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We provide an FðRÞ gravity description of a ΛCDM bouncing model, without the need for matter fluids
or for a cosmological constant. As we explicitly demonstrate, the two cosmological eras that constitute the
ΛCDM bouncing model can be generated by FðRÞ gravity, which can lead to accelerating cosmologies.
The resulting FðRÞ gravity has the Einstein frame inflationary properties that have concordance with the
latest Planck observational data. Both the FðRÞ gravity stability properties are thoroughly investigated, and
also, the gravitational particle production, a feature necessary for the viability of the ΛCDM bounce
scenario, is also addressed. As we will show, the ΛCDM bounce model can be successfully described by
pure FðRÞ gravity, with appealing phenomenological attributes, which we extensively discuss.
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I. INTRODUCTION

Recent observational data regarding the cosmic micro-
wave background radiation [1,2] indicate that the scalar
perturbations in the early universe were nearly scale
invariant, and therefore scale invariance is rendered a
fundamental requirement that every cosmological model
has to predict to some extent, in order to be considered
viable. In most cases, scale invariance is achieved by using
scalar fields, the perturbations of which [3] are scale
invariant. Still, no scalar fields have been observed in
nature apart from the Higgs probably; therefore a scenario
that avoids scalar fields to some extent can be considered
appealing from a physical point of view. One such
cosmological scenario was developed by Cai and
Wilson-Ewing [4], in which case scale invariance is
achieved by using only ordinary cold dark matter, radiation,
and a positive cosmological constant. Particularly, the
model describes a bouncing universe in which case
the big bang is replaced by a bounce, and therefore the
Universe is free from the initial singularity. Bounce
cosmologies are known to be alternative scenarios to the
standard inflationary cosmology [3]. For an important
stream of reviews and papers on bouncing cosmologies,
see [5–8]. The model developed in [4], to which we shall
refer to as the ΛCDM bounce model, makes the important
assumption that the equation of state, which describes the
perfect matter fluids, changes discontinuously, and as a
consequence of this, the dynamical evolution of the

Universe is divided into two cosmological eras. The first
era is dynamically governed by radiation with the
assumption that quantum gravity effects are taken into
account during this era. Particularly, the dynamical evolu-
tion is described by loop quantum cosmology (LQC)
[9–11], a feature that significantly changes the standard
cosmological evolution. The second era is governed by
cold dark matter and a positive cosmological constant with
the change between the two eras being continuous with
regards to the scale factor. However, it is expected that
quantum gravity effects should play an important if not
defining role at that universe epoch. Hence, the natural
question that appears in relation with the above scenario is,
can it be realized within some effective gravity model? It is
natural to expect that if such a universe can be realized
within effective gravity, then matter should play a minor
(if any) role in its occurrence.
It is one of our main purposes in this paper to provide a

pure FðRÞ gravity description of the ΛCDM bounce
scenario, with a pure indication that no matter fields are
going to be used. In addition, we aim to study the stability
of the FðRÞ gravity we shall reconstruct. The FðRÞ gravity
is known to provide consistent theoretical descriptions for
cosmological scenarios, which ordinary Einstein-Hilbert
gravity fails to describe. For informative reviews on this
vast research stream see Ref. [12], and for important papers
consult Refs. [12–22] and references therein.
It is worth mentioning that one of the successes of FðRÞ

theories is the consistent description of the late-time
acceleration era, with the dark energy finding an appealing
and self-consistent geometrical explanation. For alternative
theories to FðRÞ gravity that also provide a theoretically
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consistent description of dark energy, see, for example,
Refs. [23–28].
Moreover, it is known that modified gravity may success-

fully realize inflation consistent with Planck data (see
Refs. [29,30]) or even the unification of inflation with
the dark energy epoch (see Ref. [20] and the reviews [12]).
To reconcile which FðRÞ gravity governs the ΛCDM

bounce, we shall make use of two quite well known
reconstruction techniques developed in Refs. [15,17].
For alternative reconstruction techniques to the ones we
shall use, see, for example, Refs. [18,19]. In addition, for
similar studies for other bounces see [22,31,32]. The reason
we shall use two different reconstruction techniques is
mainly traced in the particular form of the radiation era
of the ΛCDM bounce. For this case we shall use the
technique of [17] which yields more reliable results in
comparison to the technique of [15], as we explain in detail
in a future work. With regards to the ΛCDM era described
by matter and the cosmological constant, we shall use the
reconstruction technique developed in [15], since it yields
exact analytical results, without any approximations. In the
case of the radiation ΛCDM bounce era, it is not possible to
find an explicit analytic solution, so we investigate this case
in the large curvature limit, most relevant to the LQC era,
which is governed by large curvature quantum operators.
As we shall demonstrate, both the eras can be described by
FðRÞ gravity that generates accelerating cosmologies. We
also study the stability of our solutions, and we investigate
in which case instabilities can occur for our solutions.
Interestingly enough, one of the two eras is described by an
FðRÞ gravity, which when studied in the Einstein frame,
can be compatible with the latest Planck data. We study in
detail the cases in which this compatibility can be achieved.
In addition to these, we give a brief account of the
holonomy corrected FðRÞ gravity [33] corresponding to
the matter era of the ΛCDM bounce, and we study how the
dynamical evolution of the Universe is described in this
context. Finally, we address the issue of gravitational
particle production, which is a feature that can render
the bounce asymmetric, with the latter being favored by
observational data.
This paper is organized as follows: In Sec. II, after

providing a brief description of the ΛCDM bounce and
the two eras that it consists of, we make use of the
reconstruction techniques to investigate which FðRÞ grav-
ity generates such a cosmological evolution. In addition,
we study the Einstein frame properties of the FðRÞ gravity
that corresponds to the matter era of the ΛCDM bounce.
For the same FðRÞ gravity we briefly study its holonomy
corrected form in the Einstein frame. The stability of our
solutions is thoroughly examined in Sec. III, while the
gravitational particle production issue is addressed in
Sec. IV. The conclusions along with a brief discussion
on our resulting FðRÞ gravity picture follow at the end of
the paper.

II. ΛCDM BOUNCE SCENARIO
FROM FðRÞ GRAVITY

A. A brief FðRÞ gravity review—conventions

To make the article self-contained we review in brief the
essential features of FðRÞ gravity in the Jordan frame, and
also we describe the geometrical background that we are
working on. There are two approaches in FðRÞ gravity,
namely the Palatini formalism [12] and the metric formal-
ism, and we shall work in the context of the latter. The
spacetime manifold is assumed to be a pseudo-Riemannian
one, which is locally described by a Lorentz metric, and
specifically the Friedmann-Robertson-Walker metric in the
case at hand. In addition, the metric compatible affine
connection is the Levi-Cività connection, which is torsion-
less and symmetric. With this connection, the correspond-
ing Christoffel symbols are

Γk
μν ¼

1

2
gkλð∂μgλν þ ∂νgλμ − ∂λgμνÞ; ð1Þ

and additionally, the Ricci scalar is equal to

R ¼ gμνð∂λΓλ
μν − ∂νΓ

ρ
μρ − Γσ

σνΓσ
μλ þ Γρ

μρgμνΓσ
μνÞ: ð2Þ

The FðRÞ theories are described by the following four-
dimensional action in the Jordan frame:

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
FðRÞ þ Smðgμν;ΨmÞ; ð3Þ

with κ2 ¼ 8πG and also Sm encompassing all the matter
fields present. The metric formalism of FðRÞ gravity is
actually materialized if the metric tensor itself is considered
as the main variable, and by varying action (3) with respect
to the metric tensor gμν, we acquire the following equations
of motion:

F0ðRÞRμνðgÞ −
1

2
FðRÞgμν −∇μ∇νF0ðRÞ

þ gμν□F0ðRÞ ¼ κ2Tm
μν: ð4Þ

The prime in Eq. (4) denotes differentiation with respect to
the argument of the differentiated function, that is, F0ðRÞ ¼
∂FðRÞ=∂R and additionally Tm

μν denotes the energy-
momentum tensor of the matter fields. Finally, as we
already mentioned, the metric will be assumed to be a flat
Friedmann-Lemaitre-Robertson-Walker (FRW), with the
corresponding line element being equal to

ds2 ¼ −dt2 þ a2ðtÞ
X
i

dx2i ; ð5Þ

and aðtÞ being the scale factor. The Ricci scalar corre-
sponding to this line element is
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R ¼ 6ð2H2 þ _HÞ; ð6Þ
with HðtÞ denoting the Hubble parameter HðtÞ ¼ _a=a and
the dot indicating time differentiation.

B. An overview of the ΛCDM bounce scenario

The focus in this article is on the cosmological scenario
described in detail in Ref. [4] by Cai and Wilson-Ewing.
The scenario itself is quite physically appealing, and we
shall provide a pure FðRÞ gravity description of it. Before
we proceed to the FðRÞ gravity reconstruction of the
cosmological scenario, it is worthwhile to provide a
detailed description of it, since it is of importance to
understand the new insights that the FðRÞ gravity brings
along. For details on this scenario, the reader is referred to
Ref. [4]. In addition, for similar models with distinct
cosmological eras, see [34].
The cosmological model of Ref. [4] described the

dynamics of a flat FRW cosmology with a positive
cosmological constant and also with radiation and cold
dark matter (CDM) present. The cosmological evolution
was divided into two eras, namely one described by an
effective LQC Hamiltonian, in which the minisuperspace
wave function is a sharply peaked state, very adequately
described by the effective equations of state of LQC, and
the other evolution era is described by a cosmological
constant plus CDM.
With regards to the effective LQC cosmological era, it

was assumed that radiation dominates this regime, which is
considered to be the high curvature regime, in which case
the effective equations of motion are given by [4,9–11,33]

H2 ¼ 8πG
3

ρ

�
1 −

ρ

ρc

�
; ð7Þ

with H the Hubble rate, ρ the radiation matter fluid energy-
density, and ρc ∼ ρpl the critical energy density that is of the
order of the Planck energy density. In the radiation-LQC
era, the quantum gravity effects are assumed to control the
cosmological evolution, as is obvious from the holonomy
corrected FRW equation (7). With regards to the cosmo-
logical constant (CC) plus CDM era, which in the rest of
the paper we shall refer to as matter-CC phase, the
cosmological evolution is governed by the cosmological
constant and CDM.
In addition, and more importantly, it is assumed that the

Universe’s evolution is broken into the aforementioned
cosmological eras, and that there is a discontinuous
transition between these two eras, a fact that will be clearly
depicted in the equations of state describing the two eras.
As we explicitly demonstrate, this equation of state dis-
continuity will also be materialized in our pure FðRÞ
gravity description, but we do not include any matter
fluids in our description. Particularly, as we shall show, the
two FðRÞ gravity that correspond to the two distinct

cosmological eras, are mathematically distinct, but inter-
estingly enough, both produce accelerating cosmologies in
the large curvature limit. Specifically, the LQC radiation era
is described by an Rþ Λ gravity, and the ΛCDM era is
described by an R2 gravity, in the large curvature regime.
Having assumed a discontinuous evolution of the

Universe, in the aforementioned eras, let us briefly describe
these two eras, the scale factor of which we shall exten-
sively use in the following sections. The LQC radiation era
is governed by radiation, with an equation of state,

ρðtÞ ¼ ρc
aðtÞ4 ; ð8Þ

and in conjunction with Eq. (7) we obtain the LQC
radiation era scale factor [4],

aðtÞ ¼
�
32πGρc

3
t2 þ 1

�
1=4

: ð9Þ

In the earlier epoch, the curvature is lower and quantum
gravity effects no longer govern the evolution of the
Universe, a process which now is governed by the CDM
energy density and cosmological constant, which we
denote ρCDM and Λ, respectively. In this case, the FRW
equations are given by the following expression:

H2 ¼ 8πG
3

aðtÞ2
�
ρCDM þ ρΛ

8πG

�
: ð10Þ

Denoting the total energy density ρtot, it is obvious that

ρtot ¼ ρCDM þ ρΛ: ð11Þ

It is also assumed that the equation of state is of the form
Ptot ¼ ωρtot, with ω ¼ −δ and 0 ≤ δ ≤ 1. The parameter δ
is assumed to vary continuously from the cosmological
constant epoch to the CDM matter epoch, but it is also
assumed that when a specific era is considered, this is
almost constant [4]. In this context, the total energy density
for a specific epoch is given by

ρtot ¼
ρeff

a3ð1−δÞ
; ð12Þ

with ρeff a constant related to the scale factor at the
radiation matter era transition, which for simplicity we
leave as ρeff . Notice that the value δ ¼ 1 corresponds to the
cosmological constant epoch (ω ¼ −1), while the value
δ ¼ 0 corresponds to the CDM epoch (ω ¼ 0). The scale
factor for the fluid with equation of state Ptot ¼ ωρtot, as a
function of the cosmological time t and of the parameter δ,
is equal to

aðtÞ ¼ Aðt − γÞ 2
3ð1−δÞ; ð13Þ
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where we have set A to be equal to

A ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πGρeff
3

r
ð1 − 3δÞ

� 2
1−3δ

�
3 − 3δ

1 − 3δ

�1−3δ
3−3δ

: ð14Þ

The parameter γ appearing in Eq. (13) is again related to the
transition time from radiation to matter era, but its exact
definition will play no important role in our analysis; for
details see [4]. In the following sections, we shall thor-
oughly investigate which pure FðRÞ gravity can generate
the cosmologies described by Eqs. (9) and (13). Special
emphasis shall be given in the transition epoch between the
two eras, and specifically in the high curvature regime,
when the LQC era ends and the ΛCDM era starts (and in
particular the cosmological constant era). This era is of
particular importance with regards to the FðRÞ gravity we
shall find, since it can describe the inflationary era in the
Einstein frame. We shall study in detail the resulting picture
in a following section.

C. ΛCDM bounce from FðRÞ gravity:
The matter-cosmological constant phase

We start our analysis with the reproduction of the matter-
CC phase by a pure FðRÞ gravity. Our strategy is to find
which pure FðRÞ gravity can produce a cosmological
evolution with a scale factor equal to the one of
Eq. (13). We shall use the reconstruction technique of
Ref. [15], which makes use of the e-fold number N. This is
most appropriate for the case at hand, since this technique
leads to differential equations that can be solved analyti-
cally. There is an equally useful reconstruction technique
developed in [17], which makes use of an auxiliary field.
This technique yields approximate results to the large and
small curvatures limits, but since we can have exact analytic
results with the technique developed in [15], we use the
latter. In a following section we shall have a small
discussion on the issue of choosing the best technique,
but let us mention that the two techniques yield the same
results, if these are used properly.
The Hubble rate corresponding to the scale factor (13) is

equal to

HðtÞ ¼ 2

3ð1 − δÞðt − γÞ ; ð15Þ

and recall that 0 ≤ δ ≤ 1. The first FRWequation is written
in the following way:

− 18ð4HðtÞ2 _HðtÞ þHðtÞḦðtÞÞF00ðRÞ þ 3ðH2ðtÞ

þ _HðtÞÞF0ðRÞ − FðRÞ
2

¼ 0; ð16Þ

with F0ðRÞ ¼ dFðRÞ
dR , and the Ricci scalar R is given in

Eq. (6). The e-folding number N is related to the scale
factor in the following way:

e−N ¼ a0
a
; ð17Þ

and by using this variable N, the first FRWequation can be
expressed in terms of the e-fold parameter N as follows:

−18ð4H3ðNÞH0ðNÞþH2ðNÞðH0Þ2þH3ðNÞH00ðNÞÞF00ðRÞ

þ3ðH2ðNÞþHðNÞH0ðNÞÞF0ðRÞ−FðRÞ
2

¼0: ð18Þ

In the relation above, the derivatives are defined with
respect to the new variable N, that is, H0 ¼ dH=dN and
H00 ¼ d2H=dN2, and the same convention holds true in the
rest of this section. Introducing the function GðNÞ ¼
H2ðNÞ in Eq. (18), the latter can be recast as follows:

− 9GðNðRÞÞð4G0ðNðRÞÞ þ G00ðNðRÞÞÞF00ðRÞ

þ
�
3GðNÞ þ 3

2
G0ðNðRÞÞ

�
F0ðRÞ − FðRÞ

2
¼ 0; ð19Þ

with G0ðNÞ ¼ dGðNÞ=dN and G00ðNÞ ¼ d2GðNÞ=dN2.
A crucial point is the fact that

R ¼ 3G0ðNÞ þ 12GðNÞ; ð20Þ

and by using this in conjunction with (17), we end up with a
differential equation that will provide us with the recon-
structed FðRÞ gravity that produces the cosmology (13).
Indeed, by writing the Hubble rate as a function of the scale
factor,

H ¼ 2

3ð1 − δÞ a
−3ð1−δÞ

2 ; ð21Þ

by making use of (17), and also by recalling that
GðNÞ ¼ H2ðNÞ, we have

GðNÞ ¼ Ae−3ð1−δÞN; ð22Þ

where A is equal to A ¼ 4
9ð1−δÞ2 a

−3ð1−δÞ
0 . Therefore, by using

Eqs. (20) and (22), the e-fold number can be expressed as a
function of the Ricci scalar,

N ¼ −
1

3ð1 − δÞ ln
�
R
B

�
; ð23Þ

with B ¼ −9Að1 − δÞ þ 12A, and so the differential equa-
tion of Eq. (19) takes the form

−
9A23ð1 − δÞð3ð1 − δÞ − 4Þ

B2
R2

d2FðRÞ
dR2

−
3Að3ð1 − δÞ − 2Þ

2B
R
dFðRÞ
dR

−
FðRÞ
2

¼ 0: ð24Þ
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Notice that we assumed that no matter fluids are present so
that the differential equation (24) yields the pure FðRÞ
gravity that generates (13). To simplify the notation of the
equations to follow, we introduce the parameters a1 and a2,
which are defined to be

a1 ¼ −
9A23ð1 − δÞð3ð1 − δÞ − 4Þ

B2
;

a2 ¼ −
3Að3ð1 − δÞ − 2Þ

2B
: ð25Þ

The differential equation (24) is the homogeneous Euler
second order differential equation, the solutions of which
we denote by f1ðRÞ and f2ðRÞ. These are equal to

f1ðRÞ ¼ Rρ1 ; f2ðRÞ ¼ R−ρ2 ; ð26Þ
where the parameters ρ1 and ρ2 are given below,

ρ1 ¼
−ða1 − a1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 − a1Þ2 þ 2a1

p
2a1

;

ρ2 ¼
−ða1 − a1Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 − a1Þ2 þ 2a1

p
2a1

;

ð27Þ

and with a1; a2 given in (25). Hence, the pure FðRÞ that
generates the ΛCDM bounce solution of relation (13) is the
following:

FðRÞ ¼ c1Rρ1 þ c2Rρ2 ð28Þ
with c1; c2 free parameters. It is worth providing the exact
relation of the variables ρ1 and ρ2 as functions of δ, which is

ρ1 ¼
2

3 − 10
1þ3δ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
73−78δþ9δ2

ð1þ3δÞ2
q ;

ρ2 ¼
1

3
2
− 5

1þ3δ −
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
73−78δþ9δ2

ð1þ3δÞ2
q : ð29Þ

The resulting FðRÞ gravity varies as a function of the
parameter δ that determines the equation of state during the
matter-CC phase of the ΛCDM bounce. We shall inves-
tigate the form of the FðRÞ gravity for the limiting values of
δ and also examine the large curvature limit that is very
essential with regards to the other evolution era of the
scenario we study, namely, the LQC-radiation era.
The most interesting case from a physical point of view

is when δ → 1; this case corresponds to an equation of state
that describes a cosmological constant. For δ → 1, the
parameters ρ1 and ρ2 behave as follows:

ρ1 ¼ 2; lim
δ→1

ρ2 → −∞; ð30Þ

and therefore for δ → 1 and in the large curvature regime,
the FðRÞ gravity behaves as

FðRÞ ∼ c1R2; ð31Þ
since the term Rρ2 is almost zero as R tends to infinity. We
have therefore ended up with a very physically appealing
scenario in which the large curvature FðRÞ gravity that
describes the matter-CC phase is an R2 gravity, when
δ ¼ 1. The R2 gravity is known to have quite interesting
inflation properties [29,30]. This result is of great impor-
tance, and we will discuss it in a later section, when we also
have the FðRÞ gravity that generates the LQC-radiation era.
From the form of the parameters ρ1 and ρ2 as functions of δ,
it is obvious that in the large curvature regime only the ρ1
term dominates, so the FðRÞ gravity for a general value of δ
in the large curvature regime is

FðRÞ ∼ c1Rρ1 : ð32Þ
For δ ¼ 0, which corresponds to the pure matter domina-
tion era, the parameter ρ1 is equal to

ρ1 ¼
1

12
ð7þ

ffiffiffiffiffi
73

p
Þ; ð33Þ

for which case nothing interesting occurs. However, having
an R2 gravity describing the large curvature regime, it is
worth investigating whether there are values of δ for which
we can have some overlap with the Planck observational
data [2]. In the next section we shall investigate the
properties of the large curvature FðRÞ gravity (32) in the
Einstein frame, and as we explicitly demonstrate, there are
values of δ for which we can achieve exact compatibility
with the latest Planck data [2].

1. Einstein frame inflation study of the ΛCDM
bounce FðRÞ gravity

As we evince in this section, the FðRÞ gravity of Eq. (28)
in the large curvature limit, when conformally transformed
in the Einstein frame, can yield results that overlap to a
great extent with the Planck data. To start with, the FðRÞ
gravity (28), in the large R limit gets simplified and is given
by (32). A detailed analysis on the Einstein frame inflation
properties of FðRÞ gravity was performed in [30], and we
adopt the notation of this reference. To make contact with
[30], we identify our parameter ρ1 with the following
expression:

ρ1 ¼
nþ 2

nþ 1
; ð34Þ

and also we set c1 to be equal to

c1 ¼ γ

�
nþ 1

nþ 2

��
1

4ðnþ 2Þ
�

1=ðnþ1Þ
; ð35Þ

since c1 is a free variable. Then, the FðRÞ gravity in the
large curvature limit reads
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FðRÞ≃ γ

�
nþ 1

nþ 2

��
1

4ðnþ 2Þ
�

1=ðnþ1Þ�R
γ

�nþ2
nþ1

: ð36Þ

Before continuing and making contact with observational
data, we need to discuss the theoretical framework of the
Einstein frame. As we discussed in the previous sections,
the FðRÞ gravity (36) generates the matter-CC phase FRW
cosmology with the scale factor of Eq. (13), so this does not
generate inflation in the Jordan frame. Our aim is to study
the Einstein frame inflation properties of (36), so we
assume that in the Jordan frame, the metric is an appro-
priately chosen one, so that when conformally transformed
in the Einstein frame, it yields an inflation generating a de
Sitter or at least a quasi–de Sitter metric. Then by
conformally transforming the Jordan frame theory using
standard techniques [12,30], we obtain the following scalar
potential:

VðσÞ ¼ −
γðnþ 2Þ

k2
ð1 − e

ffiffiffiffiffi
2
3
k2

p
σÞ þ γ

k2
e−n

ffiffiffiffiffi
2
3
k2

p
σ: ð37Þ

The slow-roll parameters are defined as

ϵ ¼ 1

2k2

�
V 0ðσÞ
VðσÞ

�
; η ¼ 1

k2

�
V 00ðσÞ
VðσÞ

�
; ð38Þ

during the slow-roll inflation, and for the potential (37),
these are equal to

ϵ≃ ðn − ðnþ 2Þeðnþ1Þ
ffiffiffiffiffi
2
3
k2

p
σÞ2

ðnþ 2Þen
ffiffiffiffiffi
2
3
k2

p
σ − ðnþ 2Þeðnþ1Þ

ffiffiffiffiffi
2
3
k2

p
σ − 1

;

η ¼ 2

3

n2 þ ðnþ 2Þeðnþ1Þ
ffiffiffiffiffi
2
3
k2

p
σ

1þ ðnþ 2Þeðnþ1Þ
ffiffiffiffiffi
2
3
k2

p
σ − ðnþ 2Þen

ffiffiffiffiffi
2
3
k2

p
σ
: ð39Þ

These slow parameters at the limit σ → −∞ become
approximately equal to

ϵ≃ n2

3
; η≃ 2

n2

3
: ð40Þ

So eventually the primordial power spectrum and the
spectral indexes of inflation are equal to

Δ2
R ≃ k2γe

2
3
Nn2

8π2n2
; ns ≃ 1 − 2

n2

3
; r≃ 16

n2

3
;

ð41Þ
where we omitted corrections of the order e−

2n2N
3 . The latest

observational data constrain the spectral indexes as follows:

ns ¼ 0.9603� 0.0073; r < 0.11; ð42Þ
so the spectral indexes of Eq. (41) are consistent with the
observational data when n≃ 0.2 and n≃ 0.1. Recalling

relation (34) and since the parameter ρ1 is related to δ as
follows:

ρ1 ¼
2

3 − 10
1þ3δ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
73−78δþ9δ2

ð1þ3δÞ2
q ; ð43Þ

the values n≃ 0.2 and n≃ 0.1 correspond to δ≃ 0.95 and
δ≃ 0.97. Of course, these values are allowed, since
0 ≤ δ ≤ 1. In the following we shall take into account
these two values of δ and in each case the corresponding
FðRÞ gravity, which for δ ¼ 0.95 reads

FðRÞ≃ c1R2−0.166667; ð44Þ

while for δ ¼ 0.97 it is equal to

FðRÞ≃ c1R2−0.111111: ð45Þ

2. Holonomy corrected FðRÞ gravity and the ΛCDM
bounce: An alternative approach to inflation

As we already mentioned, the FðRÞ gravity that
describes the large curvature regime of the matter-CC
phase is of the form ∼Rρ1 , and during this regime, the
quantum gravity effects are disregarded. According to the
scenario of Cai and Wilson-Ewing [4], the quantum gravity
effects effectively modify the LQC-radiation phase. Before
proceeding to the FðRÞ description of this cosmological
phase, we shall study in this section how holonomy
corrections may modify the cosmological evolution of
the FðRÞ gravity given in Eq. (32). As we shall show,
the holonomy corrected FðRÞ gravity in the Einstein frame
can successfully describe a bouncing cosmology itself,
without the need for another cosmological era. We intend to
give a brief qualitative analysis of the holonomy corrected
∼Rρ1 gravity in the Einstein frame, but we also intend to
address the problem more concretely and in the Jordan
frame in a future publication.
The holonomy corrected FðRÞ gravity in the Einstein

frame was studied in [33]. Introducing the Einstein frame
holonomy corrections, the FRW equation reads

~H2 ¼ 1

3
~ρ

�
1 −

~ρeρc
�

ð46Þ

with ~ρc the Einstein frame critical density. Equation (46)
describes an ellipse in the ð ~H; ~ρÞ plane, and the Universe’s
evolution is quite simple to describe. Particularly, the
Universe is moving clockwise starting from a contracting
phase and proceeding to an expanding phase. Both phases
begin and end at the same critical point (0,0) and the system
bounces off only once at the point ð0; ~ρÞ. Using the scalar
potential in the Einstein frame (37), the Einstein frame
scalar field evolution is equal to

S. D. ODINTSOV AND V. K. OIKONOMOU PHYSICAL REVIEW D 91, 064036 (2015)

064036-6



σ̈ þ 3 ~H _σþ ∂VðσÞ
∂σ ¼ 0: ð47Þ

Performing the transformation
ffiffiffiffiffi
2k2
3

q
ψ ¼ ln σ, the Einstein

frame evolution of the new scalar field ψ is governed by the
following differential equation:

ψ̈ψ þ 3 ~H _ψ ψ þ 1ffiffiffi
6

p ðρ1 − 1Þk ððρ1 − 2Þðρ1A4Þ
1

1−ρ1ψgþ1

− 2ðρ1 − 1Þðρ1A4Þ
ρ1

1−ρ1ψgÞ ð48Þ

with the parameter “g” set equal to

g ¼ 2ρ1 − 3

ρ1 − 1
: ð49Þ

The bounce produced from the dynamical system (48) is
symmetric, a fact that makes this scenario less appealing,
as we shall discuss later on. It is easy to see how a
symmetric bounce is generated without solving the differ-
ential equation (48) explicitly, since it possesses some
symmetries that make the qualitative analysis quite easy.
Indeed, the orbits of the dynamical system (48), depicted
in phase space by ð _ψ ;ψÞ, are symmetric around the _ψ ,
owing to the fact that Eq. (48) remains invariant under the
following transformations:

~t → −~t; ~H → − ~H: ð50Þ

Therefore, the contracting phase ( ~H < 0) orbit ðψðtÞ; _ψðtÞÞ
under the transformation (50) is transformed to the expand-
ing phase ( ~H > 0) orbit ðψð−tÞ; _ψð−tÞÞ and thus, the
bounce is symmetric. In addition, the Einstein frame energy
density ~ρ is equal to

~ρ ¼ _ψ2

2ψ2
þ 1

2k2ψ2
ððρ1A4Þ

1
1−ρ1ψnþ1 − A4ðρ1A4Þ

ρ1
1−ρ1ψnÞ:

ð51Þ

The Hubble parameter ~H is directly related to the energy-
density ~ρ by the holonomy corrected FRW equation (46),
and as it is obvious, the Hubble parameter vanishes at the
point ðψ ; _ψÞ ¼ ðδ; 0Þ and in addition at the curve ~ρ ¼ ~ρc. A
simple qualitative analysis of this result may be done easily,
and it proceeds as follows: The universe’s evolution begins
in the contracting phase with ~H < 0 and oscillates around
the point ðδ; 0Þ, where the oscillation’s amplitude increases
up to the point it reaches the curve ~ρ ¼ ~ρc, at which ~H ¼ 0.
At this point the universe bounces off and it enters the
expanding phase, during which ~H > 0. The expansion
continues in an oscillating way until the critical point ðδ; 0Þ
is reached.

Before we close this qualitative description we have to
note two things. First, the ~ρ ¼ ~ρc curve is not simple
compared to the R2 gravity curve studied in [33], and
second, the bounce predicted by this scenario is symmetric.
A symmetric bounce, however, is ruled out, as was also
pointed out by Cai and Wilson-Ewing [4], so the only way
to achieve an asymmetric bounce within this framework is
through particle production enhancement. We shall address
this issue in a later section.

D. ΛCDM bounce from FðRÞ gravity in the large
curvature limit: The radiation phase

The Hubble parameter corresponding to the scale factor
(9) that describes the LQC-radiation phase is equal to

HðtÞ ¼
32πGρct

3

64πGρct2

3
þ 2

: ð52Þ

This Hubble parameter will be our starting point for the
reconstruction of the LQC-radiation phase cosmology. At
this point we have to make a crucial remark, related to the
issue of choosing the most optimal reconstruction method.
Particularly, since we are interested in the large curvature
regime of the LQC-radiation phase, this corresponds to early
times, which means small values of the cosmological time.
Particularly, as also noted by the authors of Ref. [4], the fact
that for small cosmological times the scale factor is nonzero
is a manifestation of quantum gravity effects. Taking the
limit of the scale factor (9) when t tends to zero, we obtain
that indeed the scale factor is nonzero and equal to

aðtÞ ¼ 1: ð53Þ
This is a crucial observation, since the reconstruction method
we used in the previous section requires some functional
dependence of the scale factor with respect to time, so the
most optimal method for reconstructing the cosmology
described by the Hubble rate (52) is the reconstruction
method developed in [17], which we use in this section.
Disregarding any contribution from matter fluids, the first
FRW equation reads

− 18ð4HðtÞ2 _HðtÞ þHðtÞḦðtÞÞF00ðRÞ þ 3ðH2ðtÞ

þ _HðtÞÞF0ðRÞ − FðRÞ
2

¼ 0: ð54Þ

The reconstruction method of [17], makes use of an auxiliary
field ϕ, so that the action (3), which describes the pure FðRÞ
gravity, is modified in the following way:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðPðϕÞRþQðϕÞ þ LmatÞ: ð55Þ

Practically, the final form of the reconstructed FðRÞ gravity
will be given by the functionsPðϕÞ andQðϕÞ, so the focus is
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to find these solutions explicitly. The absence of a kinetic
term for the scalar field in relation (55) renders it an auxiliary
time dependent degree of freedom, so upon variation with
respect to ϕ, we obtain

P0ðϕÞRþQ0ðϕÞ ¼ 0; ð56Þ

where the prime denotes differentiation with respect to ϕ.
Solving this algebraic relation with respect to ϕwill yield the
function ϕðRÞ, and the FðRÞ gravity can be found easily by
substituting ϕðRÞ to action (55), so that FðRÞ is equal to

FðϕðRÞÞ ¼ PðϕðRÞÞRþQðϕðRÞÞ: ð57Þ

Therefore, it is of critical importance to modify the
FRW equation in such a way so that we obtain a differential
equation that will yield PðϕÞ and QðϕÞ. This differential
equation can easily be obtained by varying Eq. (55) with
respect to the metric tensor. Assuming a flat FRWmetric, we
obtain

− 6H2PðϕðtÞÞ −QðϕðtÞÞ − 6H
dPðϕðtÞÞ

dt
¼ 0;

ð4 _H þ 6H2ÞPðϕðtÞÞ þQðϕðtÞÞ þ 2
d2PðϕðtÞÞ

dt2

þ dPðϕðtÞÞ
dt

¼ 0: ð58Þ

By eliminating the function QðϕðtÞÞ we obtain

2
d2PðϕðtÞÞ

dt2
− 2HðtÞPðϕðtÞÞ þ 4 _H

dPðϕðtÞÞ
dt

¼ 0: ð59Þ

As it is explicitly proven in [17], the scalar field ϕ is
considered to be equivalent to the cosmological time t, so in
the following we assume that ϕ ¼ t (see the appendix of
[17]). Assuming that the scale factor takes the form

a ¼ a0egðtÞ ð60Þ

with a0 being a constant, the differential equation (59) can be
recast in the following way:

2
d2PðϕðtÞÞ

dt2
− 2g0ðϕÞ dPðϕðtÞÞ

dt
þ 4g00ðϕÞPðϕðtÞÞ ¼ 0:

ð61Þ

This differential equation yields PðϕÞ, and by using the
resulting PðϕÞ, we may get the QðϕÞ,

QðϕÞ ¼ −6g0ðϕÞ2PðϕÞ − 6g0ðϕÞ dPðϕÞ
dϕ

: ð62Þ

The Hubble rate (52) can be written in the following form:

HðtÞ ¼ hðtÞ
t

; ð63Þ

with hðtÞ being equal to

hðtÞ ¼ hfqt2

1þ qt2
; ð64Þ

and where we defined hf and q to be equal to

hf ¼ 1

2
; q ¼ 32πGρc

3
: ð65Þ

The function hðtÞ appearing in Eq. (64) is a slowly varying
function of time, a property that will significantly simplify
the problem at hand. Indeed, the function hðtÞ ∀ z ∈ R
satisfies the following relation:

lim
t→∞

hðztÞ
hðtÞ ¼ 1: ð66Þ

We therefore assume a particular form for the function
appearing in relation (60), which is

gðϕÞ ¼ hðϕÞ ln
�
ϕ

ϕ0

�
; ð67Þ

with ϕ0 some integration constant. Since the function hðϕÞ is
slowly varying, we can ignore its derivatives in the following
calculations. Using the functional form of gðϕÞ, the Hubble
rate is equal to

HðtÞ ¼ hðtÞ
t

þ h0ðtÞ ln
�
t
t0

�
; ð68Þ

and owing to the fact that the function hðtÞ is slowly varying,
the derivative h0ðtÞ can be safely ignored, and therefore the
Hubble rate simplifies to

HðtÞ≃ hðtÞ
t

; ð69Þ

which is exactly equal to the LQC-radiation phase Hubble
rate given in Eq. (63). This is a crucial point in our analysis,
and the validity of the method is verified by exactly this
coincidence. By using Eq. (67) and ignoring the derivatives
h0ðtÞ; h00ðtÞ the differential equation (61) can be cast in the
following form:

2
d2PðϕðtÞÞ

dt2
−
hðϕÞ
ϕ

dPðϕðtÞÞ
dt

−
2hðϕÞ
ϕ2

PðϕðtÞÞ ¼ 0: ð70Þ

To find the PðϕðRÞÞ function from the above equation, we
must first find the exact functional dependence of ϕ as a
function of the Ricci scalar, which can easily be done if
we calculate the Ricci scalar R by taking into account
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relations (6), (63), and (64). Combining these, the final
result reads

RðϕÞ≃ 6ð−hðϕÞ þ 2hðϕÞ2Þ
ϕ2

: ð71Þ

Notice that we ignored the higher derivatives of hðtÞ in
order to obtain Eq. (71). Using the exact form of hðϕÞ
given in Eq. (64) (recall that ϕ ¼ t), solving Eq. (71) with
respect to ϕ2, yields the result

ϕ2 ¼ −
2

3q
þ 2

R
−
hf
3R

þ 2h2f
3R

þ
�
4 × 21=3qþ 12 × 21=3q2

R
þ 21=3R

3
þ 21=3qhf

3

−
4 × 21=3q2hf

R
−
8 × 21=3qh2f

3
þ 25 × 21=3q2h2f

3R
−
4 × 21=3q2h3f

3R
þ 4 × 21=3q2h4f þ

1

321=3q2R

�
×

1

ðα0 þ α1Rþ α2R2 þ α3R3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2R2 þ β3R3 þ β4R4 þ β5R5

p
Þ1=3

: ð72Þ

For simplicity, the coefficients αi; βi are given in the Appendix. Using Eq. (72), we can solve the differential equation (70)
and express the solutions as functions of the Ricci scalar. Then, by using Eq. (57) we can have the reconstructed FðRÞ
gravity. The general solution to the differential equation (70) is [15]

PðϕÞ ¼ c1ϕ
hðϕÞ−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕÞ2þ6hðϕÞþ1

p
2 þ c2ϕ

hðϕÞ−1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕÞ2þ6hðϕÞþ1

p
2 ; ð73Þ

and by using this we may easily find QðϕÞ by substituting (67) in Eq. (62), in which case we obtain

QðϕÞ ¼ −6hðϕÞc1
�
hðϕÞ þ hðϕÞ − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕÞ2 þ 6hðϕÞ þ 1

p
2

�
ϕ

hðϕÞ−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕÞ2þ6hðϕÞþ1

p
2

−2

− 6hðϕÞc2
�
hðϕÞ þ hðϕÞ − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕÞ2 þ 6hðϕÞ þ 1

p
2

�
ϕ

hðϕÞ−1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕÞ2þ6hðϕÞþ1

p
2

−2: ð74Þ

Since we are interested in the large R regime of our approxi-
mate method, in the following we shall examine the solutions
we found in the large R limit only. In fact, it is an exercise of
academic interest only to examine the small curvature limit,
since in the context of the cosmological scenario we are
studying, this era is governed by theCDMfluid; therefore, it is
senseless to examine the low curvature limit.

E. FðRÞ gravity in the large R limit

Having solution (72) at hand, we may easily obtain the
large R limit, which is

ϕ2 ≃ −
1

3q
þA1

R
; ð75Þ

so finally we get

ϕ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R −A1

3qR

s
; ð76Þ

which holds true when R > A1, where we have setA1 to be
equal to

A1 ¼
4 × 21=3qþ 21=3qhf

3
−

8×21=3qh2f
3

þ 4 × 21=3q2h4f þ ð2 − hf þ 2h2fÞa1=33

a1=33

: ð77Þ

In addition, the parameter α3 can be found in the
Appendix. We can find the function PðϕðRÞÞ in the small
ϕ limit (or large R limit equivalently) by recalling that the
function hðtÞ has the following limiting value as ϕ
approaches zero:

lim
t→0

hðtÞ ¼ 0: ð78Þ

This observation significantly simplifies the calculation,
since in that limit PðϕÞ reads
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PðϕÞ ¼ c1 þ c2ϕ−1: ð79Þ
By virtue of Eq. (76), the term ϕ−1 is equal to

ϕ−1 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3qR

R −A1

s
; ð80Þ

so eventually, the function PðϕÞ of Eq. (79) is equal to

PðϕÞ ¼ c1 þ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3qR

R −A1

s
: ð81Þ

In the same vein, the function QðϕðRÞÞ is found to be
approximately equal to zero,

QðϕðRÞÞ≃ 0: ð82Þ
Combining Eqs. (81) and (82), the final form of the
reconstructed FðRÞ gravity of Eq. (57) reads

FðRÞ≃ c1Rþ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3qR3

R −A1

s
: ð83Þ

We can further simplify the resulting FðRÞ gravity by
expanding the square root in the large R limit, in which case
we get

FðRÞ≃ c1Rþ c2
ffiffiffiffiffiffi
3q

p
A1

2
þ c2

ffiffiffiffiffiffi
3q

p
R; ð84Þ

which is rewritten as

FðRÞ≃ ðc1 þ c2
ffiffiffiffiffiffi
3q

p
ÞRþ c2

ffiffiffiffiffiffi
3q

p
A1

2
: ð85Þ

We can choose the coefficient of R in the above expression
to be equal to one, that is,

c1 þ c2
ffiffiffiffiffiffi
3q

p
¼ 1; ð86Þ

and defining Λ in the following way:

Λ ¼ c2
ffiffiffiffiffiffi
3q

p
A1

2
; ð87Þ

we end up with the final form of the reconstructed FðRÞ
gravity,

FðRÞ≃ Rþ Λ; ð88Þ
which is Einstein-Hilbert gravity plus the cosmological
constant. This is a quite intriguing result, since the
cosmological constant can describe inflationary dynamics
of an expanding universe. Let us here recapitulate what we
found in this section. We investigated which FðRÞ gravity
can generate the large curvature LQC-radiation cosmological

scenario, which corresponds to the scale factor (52), and we
ended up with an Einstein-Hilbert gravity plus a cosmo-
logical constant. Notice that the value of cosmological
constant Λ can be of the Planck energy order, since the
parameter q is related to the Planck energy density [see
Eq. (65)]. Combining this result with the one we obtained in
the ΛCDM study, which resulted in an R2 gravity, we have
the physically appealing picture in which, when the large
curvature limit of the two cosmological scenarios is con-
sidered, both reconstructed FðRÞ gravities result in gravities
that actually can generate inflationary solutions. And most
importantly, in our case no matter fluids are present, so the
inflationary dynamics is a result of pure FðRÞ gravity. We
shall further discuss this result in a later section.

III. STABILITY OF FðRÞ GRAVITY DESCRIBING
THE ΛCDM BOUNCE AND THE

RADIATION BOUNCE

Before proceeding to some phenomenological applica-
tions of the modified gravity description for the ΛCDM
bounce we provided, it is of critical importance to check the
stability of our solutions. In this section we address this
issue using the formalism developed in Ref. [17]. We start
off with the FðRÞ gravity given in Eq. (28), which describes
the ΛCDM phase of the bounce solution.

A. Study of the FðRÞ stability for the matter-CC phase

For the modified gravity of Eq. (28) we used the
reconstruction method developed in [15], for which the
most appropriate stability check method is the one first
done in [17], which we employ in this section. We perform
a perturbation of the form

GðNÞ ¼ gðNÞ þ δgðNÞ; ð89Þ
and we insert this into Eq. (19) noticing that gðNÞ satisfies
Eq. (19). Consequently, the perturbation δgðNÞ satisfies the
following equation:

gðNÞ d
2FðRÞ
dR2

����
R¼3g0ðNÞþ12gðNÞ

δ00gðNÞ

þ
�
3gðNÞð4g0ðNÞ þ g00ðNÞÞ d

3FðRÞ
dR3

����
R¼3g0ðNÞþ12gðNÞ

þ
�
3gðNÞ − 1

2
g0ðNÞ

�
d2FðRÞ
dR2

����
R¼3g0ðNÞþ12gðNÞ

�
δ0gðNÞ

þ
�
12gðNÞð4g0ðNÞ þ g00ðNÞÞ d

3FðRÞ
dR3

����
R¼3g0ðNÞþ12gðNÞ

þ ð−4gðNÞ þ 2g0ðNÞ þ g00ðNÞÞ d
2FðRÞ
dR2

����
R¼3g0ðNÞþ12gðNÞ

þ 1

3

dFðRÞ
dR

����
R¼3g0ðNÞþ12gðNÞ

�
δgðNÞ ¼ 0: ð90Þ
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Using this equation, the stability of the solution under small perturbations of GðNÞ may be directly obtained. Indeed, the
stability conditions read

J1 ¼
6ð4g0ðNÞ þ g00ðNÞÞF000ðRÞ

F00ðRÞ þ 6 −
g0ðNÞ
gðNÞ > 0; ð91Þ

and in addition,

J2 ¼
36ð4g0ðNÞ þ g00ðNÞÞF000ðRÞ

F00ðRÞ − 12þ 6g0ðNÞ
gðNÞ þ 3g00ðNÞ

gðNÞ þ F0ðRÞ
gðNÞF00ðRÞ > 0: ð92Þ

From Eqs. (90), (91), (92) and in conjunction with Eq. (19), we can check the stability of the solution (28), under the small
perturbation (89), in which case the stability conditions become

J1 ¼ 6þ 3ð1 − δÞ − 23ð1 − δÞð3ρ1c1ð−Að−4þ 3ð1 − δÞÞe−3ð1−δÞNÞρ1ð−2þ ρ1Þð−1þ ρ1Þρ1
þ 3ρ2c2ð−Að−4þ 3ð1 − δÞÞe−3ð1−δÞNÞρ2ð−2þ ρ2Þð−1þ ρ2Þρ2Þ
× 3ρ1c1ð−Að−4þ 3ð1 − δÞÞe−3ð1−δÞNÞρ1ð−1þ ρ1Þρ1
þ 3ρ2c2ð−Að−4þ 3ð1 − δÞÞe−3ð1−δÞNÞρ2ð−1þ ρ2Þρ2 > 0; ð93Þ

and in addition, the parameter J2 reads

J2 ¼ −12 − 63ð1 − δÞ þ 27ð1 − δÞ2 þ e3ð1−δÞNðc1ð12Ae−3ð1−δÞN − 3A3ð1 − δÞe−3ð1−δÞNÞ−1þρ1ρ1

þ c2ð12Ae−3ð1−δÞN − 3A3ð1 − δÞe−3ð1−δÞNÞ−1þρ2ρ2ÞA−1Q−1
1

þ 36ð−4A3ð1 − δÞe−3ð1−δÞN þ Ac4e−3ð1−δÞNÞ
× ðc1ð12Ae−3ð1−δÞN − 3A3ð1 − δÞe−3ð1−δÞNÞ−3þρ1ð−2þ ρ1Þð−1þ ρ1Þρ1
þ c2ð12Ae−3ð1−δÞN − 3A3ð1 − δÞe−3ð1−δÞNÞ−3þρ2ð−2þ ρ2Þð−1þ ρ2Þρ2Þ ×Q−1

1 > 0; ð94Þ

where Q1 is equal to

Q1 ¼ c1ð12Ae−3ð1−δÞN − 3A3ð1 − δÞe−3ð1−δÞNÞ−2þρ1ð−1þ ρ1Þρ1
þ c2ð12Ae−3ð1−δÞN − 3A3ð1 − δÞe−3ð1−δÞNÞ−2þρ2ð−1þ ρ2Þρ2; ð95Þ

and also A ¼ 4a0−3ð1−δÞ
9ð1−δÞ2 . Having the stability parameters J1 and J2 we can directly check the stability conditions for the most

interesting values of δwe found in the previous sections. Particularly, for δ ¼ 1, in which case the FðRÞ gravity becomesR2,
and for δ ¼ 0.95, δ ¼ 0.97, for which values, the corresponding Einstein frame theory produces inflationary parameters that
have exact concordance with the observational data. For δ ¼ 1, the stability parameters become

J1 ¼ 2 > 0; J2 ¼ 0; ð96Þ

and thus the R2 does not satisfy the second stability solution, a fact that shows that this solution is unstable under
perturbations. However, when δ takes the value δ≃ 2 but not exactly two, stability is ensured. In the same way, the stability
parameters for δ ¼ 0.97 become

J1 ¼ 3

0B@2.03667þ 0.803333

1þ
2.8063×1048c1ðe−0.09N

a0.09
0

Þ13.3889

c2

1CA > 0; ð97Þ

with regards to J1, which is obviously positive. As for J2, this reads
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J2 ¼
e−0.09Nð4.7110−49c2ðe−0.09Na0.09

0

Þ27.2 − 7.947c1ðe−0.09Na0.09
0

Þ40.61Þ
a0.090 ð2.2810−49c2ðe−0.09Na0.09

0

ð2.2810−49c2ðe−0.09Na0.09
0

Þ28.2 þ 0.64c1ðe−0.09Na0.09
0

Þ41.61Þ

þ
a00.18e0.18Nð−2.1410−49c2ðe−0.09Na0.09

0

Þ29.2 þ 8.4c1ðe−0.09Na00.09
Þ42.61Þ

a0.090 ð2.2810−49c2ðe−0.09Na0.09
0

ð2.2810−49c2ðe−0.09Na0.09
0

Þ28.2 þ 0.64c1ðe−0.09Na0.09
0

Þ41.61Þ ; ð98Þ

with the most dominant term for any value of the e-folds number N being

J2 ≃
a00.18e0.18Nð8.4c1ðe−0.09Na00.09

Þ42.61Þ
a0.090 ð2.2810−49c2ðe−0.09Na0.09

0

ð2.2810−49c2ðe−0.09Na0.09
0

Þ28.2 þ 0.64c1ðe−0.09Na0.09
0

Þ41.61Þ > 0; ð99Þ

which is obviously positive. Therefore the solution for δ ¼ 0.97 is perfectly stable. The same applies for δ ¼ 0.95, in which
case we have

J1 ¼ 3

0B@2.03667þ 0.803333

1þ
2.8063×1048c1ðe−0.09Na0.09

0

Þ13.3889

c2

1CA > 0; ð100Þ

which is positive, as for J2 the leading order contribution reads

J2 ≃
8.46a0.180 e0.18Nc1ðe−0.090Na00.09

Þ42.61
a0.090 ð2.2810−49c2ðe−0.09Na0.09

0

ð2.2810−49c2ðe−0.09Na0.09
0

Þ28.2 þ 0.64c1ðe−0.09Na0.09
0

Þ41.61Þ > 0; ð101Þ

which is also positive. Therefore, as can easily be checked,
for all values of δ, except for δ ¼ 2, stability is ensured. In
addition, from an observational point of view phenomeno-
logically most interesting cases δ ¼ 0.95 and δ ¼ 0.97
provide stable FðRÞ solutions.

B. Study of the FðRÞ stability for the
radiation bounce case

We now examine the stability of the LQC-radiation
generating FðRÞ gravity given in Eq. (88). Since this FðRÞ
gravity is the result of a reconstruction method different
from the one previously used, we shall use the stability
method developed in [17]. We start from the following
equation:

2
d2PðϕðtÞÞ

dt2
− 2g0ðϕÞ dPðϕðtÞÞ

dt
þ 4g00ðϕÞPðϕðtÞÞ ¼ 0;

ð102Þ

which can be rewritten in the following way:

2
d2PðϕÞ
dϕ2

�
dϕ
dt

�
2

− 2
dPðϕÞ
dϕ

d2ϕ
dt2

− 2g0ðϕÞ dPðϕÞ
dϕ

�
dϕ
dt

�
2

þ 4

�
g00ðϕÞ

�
dϕ
dt

�
2

þ g0ðϕÞ d
2ϕ

dt2

�
PðϕÞ ¼ 0; ð103Þ

and after some calculations, it can be cast as follows:

2

�
d2PðϕÞ
dϕ2

− g0ðϕÞ dPðϕÞ
dϕ

þ g00ðϕÞPðϕÞ
���

dϕ
dt

�
2

− 1

�
þ 2

�
dPðϕÞ
dϕ

þ 2g0ðϕÞPðϕÞ
�
d2ϕ
dt2

¼ 0: ð104Þ

We define the function δ to be equal to

δ ¼ dϕ
dt

− 1: ð105Þ

This parameter δ represents actually the way that pertur-
bations behave for the solutions we found, since it practi-
cally measures the deviation of the parameter ϕ from t,
which we considered to be identical. Using the parameter δ,
we can recast Eq. (104) in the following way:

dδ
dt

¼ −ωðtÞδ; ð106Þ

where ωðtÞ stands for

ωðtÞ ¼ 2

d2PðϕÞ
dϕ2 − g0ðϕÞ dPðϕÞdϕ þ g00ðϕÞPðϕÞ

dPðϕÞ
dϕ þ 2g0ðϕÞPðϕÞ

�����
ϕ¼t

: ð107Þ
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If ω > 0 for the solution PðϕÞwe found, then stability is ensured since the perturbation becomes small. In the contrary case,
instability occurs since the perturbations are large. We shall examine the function PðϕÞ that corresponds to the large
curvature limit since this is the most interesting case. For the function gðϕÞ given in relation (67), ω becomes

ωðϕÞ ¼
−PðϕÞðhðϕÞϕ þ lnðϕÞh0ðϕÞÞ þ 2PðϕÞð− hðϕÞ

ϕ2 þ 2h0ðϕÞ
ϕ þ lnðϕÞh00ðϕÞÞ þ P00ðϕÞ

2PðϕÞðhðϕÞϕ þ lnðϕÞh0ðϕÞÞ þ P0ðϕÞ
; ð108Þ

and by neglecting the higher derivatives of hðϕÞ, ω becomes

ωðϕÞ≃ −PðϕÞðhðϕÞϕ Þ þ 2PðϕÞð− hðϕÞ
ϕ2 Þ þ P00ðϕÞ

2PðϕÞðhðϕÞϕ Þ þ P0ðϕÞ
: ð109Þ

In this case, by using PðϕÞ as given in Eq. (79), the form of hðϕÞ given in (64) and substituting in Eq. (107), we obtain

ωðϕÞ≃ 2c2

ϕ3
�
− c2

ϕ2 þ 2qϕðc1þc2
ϕ Þhf

1þqϕ2

	 −
2qc1hf

ð1þ qϕ2Þ
�
− c2

ϕ2 þ 2qϕðc1þc2
ϕ Þhf

1þqϕ2

	
−

qϕc1hf

ð1þ qϕ2Þ
�
− c2

ϕ2 þ 2qϕðc1þc2
ϕ Þhf

1þqϕ2

	 −
qc2hf

ð1þ qϕ2Þ
�
− c2

ϕ2 þ 2qϕðc1þc2
ϕ Þhf

1þqϕ2

	
−

2qc2hf

ϕð1þ qϕ2Þ
�
− c2

ϕ2 þ 2qϕðc1þc2
ϕ Þhf

1þqϕ2

	 ; ð110Þ

which for small ϕ (which corresponds to large curvatures)
becomes

ωðϕÞ≃ −
2

ϕ
þ qϕ; ð111Þ

where q is defined in Eq. (65). Therefore ω is positive and
thus stable for qϕ2 > 2. On the contrary ω is negative for
qϕ2 < 2, and in this case the solution is unstable.

IV. GRAVITATIONAL PARTICLE PRODUCTION

As was also pointed out in Ref. [4], asymmetry of the
bounce is required in order for these cosmological bounces
to be viable. One feature that can cause asymmetry of the
bounce and that guarantees viability of the model is particle
production during the bounce. In this section we shall
examine the gravitational particle production issue, adopt-
ing the research line of Refs. [35]. As is well known [35],
curvature oscillations can generate gravitational particle
production. What mainly interests us is the examination of
the gravitational particle production for the matter-CC
phase, which as we found is described by the FðRÞ gravity
given in Eq. (28), since the LQC-radiation phase results in
an Rþ Λ gravity with known gravitational particle pro-
duction properties [36].
In the large curvature limit, the FðRÞ gravity that

generates the ΛCDM phase is an R2 gravity, in which
case there is sufficient particle production [35] to guarantee

the asymmetry of the bounce. We shall not go into details
for this FðRÞ gravity, since this issue was addressed in full
detail in [35], but we shall be interested in the small
curvature limit of the ΛCDM phase, in which case the FðRÞ
gravity is approximately equal to

FðRÞ≃ c2Rρ2 ð112Þ

since ρ2 is a negative number. Recalling the details with
regards to the values that ρ2 takes, since 0 ≤ δ ≤ 1, the
parameter ρ2 takes the following values:

−∞ ≤ ρ2 < −0.128; ð113Þ

where the limiting values are obtained in the following
limits:

lim
δ→0

ρ2 ¼ −0.128; lim
δ→1

ρ2 ¼ −∞: ð114Þ

Let us briefly recall here how the ΛCDM bounce scenario
works. At the beginning we have the bounce, and when
the curvature is quite large the radiation phase governs the
dynamical evolution of the Universe. After this phase,
the cosmological constant and cold dark matter govern the
dynamics. At first, and when the curvature is too large, the
cosmological constant phase occurs, which corresponds to
δ ¼ 1, and as the curvature lowers, the matter fluid governs
the expansion. In the latter case, δ approaches zero. We
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shall study the gravitational production during that phase
and for particular limits. Notice that in the end of the matter
fluid matter-CC phase, a new bounce occurs, so this is a late
time era, with time considered to start when the previous
bounce had occurred in the past. Following [35], the
equation that will reveal the particle production rate is
the following:

3□F;R − Rþ RF;R − 2FðRÞ ¼ 0; ð115Þ

where we assumed that matter is absent. In Ref. [35], it was
assumed that the spacetime is a flat Minkowski one, but
here we assume a flat FRW metric of the form (5), in which
case the Ricci scalar depends only on time. In this case,
Eq. (115) is simplified, and by introducing the new variable
y ¼ Rρ2−1 and also using the form of the FðRÞ gravity
given in Eq. (112), Eq. (115) becomes

3ρ2∂2
t yþ 3H∂ty − y1=ðρ2−1Þ þ ðρ2 − 2Þyρ2=ðρ2−1Þ ¼ 0:

ð116Þ

Keeping only the dominant terms in the small curvature
limit, Eq. (117) gets simplified,

3ρ2∂2
t yþ 3H∂tyþ ðρ2 − 2Þyρ2=ðρ2−1Þ ¼ 0; ð117Þ

where H is the Hubble rate (15). We shall study the above
equation in various limits in order to see how particle
production behaves in the small curvature limit. As was
proven in [35], the rate of gravitational production is given
by

_ρPP ≃ ΔRω

1152π
; ð118Þ

where ΔR is the amplitude of the curvature oscillations and
ω their physical frequency. Note thatΔR is a slowly varying
function of t in general. The method used in [35] required
that the solution y is definitely written in the following
form:

RðtÞ ¼ y1=ðρ2−1ÞðtÞ ¼ ΔRðtÞ sinðωtÞ ð119Þ

since a general analytic solution can be quite difficult. In our
case we shall find analytic solutions of (117), with one of
them being exactly of the form (119), without any approxi-
mation. The other solution we shall present is analytic, but
we fit the resulting function in such a way that we end up
with a function of the form (119). We start our investigation
with the assumption that δ → 1 and also for times such that

2ρ2
1 − δ

≫ t: ð120Þ

Practically, this means that we are dealing with times after
the LQC-radiation phase and during the start of the ΛCDM

phase. In this case, by keeping the dominant terms in
Eq. (118), the latter becomes

3H∂tyþ ðρ2 − 2Þyρ2=ðρ2−1Þ ¼ 0; ð121Þ

which has a simple solution

yðtÞ ¼ ce
−ðt−c1Þð1−δÞ

2 : ð122Þ

The function (122) if written in the form (119), which can be
done by a numerical fit, yields the following rate of
gravitational particle production:

_ρPP ≃ 6079; ð123Þ

where we used δ ¼ 0.99 for which case ρ2 ≃ −33.19.
Notice that this rate strongly depends on the fraction
ð1 − δÞ=ρ2 and on the arbitrary parameter c. We proceed
to another interesting limiting case, which has an interesting
analytic solution. Particularly, we are interested in the late
time evolution, and particularly for the cosmological time
being,

t ≫
2ρ2
1 − δ

: ð124Þ

In this case, and as δ → 1, the differential equation (117)
takes the following form:

3ρ2∂2
t yþ ðρ2 − 2Þyρ2=ðρ2−1Þ ¼ 0; ð125Þ

which is the Emden-Fowler differential equation. Setting

m ¼ ρ2
ρ2 − 1

; A ¼ −
ρ2 − 2

3ρ2
; ð126Þ

the solution of (125) for m ≠ −1 becomes

t ¼ yF1

�
1

2
;

1

1þm
; 1þ 1

1þm
;−

2A
Cað1þmÞ y

1þm

�
þ Cb

ð127Þ

with F1 being the Gauss hypergeometric function and Ca,
Cb arbitrary integration constants. When δ → 1, the param-
eter m is approximately equal to m≃ 1, since only ρ2
dominates. In addition, A ¼ −1=3; therefore, in this limit,
the solution (127) is written as

t ¼ yF1

�
1

2
;
1

2
; 1þ 1

2
;
1

3Ca
y2
�
þ Cb; ð128Þ

and by making the replacement z ¼
ffiffiffiffiffi
1
3ca

q
y, the Gauss

hypergeometric function F1 has the following functional
form:
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F1

�
1

2
;
1

2
; 1þ 1

2
; z2

�
¼ z−1 arcsinðzÞ: ð129Þ

Using (129), solution (128) in terms of yðtÞ becomes

t ¼
ffiffiffiffiffiffiffi
3ca

p
arcsin

�
1

3Ca
y

�
þ Cb; ð130Þ

so finally yðtÞ is exactly equal to

yðtÞ ¼ 1

3Ca
sin

�
1

3Ca
ðt − CbÞ

�
: ð131Þ

Note that we arrived at the solution (131) using only analytic
methods, without any approximations. Notice that yðtÞ is
exactly of the form (119), so in the present case, the
amplitude and the frequency of the curvature oscillations are

ΔR ¼ 1

3Ca
; ω ¼ 1

3Ca
: ð132Þ

Consequently, the rate of the gravitational particle produc-
tion is

_ρPP ≃ 1

ð3CaÞ21152π
: ð133Þ

Since the parameter Ca is a free parameter of the theory, it
can be chosen to be quite small, so that the particle
production rate is as big as is required to obtain an
asymmetric bounce. Therefore, in our FðRÞ gravity descrip-
tion of the ΛCDM bounce, sufficient gravitational particle
production is ensured to guarantee an asymmetric bounce,
during, of course, the matter-CC phase we described above.

V. DISCUSSION

We provided a pure FðRÞ gravity description of the
ΛCDM bounce scenario that was developed in Ref. [4],
without the need for perfect matter fluids to govern the
Universe’s dynamics. The ΛCDM bounce scenario consists
of two distinct cosmological eras, namely the radiation
dominated and the matter-CC phase, and is therefore based
on the discontinuity of the equation of state between the
two eras. Using very well known reconstruction tech-
niques, we were able to find which pure FðRÞ gravity
can generate each cosmological era. In the case of the
radiation phase, the curvature is considered to be large, so
the scale factor is aðtÞ ∼ ðat2 þ 1Þ1=4, a result that is
obtained by using LQC considerations. In the large
curvature regime, such a cosmological expansion is gen-
erated by an FðRÞ ∼ Rþ Λ gravity plus nondominant
curvature terms in this approximation. In addition, the
matter-CC era is generated by a power law FðRÞ gravity of
the form FðRÞ ∼ c1Rρ1 þ c2Rρ, with ρi being numbers
related to the details of the scale factor. In the large

curvature regime, this FðRÞ gravity is described by an
R2 gravity, while as curvature lowers, the FðRÞ gravity
takes the form Rρ1 with ρ1 < 2. In this high curvature
regime we found two particular values of the parameter ρ1,
for which the FðRÞ gravity, when studied in the Einstein
frame, yields results that have concordance with the latest
Planck data on inflation.
Interestingly enough, in the context of FðRÞ gravity we

found a solution to a problem that the ΛCDM bounce
model of [4] was confronted with. Particularly, in order that
the ΛCDM bounce model is considered viable, the bounce
must be asymmetric. As was pointed out in [4], one way to
achieve this is through particle production during the
bounce, and in the framework of FðRÞ gravity this process
occurs naturally. As we explicitly demonstrated, particle
production is particularly enhanced during the matter-CC
phase, and thus the asymmetry of the bounce can be
ensured with the FðRÞ gravity description of the ΛCDM
bounce. Note finally that using the same method one can
reconstruct the ΛCDM bounce universe in FðGÞ and FðTÞ
gravity (see Ref. [22]); this will be done elsewhere.
A very important remark is in order. We have to mention

that it is of fundamental importance to explain why nature
should select the discontinuous change in the equation of
state. This is closely connected to the LQC effects, which
effectively modify the large curvature era and govern the
early time evolution of the bounce. This discontinuity of the
equation of state appears in the FðRÞ gravity description we
provided, since in the large curvature regime, the LQC
radiation phase is generated by an almost Einstein-Hilbert
gravity, while the large curvature regime of the matter-CC
phase is governed by an R2. It would be quite interesting to
find a natural explanation of this discontinuity in the
context of Jordan frame FðRÞ gravity, an issue we hope
to address in a future publication.
It is important to discuss the possibility that the FðRÞ

realizations of the ΛCDM bounce we just presented can be
distinguished from other theoretical implements. In the
case of Ref. [4], it was explicitly demonstrated that the
running of the spectral index is negative, and therefore it
can be tested from observations. In the case of FðRÞ gravity
now, in principle a difference may come from the calcu-
lation of the spectral index, since it is calculated in a
different way. But before getting into the details of this, let
us mention that prior to distinguishing FðRÞ gravity
prediction, it is important to find seeds of a bouncing
cosmology to the observational data, since there exist many
bouncing scenarios. In addition, a quite interesting scenario
was presented in Refs. [37], where a contracting bouncing
phase preceded the slow-roll inflationary phase. With
respect to the latter scenario, this could have observable
effects in the anomalies. By determining the exact evolu-
tionary scenario, in the context of FðRÞ gravity, the
observational indices can be calculated explicitly in two
frames, namely, in the Jordan frame [38] and in the Einstein
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frame [30]. The Einstein frame calculation involves a scalar
field on which the slow-roll conditions are imposed.
Interestingly enough, when the calculation is performed
in the Jordan frame, it is possible to have results that can
directly be fitted to the observational data [38], without the
need for imposing the slow-roll conditions. Indeed, in the
Jordan frame, if no matter is present, as in our case, there is
no scalar field, and hence contact with observations can be
done by using the technique of maximum likelihood. In this
way, the parameters of the theory can be appropriately
adjusted so that the corresponding observational indices are
produced. The observational indices have a quite compli-
cated form to be explicitly presented here, but can be found
in the Appendix of Ref. [38]. Notice that pure FðRÞ gravity
models in the Jordan frame are in principle less restricted
from the corresponding Einstein frame counterparts, owing
to the fact that the parameters can be appropriately chosen.
Hence, to distinguish these from other theoretical descrip-
tions, other observational quantities must be examined, in
addition to the aforementioned observables, where the
differences could be significant, as, for example, in the
growth index or similar quantities. Another possibility to
distinguish predictions of modified gravity from general
relativity may be related to the description of compact
massive (neutron) stars, but this goes beyond this work.
Finally, of the most sound results obtained in Ref. [4] is

the existence of red tilted long wavelength perturbation
modes. It would be therefore very important to study the
long wavelength perturbations in the context of Jordan

frame FðRÞ theories. A study of perturbations valid to a
certain limit was done in [39]. Of course, the Einstein frame
analysis can be dealt with using standard techniques, but if
someone addresses the full problem in the Jordan frame,
this study can be quite difficult. We hope to address these
issues in a future work.
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APPENDIX: DETAILED PRESENTATION OF
POLYNOMIAL COEFFICIENTS

In this appendix we shall give in detail the polynomial
coefficients αi; βj, with i ¼ 0;…; 3 and j ¼ 0;…; 5, which
appear in Eq. (72). Particularly, the αi’s are the coefficients
of the following polynomial:

ρðRÞ ¼ α0 þ α1Rþ α2R2 þ α3R3; ðA1Þ
while the βj’s are the coefficients of

PðRÞ ¼ β2R2 þ β3R3 þ β4R4 þ β5R5: ðA2Þ
These are given in detail as follows:

α0 ¼ 432q6 − 216q6hf þ 468q6h2f − 146q6h3f þ 156q6h4f − 24q6h5f þ 16q6h6f;

α1 ¼ 216q5 − 18q5hf − 75q5h2f þ 30q5h3f − 48q5h4f;

α2 ¼ 36q4 þ 3q4hf þ 30q4h2f;

α3 ¼ 2q3;

β2 ¼ 45684q10h2f − 15228q10h3f þ 31725q10h4f − 5076q10h5f þ 5076q10h6f;

β3 ¼ 23004q9h2f þ 594q9h3f − 12528q9h4f − 216q9h5f;

β4 ¼ 3861q8h2f þ 540q8h3f − 108q8h4f;

β5 ¼ 216q7h2f: ðA3Þ
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