
Cho-Duan-Ge decomposition of QCD in the constraintless
Clairaut-type formalism

Michael L. Walker1
1University of Melbourne, Parkville, Victoria 3010, Australia

Steven Duplij2
2Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany

(Received 29 November 2014; published 9 March 2015)

We apply the recently derived constraintless Clairaut-type formalism to the Cho-Duan-Ge decom-
position in SUð2Þ QCD. We find nontrivial corrections to the physical equations of motion and that the
contribution of the topological degrees of freedom is qualitatively different from that found by treating the
monopole potential as though it were dynamic. We also find alterations to the field commutation relations
that undermine the particle interpretation in the presence of the chromomonopole condensate.
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I. INTRODUCTION

The occurrence of “redundant” degrees of freedom not
determined by equations of motion (EOMs) is a character-
istic property of any physical system having symmetry
[1,2]. In gauge theories, the covariance of EOMs under
symmetry transformations leads to gauge ambiguity, i.e.,
the appearance of undetermined functions. In this situation,
some dynamical variables obey first order differential
equations [3]. One then employs a suitably modified
Hamiltonian formalism, such as the Dirac theory of
constraints [4].
A constraintless generalization of the Hamiltonian for-

malism based on a Clairaut-type formulation was recently
put forward by one of the authors [5,6]. It generalizes the
standard Hamiltonian formalism to include Hessians with
zero determinant, providing a rigorous treatment of the
nonphysical degrees of freedom in the derivation of EOMs
and the quantum commutation relations. An outline is
given in the Appendix.
The Cho-Duan-Ge (CDG) decomposition of the gluon

field in quantum chromodynamics (QCD) published by
Duan and Ge [7] and also by Cho [8] specifies the Abelian
components of the background field in a gauge covariant
manner. In so doing, it identifies the monopole degrees of
freedom (d.o.f.) of the gluon field naturally, making it
preferable to the conventional maximal Abelian gauge [9].
It can also generate a gauge invariant canonical momentum,
which makes it of interest to studies of nucleon spin
decomposition [10–13].
Up until now, the monopole d.o.f. have not been

rigorously handled. Indeed, merely accounting for the
physical and gauge d.o.f. proved to be a long and difficult
task [14–18]. An important observation of the monopole
d.o.f. by Cho et al. is that the Euler-Lagrange equation for
the Abelian direction does not yield a new EOM. Their
interpretation is that the monopole is the “slow-changing

background part” of the gauge field while the physical
gluons constituted the “fast-changing quantum part.”
In this paper, we apply the Clairaut formalism to the

monopole d.o.f. in two-color QCD. We consider both the
gluon field and scalar “quarks” in the fundamental field.
We find that the interaction between monopole and
physical d.o.f. vanishes from the EOMs but that the
canonical commutation relations are altered in a manner
that leaves the particle number undefined.
Section II describes the CDG decomposition and estab-

lishes notation. In Sec. III, we identify the field theory
equivalent of qα and go on to find the qα curvature in
Sec. IV. The curvature’s nonzero value leads to alterations
in the EOMs elucidated in Sec. V, while corresponding
results are found in Sec. VI for color-charged scalars in the
fundamental representation. Our most important results,
alterations to the commutation relations and their implica-
tions for the particle interpretation, are discussed in
Sec. VII. We give a final discussion in Sec. VIII and a
detailed summary of the Clairaut formalism in the
Appendix.

II. REPRESENTING THE GLUON FIELD

The CDG decomposition [7,8] and another like it [19]
was (re)discovered [14] at about the turn of the century
when several groups were readdressing the stability of
the chromomonopole condensate [15–17,20–22]. Some
authors [16,17,21], including one of the current ones
[22], have overlooked the differences between the CDG
decomposition and that of Faddeev and Niemi, referring to
the former as either the Cho-Faddeev-Niemi or the Cho-
Faddeev-Niemi-Shabanov decomposition. In this paper, we
label it the CDG decomposition, as per the convention of
Cho et al. [13].
The Lie group SUðNÞ has N2 − 1 generators λðaÞ

(a ¼ 1;…; N2 − 1), of which N − 1 are Abelian generators
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ΛðiÞ (i ¼ 1;…; N − 1). The gauge transformed Abelian
directions (Cartan generators) are denoted as

n̂iðxÞ ¼ UðxÞ†ΛðiÞUðxÞ: ð1Þ

Gluon fluctuations in the n̂iðxÞ directions are described

by cðiÞμ ðxÞ, where μ is the Minkowski index. There is a
covariant derivative which leaves the n̂iðxÞ invariant,

D̂μn̂iðxÞ≡ ð∂μ þ g~VμðxÞ×Þn̂iðxÞ ¼ 0; ð2Þ

where ~VμðxÞ is of the form

~VμðxÞ ¼ cðiÞμ ðxÞn̂iðxÞ þ ~CμðxÞ;
~CμðxÞ ¼ g−1∂μn̂iðxÞ × n̂iðxÞ: ð3Þ

The vector notation refers to the internal space, and
summation is implied over i ¼ 1;…; N − 1. For later
convenience, we define

FðiÞ
μν ðxÞ ¼ ∂μc

ðiÞ
ν ðxÞ − ∂νc

ðiÞ
μ ðxÞ; ð4Þ

~HμνðxÞ ¼ ∂μ
~CνðxÞ − ∂ν

~CμðxÞ þ g~CμðxÞ × ~CνðxÞ
¼ HðiÞ

μν ðxÞn̂iðxÞ; ð5Þ

HðiÞ
μν ðxÞ ¼ ~HμνðxÞ · n̂iðxÞ: ð6Þ

The vectors ~XμðxÞ denote the dynamical components of
the gluon field in the off-diagonal directions of the internal

space, so if ~AμðxÞ is the gluon field, then

~AμðxÞ ¼ ~VμðxÞ þ ~XμðxÞ ¼ cðiÞμ ðxÞn̂iðxÞ þ ~CμðxÞ þ ~XμðxÞ;
ð7Þ

where

~XμðxÞ⊥n̂iðxÞ; ∀ 1 ≤ i < N; ~Dμ ¼ ∂μ þ g~AμðxÞ:
ð8Þ

The Lagrangian density is still

LgaugeðxÞ ¼ −
1

4
~FμνðxÞ · ~FμνðxÞ; ð9Þ

where the field strength tensor of QCD expressed in terms
of the CDG decomposition is

~FμνðxÞ ¼ ðFðiÞ
μν ðxÞ þHðiÞ

μν ðxÞÞn̂iðxÞ þ ðD̂μ
~XνðxÞ

− D̂ν
~XμðxÞÞ þ g~XμðxÞ × ~XνðxÞ: ð10Þ

We will later have a need for the conjugate momenta.
These are only defined up to a gauge transformation, so to
avoid complications, we take the Lorenz gauge. The
conjugate momentum for the Abelian component is then

ΠðiÞμðxÞ ¼ δðR d3xLgaugeÞ
δ∂0c

ðiÞ
μ ðxÞ

¼ −~F0μðxÞ · n̂ðiÞðxÞ; ð11Þ

while the conjugate momentum of ~XμðxÞ is

~ΠμðxÞ ¼ δðR d3xLgaugeÞ
δD̂0

~XμðxÞ

¼ −
1

2
ðD̂0 ~XμðxÞ − D̂μ ~X0ðxÞ

þ gð~XμðxÞ × ~XνðxÞÞ⊥fn̂ðiÞ∶1≤i≤MgÞ: ð12Þ

From now on, we restrict ourselves to the SUð2Þ theory for
which there is only one n̂ðxÞ lying in a three-dimensional
internal space and neglect the ðiÞ indices. The results can be
extended to larger SUðN ¼ M þ 1Þ gauge groups [22],
although the cross product in Eq. (12) vanishes when
N ¼ 2.
The above outline neglects various mathematical subtle-

ties involved in a fully consistent application of the CDG
decomposition. In fact, its proper interpretation and gauge
fixing took considerable effort by several independent
groups. The interested reader is referred to [14–18] for
further details.

III. THE qα GAUGE FIELDS
OF THE MONOPOLE FIELD

Now we adapt the Clairaut approach (see the Appendix)
[5,23] to quantum field theory and apply it to the CDG
decomposition of the QCD gauge field, leaving the
fundamental representation until Sec. VI. Substituting the
polar angles

n̂ðxÞ ¼ cos θðxÞ sinϕðxÞê1 þ sin θðxÞ sinϕðxÞê2
þ cosϕðxÞê3 ð13Þ

and defining

sinϕðxÞn̂θðxÞ≡
Z

dy4
dn̂ðxÞ
dθðyÞ ¼ sinϕðxÞð− sin θðxÞê1

þ cos θðxÞê2Þ;

n̂ϕðxÞ≡
Z

dy4
dn̂ðxÞ
dϕðyÞ ¼ cos θðxÞ cosϕðxÞê1

þ sin θðxÞ cosϕðxÞê2 − sinϕðxÞê3 ð14Þ
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for later convenience, we note that

n̂ϕϕ ¼ −n̂;

sinϕðxÞn̂θθ ¼ − sinϕðxÞðcos θê1 þ sin θê2Þ; ð15Þ

and that the vectors n̂ðxÞ ¼ n̂ϕðxÞ × n̂θðxÞ form an ortho-
normal basis of the internal space.
Substituting the above into the Cho connection in Eq. (3)

gives

g~CμðxÞ ¼ ðcos θðxÞ cosϕðxÞ sinϕðxÞ∂μθðxÞ
þ sin θðxÞ∂ϕðxÞÞê1
þ ðsin θðxÞ cosϕðxÞ sinϕðxÞ∂μθðxÞ
− cos θðxÞ∂ϕðxÞÞê2 − sin2ϕðxÞ∂μθðxÞê3

¼ sinϕðxÞ∂μθðxÞn̂ϕðxÞ − ∂μϕðxÞn̂θðxÞ ð16Þ

from which it follows that

g2 ~CμðxÞ × ~CνðxÞ ¼ sinϕðxÞð∂μϕðxÞ∂νθðxÞ
− ∂νϕðxÞ∂μθðxÞÞn̂ðxÞ: ð17Þ

Treating θ, ϕ as dynamic variables, their conjugate
momenta are

p̄ϕðxÞ ¼
Z

dy3
δL

x∂0ϕðxÞ
¼

Z
dy3

Z
dy0δðx0 − y0ÞðsinϕðyÞy∂μθðyÞn̂ðyÞ

þ n̂θðyÞ × ~XμðyÞÞ · ~F0μðyÞδ3ð~x − ~yÞ
¼ ðsinϕðxÞ∂μθðxÞn̂ðxÞ þ n̂θðxÞ × ~XμðxÞÞ · ~F0μðxÞ;

ð18Þ

p̄θðxÞ ¼
Z

dy3
δL

x∂0θðxÞ
¼ −

Z
dy3

Z
dy0δðx0 − y0Þ sinϕðyÞðy∂μϕðyÞn̂ðyÞ

þ sinϕðyÞn̂ϕðyÞ × ~XμðyÞÞ · ~F0μðyÞδ3ð~x − ~yÞ
¼ − sinϕðxÞð∂μϕðxÞn̂ðxÞ þ n̂ϕðxÞ × ~XμðxÞÞ· ~F0μðxÞ:

ð19Þ

The Hessian is given by

∥
δ2L

δqAδqB
∥ ¼ 0; ð20Þ

where A, B run over all fields, both physical and topo-
logical. It follows from inspection of the Lagrangian
density, Eqs. (9) and (10), that the time derivatives of

θðxÞ, ϕðxÞ occur only in linear combination with those of
one of the physical gluon fields cμðxÞ, ~XμðxÞ, either through
F0νðxÞ þH0νðxÞ or D̂0. (This is readily extended to quarks,
which we introduce in Sec. VI). Therefore, the rows
(columns) of the Hessian matrix corresponding to _θðxÞ,
_ϕðxÞmust be linear combinations of those corresponding to
the physical field velocities, so the Hessian vanishes.
This linear dependence within the Hessian is consistent

with Cho and Pak’s [15] and Bae et al.’s [18] finding that
n̂ðxÞ (and by extension θðxÞ, ϕðxÞ) does not generate an
independent EOM.
We, therefore, use the discussion surrounding (3.10) in

[5] and define

BθðxÞ≡ p̄θðxÞ; BϕðxÞ≡ p̄ϕðxÞ; ð21Þ
where the definitions of BϕðxÞ, BθðxÞ are generalized to
quantum field theory from those in [5]. It follows that
Hphys ¼ Hmix (also defined in [5]).

IV. THE qα CURVATURE

From Eqs. (18) and (19), we have

δBϕðxÞ
δθðyÞ ¼ ðsinϕðxÞn̂θθðxÞ× ~Xμ · ~F0μðxÞ− TϕðxÞÞδ4ðx − yÞ;

ð22Þ
δBθðxÞ
δϕðyÞ ¼ −ðcosϕðxÞð∂μϕðxÞn̂ðxÞ þ n̂ϕðxÞ × ~XμðxÞÞ

· ð~F0μðxÞ þ ~H0μÞ þ TθðxÞÞδ4ðx − yÞ; ð23Þ
where

TϕðxÞ ¼ ∂k½sinϕðxÞn̂ · ~F0kðxÞ − ðsinϕðxÞ∂kθðxÞ
þ n̂θðxÞ × ~Xk · n̂Þ∂0ϕðxÞ�; ð24Þ

TθðxÞ ¼ −∂k½sinϕðxÞðn̂ · ~F0kðxÞ þ ð∂kϕðxÞ
þ n̂ϕðxÞ × ~Xk · n̂Þ∂0θðxÞÞ� ð25Þ

are the surface terms arising from derivatives δð∂θÞ
δθ , δð∂ϕÞδϕ , and

the latin index k is used to indicate that only spatial indices
are summed over.
This yields the qα curvature

F θϕðxÞ ¼
Z

dy4
�
δBθðxÞ
δϕðyÞ −

δBϕðxÞ
δθðyÞ

�
δ4ðx − yÞ

þ fBϕðxÞ; BθðxÞgphys
¼ − cosϕðxÞð∂μϕðxÞn̂ðxÞ þ n̂ϕðxÞ

× ~XμðxÞÞ · ð~F0μðxÞ þ ~H0μðxÞÞ
− sinϕðxÞn̂θθðxÞ × ~XμðxÞ · ~Fμ0ðxÞ
þ TϕðxÞ − TθðxÞ; ð26Þ
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where we have used that the bracket fBϕðxÞ; BθðxÞgphys
vanishes because BϕðxÞ and BθðxÞ share the same depend-
ence on the dynamic d.o.f. and their derivatives.
In earlier work on the Clairaut formalism [5,23], this was

called the qα-field strength, but we call it qα curvature in
quantum field theory applications to avoid confusion.
This nonzero F θϕðxÞ is necessary and usually sufficient

to indicate a nondynamic contribution to the conventional
Euler-Lagrange EOMs. More significant is a corresponding
alteration of the quantum commutators, with repercussions
for canonical quantization and the particle number.

V. ALTERED EQUATIONS OF MOTION

Generalizing Eqs. (7.1), (7.3), and (7.5) in [5]

∂0qðxÞ ¼ fqðxÞ; Hphysgnew
¼ δHphys

δpðxÞ −
Z

dy4
X
α¼ϕ;θ

δBαðyÞ
δpðxÞ ∂0αðyÞ; ð27Þ

the derivative of the Abelian component complete with
corrections from the monopole background is

∂0cσðxÞ ¼
δHphys

δΠσðxÞ −
Z

dy4
X
α¼ϕ;θ

δBαðyÞ
δΠσðxÞ ∂

0αðyÞ: ð28Þ

The effect of the second term is to remove the monopole
contribution to δHphys

δΠσðxÞ. To see this, consider that, by con-
struction, the monopole contribution to the Lagrangian and
Hamiltonian is dependent on the time derivatives of θ, ϕ, so

the monopole component of δHphys

δΠσðxÞ is

δ

δΠσðxÞHphysj_θ _ϕ

¼ δ

δΠσðxÞ
�

δHphys

δ∂0θðxÞ
∂0θðxÞ þ

δHphys

δ∂0ϕðxÞ
∂0ϕðxÞ

�

¼ δ

δΠσðxÞ
�

δLphys

δ∂0θðxÞ
∂0θðxÞ þ

δLphys

δ∂0ϕðxÞ
∂0ϕðxÞ

�

¼ δ

δΠσðxÞ ðBθðxÞ∂0θðxÞ þ BϕðxÞ∂0ϕðxÞÞ; ð29Þ

which is a consistency condition for Eq. (28). This confirms
the necessity of treating the monopole as a nondynamic field.
We now observe that

δBθðxÞ
δcσðyÞ ¼

δBϕðxÞ
δcσðyÞ ¼ 0; ð30Þ

from which it follows that the EOM of cσ receives no
correction. However, its f; gphys contribution corresponding
to the terms in the conventional EOM for the Abelian

component already contains a contribution from the
monopole field strength.
Repeating the above steps for the valence gluons ~Xμ,

assuming σ ≠ 0, and combining

D̂0
~ΠσðxÞ ¼

δH

δ~XσðxÞ
−
Z

dy4
X
α¼ϕ;θ

δBαðyÞ
δ~XσðxÞ

∂0αðyÞ ð31Þ

with

δBϕðyÞ
δ~XσðxÞ

¼ −ððsinϕðyÞy∂σθðyÞn̂þ n̂θðyÞ

× ~XσðyÞÞ × ~X0 − n̂ϕðyÞn̂ · ~F0σÞ; ð32Þ

δBθðyÞ
δ~XσðxÞ

¼ ðð∂σϕðxÞn̂þ sinϕðxÞn̂ϕðxÞ × ~XσðxÞÞ

× ~X0 − sinϕn̂θðyÞn̂ · ~F0σÞδ4ðx − yÞ; ð33Þ

gives

D̂0
~ΠσðxÞ ¼

δH

δ~XσðxÞ
−
1

2
ððsinϕðxÞð∂σϕðxÞ∂0θðxÞ

− ∂σθðxÞ∂0ϕðxÞÞn̂ðxÞ
þ ðsinϕðxÞn̂ϕðxÞ∂0θðxÞ − n̂θðxÞ∂0ϕðxÞÞ
× ~XσðxÞÞ × ~X0

¼ δH

δ~XσðxÞ
−
1

2
g2ð~CσðxÞ × ~C0ðxÞ þ ~C0ðxÞ

× ~XσðxÞÞ × ~X0ðxÞ: ð34Þ

This is the converse situation of the Abelian gluon, since it

is the derivative of ~Xσ that is uncorrected while its EOM
receives a correction which cancels the monopole’s electric

contribution to fD̂0
~Xσ; Hphysgphys. This is required by the

conservation of topological current.

VI. THE FUNDAMENTAL REPRESENTATION

We consider a complex boson field aðxÞ, a†ðxÞ in the
fundamental representation of the gauge group and probe
the implications of this approach for the quark fields.
Although physical quarks are fermions, we study the
bosonic case to avoid distracting complications, leaving
the fermionic case for a later paper.
The kinetic and interaction terms are given by

−ðD̂μaÞ†ðxÞD̂μaðxÞ: ð35Þ

We do not consider the mass term which makes no
contribution to the physics considered here.
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The contribution of aðxÞ, a†ðxÞ to BϕðxÞ, BθðxÞ is

BϕðxÞja;a† ¼ ðD̂0aðxÞÞ†n̂θðxÞaðxÞ þ ðn̂θðxÞaðxÞÞ†D̂0aðxÞ;
BθðxÞja;a† ¼ −ðD̂0aðxÞÞ† sinϕðxÞn̂ϕðxÞaðxÞ − ðsinϕðxÞn̂ϕðxÞaðxÞÞ†D̂0aðxÞ; ð36Þ

leading to a contribution of

F θϕðxÞja;a† ¼ − ðD̂0aðxÞÞ†ðcosϕðxÞn̂ϕðxÞ − sinϕðxÞn̂ðxÞÞaðxÞ
− ð∂0θðxÞðcosϕðxÞn̂ϕðxÞ − sinϕðxÞn̂ðxÞÞaðxÞÞ† sinϕðxÞn̂ϕðxÞa
− ððcosϕðxÞn̂ϕðxÞ − sinϕðxÞn̂ðxÞÞaÞ†D̂0aðxÞ
− ðsinϕðxÞn̂ϕðxÞaðxÞÞ†ðcosϕðxÞn̂ϕðxÞ − sinϕðxÞn̂ðxÞÞ∂0θðxÞa
þ ðn̂θθðxÞaðxÞ∂0ϕðxÞÞ†n̂θðxÞaðxÞ
þ ðn̂θðxÞaðxÞÞ†n̂θθðxÞaðxÞ∂0ϕðxÞ
− ðD̂0aðxÞÞ†n̂θθðxÞaðxÞ − ðn̂θθðxÞaðxÞÞ†D̂0aðxÞ ð37Þ

to the qα curvature. It follows that the complete expression for the qα curvature in this theory is the sum of Eqs. (26)
and (37).
As with the gluon d.o.f., the nonzero F θϕðxÞ leads to the cancellation of the monopole interactions and generates

corrections to the canonical commutation relations.

VII. MONOPOLE CORRECTIONS TO THE QUANTUM COMMUTATION RELATIONS

Corrections to the classical Poisson bracket correspond to corrections to the equal-time commutators in the quantum
regime. Denoting conventional commutators as ½; �phys and the corrected ones as ½; �new, for μ, ν ≠ 0 we have

½cμðxÞ; cνðzÞ�new ¼½cμðxÞ; cνðzÞ�phys −
Z

dy4
�
δBθðyÞ
δΠμðxÞF

−1
θϕðzÞ

δBϕðyÞ
δΠνðzÞ −

δBϕðyÞ
δΠμðxÞF

−1
ϕθðzÞ

δBθðyÞ
δΠνðzÞ

�
δ4ðx − zÞ

¼½cμðxÞ; cνðzÞ�phys − sinϕðxÞ sinϕðzÞð∂μϕðxÞ∂νθðzÞ − ∂νϕðzÞ∂μθðxÞÞF−1
θϕðzÞδ4ðx − zÞ: ð38Þ

The second term on the final line, after integration over d4z, clearly becomes

HμνðxÞ sinϕðxÞF−1
θϕðxÞ; ð39Þ

indicating the role of the monopole condensate in the correction. By contrast, the commutation relations

½cμðxÞ;ΠνðzÞ�new ¼ ½cμðxÞ;ΠνðzÞ�phys; ½ΠμðxÞ;ΠνðzÞ�new ¼ ½ΠμðxÞ;ΠνðzÞ�phys ð40Þ

are unchanged. Nonetheless, the deviation from the canonical commutation shown in Eq. (38) is inconsistent with the
particle creation/annihilation operator formalism of conventional second quantization.
Repeating for the valence gluons,

½Πa
μðxÞ;Πb

νðzÞ�new ¼ ½Πa
μðxÞ;Πb

νðzÞ�phys −
Z

dy4
�
δBθðyÞ
δXμ

aðxÞ
δBϕðyÞ
δXν

bðzÞ
−
δBϕðyÞ
δXμ

aðxÞ
δBθðyÞ
δXν

bðzÞ
�
F−1

θϕðzÞ

¼ ½Πa
μðxÞ;Πb

νðzÞ�phys þ ðsinϕðzÞnaϕðxÞnbθðzÞ~F0μðxÞ · n̂ðxÞ~F0νðzÞ · n̂ðzÞ
− sinϕðxÞnaθðxÞnbϕðzÞ~F0μðzÞ · n̂ðzÞ~F0νðxÞ · n̂ðxÞÞ × F−1

θϕðzÞδ4ðx − zÞ; ð41Þ

where the second term on the final line integrates over d4z to become

ðnaϕðxÞnbθðxÞ − naθðxÞnbϕðxÞÞ sinϕðxÞ~F0μðxÞ · n̂ðxÞ~F0νðxÞ · n̂ðxÞF−1
θϕðxÞ; ð42Þ
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while

½Xa
μðxÞ;Πb

νðzÞ�new ¼ ½Xa
μðxÞ;Πb

νðzÞ�phys;
½Xa

μðxÞ; Xb
νðzÞ�new ¼ ½Xa

μðxÞ; Xb
νðzÞ�phys:

ð43Þ

Indeed, this is not an exhaustive presentation of devia-
tions from canonical quantisation. If a qα-gauge field’s
derivative with respect to any physical field or its conjugate
momentum is nonzero, then that field’s quantization con-
ditions and particle interpretation are affected unless the qα

curvature is exactly zero. Hence, any field interacting with
the monopole component ceases to have a particle inter-
pretation in the presence of the monopole component. In
particular, its particle number becomes ill-defined, which is
reminiscent of the parton model.
Equation (38) has a superficial similarity to Dirac

brackets. The difference between our new brackets
f; gnew and Dirac brackets is clarified in Appendix B of
[5]. If one introduces additional “nonphysical”momenta pα

(Eq. (B1) in [5] or Sec. 5 of [6]) corresponding to the
nonphysical coordinates qα, then the new bracket in the
fully extended phase space becomes the Dirac bracket. But
then we obtain constraints, especially the complicated
second-stage constraint Eqs. (B5) of [6], which are absent
in our approach. Equation (41) can, therefore, be consid-
ered a new shortened version of quantization for singular
systems, as described in the conclusions of [5,6].
Arguments that colored states are ill-defined in the

infrared regime, based on either unitarity and/or gauge
invariance [24–26] date back several decades, but, to our
knowledge, we are the first to argue that canonical
quantization breaks down.

VIII. DISCUSSION

We have applied the Clairaut-type formalism to the CDG
decomposition. This has shed light on the dynamics of
the topologically generated chromomonopole field of
QCD. In particular, it addresses the issue of its EOMs,
or lack thereof [15,18], and the contribution its d.o.f. make
to the evolution of other fields.
Indeed, the qα curvature was found to be nonzero,

leading to corrections to the time derivatives of the gluon’s
dynamic d.o.f., which cancel all interactions between
physical and nonphysical fields from the EOMs. This is
both necessary for the consistency of Eq. (28) and
qualitatively consistent with our later finding that the
chromomonopole background alters the canonical commu-
tation relations in such a way as to invalidate the particle
interpretation of the physical d.o.f.
This can be taken to mean that quarks and gluons do not

have a well-defined particle number in the monopole
condensate, suggestive of both confinement and the parton
model, but it remains to repeat this work with a fully

quantized, i.e., including ghosts, SUð3Þ gauge field, and
with fermionic quarks rather than scalar ones. Furthermore,
while many papers have found the monopole condensate
[27–29], especially with the CDG decomposition [15,20,
30,31], to be energetically favorable to the perturbative
vacuum, this result needs to be repeated within the Clairaut-
based quantization scheme of this paper before strong
claims are made.
In summary, this approach offers a rigorous analytic tool

for elucidating the role of topological d.o.f. in the dynamics
of quantum field theories and finds that colored states have
an ill-defined particle number in the presence of nonzero
monopole field strength.
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APPENDIX: THE CLAIRAUT-TYPE FORMALISM

Here we review the main ideas and formulas of the
Clairaut-type formalism for singular theories [5,23]. Let us
consider a singular Lagrangian LðqA; vAÞ ¼ LdegðqA; vAÞ,
A ¼ 1;…; n, which is a function of 2n variables (n
generalized coordinates qA and n velocities vA ¼ _qA ¼
dqA=dt) on the configuration space TM, where M is a
smooth manifold, for which the Hessian’s determinant is

zero. Therefore, the rank of the Hessian matrix WAB ¼
∂2LðqA;vAÞ
∂vB∂vC is r < n, and we suppose that r is constant. We can

rearrange the indices of WAB in such a way that a
nonsingular minor of rank r appears in the upper left
corner. Then, we represent the index A as follows: if
A ¼ 1;…; r, we replace A with i (the “regular” index), and
if A ¼ rþ 1;…; n we replace A with α (the “degenerate”
index). Obviously, detWij ≠ 0, and rankWij ¼ r. Thus,
any set of variables labeled by a single index splits as a
disjoint union of two subsets. We call those subsets regular
(having latin indices) and degenerate (having greek indi-
ces). As was shown in [5,23], the “physical” Hamiltonian
can be presented in the form

HphysðqA; piÞ ¼
Xr
i¼1

piViðqA; pi; vαÞ þ
Xn
α¼rþ1

BαðqA; piÞvα

− LðqA; ViðqA; pi; vαÞ; vαÞ; ðA1Þ

where the functions

BαðqA; piÞ¼def
∂LðqA; vAÞ

∂vα
����
vi¼ViðqA;pi;vαÞ

ðA2Þ
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are independent of the unresolved velocities vα since
rankWAB ¼ r. Also, the rhs of (A1) does not depend on
the degenerate velocities vα,

∂Hphys

∂vα ¼ 0; ðA3Þ

which justifies the term physical. The Hamilton-Clairaut
system, which describes any singular Lagrangian classical
system (satisfying the second order Lagrange equations),
has the form

dqi

dt
¼ fqi; Hphysgphys −

Xn
β¼rþ1

fqi; Bβgphys
dqβ

dt
;

i ¼ 1;…; r; ðA4Þ

dpi

dt
¼ fpi;Hphysgphys −

Xn
β¼rþ1

fpi; Bβgphys
dqβ

dt
;

i ¼ 1;…; r; ðA5Þ

Xn
β¼rþ1

�∂Bβ

∂qα −
∂Bα

∂qβ þ fBα; Bβgphys
�
dqβ

dt

¼ ∂Hphys

∂qα þ fBα; Hphysgphys;

α ¼ rþ 1;…; n; ðA6Þ
where the physical Poisson bracket (in regular variables
qi, pi) is

fX; Ygphys ¼
Xn−r
i¼1

�∂X
∂qi

∂Y
∂pi

−
∂Y
∂qi

∂X
∂pi

�
: ðA7Þ

Whether the variables BαðqA; piÞ have a nontrivial effect
on the time evolution and commutation relations is equiv-
alent to whether or not the so-called “qα-field strength”

F αβ ¼
∂Bβ

∂qα −
∂Bα

∂qβ þ fBα; Bβgphys ðA8Þ

is nonzero. See [5,6,23] for more details.
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