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In contrast to the three-dimensional case, different approaches for deriving the gravitational corrections
to the Heisenberg uncertainty relation do not lead to the unique result, whereas additional spatial
dimensions are present in the theory. We suggest taking logarithmic corrections to the black hole entropy,
which has recently been proved in both string theory and loop quantum gravity to persist in the presence of
additional spatial dimensions, as a point of entry for identifying the modified Heisenberg-Weyl algebra. We
then use a particular Hilbert-space representation for such a quantum mechanics to construct the
correspondingly modified field theory and address some phenomenological issues following from it.
Some subtleties arising at the second quantization level are clearly pointed out. Solving the field operator to
the first order in the deformation parameter and defining the modified wave function for a free particle, we
discuss the possible phenomenological implications for the black hole evaporation. Putting aside
modifications arising at the second quantization level, we address the corrections to the gravitational
potential due to a modified propagator (backreaction on gravity) and see that a correspondingly modified
Schwarzschild-Tangherlini space-time reproduces the disappearance of the horizon and the vanishing of the
surface gravity when the black hole mass approaches the quantum gravity scale. This result points to the
existence of zero-temperature black hole remnants.
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I. INTRODUCTION

Quantum theory based on a so-called minimum-
length deformed uncertainty relation is endowed basically
with two new features: 1) the modified dispersion relation
and 2) the cutoff on the “standard” momentum [1].
Remarkably enough, this sort of uncertainty relation in
three dimensions can uniquely be reached from various
Gedankenexperimente, which in higher dimensions lead to
the ambiguous result. As a guiding principle for identifying
the minimum-length deformed quantum theory in higher
dimensions, we suggest using logarithmic corrections to the
black hole (BH) entropy. The computations made in recent
years in the framework of string theory [2] and loop
quantum gravity [3] demonstrate that the logarithmic
corrections to the BH entropy are universal in arbitrary
space-time dimensions ≥4. Taking this fact into account,
first we consider a few examples of deriving logarithmic
corrections to the BH entropy in the three-dimensional case
by using the modified uncertainty relation (MUR). We shall
along the way comment on the misleading issues concern-
ing the immediate (heuristic) application of the MUR to BH
radiation. The simple physical picture behind this consid-
eration allows one to guess the higher-dimensional gener-
alization of minimum-length deformed quantummechanics
(QM). The deformed QM derived this way disagrees with
the result that follows from the well-known arguments

[4–6] (and some other closely related arguments [7]) for
estimating the gravitational corrections to the uncertainty
relation. The rest of the paper is devoted to the discussion of
quantum field theory (QFT) in view of the deformed
quantization both at the first and second quantization
levels. Some phenomenological implications of this study
for black hole physics are explored.

II. IDENTIFYING THE PLANCK-LENGTH
DEFORMED QM WITH THE USE OF BH

ENTROPY CORRECTIONS

A. From MUR to BH entropy corrections:
three-dimensional case

We start by pointing out that, in three dimensions,
applying the MUR to the BH radiation—either in an
immediate heuristic way, or by first finding the correspond-
ing Hilbert-space representation and then using it for the
field theory at both first and second quantization levels—
uniquely leads to the logarithmic corrections to the BH
entropy. The system of units used throughout this paper is
ℏ ¼ c ¼ 1. The corrections to the BH radiation obtained in
a heuristic manner in Ref. [8] can be viewed as a result of
the modified dispersion relation. Namely, when applying
the MUR

δXδP≃ 1þ βl2PδP
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to the BH emission, one assumes that δx is set by the
horizon radius, and consequently the characteristic momen-
tum for the emitted particle is estimated as

δP≃ δX −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δX2 − 4βl2P

p
2βl2P

: ð2Þ

So, in Eq. (2) δP is understood as the momentum of a
particle escaping from the BH in the case when the
correction term for the uncertainty relation is assumed
[Eq. (1)], while δX−1 defines the momentum in the standard
case. Adopting the notations P≡ δP and p≡ δX−1, Eq. (1)
can be written as a modified dispersion relation,

P ¼ p−1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p−2 − 4βl2P

p
2βl2P

¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4βl2Pp

2
p
2βl2Pp

: ð3Þ

This relation is qualitatively different from the one that
follows from the Hilbert-space representation of the uncer-
tainty relation (1) [9],

P ¼ p
1 − βl2Pp

2
; ð4Þ

but nevertheless in the low-energy regime p ≪ EP
Eqs. (3) and (4) look the same,

P ¼ pþ βl2Pp
3 þOðl4Pp5Þ: ð5Þ

We notice that in light of Eq. (3) one has to admit that
the momentum P is bounded from above by the Planck
energy, because when p > EP=2

ffiffiffi
β

p
it becomes a complex

quantity. In light of Eq. (4), the momentum P is not UV
bounded, but again p should be restricted to the interval
0 ≤ p ≤ EP=

ffiffiffi
β

p
as this is enough to cover the whole

momentum space: 0 ≤ P < ∞. In both cases P is under-
stood as a physical momentum that might be used for
estimating the energy,

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þm2

p
;

while p is merely a new coordinate in momentum space,
which (quantum mechanically) is related to the trans-
lations: p̂ ¼ −i∇.
Yet another dispersion relation—which arises from

applying the deformed quantization with respect to
Eq. (1) to the field theory—looks like [10]

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
þ βl2P

p2 þm2

l⋆
; ð6Þ

where l� ¼ E−1 is set by the characteristic energy scale of
the problem under consideration. In the context of BH
emission, this is just the temperature of the emission; thus,
Eq. (6) can be written as

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
þ βl2Pðp2 þm2Þ3=2: ð7Þ

The effect of Eqs. (5) and (7) on the BH emission
temperature is that it increases as

T → T þ βl2PT
3;

and correspondingly

dS ¼ dM
T

→
dM
T

− βTdM:

By taking into account that T ∝ r−1g ≃ 1=l2PM, to the first
order in β one finds a logarithmic correction to the entropy,

S ¼ π

�
rg
lP

�
2

− γ ln

�
rg
lP

�
:

It is worth noticing that the l4Pp
5 term in Eq. (5) results in

the inverse-area corrections to the entropy.

B. From BH entropy corrections to MUR: D > 3

The fact that in higher dimensions one also expects
logarithmic corrections to the BH entropy [2,3] can be
used to guess the corresponding higher-dimensional gen-
eralization of the minimum-length deformed QM. In the
higher-dimensional case the gravitational radius (which
determines the Hawking temperature, T ∝ r−1g ) looks like
rg ≃ ðl2þn

F MÞ1=ð1þnÞ, where n denotes the number of extra
dimensions and lF stands for the higher-dimensional scale
of gravity, l2þn

F ≡GN . The previous discussion makes it
clear that the modified dispersion relation

P ¼ pþ βlαFp
αþ1 þ… ð8Þ

will a reproduce logarithmic correction to the BH entropy if
α ¼ 2þ n. This suggests a minimum-length deformed QM
of the form

½X̂; P̂� ¼ ið1þ βl2þn
F P̂2þnÞ; ð9Þ

which indeed implies the existence of the minimum
position uncertainty of the order of [11]

δX ≃
�Z

∞

0

dP

1þ βl2þn
F P2þn

�
−1

¼ β
1

2þnlFR∞
0

dq
1þq2þn

:

As in the three-dimensional case [9], the algebra (9) may be
written in a somewhat generic form [12],

½X̂i; X̂j� ¼ 0; ½P̂i; P̂j� ¼ 0;

½X̂i; P̂j� ¼ ifΞðP̂2Þδij þ ΘðP̂2ÞP̂iP̂jg; ð10Þ
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where the simplest ansatz for Θ is

ΘðP̂2Þ ¼ 2βl2þn
F P̂n:

The Hilbert-space representation of Eq. (10) can be con-
structed in terms of the standard x̂; p̂ operators as [12]

X̂j ¼ x̂j; P̂j ¼
p̂j

ð1 − 2βð1þnÞ
2þn l2þn

F p̂2þnÞ 1
1þn

; ð11Þ

or in the eigenrepresentation of the p̂ operator,

X̂j ¼ i
∂
∂pj

; P̂j ¼
pj

ð1 − 2βð1þnÞ
2þn l2þn

F p2þnÞ 1
1þn

; ð12Þ

where the scalar product contains a cutoff on p,

hψ1jψ2i ¼
Z
p2þn<ð2þnÞ=2βð1þnÞl2þn

F

d3þnpψ�
1ðpÞψ2ðpÞ: ð13Þ

We note that this construction is a straightforward gener-
alization of the three-dimensional picture described in
Ref. [9]. Here the cutoff p2þn < ð2þ nÞ=2βð1þ nÞl2þn

F
has the same meaning as in Eq. (4). Now the analog of
Eq. (4) takes the form

P ¼ p

ð1 − 2βð1þnÞ
2þn l2þn

F p2þnÞ 1
1þn

¼ pþ 2βl2þn
F p3þn

2þ n
þ 2β2l4þ2n

F p5þ2n

2þ n
þ…; ð14Þ

where the l2þn
F term reproduces the logarithmic correction

to the BH entropy, while the l4þ2n
F term is responsible for

the inverse-area correction.

C. Comparison with the result following
from Gedankenexperimente usually used

in three dimensions

For the sake of comparison, here we briefly discuss the
MUR that follows from the Gedankenexperimente that take
into account the gravitational effect on the particle’s
position measurement or some simple dimensional argu-
ments. It is worth noticing that in three dimensions one has
a unique picture for various approaches. Let us first look at
the dimensional arguments for the gravitational corrections
to the Heisenberg uncertainty relation that results in a
lower bound on the position uncertainty. For our purposes it
will be convenient to choose the system of units c ¼ 1;
that is, ½ℏ� ¼ g · cm; ½GN � ¼ cmnþ1=g. Just on dimensional
grounds, one can write a somewhat generic expression for
the MUR,

δXδP ≥
ℏ
2
þ βℏðα−1Þ=αG1=αðnþ1Þ

N δPðnþ2Þ=αðnþ1Þ; ð15Þ

where β is a numerical factor of order unity. In order to have
a lower bound on the position uncertainty, one should
require

α ≤
nþ 2

nþ 1
:

On the other hand, to allow for the limit ℏ → 0, one has to
require α ≥ 1. It is easy to see that if one picks out the value
α ¼ 1, then the correction term in Eq. (15) does not depend
on ℏ and therefore it survives even in the limit ℏ → 0. By
making this specific choice one arrives at the equation

δXδP ≥
ℏ
2
þ βG

1
nþ1

N δP
nþ2
nþ1: ð16Þ

From now on we will again adopt the system of units ℏ ¼
c ¼ 1 and discuss the correction term in Eq. (16) as a result
of certain gravitational effects.
In the case δP ≪ G−1=ð2þnÞ

N the correction term in
Eq. (16) can be considered as a result of the gravitational
extension of the wave-packet localization width as com-
pared to the Minkowskian background [7]. Yet, the
correction term in Eq. (16) makes sense even for

δP≳ G−1=ð2þnÞ
N . In this case it is motivated by the fact

that at a high center-of-mass-energy scattering,ffiffiffi
s

p ≳ G−1=ð2þnÞ
N , the production of the BH dominates all

perturbative processes [13–16], and thus the ability to
probe short distances is limited. (It is important to note

that at high energies,
ffiffiffi
s

p
≫ G−1=ð2þnÞ

N , the BH production is
increasingly a long-distance, semiclassical process). To
make the point clearer, the refined measurement of a
particle’s position requires large energy transfer during a
scattering process used for the measurement. But when the
gravitational radius associated with this energy transfer
∼ðGN

ffiffiffi
s

p Þ1=ð1þnÞ becomes greater than the impact param-
eter, the BH will form and all can say about the particle’s
position is that it was somewhere within the region
∼ðGN

ffiffiffi
s

p Þ1=ð1þnÞ. The gravitational radius of the BH
formed in the scattering process grows with energy as rg ≃
ðGN

ffiffiffi
s

p Þ1=ð1þnÞ and thus determines the high-energy behav-
ior of the position uncertainty.
To summarize, in D > 3 the deformed QM given by

Eq. (9) might be favored over the suggestion made in
Ref. [17] as it allows one to reproduce the logarithmic and
inverse-area corrections to the BH entropy, which in turn
seems to be a sound result irrespective of the number of
dimensions [2,3]. We note that the MUR closely related to
the deformed QM (9) was suggested in a somewhat
different context in Ref. [18].
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D. Free field in 3þ n dimensions

In this section we recapitulate some textbook material
[19] to prepare for our discussion of the minimum-length
deformed QFT. Let us consider a neutral scalar field Φ in a
finite volume l3þn,

H ¼
Z
l3þn

d3þnx
1

2
½Π2 þ ∂xΦ∂xΦþm2Φ2�;

where Π ¼ _Φ. After using the Fourier expansion for Π
and Φ,

ΦðxÞ ¼ 1

l3þn

X
pn

φðpnÞeipnx;

ΠðxÞ ¼ 1

l3þn

X
pn

πðpnÞeipnx;

the Hamiltonian takes the form

H ¼ 1

2l3þn

X
pn

½πðpnÞπþðpnÞ þ ðp2
n þm2ÞφðpnÞφþðpnÞ�:

The quantization conditions

½ΦðxÞ;ΠðyÞ� ¼ iδðx − yÞ; ½ΦðxÞ;ΦðyÞ� ¼ 0;

½ΠðxÞ;ΠðyÞ� ¼ 0

for the Fourier modes imply

½φðpnÞ; πðpmÞ� ¼ il3þnδ−pnpm
; ½φðpnÞ;φðpmÞ� ¼ 0;

½πðpnÞ; πðpmÞ� ¼ 0:

Defining

aðpnÞ ¼
1ffiffiffiffiffiffiffiffiffi
2εpn

p ½εpn
φðpnÞ þ iπðpnÞ�;

aþðpnÞ ¼
1ffiffiffiffiffiffiffiffiffi
2εpn

p ½εpn
φð−pnÞ − iπð−pnÞ�;

where εpn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
n þm2

p
, one finds

½aðpnÞ; aþðpmÞ� ¼ l3þnδpnpm
; ½aðpnÞ; aðpmÞ� ¼ 0;

½aþðpnÞ; aþðpmÞ� ¼ 0:

So, the field and momentum operators take the form

ΦðxÞ ¼ 1

l3þn

X
pn

1ffiffiffiffiffiffiffiffiffi
2εpn

p ½aðpnÞeipnx þ aþðpnÞe−ipnx�;

ΠðxÞ ¼ i
l3þn

X
pn

ffiffiffiffiffiffi
εpn

2

r
½aþðpnÞe−ipnx − aðpnÞeipnx�;

and the Hamiltonian reduces to

H ¼ 1

2l3þn

X
pn

εpn
½aþðpnÞaðpnÞ þ aðpnÞaþðpnÞ�:

Introducing real variables,

Qpn
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μl3þnεpn

q ½aðpnÞ þ aþðpnÞ�;

Ppn
¼ i

ffiffiffiffiffiffiffiffiffiffiffi
μεpn

2l3þn

r
½aþðpnÞ − aðpnÞ�;

the Hamiltonian splits into a sum of independent one-
dimensional oscillators,

H ¼
X
pn

�
P2
pn

2μ
þ με2pn

Q2
pn

2

�
: ð17Þ

We explicitly introduced an energy scale μ in order to
give the variables Qpn

and Ppn
natural dimensions: ½Qpn

� ¼
cm and ½Ppn

� ¼ cm−1. So far, the parameter μ is entirely
arbitrary. The basic idea behind explicitly introducing this
parameter is a characteristic feature of the minimum-length
deformed quantization, i.e., it engenders a mass depend-
ence of the oscillator energy spectrum [20,21], while the
standard quantization scheme is free of this feature. Thus,
the quantization of the field (suitably altered to respect the
effects of a minimal length) necessarily involves some
characteristic energy scale μ, in the same vein as an
effective QFT. In order to identify the energy scale μ,
one may keep in mind that [in view of Eq. (9)] the deviation
from the standard quantization becomes appreciable at high
energies. This naturally suggests the identification of μwith
the characteristic energy scale of the problem under
consideration. This sort of reasoning is completely in the
spirit of an effective QFT [10].
The Heisenberg equation of motion reads

_aðpnÞ ¼ i½H; aðpnÞ� ¼ −iεpn
aðpnÞ;

which can be solved as

aðt;pnÞ ¼ aðt ¼ 0;pnÞe−iεpn t:

The field and momentum operators take the forms
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Φðt;xÞ ¼ 1

l3þn

X
pn

1ffiffiffiffiffiffiffiffiffi
2εpn

p ½að0;pnÞeiðpnx−εpn tÞ

þaþð0;pnÞe−iðpnx−εpn tÞ�;

Πðt;xÞ ¼ i
l3þn

X
pn

ffiffiffiffiffiffi
εpn

2

r
½aþð0;pnÞe−iðpnx−εpn tÞ

−að0;pnÞeiðpnx−εpn tÞ�:

Then, we write aðpnÞ for að0;pnÞ and aþðpnÞ for aþð0;pnÞ
in the field theory and call these quantities the annihilation
and creation operators, respectively.

III. MINIMUM-LENGTH DEFORMED QFT

As long as we are restricting ourselves to the leading-
order corrections due to minimum-length deformed quan-
tum theory, the corrections arising at the first and second
quantization levels do not interfere and can be considered
separately.

A. Corrections arising at the first quantization level

The modified field theory

W½Φ� ¼ −
Z

d4þnxðΦ∂2
tΦþ ΦP̂2Φþm2Φ2Þ ð18Þ

leads to the equation of motion

∂2
tΦþ P̂2Φþm2Φ ¼ 0; ð19Þ

which in turn admits the plane-wave solution ∼ expðipxÞ
with a modified dispersion relation,

ε2 ¼ P2 þm2 ¼ p2

ð1 − 2βð1þnÞl2þn
F p2þn

2þn Þ
2

1þn

þm2: ð20Þ

This dispersion relation implies the superluminal motion;
namely, by taking m ¼ 0 one finds

dε
dp

¼ 2þ nþ 2βl2þn
F p2þn

2þ n − 2βð1þ nÞl2þn
F p2þn

> 1: ð21Þ

B. Corrections arising at the second quantization level

The corrections at the second quantization level are
obtained by quantizing the field Hamiltonian with respect
to Eq. (9). In effect, the appearance of the energy scale μ
together with l−1F lends the possibility of introducing a
dimensionless parameter ðμlFÞ2þn that measures the
deviation from the standard picture in accordance with
Eq. (9). For each oscillator entering Eq. (17) now we have

½Qpn
; Ppm

� ¼ iδpnpm
ð1þ ßP2þnÞ; ð22Þ

where we have used the notation

βl2þn
F ≡ ß: ð23Þ

To the first order in β, from Eq. (9) one finds

X̂ ¼ x̂; P̂ ¼ p̂þ ßp̂3þn

3þ n
þOðß2Þ: ð24Þ

Therefore, the Hamiltonian

H ¼ P2

2μ
þ με2Q2

2

to the first order in β takes the form

H ¼ p2

2μ
þ με2q2

2
þ ßp4þn

μð3þ nÞ

¼ ε

�
bþbþ 1

2

�
þ ßi4þn

μð3þ nÞ
�
με

2

�4þn
2 ðbþ − bÞ4þn;

where

b ¼ 1ffiffiffiffiffiffiffiffi
2με

p ðμεqþ ipÞ; bþ ¼ 1ffiffiffiffiffiffiffiffi
2με

p ðμεq − ipÞ:

Using this Hamiltonian, from the Heisenberg equation
_b ¼ i½H; b� one finds

_b ¼ −iεb −
ð4þ nÞi5þnß
μð3þ nÞ

�
με

2

�4þn
2 ðbþ − bÞ3þn: ð25Þ

By writing the operator b to the first order in ß in the form

b ¼ f þ ßg;

Eq. (25) takes the form

_f þ ß_g ¼ −iεðf þ ßgÞ − ßℵðfþ − fÞ3þn; ð26Þ

where we have used the notation

ℵ ¼ ð4þ nÞi1þn

μð3þ nÞ
�
με

2

�4þn
2

: ð27Þ

Equating the coefficients of like powers of ß from Eq. (26),
one finds

_f ¼ −iεf; _g ¼ −iεg − ℵðfþ − fÞ3þn;

which admits the following analytic solution:
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fðtÞ ¼ fð0Þe−iεt;
_g ¼ −iεg − ℵ½fþð0Þeiεt − fð0Þe−iεt�3þn;

gðtÞ ¼ e−iεt
�
gð0Þ − ℵ

Z
t

0

dτeiετffþð0Þeiετ

−fð0Þe−iετg3þn

�
: ð28Þ

Using Eq. (28) to the first order in ß, one can write

bðtÞ ¼ bð0Þe−iεt − ßℵe−iεt
Z

t

0

dτeiετfbþð0Þeiετ

−bð0Þe−iετg3þn:

Thus, the corrected field operator takes the form

Φðt;xÞ ¼ 1

l3þn

X
pn

1ffiffiffiffiffiffiffiffiffi
2εpn

p
��

bðpnÞ − ßℵ
Z

t

0

dτeiεpn τ½bþðpnÞeiεpn τ − bðpnÞe−iεpn τ�3þn

�
eiðpnx−εpn tÞ

þ
�
bþðpnÞ − ßℵ�

Z
t

0

dτe−iεpn τ½bðpnÞe−iεpn τ − bþðpnÞeiεpn τ�3þn

�
e−iðpnx−εpn tÞ

�
: ð29Þ

Keeping in mind that at a fundamental level the notion of a
particle (quantum) comes from the quantized field, we
define the free-particle wave function by means of the
matrix element h0jΦðt;xÞjpii, which in the standard case
gives just the de Broglie wave. Following this definition
and using Eq. (29), we estimate corrections to the free-
particle wave function due to minimum-length deformed
QM to the first order in the deformation parameter ß. One
immediately sees that if n is odd, then the matrix element
h0jΦðt;xÞjpii ∝ eiðpix−εpi tÞ. Let us assume n is an even
number. For simplicity we take n ¼ 2. The terms from

½bþðpnÞeiεpn τ − bðpnÞe−iεpn τ�5 ð30Þ

contributing to the matrix element h0jΦðt;xÞjpii are

− e−iεpn τ½bðpnÞbþðpnÞbðpnÞbþðpnÞbðpnÞ
þbðpnÞbþðpnÞbðpnÞbðpnÞbþðpnÞ
þ bðpnÞbðpnÞbþðpnÞbþðpnÞbðpnÞ
þ bðpnÞbðpnÞbþðpnÞbðpnÞbþðpnÞ�: ð31Þ

Analogously, one finds that the terms form

½bðpnÞe−iεpn τ − bþðpnÞeiεpn τ�5 ð32Þ

contributing to the matrix element h0jΦðt;xÞjpii are

e−iεpn τ½bðpnÞbþðpnÞbðpnÞbþðpnÞbðpnÞ
þbðpnÞbþðpnÞbðpnÞbðpnÞbþðpnÞ
þ bðpnÞbðpnÞbþðpnÞbþðpnÞbðpnÞ
þ bðpnÞbðpnÞbþðpnÞbðpnÞbþðpnÞ�: ð33Þ

Hence, one finds

h0j½bþðpnÞeiεpn τ − bðpnÞe−iεpn τ�5jpii ¼ −9δine−iεpn τ;

h0j½bðpnÞe−iεpn τ − bþðpnÞeiεpn τ�5jpii ¼ 9δine−iεpn τ;

and correspondingly

h0jΦðt;xÞjpii ∝ eiðpix−εpi tÞ
�
1 − i

ßμ227ε3pi

20
t

�

−
ßμ227ε2pi

40
eiðpixþεpi tÞ

þ ßμ227ε2pi

40
e−iðpix−εpi tÞ: ð34Þ

IV. CORRECTIONS TO THE BH EMISSION

As was discussed in Sec. II, if we subject the particles
emitted by the BH to the modified dispersion relation (14)
and retain in this equation only leading and subleading
terms, then the BH entropy acquires logarithmic and
inverse-area corrections. The minimum-length deformed
prescription applied at the second quantization level leads
essentially to the same sort of corrections to the BH entropy
[10]. Let us address this question in some detail.
The first term in the wave function of a free particle

[Eq. (34)],

eiðpix−εpi tÞ
�
1 − i

27ßμ2ε3pi

20
t
�

≈ eiðpix−½εpiþ1.35ßμ2ε3pi �tÞ;

ð35Þ

(to the first order in ß) gives just the modified dispersion
relation

εpi
→ εpi

þ 1.35ßμ2ε3pi
;

where the energy scale μ is set by the BH emission
temperature: μ ¼ T [10]. It results in the logarithmic
correction to the BH entropy (see Sec. II).
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The second term in Eq. (34) represents a reflected wave.
In the context of the BH emission, it indicates the existence
of the backscattered flux, the rate of which is proportional
to jßμεðpÞ2j2, that is, to l8FT8. This flux increases as the BH
evaporates and thus tries to compensate the emission. It
reproduces the inverse-area correction to the entropy [10].
Namely, the standard Hawking temperature (for n ¼ 2) is
defined as T ∝ ðGNMÞ−1=3. Hence, during the evaporation
the BH mass changes as dM ∝ −dT=GNT4, and for the
mass increment due to backscattered flux one finds
dMþ ∝ jl8FT8dMj ∝ dTl4FT

4. Using this equation and the
formula dS ¼ dM=T, one finds the entropy correc-
tion ∝ ðlF=rgÞ4.
The third term in Eq. (34) could be interpreted as

indicating the possibility that a particle will transition into
an antiparticle. The discussion concerning this term can be
found in Ref. [10].
So far we have confined the application of the minimum-

length deformed QM to the matter fields. But what if
gravity (the graviton field) is also subject to this sort of
modification? Putting aside corrections arising at the
second quantization level, one can address this question
by estimating the gravitational potential with the use of
the modified propagator that follows from Eq. (18). The
spherically symmetric gravitational field in 4þ n space-
time dimensions is described by the Schwarzschild-
Tangherlini solution [22,23]

ds2 ¼
�
1 −

�
rg
r

�
nþ1

�
dt2 −

�
1 −

�
rg
r

�
nþ1

�
−1
dr2

− r2dΩ2
nþ2; ð36Þ

where dΩ2
nþ2 is a line element of a 2þ n-dimensional unit

sphere and the gravitational radius reads

rgðMÞ ¼ ðGNMÞ 1
nþ1

�
16π

ðnþ 2ÞVolðSnþ2Þ
� 1

nþ1

: ð37Þ

Let us consider a modified Schwarzschild-Tangherlini
space-time,

ds2 ¼ ½1 − rnþ1
g VðrÞ�dt2 − ½1 − rnþ1

g VðrÞ�−1dr2
− r2dΩ2

nþ2; ð38Þ

where rg is given by Eq. (37) and VðrÞ is calculated by the
modified propagator with respect to Eq. (18),

VðrÞ ¼ VolðS2þnÞ
ð2πÞ3þn

Z
k2þn<ß−1

d3þnk
ð1 − ßk2þnÞ 2

1þn

k2
eikr;

ð39Þ

where now [not to be confused with Eq. (23)] ß stands for

2βð1þ nÞl2þn
F

2þ n
≡ ß: ð40Þ

The potential VðrÞ has the following generic properties. It
is a monotonically decreasing function that is finite at the
origin with a vanishing derivative at this point (see the
Appendix). Its asymptotic behavior when r → 0 looks like

VðrÞ ¼ A − Br2 þOðr4Þ; ð41Þ
where A and B are positive quantities (see the Appendix).
Now the equation for the horizon looks like

1

rnþ1
g ðMÞ ¼ VðrÞ: ð42Þ

As Vð0Þ is a maximum of the potential, this equation does
not have any solution for M < Mremnant,

1

rnþ1
g ðMremnantÞ

¼ ðnþ 2ÞΓð3þn
2
Þ

32π
nþ5
2 l2þn

F Mremnant

¼ Vð0Þ

¼
R
1
0 dqq

nð1− q2þnÞ2=ð1þnÞ R 1
0 dtð1− t2Þn=2

2n
ffiffiffi
π

p
Γð2þn

2
ÞΓð3þn

2
Þl1þn

F

×

�
2þ n

2βð1þ nÞ
�1þn

2þn

; ð43Þ

where we have used Eqs. (37), (40), and (42). So what we
see is that as the BH evaporates down toMremnant its horizon
disappears, and at the same time its surface gravity
vanishes: V 0ð0Þ ¼ 0 [see Eq. (41)]. That is, the Hawking
temperature, which is proportional to the surface gravity,
becomes zero.

V. SUMMARY

Let us briefly summarize the basic points of our
discussion.
(1) In deriving the higher-dimensional minimum-length

modified QM we were guided by two recent papers [2,3],
which demonstrated (in the framework of string theory and
loop quantum gravity) that the logarithmic corrections to
the BH entropy are universal in arbitrary space-time
dimensions. The MUR we have found disagrees with the
relation obtained in Ref. [17], but coincides with the one
derived in Ref. [18] in a somewhat different context.
(2) Using the Hilbert-space representation for a relatively

broad class of Planck-length deformed QM [12], we
considered minimum-length deformed QFT that follows
from the higher-dimensional minimum-length deformed
QM mentioned above.
(3) In discussing the minimum-length deformed QFT

(both at the first and second quantization levels), we
restricted ourselves to the first order in the deformation
parameter (in this limit the corrections arising at the first
and second quantization levels decouple). From the stand-
point of the Einstein equations, up to this point we only
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considered corrections to the matter fields. These correc-
tions result in the logarithmic and inverse-area corrections
to the BH entropy, thus providing a self-contained picture.
(4.1) General relativity viewed as a field theory in the

Minkowskian background acquires corrections with respect
to the minimum-length deformed QFT. Putting aside the
corrections arising at the second quantization level, one can
study the modified Schwarzschild-Tangherlini space-time
by using the modified gravitational potential that comes
from the minimum-length deformed QFT propagator. In
this way, one finds a regular (de Sitter-like) geometry near
the origin. Indeed, the modified Schwarzschild-Tangherlini
space-time is free of the curvature singularity at the origin
because now the metric (as well as its first and second
derivatives) do not diverge when r → 0 [see Eq. (41)]. On
the other hand, the Schwarzschild-Tangherlini space-time
modified in this way produces the zero-temperature BH
remnants. The behavior of the potential and Hawking
temperature are plotted in Fig. 1 and Fig. 2, respectively.
The typical behavior of the emission temperature as a
function of the BH mass is shown in Fig. 3. It should be
remarked that the emission temperature in Fig. 2 vanishes
when the BH horizon approaches zero.
(4.2) In effect, the approach we have pursued starts from

the modified Poisson equation P̂2VðrÞ ∝ δð3þnÞ
ß ðrÞ, where

the source energy density is given by the smeared-out
(3þ n-dimensional) δ function (in the limit ß → 0, one
recovers the point-like source),

δð3þnÞ
ß ðrÞ ¼

Z
k2þn<ß−1

d3þnkeikr

∝
1

rðnþ1Þ=2

Z
ß−1=ð2þnÞ

0

dkkðnþ3Þ=2Jðnþ1Þ=2ðkrÞ:

Thus, the BH we have discussed is surrounded by the
matter. This sort of BH is known as “dirty” [24]. For our
discussion, we did not need to address the generic picture of
dirty BHs.
We note that one arrives at the regular BHs by consid-

ering the minimum-length deformed matter sector, when
the smeared-out source is taken in the framework of the
standard theory of gravity [25–29].
(4.3) Special attention has to be paid to the validity

conditions of the approximation assumed throughout the
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FIG. 1 (color online). VðrÞß1=ð2þnÞ (vertical axis) vs distance in
units of ß1=ð2þnÞ (horizontal axis) for n ¼ 1 (green line), n ¼ 2
(blue line), and n ¼ 3 (red line).

0.0002

0.0004
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0.0008

0.0010
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FIG. 2 (color online). Tß1=ð2þnÞ=rnþ1
g (vertical axis) vs distance

in units of ß1=ð2þnÞ (horizontal axis) for n ¼ 1 (green line), n ¼ 2
(blue line), and n ¼ 3 (red line).

The maximum emission temperature is of the order of 1 l F

The remnant mass as well as the value of BH mass at which the 

emission temperature becomes maximal is of the order of 1 l F   

M

T

FIG. 3. Typical behavior of the emission temperature as a
function of the BH mass. The emission temperature reaches its
maximum (of the order of l−1F ) when the BH evaporates down to
the Planck mass, and then swiftly drops to zero atMremnant (which
is also of the order of l−1F ).
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above discussion. We have taken the gravitational field on
an equal footing with the matter fields, that is, the QFT
picture for gravity is taken as a starting point. This means
that the graviton field is defined as the difference between
the full metric and its Minkowski background value. The
calculations show that the gravity behaves as an asymp-
totically free interaction and, correspondingly, the radiative
corrections close to the Planck scale can be safely ignored
in this case [30–32].
(5) Finally, let us remark that one can speculate about the

possible observations of this sort of BH remnants in the
context of the large extra-dimensional models with a low
quantum gravity scale [14,33–40].
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APPENDIX

The integral determining the gravitational potential

Z
k2þn<ß−1

d3þnk
ð1 − ßk2þnÞ 2

1þn

k2
eikr ðA1Þ

for large values of r is dominated by the wave modes
k ≪ ß−1=ð2þnÞ, that is, in this limit the term ßk in the
numerator can be neglected and one recovers the standard
result. To estimate its behavior for small values of r, let us

choose the axis x3þn along k and introduce spherical
coordinates in the momentum space,

k1 ¼ k sinφ
Ynþ1

j¼1

sin θj; k2 ¼ k cosφ
Ynþ1

j¼1

sin θj;

kiþ2 ¼ k cos θi
Ynþ1

j¼i

sin θj; k3þn ¼ k cos θnþ1;

where i ¼ 1;…; n, k ≥ 0, 0 ≤ φ < 2π, and 0 ≤ θj ≤ π.
Thus, we get kr¼kx3þn cosθnþ1;d3þnk¼k2þndkdφ

Qnþ1
j¼1

sinjθjdθj, and the integral (A1) reduces to

VolðSnþ1Þ
Z

ß−1=ð2þnÞ

0

dkknð1 − ßk2þnÞ 2
1þn

×
Z

π

0

dθnþ1sinnþ1θnþ1eikx3þn cos θnþ1 : ðA2Þ

Let us first consider the specific case n ¼ 1. Changing
the variable cos θ2 ¼ t, one finds

Z
π

0

dθ2sin2θ2eikx4 cos θ2 ¼
Z

1

−1
dt

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p
cosðkx4tÞ

¼ 2

Z
1

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p
cosðkx4tÞ;

and, correspondingly, Eq. (A2) takes the form

8π

Z
1

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p Z
ß−1=3

0

dkkð1 − ßk3Þ cosðkx4tÞ: ðA3Þ

Performing the integrals

Z
ß−1=3

0

dkk cosðkx4tÞ ¼
d

dðx4tÞ
Z

ß−1=3

0

dk sinðkx4tÞ

¼ d
dðx4tÞ

1 − cos ðx4t=ß1=3Þ
x4t

¼ sin ðx4t=ß1=ð2þnÞÞ
x4tß1=3

−
1 − cos ðx4t=ß1=3Þ

x24t
2

;

Z
ß−1=3

0

dkk4 cosðkx4tÞ ¼
d4

dðx4tÞ4
Z

ß−1=3

0

dk cosðkx4tÞ

¼ d4

dðx4tÞ4
sin ðx4t=ß1=3Þ

x4t

¼ sin ðx4t=ß1=3Þ
ß4=3x4t

−
4 sin ðx4t=ß1=3Þ

ß2=3ðx4tÞ3
−
24 sin ðx4t=ß1=3Þ

ß1=3ðx4tÞ4
þ 24 sin ðx4t=ß1=3Þ

ðx4tÞ5
;
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the final result reads

VðrÞ ¼ 1

2π

Z
1

−1
dt

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p �
4β1=3 sin ðrt=ß1=3Þ

r3t3
þ 24β2=3 sin ðrt=ß1=3Þ

r4t4
−
1 − cos ðrt=ß1=3Þ

r2t2
−
24β sin ðrt=ß1=3Þ

r5t5

�
: ðA4Þ

To find the asymptotic behavior of the potential for r → 0, one can immediately use Eq. (A3),

VðrÞ ¼ 3

20πß2=3

Z
1

−1
dt

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p
−

3r2

112πß4=3

Z
1

−1
dtt2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p
þOðr4Þ: ðA5Þ

From this expression it is immediately seen that Vð0Þ is finite and V 0ð0Þ ¼ 0. Now let us show that VðrÞ is a
monotonically decreasing function, that is, V 0ðrÞ < 0. From Eq. (A3) one finds

d
dr

Z
1

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p Z
ß−1=3

0

dkkð1 − ßk3Þ cosðkrtÞ ¼ −
Z

1

0

dtt
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p Z
ß−1=3

0

dkk2ð1 − ßk3Þ sinðkrtÞ

¼ −
1

r3

Z
1

0

dtt
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p Z
r=ß1=3

0

d~k~k2
�
1 −

ß~k3

r3

�
sin ð~ktÞ < 0;

then, from the statement

Z
a

0

fðzÞ sinðzÞ > 0;

whenever fðzÞ is a positive and monotonically decreasing function we see that VðrÞ is indeed a monotonically decreasing
function.
Now let us address the general case. Denoting cos θnþ1 ¼ t, one finds

Z
π

0

dθnþ1sinnþ1θnþ1eikx3þn cos θnþ1 ¼ 2

Z
1

0

dtð1 − t2Þn=2 cos ðkx3þntÞ;

and correspondingly the potential takes the form

VðrÞ ¼ 2VolðSnþ1ÞVolðSnþ2Þ
ð2πÞ3þn

Z
ß−1=ð2þnÞ

0

dkknð1 − ßk2þnÞ 2
1þn

Z
1

0

dtð1 − t2Þn=2 cos ðkrtÞ: ðA6Þ

Its asymptotic behavior for r → 0 can readily be found by expanding the cos ðkrtÞ term into a Taylor series,

VðrÞ ¼ 2VolðSnþ1ÞVolðSnþ2Þ
ð2πÞ3þn

�Z
ß−1=ð2þnÞ

0

dkkn×ð1 − ßk2þnÞ 2
1þn

Z
1

0

dtð1 − t2Þn=2 − r2

2

Z
ß−1=ð2þnÞ

0

dk

× knþ2ð1 − ßk2þnÞ 2
1þn

Z
1

0

dtt2ð1 − t2Þn=2 þOðr4Þ
�
: ðA7Þ

It is evident from this expression that Vð0Þ is finite, V 0ð0Þ ¼ 0, and V 0ðrÞ < 0 for r → 0. In general, the statement V 0ðrÞ < 0
for r > 0 can be proved much in the same way as it was done for n ¼ 1.
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