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We consider Rp inflation with p ≈ 2, allowing small deviation from R2 inflation. Using the inflaton
potential in the Einstein frame, we construct a consistency relation between the scalar spectral index, the
tensor-to-scalar ratio, as well as the running of the scalar spectral index, which will be useful to constrain a
deviation from R2 inflation in future observations.
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I. INTRODUCTION

The first self-consistent model of inflation is R2 inflation
proposed by Starobinsky in 1980 [1], where R is the Ricci
curvature. This model incorporates a graceful exit to the
radiation-dominated stage via a period of reheating, where
the standard model particles are created through the
oscillatory decay of the inflaton, or dubbed the scalaron
[2–4]. The predictions of R2 inflation for the spectra of
primordial density perturbations and gravitational waves
remain in agreement with the most recent high-precision
data of the cosmic microwave background (CMB) [5,6]. In
March 2014, BICEP2 announced the detection of B-mode
polarization at degree angular scales in the CMB, and the
amplitude of the tensor-to-scalar-ratio is as large as r ¼
0.20þ0.07

−0.05 [7], which is in tension with previous data as well
as the prediction of R2 inflation. However, it is still unclear
if the signal is of primordial origin, due to an unknown
amplitude of foreground dust emission [8]. In light of this,
R2 inflation is still consistent with the recent data and
upcoming data may allow us to pin down the inflationary
model of our universe.
In addition to inflation, the R2 term play a different role

in the context of fðRÞ gravity for the late-time acceleration.
By choosing a suitable functional form of fðRÞ, fðRÞ
gravity can mimic the expansion history of the concordance
ΛCDM model without a cosmological constant [9–11].
Observationally, a key to distinguish fðRÞ gravity from the
ΛCDM model is the expansion history and the growth of
the large-scale structure, which are conveniently parame-
trized by the equation-of-state parameter w for dark energy
and the growth index γ, respectively, because both param-
eters remain constant in the ΛCDM model, namely, w ¼
−1 and γ ¼ 0.55, while they are dynamical in fðRÞ gravity
[9,12–17]. In particular, it is interesting that fðRÞ gravity
allows a 1 eV sterile neutrino [18], whose existence has
been suggested by recent neutrino oscillation experiments
but is in tension with vanilla ΛCDM. However, the fðRÞ
models for the late-time acceleration suffer from singularity
problems, where the scalaron mass and Ricci curvature
diverge quickly in the past [11,19–22]. These problems are
solved if we add R2 term [23]. The resultant combined fðRÞ

model incorporates inflation and the late-time acceleration.
In the combined model, inflationary dynamics is still the
same as R2 inflation, while differences show up in reheat-
ing phase dominated by the kinetic energy of the scalaron
[24], which enhances the tensor power spectrum [25].
The R2 model is thus attractive in the sense that it is

currently one of the leading candidates for inflation and it
cures singularity problems when combined with fðRÞ
models for the late-time acceleration. Although it is simple
and powerful, with progress in observational accuracy, we
can test for further complexity. Similar to the generalization
from a scale-invariant spectrum to a nonzero tilt, we may be
forced to consider a small deviation from R2 inflation.
Specifically, tiny tensor-to-scalar ratio for R2 inflation,
namely, r≃ 0.003 for 60 e-folds, motivates us to consider a
deviation from R2 inflation. We are poised to possibly
obtain strong constraints on r from joint analysis of Planck
and BICEP2 data, along with future experiments. It is
therefore interesting to consider the possibility to generate
larger value of r based on the R2 model.
In order to establish a way to measure a deviation from

R2 inflation, we investigate Rp inflation in the present
paper, where p ≈ 2 and is not an integer, allowing small
deviation from p ¼ 2. The Rp Lagrangian was originally
considered in the context of higher derivative theories
[26,27] and then applied to inflation [28,29] (see also
[30–32] for recent review), which provides a simple and
economical generalization of R2 inflation. Recently, Rp

inflation has been focused in the context of the generation
of large r. The Rp model is a simple and economical
generalization of the R2 model. It has appeared as a variant
of R2 inflation [30–32], but recently has been focused in the
context of the generation of large r. It has been emphasized
that for p slightly smaller than 2, the tensor-to-scalar ratio
can be enhanced relative to the original R2 model [33] (see
also [34]). A combined fðRÞ model based on the Rp model
has also been proposed [35]. Not only is it of phenom-
enological interest, the Rp action is also theoretically
motivated because one-loop corrections to the R2 action
could give a correction to the power of the Ricci scalar
[33,36,37]. A deformation of the R2 action that mimics
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higher-loop corrections is considered in [38]. A relevance
to Higgs inflation is considered in [39,40].
However, its prediction to the scalar spectral index ns, the

tensor-to-scalar ratio r, as well as the running of the scalar
spectral index α≡ dns=d ln k is not well formulated. In
particular, some of the previous results provide different
results for the prediction of ns and r. Further, the running of
the scalar spectral index in the model has not been discussed
in the literature. The aim of the present paper is to resolve
these issues and present a consistency relation for Rp

inflation by using the inflaton potential in the Einstein
frame. We consider not only the scalar spectral index and
the tensor-to-scalar ratio, but also the running of the scalar
spectral index. We derive a handy expression for these
inflationary observables, which will be useful to constrain
a deviation from R2 inflation in future observations.
The organization of the paper is as follows. In Sec. II, we

explore the background dynamics of the inflationary
expansion in Rp inflation. We write down the inflaton
potential for general p in the Einstein frame and the slow-
roll parameters in terms of the derivatives of the potential.
In Sec. III, we derive a consistency relation between the
inflationary observables, with which we can constrain the
model. We conclude in Sec. IV. Throughout the paper, we
will work in natural units where c ¼ 1, and the metric
signature is ð−þþþÞ.

II. Rp INFLATION

Let us start with a general fðRÞ and write down
equations of motion in the Einstein frame. We consider

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
Pl

2
fðRÞ; ð1Þ

where MPl ≡ ð8πGÞ−1=2 is the reduced Planck mass. By
using the conformal transformation gEμν ≡ FðRÞgμν with

defining the scalaron field ϕ by FðRÞ≡ f0ðRÞ≡ e
ffiffi
2
3

p
ϕ

MPl, we
can recast the action as

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
M2

Pl

2
RE −

1

2
gμνE ∂μϕ∂νϕ − VðϕÞ

�
; ð2Þ

where the potential is given by

VðϕÞ ¼ M2
Pl

2

χFðχÞ − fðχÞ
FðχÞ2 : ð3Þ

Here, χ ¼ χðϕÞ is a solution for FðχÞ ¼ e
ffiffi
2
3

p
ϕ

MPl, and thus
fðχÞ and FðχÞ are determined for each ϕ. The time and the
scale factor in the Jordan frame and Einstein frame relate
through

dtE ¼
ffiffiffiffi
F

p
dt; aE ¼

ffiffiffiffi
F

p
a; ð4Þ

and thus the Hubble parameter in the Einstein frame is
given by

HE ¼ Hffiffiffiffi
F

p
�
1þ

_F
2HF

�
; ð5Þ

where a dot implies the derivative with respect to the time t
in the Jordan frame. The Einstein equation reads

3M2
PlH

2
E ¼ 1

2

�
dϕ
dtE

�
2

þ V; ð6Þ

−2M2
Pl
dHE

dtE
¼

�
dϕ
dtE

�
2

; ð7Þ

and the equation of motion for the scalaron is given by

d2ϕ
dt2E

þ 3HE
dϕ
dtE

þ Vϕ ¼ 0; ð8Þ

where Vϕ ≡ ∂V=∂ϕ.
For the rest of the paper, we focus on the following

model:

fðRÞ ¼ Rþ λRp: ð9Þ
The parameter p is not necessarily an integer in general,
and λ has mass dimension ð2 − pÞ. In this model, the
potential (3) can be explicitly written in terms of ϕ as

VðϕÞ ¼ V0e
−2

ffiffi
2
3

p
ϕ

MPlðe
ffiffi
2
3

p
ϕ

MPl − 1Þ
p

p−1 ð10Þ

with V0 ≡ M2
Pl
2
ðp − 1Þpp=ð1−pÞλ1=ð1−pÞ. Note that for p ¼ 2

and λ ¼ 1=ð6M2Þ, the potential (10) recovers the potential
for R2 inflation:

VðϕÞ ¼ 3

4
M2M2

Plð1 − e−
ffiffi
2
3

p
ϕ

MPlÞ2; ð11Þ

where the energy scale is normalized as M ≃ 1013 GeV
from the amplitude of observed power spectrum for the
primordial perturbations.
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FIG. 1 (color online). Potential for Rp inflation with p ¼ 2
(blue solid), and 1.85, 1.90, 1.95, 2.05 (magenta dashed).
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In Fig. 1, we present the potential (10) for various p
around p ¼ 2. The scalaron rolls slowly on the potential at
ϕ > 0, and leads the inflationary expansion. While the
potential for p ¼ 2 asymptotically approaches to a constant
value V0 for large ϕ, the potential for p≲ 2 continuously
grows. Therefore, the potential for p≲ 2 is steeper than
p ¼ 2, and this leads to larger tensor-to-scalar ratio relative
to R2 inflation, as we shall see later. For p > 2, the potential

(10) has a maximum at ϕ ¼ MPl

ffiffi
3
2

q
ln½2ðp−1Þp−2 �≡ ϕm and

approaches to 0 for large ϕ. For instance, ϕm=MPl ≃ 4.58
for p ¼ 2.05. Therefore, inflation can take place at either of
0 < ϕ < ϕm or ϕ > ϕm. We are interested in the former
case to see a deviation from R2 inflation, and do not
consider the latter case, which leads to a completely
different scenario from R2 inflation.
We define the slow-roll parameters for the potential in

the Einstein frame as

ϵ≡M2
Pl

2

�
Vϕ

V

�
2

; η≡M2
Pl

Vϕϕ

V
; ξ≡M4

Pl

VϕVϕϕϕ

V2
:

ð12Þ

Under the slow roll approximation, (6)–(8) read

HE ≃
ffiffiffiffi
V

p
ffiffiffi
3

p
MPl

;
dHE

dtE
≃ −

V2
ϕ

6V
;

dϕ
dtE

≃ −
MPlVϕffiffiffiffiffiffi

3V
p :

ð13Þ

During slow-roll regime, the scale factor in the Einstein
frame undergoes a quasi-de Sitter expansion. From
j _F=ðHFÞj≃ 2

ffiffiffiffiffiffiffi
ϵ=3

p
≪ 1, F remains approximately con-

stant during the slow-roll regime. Hence, from (4) the scale
factor and time in the Einstein frame are identical to those
in the Jordan frame up to a constant factor. Consequently,
the quasi-de Sitter expansion takes place in both frame.
The number of e-folds between an initial time tEi and tE is
given by

NE ≡
Z

tE

tEi

HEdtE ≃ 1

M2
Pl

Z
ϕi

ϕ

V
Vϕ

dϕ: ð14Þ

Note that from (4) and (5) HEdtE ¼ Hdt½1þ _F=ð2HFÞ�≃
Hdt during the slow-roll regime and therefore NE ≃ N.
Armed with these equivalences between quantities in the
Jordan frame and Einstein frame during inflation, we omit
the subscript E for the following and continue to explore
the inflationary dynamics in the Einstein frame.
Before proceeding to detailed analysis for p ¼ 2 and

general p, let us here clarify the differences of the potential
in the previous works. In [39], the authors consider Rp

model (9) at first but eventually investigate the potential
V ∝ ð1 − γe−βϕÞ with β and γ as free parameters. This
potential is obviously different from the potential (10) in Rp

inflation because their potential approaches constant for
large ϕ. They show that ϵ ≪ jηj always holds, and ns
depends only on e-folds while r depends on the model
parameters and e-folds. As we shall see below, these points
are incompatible with Rp inflation.
In [40], the authors also start from Rp model (9) but

arrive the potential V ∝ e
2−p
p−1

ffiffi
2
3

p
ϕ

MPl , assuming ϕ=MPl ≫ffiffiffiffiffiffiffiffi
3=2

p ≃ 1.22. However, as we shall see, a field value
which we are interested in is the same order of 1.22. In
particular, their approximation breaks down as p → 2,
because the field value of our interest becomes closer to
1.22. Actually, their ns and r does not recover R2 inflation.
Therefore, we cannot use their result if we want to consider
small deviation from R2 inflation.
Thus, although both works are motivated by Rp

inflation, they did not investigate Rp inflation itself.
Rather, they investigated the potential V ∝ ð1 − γe−βϕÞ
and V ∝ e

2−p
p−1

ffiffi
2
3

p
ϕ

MPl , respectively, both of which cannot be
used as an asymptotic form of the potential (10) of Rp

inflation. On the other hand, our analysis is based on the
potential (10) without any approximation.

A. p ¼ 2

First, let us focus on the case with p ¼ 2. The slow-roll
parameters (12) for the potential (11) are given by

ϵ ¼ 4

3ðe
ffiffi
2
3

p
ϕ

MPl − 1Þ2
;

η ¼ −
4ðe

ffiffi
2
3

p
ϕ

MPl − 2Þ
3ðe

ffiffi
2
3

p
ϕ

MPl − 1Þ2
;

ξ ¼ 16ðe
ffiffi
2
3

p
ϕ

MPl − 4Þ
9ðe

ffiffi
2
3

p
ϕ

MPl − 1Þ3
: ð15Þ

Thus the slow-roll parameters relate each other through ϕ,
and we can derive the following relation between them:

η ¼ −
2

ffiffiffi
ϵ

p
ffiffiffi
3

p þ ϵ;

ξ ¼ 4

3
ϵ − 2

ffiffiffi
3

p
ϵ3=2: ð16Þ

Note that these relations are derived by only using the form
of the potential. They hold exactly, regardless of the
appearance of the slow-roll parameters. As we shall see
later, it is when we convert these relations into a consis-
tency relation between inflationary observables that we
need the slow-roll approximation.
For ϕ > MPl, the slow roll parameters are suppressed as

ϵ, ξ ∼ e−2
ffiffi
2
3

p
ϕ

MPl , and jηj ∼ e−
ffiffi
2
3

p
ϕ

MPl . It is worthwhile to note
that the hierarchy between the slow-roll parameters is not
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1 ≫ ϵ ∼ jηj ≫ ξ like ϕ2 inflation, but 1 ≫ jηj ≫ ϵ ∼ ξ,
which leads to a tiny tensor-to-scalar ratio.
If we define the end of inflation by ϵ ¼ 1, a field value at

the end of inflation ϕf is given by ϕf=MPl ≃ 0.940. From
(14), we obtain the e-folds between ϕi and ϕ as

NðϕÞ ¼ 3

4
ðe

ffiffi
2
3

p
ϕi
MPl − e

ffiffi
2
3

p
ϕ

MPlÞ; ð17Þ

where we neglect a linear term of ðϕ − ϕiÞ, which gives a
few percent correction. We can solve this equation for ϕ,

ϕðNÞ
MPl

¼
ffiffiffi
3

2

r
ln
�
e

ffiffi
2
3

p
ϕi
MPl −

4

3
N
�
; ð18Þ

and using the slow-roll equation (13) with the potential
(11), the Hubble parameter is given by

HðNÞffiffiffiffiffiffi
V0

p
=MPl

¼ 1ffiffiffi
3

p
�
1 −

�
e

ffiffi
2
3

p
ϕi
MPl −

4

3
N

�
−1
�
; ð19Þ

which are presented as a blue solid line in Fig. 2.
If we require the total e-folds Nk ≡ NðϕfÞ ¼ 60, we

obtain ϕi=MPl ≃ 5.40. Therefore, Nk ≃ 3
4
e

ffiffi
2
3

p
ϕi
MPl , and at the

leading order of Nk, the slow roll parameters (15) at ϕ≃ ϕi
are expressed as

ϵ ¼ 3

4N2
k

; η ¼ −
1

Nk
; ξ ¼ 1

N2
k

: ð20Þ

B. p ≈ 2

We proceed to a general case with p ≈ 2. The slow-roll
parameters (12) are given by

ϵ ¼ ½ð2 − pÞF þ 2ðp − 1Þ�2
3ðp − 1Þ2ðF − 1Þ2 ;

η ¼ 2½ð2 − pÞ2F2 − ðp − 1Þð5p − 8ÞF þ 4ðp − 1Þ2�
3ðp − 1Þ2ðF − 1Þ2 ;

ξ ¼ 4½ð2 − pÞF þ 2ðp − 1Þ�½ð2 − pÞ3F3 þ ðp − 1Þð2p − 3Þð5p − 8ÞF2 − ðp − 1Þ2ð17p − 24ÞF þ 8ðp − 1Þ3�
9ðp − 1Þ4ðF − 1Þ4 ; ð21Þ

where F≡ e
ffiffi
2
3

p
ϕ

MPl as we defined the above. We can confirm that For p ¼ 2, (21) reproduces (15). We can erase F from these
equations and obtain

− 4ð2 − pÞ þ 2ð3p − 4Þ
ffiffiffiffiffi
3ϵ

p
− 6ϵþ 3pη ¼ 0;

− 2ð2 − pÞð3p − 4Þ
ffiffiffiffiffi
3ϵ

p
þ 3ð7p2 − 24pþ 24Þϵ − 9

ffiffiffi
3

p
ð3p − 4Þϵ3=2 þ 9ð2 − pÞϵ2 − 9

4
p2ξ ¼ 0: ð22Þ

Again, these relations hold without the slow-roll approximation.
The field value at the end of inflation ϵ ¼ 1 is given by

ϕf

MPl
¼

ffiffiffi
3

2

r
ln

� ð2þ ffiffiffi
3

p Þðp − 1Þ
ð1þ ffiffiffi

3
p Þp − ð2þ ffiffiffi

3
p Þ

�
: ð23Þ
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FIG. 2 (color online). Time evolution of the scalaron ϕ and the Hubble parameter H for p ¼ 2 (blue solid), and 1.85, 1.90, 1.95, 2.05
(magenta dashed).
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For instance, ϕf=MPl ≃ 0.907, 0.978, 1.02, 1.07 for
p ¼ 2.05, 1.95, 1.90, 1.85, respectively.
The number of e-folds between ϕi and ϕ given by (14)

reads

NðϕÞ ¼ 3p
4ð2 − pÞ ln

�ð2 − pÞe
ffiffi
2
3

p
ϕi
MPl þ 2ðp − 1Þ

ð2 − pÞe
ffiffi
2
3

p
ϕ

MPl þ 2ðp − 1Þ

�
: ð24Þ

Then we obtain

ϕðNÞ
MPl

¼
ffiffiffi
3

2

r
ln

�
E−1

�
e

ffiffi
2
3

p
ϕi
MPl þ 2ðp − 1Þ

2 − p

�
−
2ðp − 1Þ
2 − p

�
:

ð25Þ

From (13), the Hubble parameter is given by

HðNÞffiffiffiffiffiffi
V0

p
=MPl

¼ 1ffiffiffi
3

p
�
E−1

�
e

ffiffi
2
3

p
ϕi
MPl þ 2ðp − 1Þ

2 − p

�
−

p
2 − p

� p
2ðp−1Þ

�
E−1

�
e

ffiffi
2
3

p
ϕi
MPl þ 2ðp − 1Þ

2 − p

�
−
2ðp − 1Þ
2 − p

�
−1
; ð26Þ

where EðNÞ≡ e4ð2−pÞN=ð3pÞ. We present the time evolution of the scalaron and the Hubble parameter for p ¼ 2.05, 1.95,
1.90, 1.85 by magenta dashed lines in Fig. 2. As expected, the scalaron rolls down faster for p≲ 2.
By setting Nk ≡ NðϕfÞ ¼ 60, we obtain

ϕi

MPl
¼

ffiffiffi
3

2

r
ln

�
Ek

�
e

ffiffi
2
3

p ϕf
MPl þ 2ðp − 1Þ

2 − p

�
−
2ðp − 1Þ
2 − p

�
; ð27Þ

where Ek ≡ e4ð2−pÞNk=ð3pÞ. For instance, ϕi=MPl ≃ 4.40, 6.88, 8.83, 11.2 for p ¼ 2.05, 1.95, 1.90, 1.85, respectively.
Therefore, for Nk we can neglect the contribution from ϕf and end up with

Nk ≃ 3p
4ð2 − pÞ ln

� ð2 − pÞ
2ðp − 1Þ e

ffiffi
2
3

p
ϕi
MPl þ 1

�
: ð28Þ

By taking the limit of p → 2, we recover Nk ¼ 3
4
e

ffiffi
2
3

p
ϕi
MPl.

By substituting F ¼ 2ðEk − 1Þðp − 1Þ=ð2 − pÞ, we obtain the slow-roll parameters (21) at ϕ≃ ϕi as

ϵ ¼ 4E2
kð2 − pÞ2

3½2ðp − 1ÞEk − p�2 ;

η ¼ 4ð2 − pÞ½2ð2 − pÞE2
k − pEk þ p�

3½2ðp − 1ÞEk − p�2 ;

ξ ¼ 16Ekð2 − pÞ2½4ð2 − pÞ2E3
k þ 2pð4p − 7ÞE2

k − pð11p − 18ÞEk þ pð3p − 4Þ�
9½2ðp − 1ÞEk − p�4 : ð29Þ

Taking the limit p → 2, we can recover the results in R2

inflation.
In R2 inflation, the hierarchy between the slow-roll

parameters is jηj ≫ ϵ ∼ ξ. However, it is not the case for
Rp inflation with p ≠ 2. The left panel of Fig. 3 exhibits the
slow roll parameters (29) for p ≈ 2 with Nk ¼ 60 and 50.
Blue solid, magenta dashed, and green dot-dashed lines are
ϵ, jηj, and ξ, respectively. Thick lines are for Nk ¼ 60,
while thin lines are for Nk ¼ 50. Note that η flips its sign at
p≃ 1.94 for Nk ¼ 60 (p≃ 1.93 for N ¼ 50): η > 0 for
p≲ 1.94, and η < 0 for p≳ 1.94. Now the hierarchy
between the slow-roll parameters for p ≈ 2 obviously
varies from jηj ≫ ϵ ∼ ξ for p ¼ 2. However, we note that
ξ is always subleading. Therefore, for the following, we
treat ϵ and η as the first order quantities, and ξ as the second
order quantity.

III. CONSISTENCY RELATION

Now we want to relate the slow-roll parameters to the
inflationary observables. Since the comoving curvature
perturbation and the tensor perturbation are invariant under
the conformal transformation [41,42], we can make use of
the slow-roll parameters obtained from the inflaton poten-
tial in the Einstein frame to evaluate the scalar spectral
index ns, its running α≡ dns=d ln k, and the tensor-to-
scalar ratio r. Up to the leading order of the slow-roll
parameters, the inflationary observables can be written as

ns − 1 ¼ −6ϵþ 2η;

r ¼ 16ϵ;

α ¼ 16ϵη − 24ϵ2 − 2ξ: ð30Þ
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Let us remind that ξ is treated as the second order quantity
here. This treatment is valid for Rp inflation and is
also often implicitly assumed in the literature, but it is
not necessarily always the case. For general case, where ξ
can be comparable to ϵ and jηj, we need more careful
treatment [43].

A. p ¼ 2

For p ¼ 2, we can immediately write down (30) in terms
of Nk by the virtue of (20). Up to the leading order of N−1

k ,
we obtain

ns − 1 ¼ −
2

Nk
; r ¼ 12

N2
k

; α ¼ −
2

N2
k

: ð31Þ

Thus the consistency relation is given by

ns − 1 ¼ −
ffiffiffi
r
3

r
; α ¼ −

r
6
: ð32Þ

Equivalently, we can derive the above relation using (16)
and (30).

B. p ≈ 2

For general p, by substituting (29) into (30), we obtain

ns − 1 ¼ −
8ð2 − pÞ½ð2 − pÞE2

k þ pðEk − 1Þ�
3½2ðp − 1ÞEk − p�2 ;

r ¼ 64E2
kð2 − pÞ2

3½2ðp − 1ÞEk − p�2 ;

α ¼ −
32pð2 − pÞ2EkðEk − 1Þð2Ek − 3pþ 4Þ

9½2ðp − 1ÞEk − p�4 : ð33Þ

Thus, ns, r, and α are related through the parameter
Ek ¼ e4ð2−pÞNk=ð3pÞ. We can recover (31) if we take the

limit p → 2 in (33). By erasing Ek, we can obtain the
consistency relation as

ns − 1 ¼ −
ð3p − 4Þffiffiffi

3
p

p

ffiffiffi
r

p
−
3p − 2

8p
rþ 8ð2 − pÞ

3p
;

α ¼ 4ð2 − pÞð3p − 4Þ
3

ffiffiffi
3

p
p2

ffiffiffi
r

p
−
15p2 − 40pþ 24

6p2
r

−
ð3p − 4Þð4p − 3Þ

8
ffiffiffi
3

p
p2

r3=2 −
ðp − 1Þð3p − 2Þ

32p2
r2:

ð34Þ

In the right panel of Fig. 3, we present the scalar spectral
index, its running, and the tensor-to-scalar ratio for p ≈ 2
with Nk ¼ 60 and 50. Blue solid, magenta dashed, green
dot-dashed lines are ð1 − nsÞ, r, −α, respectively, and thick
and thin lines represent Nk ¼ 60 and 50, respectively. We
see that the scalar spectral index takes its maximum value
≃0.99 at p≃ 1.92 and thus Rp inflation describe only red-
tilted spectrum. For p < 1.8 or p > 2, we have ns < 0.96.
On the other hand, the tensor-to-scalar ratio increases as p
decreases. Actually, r exceeds 0.1 and 0.2 at p≃ 1.88 and
p≃ 1.84, respectively, for Nk ¼ 60. As for the running of
the scalar spectral index, α is always negative. Its amplitude
takes the maximum value ≃10−3 at p≃ 2.
Using (33) or (34), we can explicitly draw the consis-

tency relation between the inflationary observables as
presented in Fig. 4. Blue solid lines represent p ¼ 2,
and magenta dashed lines represent p ¼ 1.95, 1.90,
1.85. We also show lines for fixed e-folds Nk by green
dot-dashed lines. We highlighted lines for fixed p with
e-folds 50 < Nk < 60. In particular, it is interesting that the
scalar spectral index ns is sensitive for a deviation from
p ¼ 2. The panel for ðns; rÞ captures this property. For
1.8 < p < 2, the spectral index varies as 0.96≲ ns ≲ 0.99

1.80 1.85 1.90 1.95 2.00 2.05 2.10
10 5

10 4

0.001
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p

1 ns

r

1.80 1.85 1.90 1.95 2.00 2.05 2.10
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10 4

0.001
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1

p

FIG. 3 (color online). Left: Slow roll parameters, ϵ (blue solid), jηj (magenta dashed), and ξ (green dot-dashed). Right: Inflationary
observables, 1 − ns (blue solid), r (magenta dashed), and −α (green dot-dashed). The thick lines and thin lines are for Nk ¼ 60 and 50,
respectively.
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but is always larger than 0.96 for Nk ¼ 60. For p≳ 1.95,
the spectral index is very sensitive for p. Therefore, the
parameter region p≳ 1.95 is solely constrained by ns.
We are also interested in how future constraint on r tests

the model. From the panel for ðns; rÞ in Fig. 4, we note that
for Nk ¼ 60 small tensor-to-scalar ratio with r ≤ 0.05
requires 1.92≲ p ≤ 2 and 0.96≲ ns ≲ 0.99. For large r
with 0.05 ≤ r ≤ 0.1, p should be 1.88≲ p≲ 1.92 and ns
needs to be within 0.98≲ ns ≲ 0.99. On the other hand, for
fixed ns ¼ 0.96, r ¼ 0.05 and 0.1 require ðp;NkÞ≃
ð1.93; 30Þ and (1.9,27), respectively.
From the panel for ðr; αÞ in Fig. 4, we can explicitly see

that a deviation from p ¼ 2 suppresses α, while r is
enhanced. This property is also useful to test Rp inflation.
We can constrain p with an order 10−4 accuracy for α. The

panel for ðns; αÞ in Fig. 4 shows that it is difficult for this
combination is to constrain p because the lines are over-
lapping and thus there is a degeneracy between parameters.
Therefore, in order to constrain Rp inflation, it is important
to measure both the scalar and the tensor spectra, namely,
the combination of ðns; rÞ or ðr; αÞ would constrain the
model significantly.

IV. CONCLUSIONS

We investigated Rp inflation with p ≈ 2 in order to
evaluate deviations from R2 inflation. Using the inflaton
potential in the Einstein frame, we explicitly wrote down
the scalar spectral index ns, its running α, and the tensor-to-
scalar ratio r as in (33), which are presented in Fig. 3. We
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FIG. 4 (color online). Scalar spectral index ns, its running α, and tensor-to-scalar ratio r for p ¼ 2 (solid blue), and 1.95, 1.90, 1.85
(magenta dashed), where e-folds between Nk ¼ 50 and 60 are highlighted (red solid). Lines for fixed e-folds Nk ¼ 40, 50, 60, 70 (green
dot-dashed) are also shown.
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can also explicitly draw the consistency relation as pre-
sented in Fig. 4. We showed that the parameter region p≳
1.95 is solely constrained by ns and a precise measurement
of ðns; rÞ or ðr;αÞ can test a whole range of p. Specifically,
for Nk ¼ 60, r ≤ 0.05 requires 1.92≲ p ≤ 2 and
0.96≲ ns ≲ 0.99, while 0.05 ≤ r ≤ 0.1 requires 1.88≲
p≲ 1.92 and 0.98≲ ns ≲ 0.99. On the other hand, for

fixed ns ¼ 0.96, r≃ 0.05 and 0.1 require ðp;NkÞ≃
ð1.93; 30Þ and (1.9,27), respectively.
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