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We apply the recently derived constraintless Clairaut-type formalism to the Cho-Duan-Ge decom-
position in SU(2) QCD. We find nontrivial corrections to the physical equations of motion and that the

contribution of the topological degrees of freedom is qualitatively different from that found by treating the
monopole potential as though it were dynamic. We also find alterations to the field commutation relations
that undermine the particle interpretation in the presence of the chromomonopole condensate.
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I. INTRODUCTION

The occurrence of “redundant” degrees of freedom not
determined by equations of motion (EOMs) is a character-
istic property of any physical system having symmetry
[1,2]. In gauge theories, the covariance of EOMs under
symmetry transformations leads to gauge ambiguity, i.e.,
the appearance of undetermined functions. In this situation,
some dynamical variables obey first order differential
equations [3]. One then employs a suitably modified
Hamiltonian formalism, such as the Dirac theory of
constraints [4].

A constraintless generalization of the Hamiltonian for-
malism based on a Clairaut-type formulation was recently
put forward by one of the authors [5,6]. It generalizes the
standard Hamiltonian formalism to include Hessians with
zero determinant, providing a rigorous treatment of the
nonphysical degrees of freedom in the derivation of EOMs
and the quantum commutation relations. An outline is
given in the Appendix.

The Cho-Duan-Ge (CDG) decomposition of the gluon
field in quantum chromodynamics (QCD) published by
Duan and Ge [7] and also by Cho [8] specifies the Abelian
components of the background field in a gauge covariant
manner. In so doing, it identifies the monopole degrees of
freedom (d.o.f.) of the gluon field naturally, making it
preferable to the conventional maximal Abelian gauge [9].
It can also generate a gauge invariant canonical momentum,
which makes it of interest to studies of nucleon spin
decomposition [10-13].

Up until now, the monopole d.o.f. have not been
rigorously handled. Indeed, merely accounting for the
physical and gauge d.o.f. proved to be a long and difficult
task [14—18]. An important observation of the monopole
d.o.f. by Cho et al. is that the Euler-Lagrange equation for
the Abelian direction does not yield a new EOM. Their
interpretation is that the monopole is the “slow-changing
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background part” of the gauge field while the physical
gluons constituted the “fast-changing quantum part.”

In this paper, we apply the Clairaut formalism to the
monopole d.o.f. in two-color QCD. We consider both the
gluon field and scalar “quarks” in the fundamental field.
We find that the interaction between monopole and
physical d.o.f. vanishes from the EOMs but that the
canonical commutation relations are altered in a manner
that leaves the particle number undefined.

Section II describes the CDG decomposition and estab-
lishes notation. In Sec. III, we identify the field theory
equivalent of ¢g* and go on to find the ¢“ curvature in
Sec. IV. The curvature’s nonzero value leads to alterations
in the EOMs elucidated in Sec. V, while corresponding
results are found in Sec. VI for color-charged scalars in the
fundamental representation. Our most important results,
alterations to the commutation relations and their implica-
tions for the particle interpretation, are discussed in
Sec. VII. We give a final discussion in Sec. VIII and a
detailed summary of the Clairaut formalism in the
Appendix.

II. REPRESENTING THE GLUON FIELD

The CDG decomposition [7,8] and another like it [19]
was (re)discovered [14] at about the turn of the century
when several groups were readdressing the stability of
the chromomonopole condensate [15-17,20-22]. Some
authors [16,17,21], including one of the current ones
[22], have overlooked the differences between the CDG
decomposition and that of Faddeev and Niemi, referring to
the former as either the Cho-Faddeev-Niemi or the Cho-
Faddeev-Niemi-Shabanov decomposition. In this paper, we
label it the CDG decomposition, as per the convention of
Cho et al. [13].

The Lie group SU(N) has N?>—1 generators A
(a=1,..., N? - 1), of which N — 1 are Abelian generators
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) (i=1,....N—1). The gauge transformed Abelian
directions (Cartan generators) are denoted as

U(x)"ADU(x). (1)

Gluon fluctuations in the 7;(x) directions are described
by cff)(x), where p is the Minkowski index. There is a
covariant derivative which leaves the 7;(x) invariant,

i(x) =

= (9, + gV, (x)x)i;(x) = 0, (2)

X (x) + C, (x),
LX) = g719,7;(x) x ;(x). (3)

A

The vector notation refers to the internal space, and

summation is implied over i =1,...,N — 1. For later
convenience, we define
Fii)(x) = 9,c) (x) = 9,0 (x), )
H,(x) = 8,C,(x) = 8,C, (x) + gC,y(x) x C, (x)
= Hy)(x)n(x), (5)
HU)(x) = H (x) - (%), (6)

The vectors X ,(x) denote the dynamical components of
the gluon field in the off-diagonal directions of the internal

space, so if ;iﬂ (x) is the gluon field, then

- - i)

A, (x) =V, (x) + X, (x) = e () (x) + Cu(x) + X, (),

(7)

V1<i<N, f),,:a”+g2xﬂ(x).

(8)

The Lagrangian density is still

— 1 Fux) - F*(x). ©)

4>|~

‘Cgauge( ) -

where the field strength tensor of QCD expressed in terms
of the CDG decomposition is
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(FL (%) + H (x)i(x) + (DX, (x)
— D,X,,(x)) + gX,(x) x X, (x). (10)

Fu(x) =

We will later have a need for the conjugate momenta.
These are only defined up to a gauge transformation, so to
avoid complications, we take the Lorenz gauge. The
conjugate momentum for the Abelian component is then

5(f d3x£gauge) _ _*0

8 (x) = Dol F¥x) - a0 (x),  (11)

while the conjugate momentum of X u(x) is

f d3x£gauge)
6DOXﬂ (x)

1 Ano
= -5 (DR (v)

)?D(X)M{W:lgigm)- (12)

From now on, we restrict ourselves to the SU(2) theory for
which there is only one 7i(x) lying in a three-dimensional
internal space and neglect the (i) indices. The results can be
extended to larger SU(N = M + 1) gauge groups [22],
although the cross product in Eq. (12) vanishes when
N=2.

The above outline neglects various mathematical subtle-
ties involved in a fully consistent application of the CDG
decomposition. In fact, its proper interpretation and gauge
fixing took considerable effort by several independent
groups. The interested reader is referred to [14-18] for
further details.

(x) =

- X" (x)

+ g(X"(x) x

III. THE ¢* GAUGE FIELDS
OF THE MONOPOLE FIELD

Now we adapt the Clairaut approach (see the Appendix)
[5,23] to quantum field theory and apply it to the CDG
decomposition of the QCD gauge field, leaving the
fundamental representation until Sec. VI. Substituting the
polar angles

i(x) = cos O(x) sin ¢p(x)é; + sinB(x) sin ¢p(x)e,
+ cos ¢(x)e3 (13)
and defining

&.

sin ¢ (x) g (x) E/ 02?

+ cosO(x)é,),

Jdn(x) R
fy(x) = / d¢(y) = cos O(x) cos ¢p(x)e,

+ sinO(x) cos p(x)eé, —singp(x)e;  (14)

= sin¢(x)(—sinO(x)e,

~—
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for later convenience, we note that

sin ¢(x)fgg = —sinp(x)(cos B¢, + sin0e,), (15)

and that the vectors 71(x) = i, (x) X fig(x) form an ortho-
normal basis of the internal space.

Substituting the above into the Cho connection in Eq. (3)
gives

9C,u(x) = (cos O(x) cos ¢(x) sin (x)3,0(x)
+ sin 0(x)d¢p(x)

+ (sinf(x) co

—cos 0(x)0p(x

)
= sin¢(x)9,0(x)n,

)
)é,
s ¢(x) sin p(x)9,0(x)

), — sin’¢(x)0,0(x)e;
(x) = 0up(x) g (x) (16)

from which it follows that
PC,(x) x C,(x) = sin p(x)(3,(x)3,0(x)
— 0,¢(x)0,0(x))f(x). (17)

Treating 0, ¢ as dynamic variables, their conjugate
momenta are

L
Pylx) = / 4 xaf¢<x>
- / dy? / dy*5(x° — ) (sin p(y),6(y)A(y)
+ig(y) x X' (v)) - Fo(5)8 (3 - 5)
= (sin (x)3*O(x)A(x) + fg(x) x X*(x)) - Fo, (x),
(18)

o) = [ 47 55

- / dy? / dy05(x° — y) sin (3)(,#D() ()

-

+sin ()i (y) x X*(v)) - Fo,(y)8* (3 = )
= —sin(x) (*P(x)A(x) + fiy(x) x X" (x)): Fo, (x).

y
x X

(19)
The Hessian is given by
L
—l = 20
l 5" 5613” (20)

where A, B run over all fields, both physical and topo-
logical. It follows from inspection of the Lagrangian
density, Eqgs. (9) and (10), that the time derivatives of
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0(x), ¢(x) occur only in linear combination with those of
one of the physical gluon fields ¢, (x), X ,(x), either through
Fo,(x) + Hg,(x) or Dy. (This is readily extended to quarks,
which we introduce in Sec. VI). Therefore, the rows
(columns) of the Hessian matrix corresponding to 9(x),
¢(x) must be linear combinations of those corresponding to
the physical field velocities, so the Hessian vanishes.

This linear dependence within the Hessian is consistent
with Cho and Pak’s [15] and Bae et al’s [18] finding that
7i(x) (and by extension 6(x), ¢(x)) does not generate an
independent EOM.

We, therefore, use the discussion surrounding (3.10) in
[5] and define

By(x) = By(x) = py (), (21)

where the definitions of B, (x), By(x) are generalized to
quantum field theory from those in [5]. It follows that
H H_,;, (also defined in [5]).

Po(x),

phys —
IV. THE ¢* CURVATURE
From Egs. (18) and (19), we have

A — s () X oy (0= T (2))5"(x =)
(22)
5Bg(x)——cos x) (D p(X)A(x) + fiy(x) x X" (x
560) (cos ¢(x)(0"p(x)fi(x) + ity (x) x X" (x))
: (ﬁoﬂ(x) + ﬁloy) + Ty(x))8* (x =), (23)
where
T4 (x) = O[sin p(x)7 - Foy(x) — (sin (x),0(x)
+ g (x) X X+ 7)Dogp ()], (24)
To(x) = —0¥[sinp(x) (it - Foy(x) + (Opep(x)
+ 2y (x) X X - 1) 0(x))] (25)
are the surface terms arising from derivatives 8(06) M, and

L . > o8 0 op
the latin index k is used to indicate that only spatial indices

are summed over.
This yields the ¢g* curvature

Fop(x) = / dy* (Zg((x)) - 5B¢(x>> &x =)

30(y)

+ {By(x), Bo(x) }pys
— — cos p(x) (D P(x)A(x) + fy(x)
x X"(x)) - (Fo, (x) + Ho, (x))

— sin ¢ (x)figg(x) X X* (x) - F

yO(x)
Ty() = Tolx), (26)

064022-3



MICHAEL L. WALKER AND STEVEN DUPLIJ

where we have used that the bracket {By(x), By(x) } phys
vanishes because B, (x) and By(x) share the same depend-
ence on the dynamic d.o.f. and their derivatives.

In earlier work on the Clairaut formalism [5,23], this was
called the g”-field strength, but we call it g* curvature in
quantum field theory applications to avoid confusion.

This nonzero F% (x) is necessary and usually sufficient
to indicate a nondynamic contribution to the conventional
Euler-Lagrange EOMs. More significant is a corresponding
alteration of the quantum commutators, with repercussions
for canonical quantization and the particle number.

V. ALTERED EQUATIONS OF MOTION
Generalizing Egs. (7.1), (7.3), and (7.5) in [5]

9oq(x) = {q(x), H,
S6H

_ phys / d
= - y
op(x)

the derivative of the Abelian component complete with
corrections from the monopole background is

phys}new

03 Bl gy, q2m)

OH phys 5B,(y)
H”El )—/dy4 Z maoa(y). (28)

a=¢,0

aOca( )

The effect of tnge second term is to remove the monopole
contribution to m;’é‘y’) To see this, consider that, by con-
struction, the monopole contribution to the Lagrangian and

Hamiltonian is dependent on the time derivatives of 0, ¢, so

the monopole component of o i

SIT° (x)
5
31 () el

1) OoH v SH "
oM () (c%gzx) 0ub(x) + 50021()6) 80¢(x)>

4 oL hys oL hvs
=S (x) <5aog(yx) 00(x) + Wz(y)c)aofﬁ(x))
:%@<Be<ﬂ%9<x> + By (x)Do(x)), (29)

which is a consistency condition for Eq. (28). This confirms
the necessity of treating the monopole as a nondynamic field.
We now observe that

6By(x) _
5co(y)

6By(x) _
oc’(y)

(30)

from which it follows that the EOM of ¢, receives no
correction. However, its {, } ., contribution corresponding
to the terms in the conventional EOM for the Abelian
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component already contains a contribution from the
monopole field strength.

Repeating the above steps for the valence gluons X
assuming ¢ # 0, and combining

Dofi, () = 22— [ay 3 220 ) g0ay)  (31)

85X’ (x) a—g00X"(x )
with
‘;fjgy; — —((sin (), 700 + A4()
x X,(y)) x Xo = iy(y)it- Fo,).  (32)
5B€(y)— Xx)7 + sin xﬁqux
) ((Dpp(x)7t + sin p(x)fay (x) X X, (x))
x Xo — sin g (y)i - Fo, )0 (x = y), (33)
gives

" o H 1
() = S =2 (MO Qo000
= 0,0(x)0pp(x)) 71 (x)
+ (sin ¢p(x) 7t (x)o0(x) — fig(x) Db (x))
X %, () % X,
oH 1 - >
T o) 27
x X, (x)) x Xo(x). (34)

This is the converse situation of the Abelian gluon, since it

is the derivative of ;(6 that is uncorrected while its EOM
receives a correction which cancels the monopole’s electric

contribution to {Dof(ﬂ, H pys }phys- This is required by the
conservation of topological current.

VI. THE FUNDAMENTAL REPRESENTATION

We consider a complex boson field a(x), a’(x) in the
fundamental representation of the gauge group and probe
the implications of this approach for the quark fields.
Although physical quarks are fermions, we study the
bosonic case to avoid distracting complications, leaving
the fermionic case for a later paper.

The kinetic and interaction terms are given by

—(D*a)"(x)D,a(x). (35)

We do not consider the mass term which makes no
contribution to the physics considered here.
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The contribution of a(x), a’(x) to By(x), By(x) is

By(x)aar = (D%a(x)) Rg(x)alx) + (Rg(x)a(x))"Dla(x).
By(x) ot = —(D%a(x))"sin d(x)y (x)a(x) = (sin p(x)iiy(x)a(x))" D'a(x), (36)

leading to a contribution of

Fop(X)jaar = a(x))"(cos p(x)iry (x) — sin p(x)i(x))a(x)

9p0(x)(cos p(x)Aty (x) — sin Pp(x)fa(x )) (x))" sin p(x) iy (x)a
(cos p(x)iy(x) = sin p(x)7i(x))a)" Doa(x)

sin ¢ (x) ity (x)a(x))" (cos (x) iy (x) — sin p(x)7i(x))Dpf)(x)a

= (

= ( )
(f1go(x)a(x)0geb(x)) " ftg(x)a(x)
(7

= (

= (Dy
= (

+ o+

o(3)a(2)) gy (x)a (1) Do ()
Doa(x)) figg(x)a(x) = (figg(x)a(x))"Doa(x) (37)
to the ¢g* curvature. It follows that the complete expression for the ¢g* curvature in this theory is the sum of Egs. (26)
and (37).

As with the gluon d.o.f., the nonzero g, (x) leads to the cancellation of the monopole interactions and generates
corrections to the canonical commutation relations.

VII. MONOPOLE CORRECTIONS TO THE QUANTUM COMMUTATION RELATIONS

Corrections to the classical Poisson bracket correspond to corrections to the equal-time commutators in the quantum

regime. Denoting conventional commutators as [, |, and the corrected ones as [, |, for 4, v # 0 we have

6408 ~lcp (01 @l = [ 0 (S0 73 2) S - SO ) 20O )15 2

=lc, (). €,(2)]pnys — sin p(x) sin (2)(0,(x)0,0(z) — 0,h(2)0,,0(x)) F 5, (2)8* (x — 2). (38)

The second term on the final line, after integration over d*z, clearly becomes

H,,(x)sin ¢(x)]:g(/£ (x), (39)

indicating the role of the monopole condensate in the correction. By contrast, the commutation relations
[0 () T (D) ]new = [€4(¥). TL(2)pyss [T (), TLy (2) ew = [T, (%), TL, (2) s (40)
are unchanged. Nonetheless, the deviation from the canonical commutation shown in Eq. (38) is inconsistent with the

particle creation/annihilation operator formalism of conventional second quantization.
Repeating for the valence gluons,

(8. TG o = (500 T s — [ (005200 - S B0

= [T (), TI2(2) pys + (sin (2 (1) (2)FY (x) - () F™ (2) - (2)

= sin (x)ng (x)nly () F™ (2) - A()F™ (x) - 4(x)) x Fap(2)5*(x = 2), (41)
where the second term on the final line integrates over d*z to become
(ny () (x) = ny(x)mb (x) sin p(x) F¥ (x) - A () F™ (x) - 2(x) F (), (42)
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while

[Xlldz (X), Ht% (Z)}new = [X/‘; (X), Hllj (Z)]phys’

(43)
(X5 (). X2 (2)]new = (X5 (%), X2 ()] pnys-

Indeed, this is not an exhaustive presentation of devia-
tions from canonical quantisation. If a g“®-gauge field’s
derivative with respect to any physical field or its conjugate
momentum is nonzero, then that field’s quantization con-
ditions and particle interpretation are affected unless the ¢*
curvature is exactly zero. Hence, any field interacting with
the monopole component ceases to have a particle inter-
pretation in the presence of the monopole component. In
particular, its particle number becomes ill-defined, which is
reminiscent of the parton model.

Equation (38) has a superficial similarity to Dirac
brackets. The difference between our new brackets
{, }sew and Dirac brackets is clarified in Appendix B of
[5]. If one introduces additional “nonphysical” momenta p,,
(Eq. (B1) in [5] or Sec. 5 of [6]) corresponding to the
nonphysical coordinates ¢,, then the new bracket in the
fully extended phase space becomes the Dirac bracket. But
then we obtain constraints, especially the complicated
second-stage constraint Egs. (BS) of [6], which are absent
in our approach. Equation (41) can, therefore, be consid-
ered a new shortened version of quantization for singular
systems, as described in the conclusions of [5,6].

Arguments that colored states are ill-defined in the
infrared regime, based on either unitarity and/or gauge
invariance [24-26] date back several decades, but, to our
knowledge, we are the first to argue that canonical
quantization breaks down.

VIII. DISCUSSION

We have applied the Clairaut-type formalism to the CDG
decomposition. This has shed light on the dynamics of
the topologically generated chromomonopole field of
QCD. In particular, it addresses the issue of its EOMs,
or lack thereof [15,18], and the contribution its d.o.f. make
to the evolution of other fields.

Indeed, the ¢* curvature was found to be nonzero,
leading to corrections to the time derivatives of the gluon’s
dynamic d.o.f., which cancel all interactions between
physical and nonphysical fields from the EOMs. This is
both necessary for the consistency of Eq. (28) and
qualitatively consistent with our later finding that the
chromomonopole background alters the canonical commu-
tation relations in such a way as to invalidate the particle
interpretation of the physical d.o.f.

This can be taken to mean that quarks and gluons do not
have a well-defined particle number in the monopole
condensate, suggestive of both confinement and the parton
model, but it remains to repeat this work with a fully

PHYSICAL REVIEW D 91, 064022 (2015)

quantized, i.e., including ghosts, SU(3) gauge field, and
with fermionic quarks rather than scalar ones. Furthermore,
while many papers have found the monopole condensate
[27-29], especially with the CDG decomposition [15,20,
30,31], to be energetically favorable to the perturbative
vacuum, this result needs to be repeated within the Clairaut-
based quantization scheme of this paper before strong
claims are made.

In summary, this approach offers a rigorous analytic tool
for elucidating the role of topological d.o.f. in the dynamics
of quantum field theories and finds that colored states have
an ill-defined particle number in the presence of nonzero
monopole field strength.
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APPENDIX: THE CLAIRAUT-TYPE FORMALISM

Here we review the main ideas and formulas of the
Clairaut-type formalism for singular theories [5,23]. Let us
consider a singular Lagrangian L(g4, v4) = L%¢(g*, v*),
A=1,...,n, which is a function of 2n variables (n
generalized coordinates ¢g* and n velocities 14 = ¢4 =
dg*/dt) on the configuration space TM, where M is a
smooth manifold, for which the Hessian’s determinant is

zero. Therefore, the rank of the Hessian matrix Wy =

PL(g* ") :
S is r < n, and we suppose that r is constant. We can

rearrange the indices of W,z in such a way that a
nonsingular minor of rank r appears in the upper left
corner. Then, we represent the index A as follows: if
A =1,...,r, wereplace A with i (the “regular” index), and
if A=r+1,...,n we replace A with « (the “degenerate”
index). Obviously, det Wij # 0, and rank W,-J- = r. Thus,
any set of variables labeled by a single index splits as a
disjoint union of two subsets. We call those subsets regular
(having latin indices) and degenerate (having greek indi-
ces). As was shown in [5,23], the “physical” Hamiltonian
can be presented in the form

Hyngs (g pi) =) piVi(gh. piov™) + > Balgh. pi)v*
i=1

— L(g". Vi(q", piv®), v%), (A1)
where the functions
def OL (g, v4)
B,(q", pi)= (87“ o (A2)
v v'=Vi(g",p;.v")
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are independent of the unresolved velocities v since
rank W,p = r. Also, the rhs of (A1) does not depend on
the degenerate velocities v%,

OH
Y7L phys
=0, A3

o (A3)
which justifies the term physical. The Hamilton-Clairaut
system, which describes any singular Lagrangian classical
system (satisfying the second order Lagrange equations),
has the form

S, {q s phys}phyg Z {q ’ ﬁ}phys dt

p=r+1
i=1,...,r, (A4)
dp; - dg’
dt = {pi»thys}phys - Z {pi’Bﬂ}physW’
p=r+1
1=1,...,r,
=1 (AS)

PHYSICAL REVIEW D 91, 064022 (2015)

i 0By _0Bu  p ., ]dd
2. [9g7 ~ g T 10w Bt Tar
~ OHppys
- apa}’ +{Bavahys}phys’
a=r+1,...n (A6)

where the physical Poisson bracket (in regular variables
qiv V4 i) is

0X 9Y 0Y 0X
X Py = Z (361 "0p;, Oq' 0pi>'

Whether the variables B, (¢, p;) have a nontrivial effect
on the time evolution and commutation relations is equiv-
alent to whether or not the so-called “g“-field strength”

(A7)

9B, 0B,
P 0g" o

+{Ba Bs}ppys (A8)

is nonzero. See [5,6,23] for more details.
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