normal to the interfer-
ometer and the z axis. Both the Lense-Thirring and
geodetic frequencies are proportional to Ω⊕rg=R⊕, making
the post-Newtonian contributions at least 10−9 times
smaller than the classical Sagnac phase shift. Hence,
independence of the geodetic term is not enough to make
estimating the polarization rotation a viable option for
optical measurement of the Lense-Thirring effect.
Polarization rotation behaves qualitatively different

from the Sagnac effect: it does not scale with the area.
As a result,

Δχ
ΔψPN

∼
lþ
A
cω ∼

λ

l−
≪ 1; ð68Þ

where l− and lþ are the short and the long arms of the MZI,
and we assume that the area A ¼ lþl− enclosed by the
interferometers is the same in both cases.

V. SUMMARY AND PERSPECTIVES

We have examined several interesting effects present in
both ground-based and near-Earth space-based interferom-
etry experiments. A rigorous derivation of the gravitation-
ally induced phase shift in the optical COWexperiment was
given, and concrete estimates of this phase along with the
induced polarization rotation were derived. The sensitivity

required to observe the phase shift and the related
decoherence is high but experimentally accessible
(10−7 − 10−4, depending on the set-up). Polarization rota-
tion provides a realization of an internal clock for photons.
However, the minuscule scale of the effect puts it beyond
the current experimental reach. On the other hand, the
optical COWexperiment is a platform to test EEP with and
for light. We plan to investigate the opportunities it
provides in future work.
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APPENDIX: COMPARISON OF POLARIZATIONS

The product of polarization vectors f̂1 · f̂2 gives one an
operationally meaningful way of quantifying polarization
rotation along a closed trajectory. However, unless the
directions k̂1 and k̂2 are collinear, some ambiguity remains.
Beams can be brought together in a variety of ways that are
described mathematically by rotation of one of the pairs
ðk̂i; f̂iÞ. Such rotations will, in general, lead to different
results for the polarization rotation.
The simplest rotation of this type is performed in the

plane defined by the vectors k̂1 and k̂2 that brings the two
vectors together. Set ẑ ¼ k̂1 × k̂2=jk̂1 × k̂2j, and define

b̂i
y ≔ ẑ × k̂i; b̂i

x ≔ b̂i
y × k̂i ¼ −ẑ: ðA1Þ

As a result, the polarizations are written as

f̂i ¼ −fxi ẑþ fyi b̂
i
y; ðA2Þ

hence, their product is

f̂1 · f̂2 ¼ fx1f
x
2 þ fy1f

y
2 cosφ; ðA3Þ

where φ is the angle between the propagation directions.
After the rotation R−1

z ðφÞ that brings b̂2 to b̂1, the
standard polarizations also coincide. Hence, the product

f̂1 ⋆ f̂2 ≔ fx1f
x
2 þ fy1f

y
2 ðA4Þ

represents the polarization overlap after rotation,

f̂1 ⋆ f̂2 ¼ f̂1 · R−1
z ðφÞf̂2; ðA5Þ

giving an alternative comparator of polarizations.
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