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We derive a map between Einstein spaces of positive and negative curvature, including scalar matter.
Starting from a space of positive curvature with some dimensions compactified on a sphere and analytically
continuing the number of compact dimensions, we obtain a space of negative curvature with a compact
hyperbolic subspace, and vice versa. Prime examples of such spaces are de Sitter (dS) and anti–de Sitter
(AdS) space, as well as black hole spacetimes with (A)dS asymptotics and perturbed versions thereof,
which play an important role in holography. This map extends work done by Caldarelli et al., who map
asymptotically AdS spaces to Ricci-flat ones. A remarkable result is that the boundary of asymptotically
AdS spaces is mapped to a brane in the bulk of de Sitter, and perturbations near the AdS boundary are
sourced by a stress tensor confined to this brane. We also calculate the Brown-York stress tensor for the
perturbed AdS metric, which turns out to be the negative of the stress tensor on the de Sitter brane. The map
can also be used as a solution generator, and we obtain a Kerr/AdS solution with hyperbolic horizon from a
known Kerr/dS one.
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I. INTRODUCTION

Since the discovery of the AdS/CFT correspondence, a
concrete realization of the holographic idea that theories
with gravity can be described by theories without gravity in
one dimension less, a lot of effort has been invested in the
study of this and other holographic dualities. An area in
which a holographic duality would be very useful is for the
description of the early Universe, especially for inflation.
However, the geometry of the Universe at that time is close
to de Sitter (dS) space [1], and also today the measured
cosmological constant is positive [2], so that the AdS/CFT
correspondence is not directly applicable. A dS/CFT cor-
respondence has been proposed by Strominger [3,4] (see
also Refs. [5–10]), but the boundary CFT can be nonunitary
and contain complex conformal weights (e.g., for suffi-
ciently massive scalars in dS). Another approach to use
holography in inflation has been put forward by McFadden
and Skenderis [11–14], where correlators are calculated
using the standard AdS/CFT correspondence and then
analytically continued to complex momenta to obtain results
for de Sitter spacetime. This construction has been tested to
give the right predictions for correlators of gravitons and
inflaton perturbations, which are both massless fields, but it
is not assured that it works for massive fields as well.
Recently, a map between solutions of the Einstein

equations with negative cosmological constant and
Ricci-flat solutions was derived by Caldarelli et al.
[15,16] using generalized dimensional reduction, a diagonal

Kaluza-Klein (KK) dimensional reduction [17,18] fol-
lowed by an analytic continuation in the number of
dimensions [15,16,19,20], which especially includes a
map between asymptotically AdS and asymptotically flat
spacetimes. This map does not involve an analytic con-
tinuation in the complex plane, but instead rests on a
suitable compactification of some coordinates in each
space. Furthermore, it can be used to understand how to
set up holography for Minkowski spacetime, and in this
context a remarkable fact was discovered: the holographic
stress tensor in AdS is mapped to a brane situated at r ¼ 0
in Minkowski spacetime, which serves as the source for the
metric perturbations. This is in contrast to previous works
that, in analogy with the AdS case, studied holography at
various boundaries of flat space [21–23].
In this paper, we generalize the construction of

Refs. [15,16] to solutions of the Einstein equations with
positive and negative cosmological constants, including
matter in the form of a scalar field—a map that can bring
AdS to dS and vice versa. The possibility of such a map had
already been mentioned in Ref. [16], but only the matter-
free reduced action in the Jordan frame was calculated
there. Our paper is organized as follows: First, we derive
the map using a diagonal KK dimensional reduction of the
action. Reducing also the higher-dimensional Einstein
equations (which leads to the same result), we then show
that the reduction ansatz is consistent. Afterwards, we give
some examples: the maps between empty AdS and dS
spaces, between black holes with AdS/dS asymptotics and
for perturbations near the boundary of AdS, which are
relevant for holography. For this last case, we calculate the
Brown-York stress tensor and compare with holographic
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expectations. By mapping a known Kerr/dS black hole,
we also find a (most probably new) solution for a rotating
black hole in AdS with a hyperbolic horizon, showing the
feasibility of using the map as a solution generator.
For the metric and curvature tensors, we use the

“þþþ” convention of Ref. [24]. Capital latin indices
denote coordinates in the higher-dimensional space before
reduction, and lowercase latin (greek) indices denote
coordinates in the reduced (compact) directions.
Quantities which refer to (asymptotic) dS space are
indicated by a prime, while quantities without a prime
either are general or refer to (asymptotic) AdS space.

II. DERIVING THE MAP

In this section, we show how the map can be derived
by a diagonal KK dimensional reduction of a higher-
dimensional system, once directly at the level of the action
and once by reducing the higher-dimensional Einstein
equations. We start from a ðnþ νÞ-dimensional spacetime
that is a solution of the Einstein equations with a cosmo-
logical constant (which can be either positive or negative)
and matter. Of these coordinates, ν will be compactified,
with the size of the compactification determined by a scalar
field ϕ (a dilaton) that only depends on the n reduced
coordinates. That is, we start from a metric

ds̄2 ¼ ḡMNdXMdXN; M;N ¼ 0;…; nþ ν − 1 ð1Þ
that solves the Einstein equations with matter

ḠMN þ ΛḡMN ¼ 8πGnþν
N T̄MN ð2Þ

in nþ ν dimensions. We perform dimensional reduction by
taking the ansatz

ds̄2 ¼ e2αϕðxÞds2 þ e2βϕðxÞdσ2 ð3Þ
with the n-dimensional reduced metric

ds2 ¼ gabðxÞdxadxb ð4Þ
and the ν-dimensional compact metric

dσ2 ¼ γαβðyÞdyαdyβ: ð5Þ
We take the metric of the compact space γαβ to be fixed,
while the reduced metric gab is dynamical and, like the
scalar ϕ, only depends on the coordinates xa. The param-
eters α and β are constants and can be chosen at will;
however, β cannot be zero for a consistent reduction, as can
be seen later on from the reduced equations (15).

A. Generalized dimensional reduction of the action

The (nþ ν)-dimensional action is the Einstein-Hilbert
action with cosmological constant Λ and a free, canonically
normalized scalar field χ:

S ¼
Z �

R̄ − 2Λ
16πGnþν

N
−
1

2
ḡAB∂Aχ̄∂Bχ̄

� ffiffiffiffiffiffi
−ḡ

p
dnþνX; ð6Þ

where Gnþν
N is Newton’s constant in nþ ν dimensions. For

the dimensional reduction, the scalar χ̄ is taken to only
depend on the reduced coordinates, and to simplify the
formulas we rescale it:

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGnþν

N

q
χ̄: ð7Þ

Calculating the curvature tensors for the ansatz (3), which
is done in Appendix A, and substituting them into the
action (6), we obtain (after integration by parts and ignoring
surface terms)

S ¼ 1

16πGnþν
N

Z
e½ðn−2Þαþνβ�ϕ

�
R − 2e2αϕΛ

þ e2ðα−βÞϕR½γ� − 1

2
∇aχ∇aχ

þ ððn − 1Þðn − 2Þα2 þ 2ðn − 1Þναβ

þ νðν − 1Þβ2Þ∇aϕ∇aϕ

� ffiffiffiffiffiffi
−g

p ffiffiffi
γ

p
dnxdνy: ð8Þ

In this expression, R½γ� is the Ricci scalar of the compact
metric γαβ, and ∇ is the covariant derivative with respect to
the reduced metric gab. Setting α ¼ 0, β ¼ 1=ν and χ ¼ 0,
we recover the matter-free reduced action in the Jordan
frame derived in Ref. [16].
Now take the compact space to be an Einstein space

which has Rμν½γ� ¼ kðν − 1ÞH2γμν, where H is a constant
with dimensions of inverse length related to the radius of
the compact space (e.g., for a sphere, the radius would be
H−1). The constant k takes the values �1, and the compact
space has volume Vk

ν ∝ H−ν. We express the cosmological
constant as Λ ¼ λðnþ ν − 1Þðnþ ν − 2Þ=ð2l2Þ with
λ ¼ �1, and a constant l with dimensions of length
(e.g., in pure AdS, l is the AdS radius). Integrating out
the compact coordinates, we get

S ¼ Vk
ν

16πGnþν
N

Z �
R − λ

ðnþ ν − 1Þðnþ ν − 2Þ
l2

e2αϕ

þ νðν − 1ÞkH2e2ðα−βÞϕ −
1

2
∇aχ∇aχ

þ ððn − 1Þðn − 2Þα2 þ 2ðn − 1Þναβ

þ νðν − 1Þβ2Þ∇aϕ∇aϕ

�
e½ðn−2Þαþνβ�ϕ ffiffiffiffiffiffi

−g
p

dnx: ð9Þ

To construct a map between a space which is a solution
for Λ > 0 and one for Λ < 0, we perform this reduction
twice, with different internal spaces. On one hand, we
consider the reduced action S with Λ < 0 (and thus
λ ¼ −1), and on the other hand a second reduced action
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S0 (denoted by primes) withΛ0 > 0 (and thus λ0 ¼ þ1). The
actions S and S0 are proportional to each other,

S ¼ Gn0þν0
N

Vk0
ν0

Vk
ν

Gnþν
N

S0; ð10Þ

if and only if k ¼ −1, k0 ¼ þ1 and

l ¼ 1=H0; H ¼ 1=l0; ð11aÞ
α ¼ α0 − β0; β ¼ −β0; ð11bÞ
n ¼ n0; ν ¼ 2 − n0 − ν0: ð11cÞ

This is consistent with the AdS/Ricci-flat correspondence
[15,16], where, however, the constants α and β were fixed
(choosing a specific frame and a canonical normalization
for the scalar field).
That is, given a solution of the Einstein equations with

negative cosmological constant of the form

ds̄2 ¼ e2αϕðxÞgðnÞab dx
adxb þ e2βϕðxÞγðνÞ−αβ dyαdyβ; ð12Þ

where we have shown explicitly the dimensions of the
metrics and denoted the negative curvature of the compact
space by a minus sign, and a scalar field χ, the line element

d~s2 ¼ e2α
0ϕðxÞgðn

0Þ
ab dxadxb þ e2β

0ϕðxÞγðν
0Þþ

αβ dyαdyβ

¼ e2ðα−βÞϕðxÞgðnÞab dx
adxb þ e−2βϕðxÞγð2−n−νÞþαβ dyαdyβ

ð13Þ

with the same metric gðnÞab and scalar field ϕ as well as the
same scalar χ gives a solution of the Einstein equations with
positive cosmological constant. This map is valid in general
dimensions, and while the dimensions of the reduced
spaces are the same, the dimension of the compact space
changes. For sufficiently large n and ν, ν0 will be negative
and must be analytically continued to a positive value. This
poses no problem as long as no factors of 1=ν0 (or similar)
appear.
It is important to note that any explicit factors of n, ν, l

or H appearing in the metric and the scalar fields (or α
and β) must be identified as well using (11), so that one
needs to know the solution for arbitrary ν (since n0 ¼ n,
one may fix n). If one wants to work in a specific frame
(Einstein or Jordan), one may fix α or β, but this is not
necessary for the map. Furthermore, exchanging primed
and unprimed quantities in (11), we see that the map works
likewise both ways.
Since the actions are equal up to an overall constant (10),

the equations of motion for the reduced space and the
scalar field are the same. However, we need to check the
consistency of the reduction, i.e., that the Einstein equa-
tions that follow from the reduced action (9) can be

obtained by reducing the equations that follow from the
starting action (6). This will be done in the next section.

B. Reduction of the Einstein equations

The Einstein equations that follow from the original
(nþ ν)-dimensional action (6) are

R̄AB −
1

2
R̄ḡAB þ ΛḡAB

¼ 1

2

�
∇̄Aχ∇̄Bχ −

1

2
ḡAB∇̄Cχ∇̄Cχ

�
; ð14Þ

and the scalar field equation reads ∇̄A∇̄Aχ ¼ 0. Using
the product space metric ansatz (3), they can be decom-
posed using the formulas from Appendix A. Imposing
(as in the last section) that the compact metric is Einstein
with Ricci tensor Rμν½γ�¼kðν−1ÞH2γμν and taking Λ¼
λðnþν−1Þðnþν−2Þ=ð2l2Þ, we obtain after some alge-
braic manipulations

Rmn − λðnþ ν − 1Þ=l2e2αϕgmn − αgmn∇a∇aϕ

− ½ðn − 2Þαþ νβ�∇m∇nϕ

þ ½ðn − 2Þα2 þ 2ναβ − νβ2�∇mϕ∇nϕ

− α½ðn − 2Þαþ νβ�gmn∇aϕ∇aϕ ¼ 1

2
∇mχ∇nχ; ð15aÞ

β½∇a∇aϕþ ½ðn − 2Þαþ νβ�∇aϕ∇aϕ�
þ ½λðnþ ν − 1Þ=l2 − kðν − 1ÞH2e−2βϕ�e2αϕ ¼ 0;

ð15bÞ

∇a∇aχ ¼ ½ðn − 2Þα − νβ�ð∇aϕÞ∇aχ: ð15cÞ

These are exactly the equations that follow by varying the
reduced action (9). We thus conclude that the reduction is
consistent. Here we also see why the restriction β ≠ 0 is
important: for β ¼ 0, the second equation does not give any
restriction on the dilaton, but instead relates the sizes of the
extended and the compact space.
In the Einstein frame, we have ðn − 2Þαþ νβ ¼ 0, and

the equations reduce to the simpler ones

Rmn − λðnþ ν − 1Þ=l2e2αϕgmn − αgmn∇a∇aϕ

þ νβðα − βÞ∇mϕ∇nϕ ¼ 1

2
∇mχ∇nχ; ð16aÞ

β∇a∇aϕ ¼ −½λðnþ ν − 1Þ=l2 − kðν − 1ÞH2e−2βϕ�e2αϕ;
ð16bÞ

∇a∇aχ ¼ 0: ð16cÞ

Note that while α, β and ν individually change under the
map (11), “being in the Einstein frame” is a condition that is
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preserved, as can be easily seen from the term-by-term
comparison of the corresponding actions. However, it is
almost always easier to work with α ¼ 0 or �1 and
β ¼ �1, as we will do in the following.

III. APPLICATIONS

In this section, we apply the map derived above to
concrete examples. First, we give a short introduction to
compact hyperbolic spaces, which are an example of
Riemannian Einstein manifolds of constant negative cur-
vature, and which are the simplest space of negative Ricci
curvature to use in the map. Afterwards, we show that we
can map pure dS to pure AdS. The next subsection then
treats small perturbations on top of AdS, which arise in
holography in the AdS/CFT correspondence, in order to
explore a possible dS/CFT correspondence via our map.
Lastly, we show how to map the Schwarzschild-dS black
hole to the Schwarzschild-AdS black hole, and map a
rotating Kerr/dS black hole to AdS, obtaining a (probably
new) Kerr/AdS black hole solution with hyperbolic
horizon.

A. Compact hyperbolic spaces

Hyperbolic spaces are the analogue of AdS in
Riemannian geometry, in the same way that the sphere
is the Riemannian analogue of dS. It is well known that the
ν-dimensional unit sphere can be defined by embedding it
into a ðνþ 1Þ-dimensional flat Euclidean space known as
ambient space, where it arises as the submanifold

δABXAXB ¼ 1; A; B ¼ 1;…; νþ 1: ð17Þ

The metric of the sphere is then the induced metric obtained
by restricting the flat ambient metric δAB to this submani-
fold. In the same way, hyperbolic spaces (of unit radius) are
obtained from an ambient space with flat Lorentzian metric
ηAB as the submanifold

ηABXAXB ¼ −1: ð18Þ

Choosing

X1 ¼ 4δαβyαyβ − 1

4y1
; XA ¼ yα

y1
; A ¼ α ¼ 2;…; ν

ð19Þ

and solving equation (18) for X0, one obtains the induced
metric

γαβ ¼ ηAB
dXA

dyα
dXB

dyβ
¼ δαβ

ðy1Þ2 : ð20Þ

In these coordinates, it is clear that hyperbolic space is the
Riemannian analogue of AdS (identifying y1 with r, where

r is the radial coordinate). Another coordinate system
which will be more suited for the purposes of the map
later on is obtained by choosing

X1 ¼ sinh y1 cos y2 ð21Þ

and taking the coordinates XA for A ¼ 2;…; ν to be
spherical coordinates with radius sinh y1 sin y2. This choice
gives the induced metric

γαβdyαdyβ ¼ dy21 þ sinh2y1dΩ2
ν−1: ð22Þ

Spaces which do not have unit radius are then obtained by
simply multiplying the metric by the (constant) radius.
One now has to compactify this space, which is done by

taking the quotient by a discrete subgroup of isometries
[which are the isometries of the ambient space that leave
invariant the submanifold (18)]. Of course, the local metric
does not change under this compactification, and one easily
calculates that

Rabcd½γ� ¼ −H2ðγacγbd − γadγbcÞ ð23Þ

for all compact hyperbolic spaces (CHSs). An example of
such a compactification can easily be given: take the two-
dimensional hyperbolic space with metric

ds2 ¼ dx2 þ dy2

ðHyÞ2 : ð24Þ

The isometry group of this metric is formed by the
transformations

ðxþ iyÞ → aðxþ iyÞ þ b
cðxþ iyÞ þ d

ð25Þ

with ad − bc ¼ 1 (the Möbius transformations), as one can
easily check. A discrete subgroup of this group is the
modular group, where the parameters a, b, c and d are
restricted to be integers. One then identifies points which
are mapped one into the other by the action of this
subgroup, which e.g. includes x → xþ k, k ∈ Z (for
a ¼ d ¼ 1, b ¼ k and c ¼ 0). A fundamental domain
for this group action is given by points which have
x2 þ y2 ≥ 1 and jxj ≤ 1

2
, and the CHS is obtained by

identifying the borders, just like the torus can be obtained
by identifying the sides of a rectangle. The volume of this
space is given by

V−
2 ¼

Z
1
2

−1
2

Z
∞ffiffiffiffiffiffiffiffi
1−x2

p ðHyÞ−2dydx ¼ π

3H2
; ð26Þ

which is finite, showing that this CHS really is compact. In
higher dimensions, there are plenty of CHSs [25–27], and
so there is no problem using them in our map.
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B. AdS/dS spacetimes

Of course, the simplest examples for the map are empty
dS/AdS spaces. Taking χ ¼ 0, it turns out to be easier to
start from the dS side, where the ðn0 þ ν0Þ-dimensional
metric (in the Poincaré patch) takes the form

d~s2 ¼ ðl0Þ2
η2

ð−dη2 þ dx2n0−2 þ dr2 þ r2dΩ2
ν0 Þ; ð27Þ

where we compactified ν0 coordinates on a sphere, with
metric dΩ2

ν0 . Comparing with the general formula (13), the
most economic choice is to take α0 ¼ 0 and β0 ¼ −1, which
means α ¼ β ¼ 1. The reduced metric then reads [using the
identification (11) for the second equality]

gðnÞab dx
adxb ¼ ðl0Þ2

η2
ð−dη2 þ dx2n0−2 þ dr2Þ

¼ 1

ðHηÞ2 ð−dη
2 þ dx2n−2 þ dr2Þ; ð28Þ

and the scalar field is given by

ϕ ¼ ln

�
η

H0l0r

�
¼ ln

�
Hlη
r

�
ð29Þ

[recall that the compact space was taken to be of radius
1=H0 in the map (11), which needs to be compensated by
the scalar field since there is no H0 in the metric (27)]. The
map tells us that the metric obtained from equation (12)

ds̄2 ¼ e2ϕgðnÞab dx
adxb þ e2ϕdσ2ν

¼ l2

r2
ð−dη2 þ dx2n−2 þ dr2 þ η2dϒ2

νÞ; ð30Þ

with dϒ2
ν the ν-dimensional line element of a CHS of unit

radius, is a solution of the Einstein equations with negative
cosmological constant. To recover the metric of the
Poincaré patch of AdS, we take the metric of the CHS
in the form (22)

dϒ2
ν ¼ dy21 þ sinh2y1dΩ2

ν−1 ð31Þ

and perform the coordinate transformation

η2 ¼ t2 − z2ν; sinh2y1 ¼
z2ν

t2 − z2ν
: ð32Þ

Then we obtain (analogous to the Milne universe [1])

−dη2 þ η2dϒ2
ν ¼ −dt2 þ djzνj2 þ z2νdΩ2

ν−1 ¼ −dt2 þ dz2ν;

ð33Þ

so that the metric (30) reduces to

ds̄2 ¼ l2

r2
ð−dt2 þ dx2n−2 þ dr2 þ dz2νÞ; ð34Þ

which is AdS in nþ ν dimensions, with r the radial/
holographic coordinate. By compactifying ν0 coordinates of
de Sitter space on a sphere and applying the map, we thus
find AdS space.
An interesting feature of the map concerns the position

of the AdS boundary, which is located at r ¼ 0. Since the
extended metric does not change under the mapping, this
surface is located in the bulk of dS, and has itself the
geometry of a dS space: an ðn − 1Þ-dimensional dS brane.
This happens in a similar manner in the AdS/Ricci-flat
correspondence [15,16], where the AdS boundary is
mapped to a flat brane in the bulk of Minkowski spacetime,
and we will discuss implications of this fact in Sec. III C,
where we treat perturbations in AdS/dS.
Just like AdS, empty dS enjoys a conformal symmetry.

Of special importance are dilatations and special conformal
transformations. We undo the compactification in (27),
writing

dr2 þ r2dΩ2
ν0 ¼ dr2ν0þ1

; ð35Þ

so that the metric takes the form

d~s2 ¼ ðl0Þ2
η2

ð−dη2 þ dx2n0−2 þ dr2ν0þ1
Þ: ð36Þ

The dilatations are given by

η → λη; x → λx; r → λr: ð37Þ

The invariance of the metric under this transformation is
clear. Defining z ¼ fx; rg, special conformal transforma-
tions read

η → η − 2ηðbzÞ; ð38aÞ

z → zþ bðz2Þ − 2zðbzÞ − η2b; ð38bÞ

with b an infinitesimal constant vector. One can easily
verify that (36) is invariant. After the compactification, we
are only interested in the transformation of the reduced
part. We decompose therefore b ¼ fbx; brg and define
c≡ ðbrrÞ=r. The transformation of the reduced coordinates
then only depends on bx and c, and we calculate

η → η − 2ηðbxxþ crÞ; ð39aÞ

x → xþ bxðx2 þ r2 − η2Þ − 2xðbxxþ crÞ; ð39bÞ

r → rþ cðx2 þ r2 − η2Þ − 2rðbxxþ crÞ: ð39cÞ

The reduced metric (28) is invariant under this trans-
formation, but the dilaton (29) changes as
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ϕ → ϕ −
c
r
ðx2 þ r2 − η2Þ: ð40Þ

We see that the compactification breaks the original
conformal symmetry, but the resulting transformations
can be seen as a generalized conformal structure—the
reduced metric is conformally invariant, but the dilaton
introduces a scale in the theory. These transformations are,
however, solution generating transformations, as can be
checked from the equations (15). Since the map brings
solutions to solutions, the same transformations are valid in
AdS space.

C. Asymptotic AdS with perturbations

In the AdS/CFT correspondence, the large N and large
’t Hooft coupling limit of the conformal field theory
corresponds to a weakly coupled gravity theory that can
be described by supergravity in an asymptotically AdS
space. The dictionary, the precise relation between these
theories including renormalization, is known [28,29], and
in this section we calculate how perturbations near the AdS
boundary, which are relevant in this holographic dictionary,
are mapped to perturbations around dS. Again, we treat
vacuum solutions and take χ ¼ 0.
We therefore approach the mapping from the other

direction: take α ¼ 0 and β ¼ 1, and a reduced metric
and dilaton of the form

gðnÞab ¼ l2

r2
ðηab þ habðη; x; rÞÞ ð41aÞ

ϕ ¼ ln

�
Hlη
r

�
þ ψðη; x; rÞ; ð41bÞ

where we take the Fefferman-Graham gauge [30]: hab does
not have components in the radial direction, and both hab
and ψ vanish as r → 0. Both hab and ψ can be considered
as perturbations on top of the background AdS metric, and
we retain the correct asymptotic behavior as r → 0. The full
metric then reads

ds̄2 ¼ l2

r2
½ðηab þ habÞdxadxb þ e2ψη2dϒ2

ν�; ð42Þ

with dϒ2
ν the line element of a CHS of unit radius (31). We

thus leave the compact space unperturbed, and only vary its
radius. For hab ¼ ψ ¼ 0, the map gives the same de Sitter
metric (27), showing that α and β can be chosen freely and
in a suitable way for the problem at hand.
Since our boundary metric is flat [we just have the

Poincaré patch of AdS in the unusual coordinates (32)], the
relevant corrections are of the form [16,29] (nþ ν ≥ 4)

hab ¼ rdhðdÞab ðη; xÞ þ rdþ2hðdþ2Þ
ab ðη; xÞ þOðrdþ3Þ; ð43aÞ

ψ ¼ rdψ ðdÞðη; xÞ þ rdþ2ψ ðdþ2Þðη; xÞ þOðrdþ3Þ; ð43bÞ

where we defined d≡ nþ ν − 1. The (reduced) Einstein
equations (15) then give

hðdÞ ¼ −2νψ ðdÞ; ð44aÞ

hðdþ2Þ ¼ −2νψ ðdþ2Þ; ð44bÞ

η∂mhðdÞmn ¼ νhðdÞn0 − δ0nhðdÞ; ð44cÞ

2ðdþ 2Þη2hðdþ2Þ
mn ¼ −η2∂2hðdÞmn þ νη∂ηh

ðdÞ
mn − 2νδ0ðmh

ðdÞ
nÞ0

þ 2δ0mδ
0
nhðdÞ: ð44dÞ

For ν ¼ 0 (i.e., no compact dimensions), we should recover
perturbations around pure AdS, and we indeed obtain

hðdÞ ¼ 0; ð45aÞ

∂mhðdÞmn ¼ 0; ð45bÞ

2ðdþ 2Þhðdþ2Þ
mn ¼ −∂2hðdÞmn; ð45cÞ

which are the well-known conditions for asymptotically
AdS spaces with a flat boundary [16,29].
After performing the map (13), (11), we obtain the de

Sitter metric with perturbations of the form

d~s2 ¼ ðl0Þ2
η2

e−2ψ ½ðηab þ habÞdxadxb þ r2dΩ2
ν0 �: ð46Þ

However, due to the now singular factor rd ¼ r1−ν
0
in the

perturbations, they no longer fulfill the source-free Einstein
equations (15). On the de Sitter side after the map, we
have α0 ¼ β0 ¼ −1, so that the reduced Einstein equations
[with a general source (A3)] read

Rmn þ gmn∇a∇aϕ − ðn0 þ ν0 − 1Þ=ðl0Þ2e−2ϕgmn

þ ðn0 þ ν0 − 2Þð∇m∇nϕþ∇mϕ∇nϕ − gmn∇aϕ∇aϕÞ

¼ 8πGn0þν0
N

�
Tmn −

1

ðn0 þ ν0 − 2Þ gmnT

�
; ð47aÞ

−∇a∇aϕþ ðn0 þ ν0 − 2Þ∇aϕ∇aϕ − ðν0 − 1ÞðH0Þ2

þ ðn0 þ ν0 − 1Þ=ðl0Þ2e−2ϕ ¼ 8π

ðn0 þ ν0 − 2ÞG
n0þν0
N T;

ð47bÞ

where T ¼ gmnTmn ¼ ðH0Þ2r2ηmnTmn. Putting the pertur-
bations (43) into these equations and using the conditions
(44) (taking care to replace n → n0, ν → 2 − n0 − ν0 and
d → 1 − ν0 according to the map), we obtain
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Tmn ¼ −
ð1 − ν0Þ
16πGn0þν0

N

hðdÞmnr−ν
0
δðrÞ

¼ −
��

1

H0

�
d−1 d

16πGdþ1
N

hðdÞmn

�
δ1þν0 ðrÞ; ð48Þ

where we have “uncompactified” the compact coordinates
as in (35), and defined the ðdþ 1Þ-dimensional Newton’s
constant as

Gdþ1
N ≡Gn0þν0

N

Vþ
ν0

¼ Gn0þν0
N

ðH0Þ−ν0Ων0
: ð49Þ

We thus see that the perturbations after the map are sourced
by a stress tensor situated on a brane (with intrinsic de Sitter
geometry) located in the bulk of de Sitter at r ¼ 0.
This map is shown in Fig. 1. Furthermore, if the conformal
field theory living at the ðnþ ν − 1Þ-dimensional boundary
of AdS before the compactification can be consistently
reduced to an n-dimensional theory plus an additional
scalar operator, the expectation value of the n-dimensional
holographic stress tensor would be given by the term in
brackets in (48),

hTCFT
mn i ¼ dld−1

16πGdþ1
N

hðdÞmn ð50Þ

(taking into account the map: n ¼ n0 and H0 ¼ 1=l).
This is the same conclusion that has been reached in the
AdS/Ricci-flat correspondence [15,16]: the (negative) dual
stress tensor of the holographic CFT serves as a source for
the metric perturbations after the map, with support on a
brane situated in the bulk of Minkowski spacetime.
To reinforce these indications, we calculate the (sub-

tracted and rescaled) quasilocal Brown-York stress tensor
[28,29,31,32] associated with a surface r ¼ const. in the
metric (42). The normal vector to this surface is given by

nA ¼ r
l
δAr ð51Þ

and normalized to nAnA ¼ 1. The extrinsic curvature tensor
KAB of the surface is defined by

KAB ¼ ðδMA − nAnMÞðδNB − nBnNÞ∇MnN; ð52Þ

and we calculate

∇MnN ¼ l
r2
δrMδ

r
N þ r

2l
∂rgMN; ð53Þ

and from this

Kab ¼ −
l
r2
ðηab − δraδ

r
bÞ þ

lr
2
∂r

�
1

r2
hab

�

¼ −
l
r2

�
ηab − δraδ

r
b −

ðd − 2Þ
2

rdhðdÞab

�
þOðrdÞ;

ð54aÞ

Kaβ ¼ 0; ð54bÞ

Kαβ ¼
lr
2
η2γð−1Þαβ ∂r

�
1

r2
e2ψ

�

¼ −
l
r2
η2γð−1Þαβ ð1 − ðd − 2Þrdψ ðdÞÞ þOðrdÞ; ð54cÞ

where γð−1Þαβ is the metric of a CHS of unit radius,

dϒ2
ν ¼ γð−1Þαβ dyαdyβ. The trace of the extrinsic curvature

follows as [using the conditions (44)]

K ¼ gMNKMN ¼ −
d
l
þOðrdþ2Þ: ð55Þ

The unsubtracted Brown-York stress tensor can be shown
to be equal to [28,32]

8πGnþν
N TBY

MN ¼ KMN − KgMN; ð56Þ

and the counterterms that one needs to subtract from the
stress tensor to make it well defined as r → 0 depend on
the dimension. For dimensions up to four, they are given
by [28,29]

8πGnþν
N TCT

MN ¼ −
ðd − 1Þ

l
gMN

−
l

d − 2

�
RMN −

1

2
RgMN

�
; ð57Þ

where RMN is the Ricci tensor of the induced boundary
metric gMNðr ¼ constÞ. In even dimensions, there is an
additional term (related to the conformal anomaly) which
we do not consider here. The Ricci tensor for the induced

FIG. 1 (color online). The map for perturbations around (anti-)
de Sitter spacetime. On the AdS side, the perturbations live near
the boundary at r ¼ 0, while the map puts them near a brane
located in the bulk of dS at r ¼ 0.
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boundary metric can be found in Appendix B, and using the
perturbation (43) and the conditions (44), we find up to
corrections of order OðrdÞ

8πGnþν
N TBY

ab ¼ l
r2

�
ðd− 1Þηabþ

ð3d− 2Þ
2

rdhðdÞab

�
; ð58aÞ

8πGnþν
N TBY

aβ ¼ 0; ð58bÞ

8πGnþν
N TBY

αβ ¼ l
r2
η2γð−1Þαβ ½ðd − 1Þ þ ð3d − 2Þrdψ ðdÞ�;

ð58cÞ

8πGnþν
N TCT

ab ¼ −ðd − 1Þ l
r2

ðηab þ rdhðdÞab Þ; ð58dÞ

8πGnþν
N TCT

aβ ¼ 0; ð58eÞ

8πGnþν
N TCT

αβ ¼ −ðd − 1Þ l
r2

η2ð1þ 2rdψ ðdÞÞγð−1Þαβ : ð58fÞ

Note that to leading order, only the first counterterm in (57)
contributes, while the others are of order OðrdÞ. The
subtracted and rescaled stress tensor is then given by [29]

TSR
MN ¼ lim

r→0

��
l
r

�
d−2

ðTBY
MN þ TCT

MNÞ
�
; ð59Þ

and we finally obtain

TSR
ab ¼ dld−1hðdÞab

16πGnþν
N

; ð60aÞ

TSR
aβ ¼ 0; ð60bÞ

TSR
αβ ¼ 2η2γð−1Þαβ

dld−1ψ ðdÞ

16πGnþν
N

: ð60cÞ

This is consistent with our earlier remarks around equa-
tion (50), and shows explicitly what form the stress tensor
expectation value in the dual CFT would have to take.

D. Black holes

In the case of black objects, solutions for general n are
much more difficult to obtain. Since the AdS/Ricci-flat map
has been used to study hydrodynamics of black branes, we
would also like to apply the AdS/dS map to a (planar,
vacuum) black brane, with the metric

ds̄2 ¼ l2

r2

�
−fðrÞdt2 þ dx2n−2 þ

dr2

fðrÞ þ dz2ν

�
ð61Þ

and fðrÞ ¼ 1 − ðr=bÞnþν−1 with a constant b. However, if
we try to compactify zν using the coordinate transformation

(32), the dilaton depends on the compactified coordinates,
in contrast to our initial ansatz.
If we start from the dS side, a (vacuum) black brane

solution is not known. Nevertheless, we can consider the
Schwarzschild-dS black hole with fixed n0 ¼ 2, since the
dimension of the reduced space does not change under
the map. This solution is given in static coordinates
by [33,34]

d~s2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
ν0 ; ð62Þ

with

fðrÞ ¼ 1 −
�
rS
r

�
ν0−1

−
r2

ðl0Þ2 ¼ 1 −
�
r
rS

�
νþ1

−H2r2;

ð63Þ

and where rS is the Schwarzschild radius of the black hole,
while l0 is the dS radius. Again, we already used the
identification (11) for the second equality. Comparison
with (13), taking α0 ¼ 0 and β0 ¼ −1 and thus α ¼ β ¼ 1,
gives us

gðnÞab dx
adxb ¼ −fðrÞdt2 þ dr2

fðrÞ ; ð64aÞ

ϕ ¼ − lnðH0rÞ ¼ − lnðr=lÞ; ð64bÞ

and the corresponding AdS metric obtained via the map
(12) reads

ds̄2 ¼ l2

r2

�
−fðrÞdt2 þ dr2

fðrÞ þH−2dϒ2
ν

�
: ð65Þ

Changing coordinates to z ¼ l=ðHrÞ and t ¼ τ=ðHlÞ, we
obtain

ds̄2 ¼ −f̄ðzÞdτ2 þ dz2

f̄ðzÞ þ z2dϒ2
ν ð66Þ

with

f̄ðzÞ ¼ z2

l2
fðl=ðHzÞÞ ¼ −1 − ðHrSÞ−ðνþ1Þ

�
l
z

�
ν−1

þ z2

l2
;

ð67Þ

which is the metric for an AdS black hole with hyperbolic
horizon geometry [35,36].
What happens to the horizons? We concentrate on the

case of a small black hole, where rS ≪ l0. The black hole
horizon is situated at rBH ≈ rS, while the cosmological
horizon is at rCH ≈ l0. The map gives l0 ¼ 1=H, so that we
have HrS ≪ 1. After the coordinate transformation, the
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black hole horizon is mapped to zBH ≈ l=ðHrSÞ ≫ l, and
the cosmological horizon to zCH ≈ l. Plugging these values
into ~fðzÞ, we see that for the black hole horizon we have
~fðzBHÞ ≈ 0 [since we can neglect the −1 in comparison
with the huge term ðHrSÞ−2], but for the cosmological
horizon we obtain ~fðzCHÞ ≈ −ðHrSÞ−ðνþ1Þ ≠ 0. This can be
understood from the map: the term−ðrS=l0Þν0−1, which was
negligible at the cosmological horizon for positive ν0,
became −ðHrSÞ−ðνþ1Þ, which is large for positive ν.
We see that the black hole horizons are mapped to each

other, while the cosmological horizon disappears because
of the analytic continuation in the number of dimensions.
Another class of black hole solutions which are interest-

ing to analyze are rotating ones. Kerr/dS black holes have
been constructed in higher dimensions with any number of
rotation parameters [37], but to show examples of the map
one rotation parameter is enough. We use the metric given
in Ref. [38], which describes a rotating black hole with
mass parameterM and (one) angular momentum parameter
a. This metric reads

d~s2 ¼ −
Δr

ρ2

�
dt −

a
Ξ
sin2θdϕ

�
2

þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2

þ Δθsin2θ
ρ2

�
adt −

r2 þ a2

Ξ
dϕ

�
2

þ r2cos2θdΩ2
ν0 ;

ð68Þ

where

Δr ¼ ðr2 þ a2Þ
�
1 −

r2

ðl0Þ2
�
− 2Mr3−ν

0
; ð69aÞ

Δθ ¼ 1þ a2

ðl0Þ2 cos
2θ; ð69bÞ

Ξ ¼ 1þ a2

ðl0Þ2 ; ð69cÞ

ρ2 ¼ r2 þ a2cos2θ: ð69dÞ

The reduction proceeds in the same way as before, and
again taking α0 ¼ 0 and β0 ¼ −1, we have

gabdxadxb ¼ d~s2 − r2cos2θdΩ2
ν0 ; ð70aÞ

ϕ ¼ − lnðH0r cos θÞ ¼ − ln

�
r
l
cos θ

�
: ð70bÞ

The mapped rotating black hole in AdS is then given by

ds̄2¼ l2

r2cos2θ

�
−
~Δr

ρ2

�
dt−

a
~Ξ
sin2θdϕ

�
2

þ ρ2

~Δr

dr2

þ ρ2

~Δθ

dθ2þ
~Δθsin2θ
ρ2

�
adt−

r2þa2

~Ξ
dϕ

�
2

þH−2dϒ2
ν

�
;

ð71Þ

where

~Δr ¼ ðr2 þ a2Þð1 −H2r2Þ − 2Mr3þν; ð72aÞ

~Δθ ¼ 1þH2a2cos2θ; ð72bÞ

~Ξ ¼ 1þH2a2: ð72cÞ

One can see that this metric is singular near θ ¼ π=2, which
is due to the fact that the compactified space (the ν0-sphere)
has vanishing radius at that point, and thus gives a singular
dilaton. Such singular dilatons have also been found in
some cases of T-duality [39,40]. Calculating, e.g., the
Kretschmann scalar, one finds, however, the completely
regular result

RABCDRABCD ¼ 2ðνþ 3Þðνþ 4Þ
l4

þO
�
θ −

π

2

�
: ð73Þ

Since also for a → 0 the metric does not reduce to the
Schwarzschild-AdS black hole (67), it is thus possible that
a suitable coordinate transformation exists which yields a
manifestly regular metric also for θ ¼ π=2. We leave a
detailed investigation for further study.

IV. CONCLUSIONS

In this article, we have presented a map between Einstein
spaces of negative and positive curvature, including a
scalar field. In order to obtain such a map via generalized
dimensional reduction, these spaces need to have the form
of a direct product between an extended spacetime (the
bulk) and a compact subspace, whose curvature has the
same sign as the total space. Especially, spacetimes which
are asymptotically AdS, with the subspace being a compact
hyperbolic space, are mapped to a spacetime which is
asymptotically de Sitter (deep in the bulk), with the
transverse subspace a sphere. This map is a generalization
of the AdS/Ricci-flat correspondence [15,16], and we
expect it to generalize to the case of additional matter
fields such as gauge fields. Furthermore, nondiagonal
reductions are probably possible, as well as the study of
moduli of the internal space (note, however, that compact
hyperbolic spaces do not possess massless shape moduli
by the Mostow rigidity theorem [26,41]). In general, the
mapping is between solutions with different compact
dimensions, and the number of compact dimensions must
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be analytically continued after the map to a positive value.
One must therefore know the solution for a general
compact dimension ν, and it must be regular as ν → 0
for the continuation to be unambiguous. However, this does
not seem to be a strong restriction in practice, as exem-
plified by the application of the map to empty AdS/dS,
black hole spacetimes and perturbations on top of AdS/dS.
A very direct application of the map is as a solution

generator, mapping known solutions of positive and neg-
ative curvature to each other in nontrivial ways as exem-
plified by the asymptotically dS/AdS rotating black holes,
where the AdS solution is most probably new. Other
contexts of study suggest themselves: for example, the
AdS/Ricci-flat map has been used to study hydrodynamics
of black branes and the Gregory-Laflamme instability
[15,16,42,43]. Using the AdS/dS map derived in this paper,
these considerations could be extended also to de Sitter
spacetime.
An important fact (which applies in the same way in the

AdS/Ricci-flat correspondence) concerns the mapping of
the AdS boundary, which is sent to a brane in the bulk of
dS. This brane has itself an intrinsic de Sitter geometry and
supports a stress tensor which serves as the source of
perturbations, and which is the negative of the Brown-York
stress tensor in the perturbed AdS geometry. These per-
turbations are obtained by mapping perturbations near the
boundary of AdS that encode holographic information from
the AdS/CFT correspondence, and the stress tensor on the
brane is compatible with what one would expect if the dual
CFT at the AdS boundary can be consistently reduced over
a compact hyperbolic space (for the AdS/Ricci-flat corre-
spondence, the reduction over a torus is consistent [44,45]
and the corresponding statement can be made). This
discovery suggests that a putative holographic dual to de
Sitter space is not to be found at infinity in analogy with the
AdS case, but instead on such a brane.
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APPENDIX A: CURVATURE TENSORS FOR A
PRODUCT METRIC

For the product space metric (3), one easily calculates the
Christoffel symbols directly from the definition:

Γ̄a
bc ¼ Γa

bc þ αðδac∇b þ δab∇c − gbc∇aÞϕ; ðA1aÞ

Γ̄a
bγ ¼ 0; ðA1bÞ

Γ̄a
βγ ¼ −βe2ðβ−αÞϕγβγ∇aϕ; ðA1cÞ

Γ̄α
bc ¼ 0; ðA1dÞ

Γ̄α
bγ ¼ βδαγ∂bϕ; ðA1eÞ

Γ̄α
βγ ¼ Γα

βγ½γ�: ðA1fÞ

The curvature tensors follow as

R̄mn ¼ Rmn − ½ðn − 2Þαþ νβ�∇m∇nϕ

þ ½ðn − 2Þα2 þ 2ναβ − νβ2�∇mϕ∇nϕ

− αgmn½∇a∇aϕþ ½ðn − 2Þαþ νβ�∇aϕ∇aϕ�;
ðA2aÞ

R̄mν ¼ R̄μn ¼ 0; ðA2bÞ

R̄μν ¼ Rμν − βe2ðβ−αÞϕγμν∇a∇aϕ

− βe2ðβ−αÞϕγμν½ðn − 2Þαþ νβ�∇aϕ∇aϕ; ðA2cÞ

e2αϕR̄ ¼ Rþ e2ðα−βÞϕR½γ� − 2½ðn − 1Þαþ νβ�∇a∇aϕ

− ½ðn − 1Þðn − 2Þα2 þ 2ðn − 2Þναβ
þ νðνþ 1Þβ2�∇aϕ∇aϕ: ðA2dÞ

If we put an additional stress tensor on the right-hand side
of (14), which only has components in the extended
directions Tmn, the reduced equations of motion (15) have
the form

Rmn − λðnþ ν − 1Þ=l2e2αϕgmn − αgmn∇a∇aϕ

− ½ðn − 2Þαþ νβ�∇m∇nϕ

þ ½ðn − 2Þα2 þ 2ναβ − νβ2�∇mϕ∇nϕ

− α½ðn − 2Þαþ νβ�gmn∇aϕ∇aϕ

¼ 8πGnþν
N

�
Tmn −

1

ðnþ ν − 2Þ gmnT

�
; ðA3aÞ
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β½∇a∇aϕþ ½ðn − 2Þαþ νβ�∇aϕ∇aϕ�
þ ½λðnþ ν − 1Þ=l2 − kðν − 1ÞH2e−2βϕ�e2αϕ

¼ 8π

ðnþ ν − 2ÞG
nþν
N T; ðA3bÞ

where the trace is defined by T ¼ gmnTmn.

APPENDIX B: CURVATURE TENSORS FOR
ASYMPTOTICALLY AdS WITH A CHS

For the metric (42) at r ¼ const, we calculate to leading
order in hab and ψ

Γa
bc ¼

1

2
ð∂bhac þ ∂chab − ∂ahbcÞ; ðB1aÞ

Γa
bγ ¼ 0; ðB1bÞ

Γa
βγ ¼ γð−1Þβγ ηðδa0 − η∂aψ þ 2δa0ψ þ ha0Þ; ðB1cÞ

Γα
bc ¼ 0; ðB1dÞ

Γα
bγ ¼ ðη−1δ0b þ ∂bψÞδαγ ; ðB1eÞ

Γα
βγ ¼ Γα

βγ½γð−1Þ�: ðB1fÞ

From this we obtain the Ricci tensor and scalar (using that
the compact space is Einstein):

Rbd ¼ ∂a∂ðbhdÞa −
1

2
∂2hbd −

1

2
∂b∂dðhþ 2νψÞ

−
ν

η

�
∂ðbhdÞ0 −

1

2
∂ηhbd þ 2δ0ðb∂dÞψ

�
; ðB2aÞ

Rbδ ¼ 0; ðB2bÞ

Rβδ ¼ γð−1Þβδ

�
−η2∂2ψ − η∂mhm0 þ

1

2
η∂ηðhþ 4νψÞ

þ ðν − 1Þð2ψ þ h00Þ
�
; ðB2cÞ

R ¼ r2

l2

�
∂m∂nhmn − ∂2ðhþ 2νψÞ − 2ν

η
∂mhm0

þ ν

η
∂ηðhþ 4νψÞ þ νðν − 1Þ

η2
ð2ψ þ h00Þ

�
:

ðB2dÞ
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