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Descriptions of highly relativistic fermions in a gravitational field in the classical (nonquantum) and
quantum approaches are discussed. The results following from the Mathisson-Papapetrou equations for a
fast spinning particle in Schwarzschild’s and Kerr’s background are considered. Numerical estimates for
electron, proton and neutrino in the gravitational field of black holes are presented. The general relativistic
Dirac equation is analyzed from the point of view it is using for the adequate description of highly
relativistic fermions in a gravitational field, in the linear and nonlinear spin approximation. It is necessary to
have some corrected Dirac equation for a highly relativistic fermion with strong spin-gravity coupling.
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I. INTRODUCTION

One can read the key words spin-gravity coupling and
spin-gravity interaction in many papers on general
relativity, whereas the words highly relativistic (or ultra-
relativistic) spin-gravity coupling and highly relativistic
spin-gravity interaction are very rare in the corresponding
literature. Does it means that there is not an essential
difference in the reaction of a spinning particle on the
gravitational field when its velocity is (1) much less than
the velocity of light and (2) very close to this velocity? The
main purpose of this paper is to answer this question.
In the context of this subject we recall paper [1] where

the gravitational interaction of spin-1=2 particles was
considered in the linear approximation. An important result
of this paper is that the gravitational interaction of two
fermions increases with increasing energy like E2. Thus,
for protons, when Ep is of order 1019mp (here mp is the
proton mass), the gravitational interaction becomes as
strong as the electromagnetic one, by comparison of the
corresponding amplitudes of scattering [1].
Another direction of fermion-gravity coupling investi-

gations is based on the general relativistic Dirac equation
which is known since 1929 [2]. The correspondent sol-
utions of this equation in Schwarzschild’s and Kerr’s
background are reflected in [3]. Different aspects of the
covariant Dirac equation and its solutions are presented in
recent papers [4].
There is a possibility to study the spin-gravity coupling

in the classical (nonquantum) approach by the Mathisson-
Papapetrou (MP) equations [5,6] which describe motions of
a spinning test body (particle) in a gravitational field
according to general relativity. It is important that in a
certain sense the MP equations follow from the general
relativistic Dirac equation as a classical approximation [7]
(see also some papers from [4]). Thus, just the MP
equations can be used to investigate some features of

spin-gravity coupling for fermions, when their quantum
properties are not important.
We stress that the possible role of the fermion’s inter-

action with gravity is often discussed in high energy
physics and cosmology. In particular, in the focus of many
investigations, both theoretical and experimental, high
energy neutrinos in strong gravitational fields are studied.
Here we point out only the most recent publications [8,9]
which are especially interesting in the context of our paper.
The paper is organized as follows. In Sec. II the basic

information on the MP equations is presented. The concrete
relationships which characterize the spin-gravity coupling
for a highly relativistic spinning particle in Schwarzschild’s
field are considered in Sec. III. The situation when at the
highly relativistic orbital velocity some restriction arises on
using the supplementary condition for the MP equations in
the Schwarzschild background is analyzed in Sec. IV.
Section V is devoted to the results following from the
MP on possible highly relativistic orbits of a spinning
particle both in linear and nonlinear spin approximation in
Schwarzschild’s and Kerr’s background. In Sec. VI we
draw attention to the specificity of the description of highly
relativistic fermions in a gravitational field by the general
relativistic Dirac equation. We conclude in Sec. VII.

II. MATHISSON-PAPAPETROU EQUATIONS

These equations can be written as [5,6]

D
ds

�
muλ þ uμ

DSλμ

ds

�
¼ −

1

2
uπSρσRλ

πρσ; ð1Þ

DSμν

ds
þ uμuσ

DSνσ

ds
− uνuσ

DSμσ

ds
¼ 0; ð2Þ

where uλ ≡ dxλ=ds is the particle’s 4-velocity, Sμν is the
tensor of spin, m and D=ds are, respectively, the mass and
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the covariant derivative along uλ and Rλ
πρσ is the Riemann

curvature tensor (units c ¼ G ¼ 1 are used). Here, and in
the following, Latin indices run 1, 2, 3 and Greek indices 1,
2, 3, 4; the signature of the metric (−;−;−;þ) is chosen.
After [5,6], Eqs. (1) and (2) were obtained in many papers
by different approaches [10,11].
It is necessary to add a supplementary condition to

Eqs. (1) and (2) in order to choose an appropriate position
of the particle’s center of mass. Most often the conditions
[5,12]

Sλνuν ¼ 0 ð3Þ

and [10]

SλνPν ¼ 0 ð4Þ

are used, where

Pν ¼ muν þ uλ
DSνλ

ds
ð5Þ

is the particle 4-momentum. Both at conditions (3) and (4),
the constant of motion of the MP equations is

S20 ¼
1

2
SμνSμν; ð6Þ

where jS0j is the absolute value of spin.
Often instead of Eqs. (1) and (2) their linear spin

approximation is considered:

m
D
ds

uλ ¼ −
1

2
uπSρσRλ

πρσ; ð7Þ

DSμν

ds
¼ 0: ð8Þ

In this approximation condition (4) coincides with (3) and
m is the constant of motion [for the exact MP equations m
is the constant of motion only at condition (3), and under
condition (4) the constant of motion is the value
μ2 ≡ PλPλ]. We stress that just Eqs. (7) and (8) follow
from the Dirac equation by some procedure of reduction
with the Dirac matrices [4].
To better understand the nature of the spin-gravity

coupling it is useful to consider the MP equations as
written in the comoving tetrad representation [13]. In
particular, it follows from (7) that

γðiÞð4Þð4Þ ¼ −
sð1Þ
m

Rð1Þð4Þð2Þð3Þ; ð9Þ

where γðαÞðβÞðδÞ are Ricci’s coefficients of rotation, sð1Þ and
Rð1Þð4Þð2Þð3Þ are, respectively, the local tetrad components of
the particle’s spin 4-vector and the local components of the

Riemann tensor; here the first local coordinate axis is
orientated along the spin, and indices of the tetrad are
placed in parentheses. We use the definition of Ricci’s
coefficients as γðαÞðβÞðδÞ ¼ λðαÞμ;νλ

μ
ðβÞλ

ν
ðδÞ, where λðαÞμ are the

orthogonal tetrads and “;” notes the covariant derivative.
(By definition, sλ ¼ 1

2

ffiffiffiffiffiffi−gp
ελμνσuμSνσ , where sλ is 4-vector

of spin in the global coordinates; g and ελμνσ are the
determinant of the metric tensor and the symbol Levi-
Civita, respectively.)
It is important that Ricci’s coefficients of rotation

γðiÞð4Þð4Þ have the direct physical meaning as the compo-
nents aðiÞ of the 3-accelerate of a spinning test particle
relative to geodesic free fall as measured by the observer
comoving with this particle. Therefore, by Eq. (9) we have

aðiÞ ¼ −
sð1Þ
m

Rð1Þð4Þð2Þð3Þ: ð10Þ

It follows from Eq. (8) that γðiÞðkÞð4Þ ¼ 0, i.e., the known
condition for the Fermi transport in terms of the Ricci
coefficients of rotation.

III. SPIN-GRAVITY COUPLING AT HIGH
VELOCITY: AN EXAMPLE

Let us estimate the action of the spin-gravity coupling on
a spinning particle moving with some velocity in
Schwarzschild’s background. For this purpose we take
into account the expressions for different components of
the gravitational field of a moving Schwarzschild source.
Namely, following [14] we use the general definition of the

gravitoelectric EðiÞ
ðkÞ and gravitomagnetic BðiÞ

ðkÞ components

of the gravitational field as

EðiÞ
ðkÞ ¼ RðiÞð4ÞðkÞð4Þ; ð11Þ

BðiÞ
ðkÞ ¼ −

1

2
RðiÞð4ÞðmÞðnÞεðmÞðnÞðkÞ: ð12Þ

(Note that in the context of the analysis of the MP
equations, another definition of the gravitoelectric and
gravitomagnetic fields as the corresponding 3-vector values
with world indices is effectively used in [4].)
According to (10) and (12) from the point of view of

the observer which is comoving with the spinning particle
we have

aðiÞ ¼ −
sð1Þ
m

Bð1Þ
ðiÞ : ð13Þ

In the concrete case of Schwarzschild’s mass, when the
first space local vector is orthogonal to the plane that is
determined by the instantaneous direction of the observer
motion relative to the mass and the radial direction, and the
second vector is directed along the direction of the motion
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of the observer, there are the expressions for the nonzero
components of the gravitomagnetic field [15],

Bð1Þ
ð2Þ ¼ Bð2Þ

ð1Þ ¼
3Mu∥u⊥

r3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4u4 − 1

p
�
1 −

2M
r

�
−1=2

; ð14Þ

Bð1Þ
ð3Þ ¼ Bð3Þ

ð1Þ ¼
3Mu2⊥u4

r3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4u4 − 1

p
�
1 −

2M
r

�
1=2

; ð15Þ

where u∥ ≡ dr=ds and u⊥ ≡ rdφ=ds are the radial and
tangential components of the observer’s 4-velocity, and M
is Schwarzschild’s mass (the standard Schwarzschild
coordinates are used).
Let us analyze expressions (14) and (15) at different

velocities of the observer relative to Schwarzschild’s mass.
Note that the gravitomagnetic components are nonzero
only at u⊥ ≠ 0. Then it is easy to see that the components
(14) and (15) significantly depend on the velocity of an
observer relative to the Schwarzschild mass. Indeed, at
ju⊥j ≪ 1, ju∥j ≪ 1, the common term 3M=r3 in expres-
sions (14) and (15) is multiplied on the corresponding small
values, whereas in the highly relativistic case, for ju⊥j ≫ 1,
this term is multiplied by the large (as compare to 1) values
and then

Bð1Þ
ð2Þ ¼ Bð2Þ

ð1Þ ∼
3M
r3

γ; Bð1Þ
ð3Þ ¼ Bð3Þ

ð1Þ ∼
3M
r3

γ2; ð16Þ

where γ is the relativistic Lorentz factor as calculated by the
particle velocity relative to the Schwarzschild mass [15].
The acceleration components (13) depend, in the case of

highly relativistic nonradial motions, on γ such that að2Þ∼γ,
að3Þ ∼ γ2. The component að1Þ remains equal to zero at
any velocity. The absolute value of the 3-acceleration is
proportional to γ2.
So, according to theMP equations, from the point of view

of the observer comoving with a spinning particle in
Schwarzschild’s background, the spin-gravity interaction
is much greater at the highly relativistic particle’s velocity
than at the low velocity. This interaction has the clear feature
of the spin-orbit interaction. However, it is interesting to
estimate the effects of this interaction for another observer,
e.g., which is at rest relative to the Schwarzschild mass.
Another approach to describe the case of a relativistic

spinning particle in the Schwarzschild field is developed in
[16] where in particular the dependence of the spin-gravity
interaction on the particle energy is considered.
In the next section we stress that the value of the spinning

particle velocity relative to the source of the gravitational
field is important in choosing an appropriate supplementary
condition.

IV. ADEQUATE SUPPLEMENTARY CONDITION
FOR HIGHLY RELATIVISTIC PARTICLE

MOTIONS

Another example of the spinning particle motions in
Schwarzschild’s background shows that in the highly
relativistic regime some restriction arises on using supple-
mentary condition (4). Indeed, for the equatorial motions
(with θ ¼ π=2 in the standard Schwarzschild coordinates)
of a spinning particle it follows from exactMP equations (1)
and (2) under condition (4) that the relationships take
place [17]:

Pr ¼ μurR

�
1 − 2ε2

M
r

�
;

Pφ ¼ μuφR

�
1þ ε2

M
r

�
;

Pt ¼ μutR

�
1 − 2ε2

M
r

�
; ð17Þ

where

R ¼
��

1 − 2ε2
M
r

�
2

− 3ðuφÞ2ε2Mr

�
2 − ε2

M
r

��
−1=2

;

ð18Þ

and

ε≡ jS0j
μM

ð19Þ

(for the equatorial motions Pθ ¼ 0 and uθ ¼ 0). The
constant μ is the rest mass of the particle and, as a result
of the test condition for the spinning particle, it is necessary
ε ≪ 1 [18]. Relations (18) and (19) illustrate that in the
linear spin approximation the momentum Pλ is parallel to
the velocity uλ.
An important result follows from (17) and (18) due to the

terms with ε2. Indeed, if

ju⊥j >
ffiffiffi
r

p

ε
ffiffiffiffiffiffiffi
6M

p ; ð20Þ

where u⊥ ≡ ruφ is the particle’s tangential velocity, in (18)
we have the square root of the negative value. It means that
according to (17) and (18) under condition (20) the
expressions for the components of 4-momentum Pλ

become imaginary for the real mass μ: a result which is
not acceptable from the physical point of view. Moreover,
for the value m, which by (5) is equal to Pνuν, according to
(17) we have

m ¼ μ

R

�
1 − 2ε2

M
r
− 3u2⊥ε2

M
r

�
: ð21Þ
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It follows from (21) that when condition (20) is satisfied
and R is imaginary, the valuem becomes imaginary as well.
However, then according to (5) in the left-hand part of this
relationship we have the pure imaginary value and in the
right-hand part there is the sum of the imaginary value muν

and the second real term (the value uλDSνλ=ds is real
because by definition and its physical meaning, the real
value is Sνλ). Therefore, we conclude that in the case of
condition (4), when relationship (20) takes place, from the
exact Mathisson-Papapetrou equations follows the result
which is not satisfactory from the physical point of view.
The important feature of relationship (20) is that the orbital

velocity value must be highly relativistic for all values of the
radial coordinate beyond the horizon surface, because here
ε ≪ 1. In particular, if r is not much greater than M, the
velocity value of the right-hand side of Eq. (20) corresponds
to the particle’s highly relativistic Lorentz γ-factor of order
1=ε. Itmeans that supplementary condition (4) cannot be used
for the particle’s velocity which is very close to the velocity of
light. In this context we stress that according to relationship
(20) an unexpected conclusion which is discussed in [19]
becomes clear. Namely, in [19] it is shown that the MP
equations at condition (4) have solutions which allow accel-
eration of a spinning particle to the superluminal velocity in
Schwarzschild’s background. Note that under condition (3)
the corresponding result is not allowed by the MP equations.
Thus, in the linear spin approximation one can use the

supplementary condition for the MP equations in form (3)
or (4). However, when the nonlinear spin terms are taken
into account and the particle velocity is so high as in (20)
then the acceptable condition is only (3).

V. EFFECTS OF HIGHLY RELATIVISTIC
SPIN-GRAVITY COUPLING ON
PARTICLE TRAJECTORIES

So, in Secs. III and IVabove we considered two different
situations which demonstrate the specific features of a
spinning particle motion in the highly relativistic regime
according to the MP equations. Now we briefly analyze
how this regime reflects in the particle’s trajectory.

A. Linear spin approximation

Here we discuss results following from the MP equations
in the linear spin approximation for the highly relativistic
motions in the concrete metrics which is common for
conditions (3) and (4).
First, we point out the circular highly relativistic orbits of

a spinning particle which are allowed by the MP equations
in the equatorial plane of the Schwarzschild source with the
spin orthogonal to this plane. These orbits exists in the
small neighborhood of the radial coordinate value
r ¼ 1.5rgð1þ δÞ, where rg is the horizon radius, jδj ≪ 1

and it is allowed δ to be positive, negative or zero [20].
(For comparison, the highly relativistic circular orbits of a

spinless particle are allowed by the geodesic equation only
for δ > 0 [3].) For realization of these orbits the spinning
particle must possess the orbital velocity which corresponds
to the Lorentz γ-factor of order 1=

ffiffiffi
ε

p
, and this velocity is

highly relativistic in the sense that γ2 ≫ 1, because of
ε ≪ 1. The similar highly relativistic circular orbits exist in
the equatorial plane of Kerr’s source for the radial coor-

dinate values r ¼ rð−Þph ð1þ δÞ, where rð−Þph is the Boyer-
Lindquist radial coordinate of the counterrotating circular
photon orbits [21]. All these circular orbits are caused by
the strong attractive action of the spin-gravity coupling in
addition to the geodesic attraction. Moreover, if the initial
value of the spinning particle velocity slightly differs from
the corresponding value for these highly relativistic circular
orbits (for example, due to some nonzero value of the
particle’s radial velocity), the corresponding noncircular
orbits illustrate the situations when for the short time of the
spinning particle motion relative to Schwarzschild’s or
Kerr’s mass the space deviation of this particle trajectory
from the geodesic one becomes significant [22,23].

B. Nonlinear effects

According to the exact MP equations at condition (3) the
nonlinear spin terms become important in many situations
with a fast moving spinning particle in Schwarzschild’s or
Kerr’s metric [22,23]. For example, in contrast to the cases
of the linear spin approximation, when the highly relativ-
istic circular orbits of a spinning particle exist in the
narrow space regions only, due to the nonlinear terms
the corresponding domains are much wider.
In particular, by the exact MP equations, the highly

relativistic equatorial circular orbits of a spinning particle in

Kerr’s background are allowed not only for r ¼ rð−Þph ð1þ δÞ
with jδj ≪ 1, but for any r ¼ rð−Þph , up to r ≫ rð−Þph . However,
in the last case the necessary value of the Lorentz γ-factor is

much greater than, for example, in the case for r ¼ rð−Þph . All
these orbits, similarly to the corresponding orbits following
from the MP equations in the linear spin approximation, are
caused by the strong attractive action of the spin-gravity
coupling.
Due to the strong repulsive action of the spin-gravity

coupling on the particle, there are the highly relativistic
circular orbits of a spinning particle in the space region
with r < rðþÞ

ph [23] in the equatorial plane of the Kerr
background. In addition, the same repulsive force gives the
significantly nongeodesic circular orbits of a spinning
particle beyond the equatorial planes in the Schwarzschild
and Kerr backgrounds [24].

C. Numerical estimates

Do some particles in cosmic rays possess the sufficiently
high γ-factor for motions on the highly relativistic circular
orbits, or on some their fragments, in the gravitational field
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of the Schwarzschild or Kerr black hole which are
considered above? Yes, they do. By the numerical estimates
for an electron in the gravitational field of a black hole with
three of the Sun’s mass the value jε0 is equal 4 × 10−17.
Then the necessary value of the γ-factor for the realization
of some highly relativistic circular orbits by the electron
near this black hole is of order 108. This γ-factor corre-
sponds to the energy of the electron free motion of order
1014 eV. Analogously, for a proton in the field of such a
black hole the corresponding energy is of order 1018 eV.
For the massive black hole those values are greater: for
example, if M is equal to 106 of the Sun’s mass the
corresponding value of the energy for an electron is of order
1017 eV and for a proton it is 1021 eV. Naturally, far from
the black hole these values are greater because the
necessary γ-factor is proportional to

ffiffiffi
r

p
.

Note that for a neutrino near the black hole with three of
the Sun’s mass the necessary values of its γ-factor for
motions on the highly relativistic circular orbits correspond
to the neutrino’s energy of the free motion of order 105 eV.
If the black hole’s mass is of order 106 of the Sun’s mass,
the corresponding value is of order 108 eV.
Can the highly relativistic spin-gravity effects be regis-

tered by the observation of the electromagnetic synchrotron
radiation from some black holes? Perhaps, however, it is
difficult to differ the situation when the circular orbits of a
spinning charged particle and its synchrotron radiation are
caused by the magnetic field or the spin-gravity coupling.
The detailed analysis of the observational data is necessary.

VI. ON QUANTUM EQUATION FOR HIGHLY
RELATIVISTIC FERMIONS IN A

GRAVITATIONAL FIELD

Naturally, a more appropriate description of the highly
relativistic spin-gravity coupling for electrons and other
fermions cannot be restricted by the MP equations and it is
necessary to analyze the corresponding quantum equations.
As an example, in this context we point out paper [15]
where the solution of the Dirac equation in a Schwarzschild
field which describes the quantum state corresponding to
the classical highly relativistic orbit with r ¼ 1.5rg is
considered. However, in general the situation with the
Dirac equation is not so simple.
Indeed, it is shown in many papers that in the linear spin

approximation the MP equations follow from the general
relativistic Dirac equation as some classical approximation.
Here we draw attention to the fact that the exact MP
equations (i.e., their nonlinear spin terms) cannot be
obtained from this Dirac equation in principle. Why? To
answer this question we recall that the main step in
obtaining the general relativistic Dirac equation in the

curved spacetime consists in introduction of the notion of
the parallel transport for spinors as a generalization of this
notion for tensors, whereas according to the MP equations
the spin of a test particle is transported by Fermi:

Dsμ

ds
¼ uμ

Duν
ds

sν: ð22Þ

It follows from (22) that only in the linear spin approxi-
mation the Fermi transport coincides with the parallel
transport. Therefore, to satisfy the principle of correspon-
dence between the Dirac equation and the exact MP
equations, at first sight, it is necessary simply to introduce
and use the Fermi transport for spinors in some corrected
Dirac equation. However, it is impossible without the
Lorentz invariance violation. In this context we note that
many papers are devoted to the violation of Lorentz
invariance from different points of view, for example, in
the context of the standard model extension [8,9] and,
probably, the key words Lorentz-violating spinor first
appeared only recently [9]. One can hope that just in the
framework of this approach the necessary corrected Dirac
equation will be obtained. Some preliminary estimates
show that the correspondent equation must be nonlinear in
ψ-function [25]. (Note, from another position and in
another context, some modified Dirac equation with
Lorentz invariance violation was proposed in [26].) In
any case, further investigations in this direction are
necessary.

VII. CONCLUSIONS

Concerning the question from the first paragraph in
the Introduction of this paper we conclude: there is the
significant difference in the motions of a spinning particle
with low and very high velocities relative to the source of a
gravitational field. This result follows from the solutions of
the MP equations in Schwarzschild’s and Kerr’s metric,
both under conditions (3) and (4), both in the linear and
nonlinear spin consideration. The force which deviates the
motion of a spinning particle from the geodesic free fall
trajectory is proportional to the second power of the
relativistic Lorentz γ-factor, by the estimation of an
observer comoving with this particle.
It is important that the results presented in Sec. IV

indicate the limit of validity of condition (4): for the high
orbital particle velocity in sense (20) this condition is not
adequate from the physical point of view.
Probably, the MP equations can play an important

heuristic role in finding some corrections to the general
relativistic Dirac equation for a more adequate description
of highly relativistic fermions in a gravitational field.
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