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We have recently presented a new approach for numerical relativity simulations in spherical polar
coordinates, both for vacuum and for relativistic hydrodynamics. Our approach is based on a reference-
metric formulation of the Baumgarte-Shapiro-Shibata-Nakamura equations, a factoring of all tensor
components, as well as a partially implicit Runge-Kutta method, and does not rely on a regularization of the
equations, nor does it make any assumptions about the symmetry across the origin. In order to demonstrate
this feature we present here several off-centered simulations, including simulations of single black holes
and neutron stars whose center is placed away from the origin of the coordinate system, as well as the
asymmetric head-on collision of two black holes. We also revisit our implementation of relativistic
hydrodynamics and demonstrate that a reference-metric formulation of hydrodynamics together with a
factoring of all tensor components avoids problems related to the coordinate singularities at the origin and
on the axes. As a particularly demanding test we present results for a shock wave propagating through the
origin of the spherical polar coordinate system.
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I. INTRODUCTION

Numerical relativity simulations of black holes and other
compact objects have made remarkable progress in recent
years. In particular, simulations of the complete binary
black hole coalescence, from inspiral through merger to
the quasinormal ring-down of the merger remnant,
became possible with the calculations of [1–3]. Since then,
a number of different groups have assembled accurate
gravitational waveforms emitted in these mergers (see,
e.g., the compilation by the NINJA Collaboration [4]),
and have explored astrophysical consequences of these
mergers, including black hole recoil (e.g. [5–7]) and spin
flip (e.g. [8]).
Many current numerical relativity codes (in three

spatial dimensions) share several features: they adopt
the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation of Einstein’s equations [9–11], use finite-difference
methods in Cartesian coordinates, and adopt moving
puncture coordinates, i.e. a combination of 1þ log slicing
[12] and the “Gamma-driver” condition [13] (a notable
exception is the SpEC code; see, e.g., [14].) While
Cartesian coordinates are well suited for many applications,
in particular simulations of binaries, spherical polar coor-
dinates have some desirable properties whenever the object
under consideration is close to spherical or axial symmetry.
Specific examples include gravitational collapse, supernova
explosions, and accretion disks.
We have therefore developed and implemented a new

approach that applies in spherical polar coordinates the
numerical methods that have previously proven to be
extremely successful in Cartesian coordinates [15]. As we

will review in more detail in Sec. II, this approach relies on
three key ingredients: a reference-metric formulation of the
BSSN equations [16,17], factoring out appropriate geomet-
rical factors from tensor components, and using a “partially
implicit” Runge-Kutta (PIRK) method [18–20]. The result-
ing equations are still singular at the origin of the coordinate
system and on the polar axis, but all singular terms can be
handled analytically, and the PIRK method is stable even in
the presence of these singular terms. Our approach therefore
does not rely on a regularization of the equations, and can be
used even in the absence of spherical or axisymmetry. In [21]
we applied a reference-metric approach to the formulation of
relativistic hydrodynamics, and implemented the resulting
equations to perform what we believe are the first self-
consistent and stable simulations of general relativistic
hydrodynamics in dynamical spacetimes in spherical polar
coordinates without the need for regularization or symmetry
assumptions.
While we have previously performed and presented a

number of different tests, the vast majority of those tests
featured a symmetry about the origin, which raises the
question whether the stability of our methods hinges on that
symmetry. In this paper we address this issue by presenting a
number of new tests for configurations that do not satisfy
that symmetry. Specifically we will consider an off-centered
Schwarzschild black hole (Sec. III A 1), an asymmetric
head-on collision of two black holes in (Sec. III A 2), and
an off-centered neutron star (Sec. III B 2).
The other purpose of this paper is to revisit our

implementation of hydrodynamics. As we will discuss in
more detail in Sec. II B, we consider here a modification to
the implementation that we presented in [21]. As a key test
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we show in Sec. III B 1 results for a shock wave that
propagates through the origin of the coordinate system.
We would like to emphasize that the purpose of the

simulations presented in this paper is purely to demonstrate
a point of principle. Placing spherical objects away from
the origin of a spherical coordinate system clearly defeats
the purpose of such coordinate systems from a computa-
tional perspective—but it does provide extremely powerful
tests of the properties of our computational methods.
Moreover, applications for which we expect spherical polar
coordinates to be useful, for example supernova collapse or
accretion onto a black hole, may involve processes in which
asymmetries move the center of the central object away
from the origin of the coordinate system—it is therefore
important to calibrate the performance of the numerical
methods for such off-center configurations.

II. NUMERICAL RELATIVITY IN SPHERICAL
POLAR COORDINATES

A. Einstein’s field equations

We refer the reader to [15] for a detailed discussion of
our implementation of Einstein’s field equations, based on
the BSSN formulation [9–11], in spherical polar coordi-
nates. Here we provide a brief discussion of the main
components, namely a reference-metric formulation of the
BSSN equations (Sec. II A 1), a factoring of tensor com-
ponents (Sec. II A 2), and a partially implicit Runge-Kutta
scheme (Sec. II A 3). We will also include brief sections on
the gauge conditions used in this paper (Sec. II A 4) as well
as the numerical implementation (Sec. II A 5).

1. A reference-metric formulation of the BSSN equations

In a 3þ 1 decomposition of spacetime the spacetime
metric gab is written as

ds2 ¼ gabdxadxb

¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

where α is the lapse function, βi the shift vector, and

γab ≡ gab þ nanb ð2Þ
the spatial metric (see, e.g., [17,22,23] for textbook
introductions). In terms of the lapse and the shift, the
normal vector na on each spatial slice can be written as

na ¼ ð−α; 0; 0; 0Þ or na ¼ ð1=α;−βi=αÞ: ð3Þ
Here and in the following indices a; b… run over spacetime
indices, while i; j… run over spatial indices only; we
also use geometrized units with c ¼ G ¼ 1 throughout
this paper.
The BSSN formulation [9–11] of Einstein’s equations

further adopts a conformal rescaling of the spatial metric,

γij ¼ e4ϕγ̄ij; ð4Þ

where γ̄ij is the conformally related metric, eϕ the con-
formal factor, and where we refer to ϕ as the “conformal
exponent.” This decomposition is not unique, as it allows
for different choices of the determinant γ̄ of the conformally
related metric, which then result in different values of ϕ,

e4ϕ ¼ ðγ=γ̄Þ1=3: ð5Þ
The original BSSN formulation was based on the choice
γ̄ ¼ 1, which simplifies several expressions. This choice,
which also results in the appearance of tensors with
nonzero weight, is appropriate in Cartesian coordinates,
but not in curvilinear coordinates. In spherical polar
coordinates one might work around this problem by
choosing γ̄ ¼ r4 sin2 θ instead, but a more elegant and
powerful approach is to adopt a reference-metric formu-
lation (see [16,17]; see also [24,25]).
In a reference-metric formulation we introduce a new

reference metric γ̂ij, together with its associated connection
Γ̂i
jk. Strictly speaking, only a reference connection is

needed for this formalism, but for ease of presentation
we assume that this reference connection is associated with
a reference metric. In principle, the reference metric could
be any metric, but the formalism is most useful for our
purposes when this reference metric is chosen to be the flat
metric in whatever coordinate system is used—in our case
in spherical polar coordinates. We then define

ΔΓi
jk ≡ Γ̄i

jk − Γ̂i
jk; ð6Þ

where Γ̄i
jk are the connection coefficients associated with

the conformally related metric γ̄ij. As the difference
between two connections, the coefficients ΔΓi

ij transform
as tensors, unlike the connections themselves. We compute
the coefficients ΔΓi

jk from

ΔΓi
jk ¼

1

2
γ̄ilðD̂jγ̄kl þ D̂kγ̄jl − D̂lγ̄jkÞ; ð7Þ

where D̂ denotes the covariant derivative associated with
the reference metric γ̂ij. We also define the conformal
connection functions as

Λ̄i ≡ γ̄jkΔΓi
jk; ð8Þ

but treat these as new independent variables in the
equations.
In order to specify the conformal factor eϕ we specify the

time evolution of the determinant of the conformally related
metric,

∂tγ̄ ¼ 0; ð9Þ
which Brown [16] calls the “Lagrangian” choice.
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Using the above expressions, the BSSN equations for γ̄ij,
ϕ and other curvature quantities can be expressed inde-
pendently of any particular choice for γ̄; see Eqs. (21) in
[16] or Eqs. (9) in [15]. Moreover, many of the differential
operators can now be expressed in terms of D̂. Choosing γ̂ij
to be the flat metric in spherical polar coordinates,

γ̂ij ¼

0
B@

1 0 0

0 r2 0

0 0 r2sin2θ

1
CA; ð10Þ

we can then express these differential operators analytically
in terms of the spherical polar connection coefficients Γ̂i

jk.

2. Factoring of tensor components

Differential equations, when expressed in spherical polar
coordinates, often feature singular terms at the origin or on
the axis, where r or sin θ vanish. The advantage of the
reference-metric formulation of Sec. II A 1 is that it allows
us to express these singular terms analytically. However, if
the variables in the differential equation are tensors, then
the tensor components may also become singular at the
origin or on the axis. In order to treat these singular terms
analytically as well, we factor out appropriate powers of the
geometrical factors r and sin θ from tensor components.
We write the conformal connection functions (8), for

example, as

Λ̄i ¼

0
B@

λr

λθ=r

λφ=ðr sin θÞ

1
CA; ð11Þ

and adopt the coefficients λr, λθ, and λφ, which remain
regular in regular spacetimes, as our dynamical variables.
Covariant derivatives of Λ̄i, for example, can then be
expressed in terms of the new variables λi and their
derivatives. As a concrete example we compute

D̂φΛ̄
θ ¼ ∂φðλθ=rÞ þ ΛiΓ̂θ

iφ ¼ 1

r
ð∂φλ

θ − cos θλφÞ; ð12Þ

where we have used Γ̂θ
φφ ¼ − sin θ cos θ. A complete list

of all these derivatives is given in Eq. (26) of [15]. As
advertised, the singular behavior in the tensor components
can now be treated analytically.
We similarly express the conformally related metric as

γ̄ij ¼ γ̂ij þ ϵij; ð13Þ

where the corrections ϵij do not need to be small, and then
write

ϵij ¼

0
B@

hrr rhrθ r sin θhrφ

rhrθ r2hθθ r2 sin θhθφ

r sin θhrφ r2 sin θhθφ r2 sin2 θhφφ

1
CA: ð14Þ

Similar to our example above, the derivatives D̂iγ̄jk ¼
D̂iϵjk can then be written in terms of the variables hij—see
Eq. (25) in [15] for a complete list. All other tensorial
quantities are treated in a similar way.
With the help of these rescalings, all variables remain

finite for regular spacetimes even in spherical polar
coordinates. The equations do feature singular terms, but
these singular terms are treated completely analytically.
We do not attempt to regularize the equations; instead we
adopt a numerical method that can handle these singular but
analytical terms.

3. Partially implicit Runge-Kutta

The “partially implicit Runge-Kutta” (PIRK) method
was introduced in [18] for the BSSN equations in spherical
symmetry (see also [19,20]). In particular, it was demon-
strated that the PIRK method can handle the singular terms
that appear in spherical polar coordinates as long as they are
treated analytically. We refer to the above references, as
well as [15], for a more detailed discussion of the PIRK
method; here we illustrate the approach for a simple wave
equation

−∂2
tΦþ∇2Φ ¼ 0: ð15Þ

We bring this equation into a form that mimics that of the
BSSN equations by introducing a new variable κ≡ −∂tΦ.
Also assuming spherical symmetry we then rewrite Eq. (15)
as a pair of first-order-in-time equations

∂tΦ ¼ −κ; ð16aÞ

∂tκ ¼ −∂2
rΦ − ð2=rÞ∂rΦ: ð16bÞ

We now recognize that the variable in the singular term, i.e.
Φ in the term ð2=rÞ∂rΦ, is evolved with an equation that
does not feature any singular terms [Eq. (16a)]. The idea is
then to evolve Eq. (16a) explicitly, and use the updated
values of Φ when evaluating the singular terms in
Eq. (16b). In a fully implicit scheme all terms on the
right-hand side of the equations would be evaluated using
values on the new time level, while in the PIRK scheme
only part of the variables are evaluated on the new time
levels—namely those that appear in singular terms, which
are also those that are evolved with a regular equation. The
effect of this is quite dramatic: while a simple explicit
finite-difference evolution of Eqs. (16) quickly becomes
unstable, this PIRK method can handle the singular term
without problems. The advantage of PIRK over a fully
implicit scheme is that it does not require inversion of any
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matrices; in fact, the computational cost of PIRK is very
similar to that of fully explicit methods. In a further
similarity with fully explicit methods, PIRK is stable only
as long as the time step is limited by a Courant condition
[see Eq. (22) below].
It turns out that the BSSN equations have a structure

similar to that of (16), in particular, all variables in singular
terms obey regular equations themselves. We can therefore
apply the PIRK method as described above (see [15],
including Appendix B, for details.)

4. Gauge conditions

We adopt different versions of “moving-puncture” coor-
dinates in this paper, i.e. a combination of 1þ log slicing
and the “Gamma-driver” condition. Specifically, we adopt
both a “nonadvective” version

∂tα ¼ −2αK ð17Þ

and an “advective” version

∂tα − βi∂iα ¼ −2αK ð18Þ

of 1þ log slicing [12] as a condition for the lapse function.
Here K is the trace of the extrinsic curvature

Kij ¼ −
1

2α
∂tγij þDðiβjÞ; ð19Þ

where D is the covariant derivative associated with the
spatial metric γij. We note that for stationary solutions, for
which ∂tα ¼ 0, the nonadvective condition (17) is con-
sistent with maximal slicing K ¼ 0.
We also use different conditions for the shift vector βi.

The simplest choice is βi ¼ 0, but we also use an non-
advective version of the Gamma-driver condition [13]

∂tβ
i ¼ Bi; ð20aÞ

∂tBi ¼ μS∂tΛ̄
i; ð20bÞ

where Bi is an auxiliary vector, as well as an advective
version of a related condition

∂tβ
i − βj∂jβ

i ¼ μSΛ̄
i ð21Þ

(see, e.g., [26]). We use μS ¼ 3=4 in both conditions.

5. Numerical implementation

Details of our numerical finite-difference implementa-
tion can be found in [15], but we review some of the key
features here.
We adopt a grid in three spatial dimension, using

ðNr; Nθ; NφÞ grid points. The grid is cell centered, so that

no grid points reside at r ¼ 0 or sin θ ¼ 0. We use fourth-
order differencing to evaluate most spatial derivatives
(advective terms are differenced with a third-order upwind
scheme); this means that we need to pad the numerical grid
with two layers of ghost zones. Except at the outer
boundaries, where we impose simple outgoing-wave falloff
conditions, these ghost zones correspond to another zone in
the interior grid (see Fig. 1 in [15] for an illustration). A
ghost zone with coordinates θg and φg and a negative radius
rg ¼ −Δr=2, for example, where Δr is the radial grid
spacing, corresponds to the interior zone at θ ¼ π − θg,
φ ¼ φg þ π and r ¼ −rg ¼ Δr=2. The ghost zones can
therefore be filled by copying function values from the
corresponding interior zones. For tensor components,
appropriate parity conditions have to be taken into account,
since unit vectors in the ghost zone may point in the
opposite direction of those in the corresponding interior
zone (see Table I in [15]).
We implement a second-order version of the PIRK

method for the time evolution. The stability of this method
requires that the time step be limited by a Courant condition
of the form

Δt < CΔmin; ð22Þ
where C is a Courant factor and Δmin is the smallest
distance between neighboring grid points. We evaluate
this condition using simple coordinate distances,
and chose C ¼ 0.2 for all simulations in this paper. It
is a well-known disadvantage of spherical polar coordi-
nates that the accumulation of grid points in the vicinity
of the origin leads to a severe limit on the time step.
Nevertheless, we have performed all results shown in
this paper with a serial implementation using uni-
form grids.
In [15] we have presented several tests of our code,

including convergence tests for Teukolsky waves and
single black holes. Because different parts of the code
are differenced to different order, the order of convergence
depends on which term dominates the error for the variable
under consideration. In [27] we also used this code to
simulate the collapse of nonlinear gravitational waves to
black holes.
While our code does not make any symmetry assump-

tions, all simulations in this paper are axisymmetric. We
therefore choose the smallest possible number of grid
points in the φ direction, Nφ ¼ 2, in all simulations
presented here (but we refer to [15] for genuinely three-
dimensional simulations with Nφ > 2).

B. Relativistic hydrodynamics

We have previously discussed an implementation of
relativistic hydrodynamics in spherical polar coordinates in
[21]. We briefly review our approach here, and also discuss
new features of the approach used in this paper.

BAUMGARTE, MONTERO, AND MÜLLER PHYSICAL REVIEW D 91, 064035 (2015)

064035-4



1. A reference-metric formulation of relativistic
hydrodynamics

The equations of relativistic hydrodynamics are based on
the conservation of rest mass, expressed by the continuity
equation

∇aðρ0uaÞ ¼ 0; ð23Þ
and conservation of energy-momentum

∇bTab ¼ 0: ð24Þ
Here ∇ denotes the (four-dimensional) covariant derivative
associated with the spacetime metric gab, ρ0 the rest-mass
density, ua the fluid four-velocity, and Tab is the stress-
energy tensor

Tab ¼ ρ0huaub þ pgab; ð25Þ
where h≡ 1þ ϵþ p=ρ0 is the enthalpy, p the pressure,
and where ϵ is the specific internal energy. We also
define the Lorentz factor between the fluid and normal
observers as

W ≡ −naua ¼ αut: ð26Þ
The quantities ρ0, p, ϵ, and the fluid velocity vi, defined as

va ≡ 1

W
γabub¼ ð0; ui=W þ βi=αÞ; ð27Þ

form the so-called primitive variables.1

In many recent applications the above equations are
brought into a flux-conservative form, so that high-
resolution shock-capturing (HRSC) schemes can be used
to find accurate numerical solutions. In the process, a new
set of hydrodynamical variables, namely the conserved
variables, are introduced. A particularly common such
formulation is the so-called “Valencia” form [28] (see also
[29,30] for reviews).
In the Valencia formulation, the continuity equation

takes the form

∂tðe6ϕ
ffiffiffī
γ

p
DÞ þ ∂jðfDÞj ¼ 0; ð28Þ

the Euler equation is

∂tðe6ϕ
ffiffiffī
γ

p
SiÞ þ ∂jðfSÞij ¼ ðsSÞi; ð29Þ

and the energy equation becomes

∂tðe6ϕ
ffiffiffī
γ

p
τÞ þ ∂jðfτÞj ¼ sτ: ð30Þ

Here

D≡Wρ0; ð31aÞ

Si ≡W2hρ0vi; ð31bÞ

τ≡W2hρ0 − p −D ð31cÞ

are the density, momentum density, and the internal energy
as seen by a normal observer,

ðfDÞj ≡ αe6ϕ
ffiffiffī
γ

p
Dðvj − βj=αÞ; ð32aÞ

ðfSÞij ≡ αe6ϕ
ffiffiffī
γ

p ðW2hρ0hviðvj − βj=αÞ þ pδijÞ; ð32bÞ

ðfτÞj ≡ αe6ϕ
ffiffiffī
γ

p ðτðvj − βj=αÞ þ pvjÞ ð32cÞ

are the corresponding fluxes, and the two source terms are

ðsSÞi ≡ αe6ϕ
ffiffiffī
γ

p ð−T00α∂iαþ T0
k∂iβ

k þ tjk∂iγjk=2Þ;
ð33aÞ

sτ ≡ αe6ϕ
ffiffiffī
γ

p ðtijKij − ðT00βi þ T0iÞ∂iαÞ; ð33bÞ

where we have abbreviated

tij ≡ T00βiβj þ 2T0iβj þ Tij: ð34Þ

In curvilinear coordinates, the appearance of the deter-
minant γ̄ in the above equations—in particular in the Euler
equation—poses a problem. Even for flat space in spherical
polar coordinates we have γ̄1=2 ¼ r2 sin θ. The θ depend-
ence of this term leads to the appearance of nonzero terms
on both sides of the Euler equation (29), even in spherical
symmetry. Analytically these two terms cancel each other,
but since in HRSC schemes the flux terms on the left-hand
side are evaluated differently from the source terms on the
right-hand side, numerical error will prevent a perfect
cancellation. The resulting error breaks spherical sym-
metry, and can build up very quickly (see [21] for a more
detailed discussion).
In [21] we suggested a reference-metric approach,

analogous to that applied to the BSSN equation in
Sec. II A 1, to solve this problem.2 As we derived in
[21], the resulting equations are very similar to those of
the original Valencia formulation above, except that all
appearances of

ffiffiffī
γ

p
have to replaced with

ffiffiffiffiffiffiffi
γ̄=γ̂

p
(which

immediately solves the problem discussed above), and
all partial derivatives ∂ have to be replaced with covariant
derivatives with respect to the reference metric, D̂.
The continuity equation (28), for example, becomes

1We note a typo in Eq. (20) of [21], which should be replaced
with Eq. (27) above.

2We note that this problem has been recognized before.
In general relativistic hydrodynamics this issue has also been
addressed by [31,32].
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∂tðe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
DÞ þ D̂jðfDÞj ¼ 0: ð35Þ

From a computational perspective, the most important
advantage of this reference-metric approach is that the
geometrical factors r2 sin θ (and similar for other curvi-
linear coordinate systems) are eliminated from the defi-
nition of the fluxes (32). Alternatively one could, of
course, work around this problem by simply scaling
out these geometrical factors, but the reference-metric
approach has other appealing features as well. All vari-
ables are now defined as tensors of weight zero (unlike
those in the original Valencia formulation), and the
formalism meshes well with the very similar approach
used for the BSSN equations. The covariant derivatives
of the spatial metric D̂iγjk ¼ 4e4ϕγ̄jk∂iφþ e4ϕD̂iγ̄jk, for

example, can be evaluated in terms of the derivatives D̂iγ̄jk
that have already been computed for the connection
coefficients (7).
We evaluate the covariant derivatives D̂ in the fluid

equations by expanding them in terms of connection
coefficients; the continuity equation (35), for example,
becomes

∂tðe6ϕ
ffiffiffiffiffiffiffi
γ̄=γ̂

p
DÞ þ ∂jðfDÞj ¼ −ðfDÞjΓ̂k

jk: ð36Þ

The appearance of the new terms on the right-hand side are
a disadvantage of this approach. The vanishing of the right-
hand side of the continuity equation in the original Valencia
formulation meant that, in an HRSC implementation, the
total rest mass

M0 ¼
Z

d3x
ffiffiffi
γ

p
αutρ0 ¼

Z
d3x

ffiffiffi
γ

p
D ð37Þ

is conserved exactly; this is no longer the case in the
reference-metric formulation (see Sec. III B 2 below for a
numerical example.)
In [21] we therefore considered two different implemen-

tations, a full approach, in which we adopted all three
hydrodynamic equations in the reference-metric version,
and a partial approach, in which we adopted the Euler
equation in the reference-metric version, but left both the
continuity and the energy equation in the original Valencia
formulation. In [21] we found that the advantages of the
partial approach outweighed those of the full approach;
however, our implementation there did not adopt a factor-
ing of tensor components.

2. Factoring of tensor components

In this paper we apply to all hydrodynamical variables
the same factoring of tensor components that we described
in Sec. II A 2. The momentum density Si, for example, is
written as

Si ¼

0
B@

sr
rsθ

r sin θsφ

1
CA ð38Þ

(and similar for all tensorial variables), and the sr, sθ, and
sφ are then evolved as the dynamical variables. We found
that with this rescaling, and using the full approach, i.e.
adopting the reference-metric approach for all hydrody-
namical variables, even a shock wave passing through the
origin of the coordinate system will not lead to the
formation of spikes or other numerical artifacts—we will
present examples in Sec. III B.

3. Equation of state

For the simulations presented in Sec. III B we construct
the initial data using a polytropic equation of state (EOS)

P ¼ κρΓ0 ; ð39Þ

where the polytropic constant κ is a measure of the entropy,
and where Γ is related to the polytropic index n by
Γ ¼ 1þ 1=n. The specific internal energy density ϵ can
then be found from the first law of thermodynamics to be

ϵ ¼ 1

Γ − 1

P
ρ0

: ð40Þ

During the dynamical evolution of these initial data we
adopt a Γ-law EOS, meaning that we use Eq. (40) to find P
in terms of the conserved variables ρ0 and ϵ.
For all simulations in Sec. III B we will use units in

which the polytropic constant κ in (39) is unity, κ ¼ 1.
However, all dimensional quantities can be rescaled for any
other value of κ by recognizing that, in geometrized units,
κn=2 has units of length. Density, for example, has units of
inverse length squared, again in geometrized units. The star
considered in Sec. III B 2 has a central density of ρc ¼ 0.2
in our units with κ ¼ 1; for any other value of κ, the central
density is then κ−nρc.

4. Numerical implementation

We use a HRSC scheme to solve the equations of
relativistic hydrodynamics in the above form (see,
e.g. [33,34] for textbook treatments). In particular, we have
implemented a second-order slope limiter reconstruction
scheme, namely the monotonic centered limiter [35], to
obtain the left and right states of the primitive hydrodynamic
variables at each cell interface. We have also adopted the
Harten-Lax-van-Leer-Einfeld approximate Riemann solver
[36,37]. We also refer to [26,38] for similar treatments and
more detailed discussion.
Following common practice we introduce an artificial

atmosphere to deal with the vacuum regions of spacetime,
which would otherwise create numerical problems.
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We follow the prescription of [26] and set the density ρ0 to
ρatm ¼ fatm maxðρ0Þ wherever it would otherwise be less
than a threshold density ρthres ¼ fthresρatm, or wherever
ϵ < ϵatm. Here we compute ϵatm from ρatm using a poly-
tropic EOS. For the simulations presented in Sec. III B we
used fatm ¼ 10−8 and fthres ¼ 10.

III. OFF-CENTER SIMULATIONS

A. Vacuum

1. Off-centered Schwarzschild black holes

As a first example of off-centered simulations we
consider a Schwarzschild black hole that is placed away
from the origin of the coordinate system. We express this
black hole in maximally sliced “trumpet” coordinates (see
[39]), which can be expressed analytically in parametric
form [40]. In these coordinates, the black hole horizon is
located at a coordinate distance rhor ¼ 0.779M away from
the black hole’s center. We evolve these data with the
nonadvective 1þ log slicing (17) and Gamma driver
condition (20), using the analytical values for the lapse
and shift as initial data. Analytically, the resulting evolution
should result in all metric components remaining time
independent; any evolution away from the initial data is
therefore caused by numerical error.
We place the center of the black hole at rcenter ¼ 1M and

θ ¼ 0, i.e. at a distance of 1M from the origin of the
coordinate system in the positive z direction (the direction
towards the North Pole), and choose the numerical grid to
extend to an outer boundary imposed at rmax ¼ 16M.
We also choose the grid resolution such that the radial
resolution Δr ¼ rmax=Nr is similar to the angular resolu-
tion rΔθ ¼ rπ=Nθ at the center rcenter of the black hole,
which implies

Nθ ∼ π
rcenter
rmax

Nr: ð41Þ

In the following we present results for grids of size
ðN96; N18; 2Þ with N ¼ 1, 4=3 and 2.
In Fig. 1 we show a “slice” of the lapse function α at a

time t ¼ 10M. Here and in the following, a slice, similar to
a slice in an orange, represents the data as a function of r
and θ for a given value of the azimuthal angle φ. Given that
initial data for our simulations in this paper are axisym-
metric, the particular value of φ does not matter. We then
graph the data as functions of Cartesian coordinates z ¼
r cos θ and x ¼ r sin θ.
In Fig. 1 we show the data for our highest-resolution run

with N ¼ 2 [i.e. on a grid of size (192,36,2)] at time
t ¼ 10M as the shaded surface. We also include the initial
data at t ¼ 0 as a wireframe representing each grid point
used in this simulation. As expected, the difference
between the two data sets is very small, so that they cannot
be distinguished in the figure. In particular, we do not

observe any problems arising at the origin of the coordinate
system at r ¼ 0. In Fig. 2 we show both the conformal
exponent ϕ and the lapse function α at t ¼ 9.5M along the
axis pointing from the origin to the north pole, i.e. along
θ ¼ 0. The insets in Fig. 2 display the difference between
the values of these functions at t ¼ 0 and t ¼ 9.5M.
In the top panel of Fig. 3 we show the lapse function α,

interpolated to the origin at r ¼ 0, as a function of time,
for the three different resolutions N ¼ 1, 4=3, and 2.
Analytically, the lapse should remain exactly constant;
any departure from this constant value is therefore a
measure of the numerical error. In the bottom panel we
plot this numerical error Δα≡ α − αana and multiply the
result with N2. This graph demonstrates that the errors
decrease slightly faster than second order.
Before closing this section we point out that, by placing

the black hole away from the origin of the coordinate
system, the numerical error becomes asymmetric about the
center of the black hole. The angular resolution, rΔθ, at a
given distance away from the center of the black hole, is
smaller on the side of the black hole facing the origin of
the coordinate system than on the side facing away from the
origin (see Fig. 1.) We have observed that this asymmetric
error results in a slow drift of the black hole towards the
origin. This drift cannot yet be seen in Figs. 1 and 2, but the
fact that the lapse starts to decrease at later times in Fig. 3,
as the center of the black hole slowly approaches the origin,
is a symptom of that drift. However, this figure also
demonstrates that this drifts converges away as the numeri-
cal resolution is increased.

FIG. 1 (color online). The lapse function α in a slice of constant
azimuthal angle φ, evolved on a grid of size (192,36,2). The
color-coded surface shows the data at time t ¼ 10M, while the
wireframe shows the initial data at t ¼ 0—the two surfaces are
hardly distinguishable in the figure. The contour lines are drawn
for α ¼ j × 0.1, where j is an integer.
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2. Head-on collision of two black holes

As a second example of off-centered simulations in
vacuum spacetimes we consider the head-on collision of
two black holes from rest. As initial data we adopt Brill

Lindquist [41] data, for which the spatial metric is con-
formally flat, the extrinsic curvature vanishes, and the
conformal factor ψ ¼ eϕ is given by

ψ ¼ 1þM1

r1
þM2

r2
: ð42Þ

Here rα ≡ jxi − Ci
αj is the coordinate distance to the center

of the black hole located at Ci
α. We choose both black

holes to start out on the axis. In order to obtain asymmetric
data we choose M2 ¼ 2M1, so that the total ADM mass
M of the initial data is M ¼ 3M1. We place M1 at
z1 ¼ 3M1 ¼ M, and M2 at z2 ¼ −6M1 ¼ −2M. The
center of mass is then at zCM ¼ −M. After the two black
holes coalesce, we expect them to merge close to their
center of mass (we do not compute the energy or linear
momentum emitted in gravitational radiation in these
simulations). This means that M1 will pass through the
origin of the coordinate system prior to merger, making this
a strong test of our numerical methods in spherical polar
coordinates.
We evolve these data with the advective version of

1þ log slicing, Eq. (18), as well as the shift condition (21).
As initial data for these gauge conditions we use the
“precollapsed” lapse

α ¼ ψ−2 ¼ e−2ϕ; ð43Þ
as well as vanishing shift, βi ¼ 0. We also experimented
with an advective version of the Gamma-driver condition
(29), but these simulations crashed shortly afterM1 passed
through the origin of the coordinate system.
For the results presented in this paper we chose a

numerical grid extending to an outer boundary at
rmax ¼ 24M1 ¼ 8M. Using expression (41) we chose
the angular resolution similar to the radial resolution
at the initial position r1 ¼ 3M1 of M1. We present results
for the three different grid sizes ðN128; N48; 2Þ with
N ¼ 1, 3=2, and 2.
In Fig. 4 we show slices of the lapse function α at three

different times. The top panel shows the initial data with the
two black holes at their initial positions. The middle panel
shows the data at a time of 9.5M, at the moment that M1

passes through the origin of the coordinate system. Finally,
the bottom panel shows the remnant at a time well after
merger. The grid lines in these slices represent every second
grid point used in the simulations, and we note that the
coordinate singularities at the origin of the coordinate
system as well as on the axis do not cause any numerical
problems.
In Fig. 5 we show the lapse function α (top panel) and

the conformal exponent ϕ (bottom panel) interpolated to
the origin of the coordinate system as a function of time.
The lapse function initially increases (until t ∼ 4M), which
is a result of the coordinate transformation from wormhole-
type initial data to a trumpet geometry. It then drops to a

FIG. 3 (color online). In the top panel we show the value of the
lapse α at the origin of the coordinate system, r ¼ 0, as a function
of time for a Schwarzschild black hole whose center is located at
r ¼ 1M and θ ¼ 0. We show results for three different grid
resolutions ðN96; N18; 2Þ with N ¼ 1, 4=3 and 2. In the bottom
panel we show the numerical errors Δα rescaled with factors of
N2, demonstrating at least second-order convergence.

FIG. 2 (color online). The lapse function α (top panel) and the
conformal exponent ϕ (bottom panel) as a function of radius r in
the θ ¼ 0 direction, at t ¼ 9.5M, for the same simulation as in
Fig. 1. The insets show the difference of each function between
t ¼ 0 and t ¼ 9.5M. The center of the black hole is located at
r ¼ 1M.
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value close to zero at t ∼ 9.5M, when M1 passes through
the origin; the conformal exponent ϕ has a sharp maximum
at a similar time. At later times both the lapse and the
conformal factor settle down to equilibrium values.
We include results for the three different resolutions

N ¼ 1, 3=2, and 2 in Fig. 5. These resolutions are sufficient

to establish convergence at early times, before the origin of
the coordinate system has become affected by the finite
differencing across the singular conformal exponent at the
center of black hole M1. At later times, however, these
resolutions are not yet sufficient to establish convergence,
as the error still appears to be dominated by higher-order
error terms. We found a very similar behavior even at early
times for only slightly smaller grid resolutions.

B. Relativistic hydrodynamics

1. Planar shock tube

As a test of our implementation of relativistic hydro-
dynamics in spherical polar coordinates we first present
results for a planar, special relativistic shock tube problem.
We consider a fluid at rest with two different homogeneous
densities in the two hemispheres, separated by a diaphragm
in the equatorial plane (i.e. at z ¼ 0) until a time t ¼ 0. At
t ¼ 0 the partition is removed, which results in a shock that
propagates into the low-density region, while a rarefaction
wave propagates into the high-density region. The analyti-
cal solution for this special relativistic shock tube problem
is given in [42] (see [29] for the general solution).
We choose an equation of state as described in

Sec. II B 3, in particular we set up polytropic initial data
with a polytropic index Γ ¼ 1.2, and evolve these data
with the Gamma-law EOS (40). For the example presented
here we set

ρ0 ¼
�
10−8; θ < π=2

10−7; θ > π=2
ð44Þ

FIG. 4 (color online). Snapshots for the head-on collision of
two black holes. The top panel shows the initial data for the lapse
function α, based on Brill-Lindquist data; the middle panel at the
instant when the smaller black hole moves through the origin of
the coordinate system; the bottom panel at a late time after
merger. As in Fig. 1, the contours are drawn for values
α ¼ j × 0.1, where j is an integer. In these plots we show only
every second grid point for clarity.

FIG. 5 (color online). The lapse function α (top panel) and the
conformal exponent ϕ (bottom panel), evaluated at the origin
r ¼ 0 of the coordinate system, as a function of time, for the
head-on collision of two black holes.
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(in our units with κ ¼ 1; see Sec. II B 3). While we do
evolve the spacetime together with the fluid for this test, we
have chosen the densities sufficiently small so that the
spacetime remains very close to flat.
For this test we imposed an outer boundary at

rmax ¼ 0.5, and chose a numerical grid of size
(192,96,2). We use the “full” version of our reference-
metric formulation of hydrodynamics in this section,
meaning that all hydrodynamical equations are expressed
in terms of a reference metric (see Sec. II B 1). In the
following we show results at time t ¼ 0.3, after which the
shock has traveled to z ≈ 0.09.
In Fig. 6 we show the analytical (solid line) and

numerical solutions (crosses) at t ¼ 0.3. For this graph
we interpolated the numerical data to the axis θ ¼ 0, so that
they can be compared directly with the analytical solution.
For most parts of the solution the agreement is excellent. As
expected, the shock itself is spread out over about three grid
points. Also as expected, the contact discontinuity (at about
z ¼ 0.06 in Fig. 6) poses the greatest numerical challenge,
especially in the specific internal energy. However, we have
compared with lower-resolution results to confirm that
increasing the numerical resolution results in an improved
representation of this discontinuity. What distinguishes this
figure from many other shock tube tests, however, is the
presence of the origin of the coordinate system. In order to
highlight this, we plotted grid points on the northern axis
(θ ¼ 0) in red, and those on the southern axis (θ ¼ π) as

blue. We do not observe any numerical problems at the
origin of the coordinate system, where the two colors meet.
Figure 7 shows the fluid variables at the same time

t ¼ 0.3, but represented as surface plots. The colored

FIG. 6 (color online). The rest-mass density ρ0, the pressure p,
and the specific internal energy ϵ, interpolated to the axis, for the
shock tube problem described in the text. The solid line denotes
the analytical solution at time t ¼ 0.3; the crosses mark our
numerical solution. The two different colors (blue and red)
represent data on the northern and southern axis (i.e. for θ ¼
0 and θ ¼ π); we do not observe any problem at the origin of the
coordinate system, where the two colors meet.

FIG. 7 (color online). The rest-mass density ρ0, the pressure p,
and the specific internal energy ϵ on a slice of constant azimuthal
angle φ for a planar shock tube problem. The color-coded surface
shows the numerical data at time t ¼ 0.3, while the wireframe
shows the analytical data at the same time. The contour lines are
drawn at eight equidistant values between the minimum and
maximum values of the respective variables.
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surfaces show numerical “slices” of the fluid variables, with
the grid lines again representing all grid points used in these
simulations. The (square) wireframe shows the analytical
solution. We again notice very good agreement between the
numerical and analytical solutions. The shock is smeared
out across three grid points everywhere; however, since the
angular resolution decreases further away from the axis (i.e.
for larger values of x), the shock also becomes less sharp.
The contour lines indicate that the entire shock remains
very close to planar, even though it is represented in a
coordinate system that does not reflect this symmetry. Most
importantly, we again observe that no numerical problems
arise at the origin of the coordinate system. This test
therefore demonstrates that our numerical implementation,
which includes the reference-metric formulation of hydro-
dynamics together with a proper factoring of all tensor
components, allows for the simulation of a shock wave in
spherical polar coordinates, even at the origin of the
coordinate system.
We also experimented with planar shocks that originate

from a partition located at values of z < 0 (i.e. not in the
equatorial plane). The disadvantage of this setup is that the
initial discontinuity is not aligned with cell boundaries of
our numerical grid. This results in a noisy representation of
the initial data, which, in turn, results in numerical errors
that are larger than those encountered in the experiments
described above—even before the shock wave reaches the
origin. While we did not encounter any instabilities or
problems at the origin in these simulations, even after the
shock wave had passed through it, we decided to focus on
shocks originating from the equatorial plane here, so that
the numerical evolution is not affected by numerical noise
in the initial data.

2. Off-centered Tolman-Oppenheimer-Volkoff stars

As a last example we consider a static equilibrium star,
i.e. a solution to the Tolman-Oppenheimer-Volkoff (TOV)
equations [43,44]. We set up the initial data as a relativistic
polytrope with Γ ¼ 2 (see Sec. II B 3). For this polytropic
index, the maximum-mass model has a central rest-mass
density of ρmax

0 ¼ 0.318, a rest-mass ofM0 ¼ 0.180, and an
ADM mass of M ¼ 0.164 (in our code units with κ ¼ 1).
For the simulations shown in this section we choose a
star with central density of ρmax

0 ¼ 0.2, for which the rest
mass isM0 ¼ 0.172 and the ADMmass isM ¼ 0.157. The
areal radius of this star is R ¼ 0.866 ¼ 5.52M, while the
isotropic radius is r ¼ 0.700 ¼ 4.46M. We evolve this
star with nonadvective 1þ log slicing (17) and zero shift,
so that, analytically, the star should remain static. Any
deviation from the initial data is therefore a measure of the
numerical error.
We place the center of this spherical star at r ¼ 0.5 ¼

3.18M on the northern axis (θ ¼ 0), so that the origin of the
coordinate system is inside the star (see Fig. 8). We evolve
this stellar model on a grid that extends to an outer

boundary at rmax ¼ 3 ¼ 19.1M. We use (41) to match
the angular resolution to the radial solution at the center
of the star; in the following we show results for grid
resolutions of ðN64; N32; 2Þ with N ¼ 1, 3=2 and 2.
The colored surface in Fig. 8 shows a slice of the rest-

mass density ρ0 at time t ¼ 175.4M, evolved on the
highest-resolution grid with N ¼ 2. The contour lines
demonstrate that the star remains nearly spherical. Also
included in the figure is a wireframe that shows the initial
data. It can barely be noticed in the figure that the star has
slightly drifted towards the origin—a numerical artifact
very similar to that described in Sec. III A 1 for a single
black hole. Again, this effect becomes smaller with
increasing resolution. The origin of the coordinate system
can be seen in the envelope of the star; clearly, the presence
of the coordinate singularities at the origin and on the axis
do not cause any problems in this simulation.
In Fig. 9 we show ρcenter0 , the rest-mass density ρ0

interpolated to the center of the star at r ¼ 0.5 ¼ 3.18M
and θ ¼ 0. Analytically, this value should remain at
ρmax
0 ¼ 0.2, but numerical error causes small deviations.
In the top panel of Fig 9 we show ρcenter0 for the three
different resolutions N ¼ 1, 3=2, and 2 as a function of
time; in the bottom panel we show the relative errors
ðρcenter0 − ρmax

0 Þ=ρmax
0 multiplied with factorsN2. Our results

show second-order convergence until a time of t ∼ 25M;
after that, the center of the star is affected by numerical
errors originating from the stellar surface, where discon-
tinuous derivatives of fluid and metric variables lead to a
slower rate of convergence.
In Fig. 10 we show similar results for the total rest mass

M0, given by the integral (37). In the top panel we show
numerical values of M0 as a function of time for the three
different resolutionsN ¼ 1, 3=2, and 2; in the bottom panel

FIG. 8 (color online). The rest-mass density ρ0 on a slice of
constant azimuthal angle φ. The color-coded surface shows the
data at time t ¼ 175.4M, while the wireframe shows the initial
data at t ¼ 0. The contour lines are drawn for eight equidistant
densities.
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we show the relative numerical errors multiplied with N3.
These findings suggest approximately third-order conver-
gence of the rest mass. As discussed in Sec. II B 1, the
origin of this error is the new term on the right-hand side of

Eq. (36), which appears in the “full” reference-metric
formulation of hydrodynamics. In Fig. 11 we therefore
compare results for both the rest-mass density and total rest
mass as obtained in the “full” and the “partial” approaches.
The top panel of Fig. 11 shows that the numerical errors for
the rest-mass density are somewhat smaller in the full
approach than in the partial approach, while the bottom
panel demonstrates that, as expected, the total rest mass is
conserved much better in the partial approach (the only
error originates from our treatment of the atmosphere, see
Sec. II B 4).

IV. SUMMARY AND DISCUSSION

We have recently developed a new approach for numeri-
cal relativity simulations in spherical polar coordinates
[15,21]. Our approach is not based on a regularization of
the equations, and instead deals with the coordinate
singularities at the origin and on the axis of the coordinate
system by using a reference-metric formulation of the
equations, a factoring of all tensor components, and a
partially implicit Runge-Kutta method. Unlike previous
approaches that employed a regularization of the equations,
our method does not rely on any symmetry assumptions.
While we have previously presented several tests of these

methods, most of these test cases featured a symmetry
about the origin. In this paper we therefore present new
“off-centered” simulations that highlight the stability of our
methods in the absence of such a symmetry. We perform

FIG. 9 (color online). The central value of the rest-mass density
ρ0, interpolated to r ¼ 0.5 ¼ 3.18M and θ ¼ 0 for a star with
initial maximum density ρmax

0 ¼ 0.2. The top panel shows the
data for different resolutions; the bottom panel shows the relative
errors Δρ0=ρmax

0 , with Δρ0 ≡ ρ0 − ρmax
0 , rescaled with a factor

N2. We observe second-order convergence until t ∼ 25M, at
which point the center of the star is affected by errors originating
from the surface of the star. The simulations converge even after
that time, but at a rate slightly less than second order.

FIG. 10 (color online). The rest mass M0 as a function of time
for the same simulations as Fig. 9. The top panel shows the data for
different resolutions; the bottom panel shows the relative errors
ΔM0=Mana

0 , with ΔM0 ≡M0 −Mana
0 , rescaled with a factor N3.

We find that the rest mass converges to approximately third order.

FIG. 11 (color online). A comparison between the full and
partial approaches, for the resolution N ¼ 3=2 shown in Figs. 9
and 10. The top panel shows that the errors in the central density
are somewhat smaller in the full approach than in the partial
approach. The bottom panel shows that, as expected, the rest
mass in the partial approach is conserved almost exactly; the only
error in the rest mass arises from the treatment of the atmosphere
(see Sects. II B 1 and II B 4.)
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several stringent tests to show that the coordinate singu-
larity at the origin of the coordinate system does not pose
any computational problems—even for a black hole that
drifts through the origin.
The other purpose of this paper was to discuss an

alternative implementation of the reference-metric formu-
lation of relativistic hydrodynamics. Unlike in [21], we here
apply the same factoring of hydrodynamical tensor compo-
nents as we use for Einstein’s field equations. We perform
several simulations to test and calibrate this implementation.
Perhaps most importantly, we demonstrate that our method
is able to follow the propagation of a shock wave through
the origin of the spherical polar coordinate system. We are
not aware of a previous solution to this problem.
We also discuss the respective advantages of the “full”

and “partial” approach in our reference-metric formulation
of relativistic hydrodynamics (see Sect. II B 1). The partial
approach applies this formulation only to the Euler equa-
tion, while the full approach applies it to all hydrodynam-
ical variables and equations. The advantage of the partial
approach is that the right-hand side of the continuity
equation vanishes, so that, in HRSC implementations,

the rest mass is conserved exactly (except for errors
originating from the treatment of the atmosphere). The
full approach, on the other hand, allows for a more accurate
treatment of the origin of the coordinate system, and
avoids any spiky or singular behavior even for a shock
wave passing through the origin. Which one of the two
approaches is preferable may therefore depend on the
application.
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