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In general relativity, local cosmic strings are well known to produce a static, locally flat spacetime with a
wedge removed. If the tension exceeds a critical value, the deficit angle becomes larger than 2π, leading to a
compact exterior that ends in a conical singularity. In this paper, we investigate dynamical solutions for
cosmic strings with super-critical tensions. To this end, we model the string as a cylindrical shell of finite
and stabilized transverse width and show that there is a marginally super-critical regime in which the
stabilization can be achieved by physically reasonable matter. We show numerically that the static deficit
angle solution is unstable for super-critical string tensions. Instead, the geometry starts expanding in the
axial direction at an asymptotically constant rate, and a horizon is formed in the exterior spacetime, which
has the shape of a growing cigar. We are able to find the analytic form of the attractor solution describing
the interior of the cosmic string. In particular, this enables us to analytically derive the relation between the
string tension and the axial expansion rate. Furthermore, we show that the exterior conical singularity can
be avoided for dynamical solutions. Our results might be relevant for theories with two extra dimensions,
modeling our Universe as a cosmic string with a three-dimensional axis. We derive the corresponding
Friedmann equation, relating the on-brane Hubble parameter to the string tension or, equivalently, brane
cosmological constant.
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I. INTRODUCTION

Local cosmic strings were first derived as topologically
nontrivial solutions of the Abelian Higgs model by Nielsen
and Olesen [1]. In general relativity (GR), they give rise to a
static geometry which sufficiently far away from the string
is locally flat and can be characterized by a deficit angle δ
corresponding to a wedge that has been removed from
spacetime. The value of δ is linearly related to the string
tension λ (mass per unit length): δ ¼ λ=M2

P, with the
reduced Planck mass M2

P ≡ 1=ð8πGNÞ. This spacetime
was first studied in [2–4].
Once the tension reaches the critical value 2πM2

P, the
deficit angle becomes 2π, thus implying the exterior
topology of an infinite cylinder [5]. Introducing the
dimensionless parameter λ̄ ≔ λ=ð2πM2

PÞ, this critical value
corresponds to λ̄ ¼ 1. For even higher values of the string
tension, the angular defect exceeds 2π; thus, the exterior
spacetime of the static solution closes up and ends in a
conical singularity1 [8]. However, the status of these
so-called “super-critical” or “super-massive” solutions
remained unclear due to the occurrence of the singular

axis away from the string. One way to give a physical
meaning to the singularity is to replace it with another
(sub-critical) tension string [9].
In this paper, we further explore the geometry of super-

critical cosmic strings. Instead of introducing additional
strings, we relax the assumption of having a static
geometry. A first purely numerical attempt in that direction
was made in [10] by considering a super-critical Nielsen-
Olesen (NO) string. There it was found that once the
tension λ̄ exceeds ∼1.6, both the transverse and axial string
directions begin to expand at a comparable rate. In this
paper we will be able to analytically confirm this bound. In
contrast to [10], we will be mostly interested in describing
the remaining parameter space: 1 < λ̄≲ 1.6. We show that
within this “marginally super-critical” regime the trans-
verse string dimensions can be stabilized, whereas the axial
dimension expands at an asymptotically constant rate. This
fact makes these solutions especially interesting for models
with two extra dimensions according to which the string is
promoted to a braneworld describing our Universe. Then,
the constant axial expansion rate corresponds to a de Sitter
on-brane geometry, and having a stabilized transverse
dimension is a necessary requirement to obtain a 4D
regime in those theories, see e.g. [11].
Furthermore, the analysis of [10] lacks a detailed

discussion of the geometry away from the string. In
particular, it was not answered whether the second axis
still bears a conical singularity (which does not lead to
asymptotically diverging curvature invariants) as it is the
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1For both sub- and super-critical tensions, there is a second

class of solutions, usually referred to as the “Melvin” or “Kasner”
branch [6,7], which has even a curvature singularity in the super-
critical case. However, we discard this branch due to its
unphysical properties, cf. Sec. IV.
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case for the static solution. Our approach allows us to get a
complete understanding of both the geometry and the
underlying dynamics of the system in the marginally
super-critical regime. For example, we show that the
exterior conical singularity can be completely avoided
for a dynamical solution and should thus be regarded as
an artifact caused by assuming a static geometry. In
addition, we show the existence of a horizon between
the string and the second (regular) axis.
In order to technically simplify the problem, we intro-

duce in Sec. II a model which describes the string as a
cylindrical shell of fixed circumference 2πR. It is argued
that this simplified description captures all essential physics
as long as we are interested in low energy questions which
do not require to resolve the inner structure of the defect.
Since the only scale determining the dynamics of the
system is the axial expansion rate H, this condition should
clearly be satisfied as long as HR ≪ 1.
The shell construction implies the existence of two

vacuum regions, one inside and one outside of the cylinder.
In Sec. III, we employ the cylindrical symmetry of this
setup to introduce appropriate coordinates, which were
originally used by Einstein and Rosen to derive the
existence of cylindrical gravitational waves [12].
Moreover, we derive the junction conditions relating the
two vacuum regions across the shell.
As a first consistency check of our description, we

reproduce the well-known static deficit angle solution
in Sec. IV, which—in the super-critical case—leads to a
second singular axis in the exterior vacuum region. In order
to see whether these are stable solutions, we numerically
study the time evolution of the system in Sec. V. To that
end, we choose initial data close to the static configuration
but include cylindrical symmetric gravitational waves in the
interior and exterior region close to the shell to provide the
system with a nonvanishing initial kinetic energy. We find
that the sub-critical string, after emitting the cylindrical
waves, settles back to the static deficit angle solution. The
super-critical system, however, starts to approach a non-
static solution instead. This result proves that the static
super-critical solution is not stable under perturbations.
Moreover, the numerical results allow to infer several
properties of the new dynamical attractor solution in the
marginally super-critical regime defined by 1 < λ̄≲ 1.6:

(i) The geometry expands in axial direction at a con-
stant rate.

(ii) There is a horizon in the exterior region.
(iii) The exterior space is cigar-shaped and expands,

whereas the interior space is nearly flat and can be
stabilized.

Let us emphasize that for λ̄ close to 1, the observed
expansion rate satisfies HR ≪ 1. Therefore, in that regime
we expect all the results to be completely insensitive to the
microscopic inner structure of the string. They should thus
equally hold for other regularizations like a full cylinder for

which the tension would be smeared out over the interior
region, or the original UV model described in [1].
For even larger values of the tension, λ̄≳ 1.6, we find

that the azimuthal pressure required to stabilize the shell’s
circumference violates the null energy condition (NEC).
Hence, in this regime a stabilization cannot be achieved
by physical degrees of freedom. Since at this point HR is
already close to one, it is a priori not clear whether this
result would still hold for a more realistic NO-like string.
However, it turns out that our NEC bound is in nice
agreement with the one derived in [10], where the full radial
profile was resolved. This is a strong indication that our
simplified model can in fact be successfully used in the
whole stabilizable (i.e. marginally super-critical) regime to
capture the essential physics—instead of the more com-
plicated microscopic NO system. This result is also in
agreement with the idea of “topological inflation” [13–15].
In that context, it is argued that once HR ∼ 1, the interior
space of the defect starts to inflate in both the axial and the
radial direction at the same rate, or in other words, there is a
de Sitter phase inside the cosmic string. This is plausible
because at this point its boundary lies outside the corre-
sponding horizon and thus the interior is causally discon-
nected from the exterior, which makes it locally equivalent
to a pure de Sitter universe.
We derive the analytic form of the attractor solution in

the interior of the shell in Sec. VI by making an appropriate
scaling ansatz for the metric. This in turn enables us to
derive the relation between the string tension λ and H
analytically. In the marginally super-critical regime, we
find up to small corrections of order ðHRÞ2:

HR ≈ λ̄ − 1: ð1Þ

The analytic result for the interior geometry can be mapped
by a coordinate transformation, described in Appendix B,
to a solution discussed earlier by Witten [16] and Gregory
[17]. To our knowledge, this is the first time that this
solution has been matched to a specific matter model.
Furthermore, we are able to show that the conical

singularity in the exterior is an artifact caused by assuming
a static geometry. More precisely, in Sec. VII we demon-
strate that the singularity can be completely avoided by
choosing the initial conditions appropriately. In that case
the exterior space ends radially in a smooth and elementary
flat axis. The existence of a singularity-free inflating
solution was already anticipated in [13,18]. Moreover,
we argue that the value of H is completely independent
of the choice of initial conditions and solely depends on
the string parameters R and λ, as expected for an attractor
solution. A corresponding parameter plot, summarizing our
results, is discussed in Sec. VIII.
For a cosmic string formed during a phase transition in

the early Universe, say at the grand unified theory scale, we
would generically expect a sub-critical tension of order

FLORIAN NIEDERMANN AND ROBERT SCHNEIDER PHYSICAL REVIEW D 91, 064010 (2015)

064010-2



λ̄ ∼ 10−6. However, in [8] it was argued that super-critical
cosmic strings could also arise at this scale when the
coupling between scalar and gauge fields is very weak (in a
NO framework). In order to further clarify their phenom-
enological status for standard cosmology, we review argu-
ments previously given by Thorne [19]. In this context, it is
shown in Appendix A that an open cylindrical geometry
cannot evolve classically into a closed one. This result
implies that the formation of super-critical strings cannot be
described within general relativity. So far it is not clear
whether their formation through a quantum-mechanical
tunneling process would lead to phenomenologically rel-
evant effects.
However, it is worth pointing out that these solutions

might be interesting in the context of higher dimensional
models, where the string is promoted to a 3-brane repre-
senting our Universe. A corresponding generalization of
Eq. (1) can be understood as a modified Friedmann
equation. The axial expansion rate H then plays the role
of the ordinary Hubble parameter describing the spatial
expansion of our Universe. In that context, the regime
HR ≪ 1, corresponding to a marginally super-critical
tension, is the most interesting one as it is enforced by a
huge separation between the cosmological length scale
H−1 and the microscopic scale R given by the thickness of
the string. The six dimensional setup in the case of a pure
tension brane is discussed in Sec. IX. We draw our
conclusions in Sec. X.
Finally, in Appendix C we show that the super-critical

cosmic strings covered by our analysis can indeed be
described consistently within classical GR, as long as the
transverse string size R is much larger than the Planck
length, since this ensures a sub-Planckian 4D energy
density.

II. CYLINDRICAL SHELL MODEL

Strings with a sub-critical tension can consistently be
modeled as infinitely thin objects, with the position of the
string corresponding to a conical singularity. In the super-
critical case of interest, however, the deficit angle exceeds
2π and so one can no longer treat the string as infinitely thin
because in this case the space-time would simply disappear.
Hence, the question whether the static wedge geometry is
a stable solution for super-critical tensions can only be
investigated in the more realistic situation of a regularized
string, i.e. one that has a finite width. Physically, this
nonzero thickness can also be motivated if one imagines the
string to be dynamically formed as a vortex solution in a
NO-like model [1]. However, for simplicity, we will not
consider such a UV-complete construction, but instead
model the regularized string as a cylindrical shell of finite
circumference 2πR and tension λ. This regularization is
widely used for codimension-two objects, e.g. [18,20].
Furthermore, we will assume the thickness of the string

to be constant, so it is only allowed to expand (or collapse)

in the axial direction. Technically, this is achieved by
choosing an appropriate azimuthal pressure2 pϕ.
Physically, it means that we are effectively working well
below the energy scale at which the string was formed in an
actual UV model and at which its inner structure could be
probed. We will confirm a posteriori that this stabilization
could correspond to a healthy microscopic theory by
showing that the required source fulfills the standard energy
conditions.
Even though this shell construction corresponds to quite

a different radial profile than a typical vortex solution
would give, we expect the low energy questions that we are
addressing to be insensitive to these details. To be more
precise, as long as the axial expansion rate H is much
smaller than the inverse transverse length scale R,

HR ≪ 1; ð2Þ

we do not need to resolve the inner structure of the string to
make accurate predictions. We will see a posteriori that (2)
is fulfilled for our solutions if the tension is close to its
critical value.
Another justification for that regularization comes from

the fact that in the static case, which will be reviewed in
Sec. IV, this simplified model correctly reproduces all the
essential geometrical features of the complete NO analysis
[6]. Moreover, in the dynamical case we will find remark-
able agreement with a specific quantitative result derived in
the NO setup in [10], namely the stability bound on λ̄ for
the transverse string directions.

III. COORDINATES AND GEOMETRY

Since we are considering an infinitely long straight
cylindrical shell, the system has whole cylinder symmetry,
i.e. rotational symmetry about the cylinder axis, as well as
translational symmetry along the axis. As discussed in [21]
(also see [22], Chapter 22), in this case the general metric
can always be brought into the form

ds2 ¼ e2ðη�−α�Þð−dt�2 þ dr�2Þ þ e2α
�
dz2 þ e−2α

�
W2dϕ2:

ð3Þ

Here, ϕ ∈ ½0; 2πÞ and z ∈ ð−∞;∞Þ are coordinates in the
angular and the axial direction, respectively, and the
functions α�; η�;W only depend on the temporal and radial
coordinates ðt�; r�Þ. One virtue of this ansatz is that radial
light rays correspond to dt� ¼ �dr�, thus making the
causal structure evident in t�-r� diagrams, a fact which
we will often use in our analysis.

2Actually, this only fixes the circumference of the shell, but we
will see a posteriori that it also sufficiently stabilizes the whole
interior cross-sectional area.
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The form of the metric (3) is invariant under the residual
coordinate transformations,

ðt�; r�Þ ↦ ðt; rÞ; ð4aÞ

η� ↦ η ¼ η� −
1

2
ln ½ð∂r�rÞ2 − ð∂t�rÞ2�; ð4bÞ

where t and r are any functions of ðt�; r�Þ satisfying3
� ∂t�r

∂r�r

�
¼ �

� ∂r�t

∂t�t

�
: ð5Þ

This implies an integrability condition for r:

−∂2
t�rþ ∂2

r�r ¼ 0: ð6Þ

In vacuum, Einstein’s equations imply

−∂2
t�W þ ∂2

r�W ¼ 0; ð7Þ

which allows to fix the remaining gauge freedom by
choosing4

r ¼ Wðt�; r�Þ: ð8Þ
In general, however, the right-hand side of (7) receives a
contribution ∝ Tt

t þ Tr
r. Thus, while the gauge (8) can be

used inside and outside the cylinder separately, the con-
dition (6) would then not be fulfilled across its surface.
Consequently, the interior and exterior coordinate patches
are not continuously connected. To distinguish them, we
put tildes on the interior coordinates and metric functions.
The interior and exterior metric then read

d~s2 ¼ e2ð~η− ~αÞð−d~t2 þ d~r2Þ þ e2~αdz2 þ e−2~α ~r2dϕ2; ð9aÞ

ds2 ¼ e2ðη−αÞð−dt2 þ dr2Þ þ e2αdz2 þ e−2αr2dϕ2; ð9bÞ

respectively. This is the ansatz that was used by Einstein
and Rosen to derive the exact vacuum solutions describing
cylindrically symmetric waves in GR [12]. The vacuum
Einstein equations in these “Einstein Rosen coordinates”
become

∂2
t α ¼ ∂2

rαþ 1

r
∂rα; ð10aÞ

∂rη ¼ r½ð∂tαÞ2 þ ð∂rαÞ2�; ð10bÞ

∂tη ¼ 2rð∂tαÞð∂rαÞ; ð10cÞ

and similarly for the interior. The remarkable fact that α
obeys the linear cylindrical wave equation makes this
coordinate choice unique and especially convenient for
numerical implementation.
The symmetry axis is located in the interior coordinate

patch at ~r ¼ 0. Regularity at this axis and elementary
flatness, i.e. absence of a conical singularity, requires

lim
~r→0

∂ ~r ~α ¼ 0 and ð11aÞ

lim
~r→0

~η ¼ 0; ð11bÞ

respectively.

A. Induced geometry

The induced metric on the cylindrical shell is

ds2ðindÞ ¼ −dτ2 þ e2α0dz2 þ R2dϕ2; ð12Þ

where here and henceforth the subscript “0” denotes
evaluation at the position of the shell. The proper time τ
on the surface is related to the interior and exterior time
coordinates via

dτ ¼ e−α0

γ
dt ¼ e− ~α0

~γ
d~t; ð13Þ

where

γ ≔
e−η0ffiffiffiffiffiffiffiffiffiffiffiffi
1 − _r20

p and ~γ ≔
e−~η0ffiffiffiffiffiffiffiffiffiffiffiffi
1 − _~r20

q : ð14Þ

The functions ~r0ð~tÞ and r0ðtÞ describe the radial position
of the shell in the two coordinate patches, and
_r0 ≔ dr0=dt, _~r0 ≔ d~r0=d~t.
In order to have a well defined regularization of the

infinitely thin cosmic string, we assume the proper circum-
ference of the cylinder to be stabilized:

R ≔ r0e−α0 ¼ ~r0e− ~α0 ¼ const: ð15Þ
As already mentioned, on a fundamental level this would be
enforced by some underlying UV physics that gave rise to
the cosmic string. Effectively, working well below this UV
scale at which the inner structure of the string could be
probed, it can be achieved by assuming a suitable azimuthal
pressure component pϕ. We will check a posteriori
whether this pressure is physically reasonable, i.e. whether
it satisfies the null energy condition.
The surface energy momentum tensor on the shell is

given by

3For the Jacobian not to vanish, they should also obey
ð∂t�rÞ2 − ð∂r�rÞ2 ≠ 0.

4By using r as a spatial coordinate, we implicitly assume that
the gradient of W is spacelike. We will come back to this
important subtlety in Sec. III B.
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Tm
n ¼

1

2πR
diagð−λ;−λ; pϕÞ; ð16Þ

where the overall factor ensures that λ is the one-
dimensional string tension. Throughout this paper we
will assume that λ ≥ 0. Let us, for later convenience, also
introduce the dimensionless quantities

λ̄ ≔
λ

2πM2
P
; p̄ϕ ≔

pϕ

2πM2
P
: ð17Þ

Fixing R implies that the 3D energy conservation equation
for this source simply becomes λ ¼ constant. The pressure
pϕ will in general be time dependent, and its value will be
inferred from one of the junction conditions, see below.
Furthermore, the entire dynamics of the induced metric (12)
is now encoded in the single function H ≔ dα0=dτ ¼
d ~α0=dτ, measuring the expansion rate of the string in axial
direction.
For future reference, note that the stabilization condition

implies

_r0 ¼
HR
γ

; _~r0 ¼
HR
~γ

; ð18Þ

which allows us to rewrite (14) as

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2η0 þH2R2

p
; ~γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2~η0 þH2R2

p
: ð19Þ

B. Super-criticality

The interpretation of r and ~r as radial coordinates
implicitly assumes that the gradient ∇W ≔ ð∂t�W; ∂r�WÞ
of the functionW in the original metric (3) was spacelike. If
it had been timelike, the coordinate r defined by (8) would
in fact be a temporal coordinate. This agrees with the
observation that, according to (4b), expð2η�Þ would then
have changed sign under the coordinate transformation, and
t and r would thus have interchanged their temporal and
spatial character in (9).
In order to have a smooth symmetry axis in the interior,

and hence a well defined regularization of the cosmic
string, we have to assume that ∇W was spacelike in the
interior region. Furthermore, since ~r should take positive
values, ∇W had to be outward pointing. As discussed in
more detail in Appendix A, the character of ∇W in the
exterior is then fixed by the amount of string tension λ that
is localized on the cylindrical shell. There are three cases:

(i) For λ small enough, viz.

λ̄ < ~γ − jHjR; ð20Þ

the exterior gradient ∇WðextÞ is also spacelike and
outward pointing, leading to a conical, but infinite
exterior geometry with r ∈ ðr0;∞Þ.

(ii) In the intermediate regime

~γ − jHjR ≤ λ̄ ≤ ~γ þ jHjR; ð21Þ

∇WðextÞ is timelike5 and r is thus a temporal
coordinate. We exclude this “critical” case from
our current analysis.

(iii) If the tension is large enough,

λ̄ > ~γ þ jHjR; ð22Þ

then ∇WðextÞ is again spacelike but inward pointing.
Thus, r is again a spatial coordinate; but now it
decreases as one moves away from the cylinder
surface. In principle, there could be some rmin > 0,
at which r starts increasing again. However, this
would imply that ∇W changed character from
inward to outward pointing at rmin, and one can
show that this is not possible in vacuum, see
Appendix A. Thus, r has the finite range r ∈
ðr0; 0Þ and at the point r ¼ 0 there will be a second
axis, which can generically be singular.

We will refer to the first and third case as “sub-” and
“super-critical,” respectively. In the static case H → 0 and
~γ → 1, and so the conditions take the form (i) λ̄ < 1 and (iii)
λ̄ > 1, while the critical range (ii) degenerates to λ̄ ¼ 1,
cf. Sec. IV. In the present paper, we are mainly interested in
the super-critical regime (iii).

C. Junction conditions

The vacuum Einstein field equations (10) have to be
supplemented by Israel’s junction conditions [23,24], link-
ing the interior and exterior geometries across the cylinder
surface:

Tm
n ¼ M2

Pð½Kp
p�δmn − ½Km

n�Þ: ð23Þ

Here, ½X� ≔ X − ~X, and Kmn is the (pullback of the)
extrinsic curvature tensor. The outward-pointing normal
vectors in the interior and exterior are given by

~nμ ¼ ~γe ~α0ð_~r0; 1; 0; 0Þ and nμ ¼ σγeα0ð_r0; 1; 0; 0Þ; ð24Þ

respectively, with σ ¼ �1. In order for the normal vector nμ

to be outward pointing, σ has to be þ1 in the sub-critical
case. But for super-critical tensions, the exterior radial
coordinate decreases as one moves away from the cylinder,
so in that case one has to choose σ ¼ −1.
Using these normal vectors, it is straightforward to show

that the nonvanishing components of Km
n are6

5The gradient is lightlike if one of the bounds is saturated.
In that case the coordinate transformation would be singular.

6In these formulas, evaluation at the surface should of course
be performed after taking all occurring r-derivatives.
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K0
0 ¼

σγ

R
r0 ̈r0
1 − _r20

þ nμ∂μðη0 − α0Þ; ð25aÞ

Ki
j ¼ nμ∂μα0δ

i
j; ð25bÞ

Kϕ
ϕ ¼ σγ

R
− nμ∂μα0: ð25cÞ

The components of ~Km
n have the same form, but with tildes

on all quantities and σ → þ1. Plugging this and (16)
into (23), the (0,0)-component of the junction conditions
becomes7

λ̄ ¼ ~γ − σγ: ð26Þ

The ði; jÞ-components, after eliminating λ̄ using (26) as
well as η by means of the vacuum equations (10) in the limit
r → r0, and expressing everything in terms of the intrinsic
cylinder quantities H and R, can be written as

dH
dτ

R2 ¼ ½σγfðχ; ξÞ − ~γfð~χ; ~ξÞ�
�
σ

γ
−
1

~γ

�
−1
; ð27Þ

where

fðχ; ξÞ ≔ 1 − χ − ð1 − ξÞ2ð1 − χÞ2; ð28aÞ

ξ ≔ r0∂rα0; χ ≔
�
HR
γ

�
2

: ð28bÞ

The complete set of equations of motion consists of the
vacuum field equations (10) in the interior and exterior
region, the dynamical (second order in time) junction
condition (27), and energy conservation (λ ¼ const), sup-
plemented by the boundary conditions (11) (as well as
appropriate boundary conditions for the exterior domain
which will be discussed later). Equation (26) is a constraint,
i.e. it only contains first time derivatives, and only has to be
imposed at the initial moment of time. Its conservation is
guaranteed by the Gauss-Codazzi and vacuum field equa-
tions [23,24], and will serve as an important consistency
check for the numerical implementation.
Finally, the ðϕ;ϕÞ-junction condition determines the

azimuthal pressure pϕ that is needed to keep the circum-
ference of the cylinder constant. A similar calculation as
before yields

p̄ϕ ¼ σγgðχ; ξÞ − ~γgð~χ; ~ξÞ; ð29Þ

with

gðχ; ξÞ ≔ 2ðχ − χξþ ξÞ: ð30Þ

IV. STATIC SOLUTION

Before investigating dynamical solutions, let us first
briefly review the much simpler and well-known case of
static cosmic string geometries [2–4]. After setting to zero
all time derivatives, the vacuum equations (10) can easily
be integrated, yielding

αðrÞ ¼ ξ ln

�
r
r0

�
; ηðrÞ ¼ ξ2 ln

�
r
r0

�
þ η0; ð31Þ

where we already used a local rescaling of t and r to set
α0 ¼ 0. The same holds in the interior, but here the
regularity conditions (11) imply ~ξ ¼ ~η0 ¼ 0, so the geom-
etry inside the cylinder is Minkowski. The two constants
ξ; η0 and the azimuthal pressure p̄ϕ are then determined by
the junction conditions (26), (27) and (29)8:

η0 ¼ − ln j1 − λ̄j; ξ ¼ 0 ¼ p̄ϕ: ð32Þ
Hence, the metric functions in the exterior are also constant,
and so the spacetime around the string is locally flat as
well. However, the nonzero value of η0 corresponds to a
nontrivial global geometrical effect. This can be seen
explicitly after rescaling coordinates according to ðt�; r�Þ ¼
ðeη0t; σeη0ðr − r0Þ þ r0Þ. Here, the sign was chosen such
that the new radial coordinate r� is again increasing for
super-critical tensions as well, and the shift makes the
metric continuous across the shell. Hence, the spacetime is
again covered by a single coordinate patch, in which the
metric reads

ds2 ¼ −dt�2 þ dr�2 þ dz2 þWðr�Þ2dϕ2; ð33Þ
with

Wðr�Þ ¼
�
r� for r� ≤ r0;

ð1 − λ̄Þr� þ λ̄r0 for r� > r0:
ð34Þ

While the ratio of physical circumference to radius equals
2π inside, it is smaller outside, corresponding to a conical
geometry with defect angle 2πλ̄≡ λ=M2

P.
For super-critical tensions λ̄ > 1, the physical circum-

ference decreases as one moves away from the string and
vanishes for some r1 > r0. This means that there is a
second axis at this point in the exterior, and because the
regularity condition (11b) is violated,9 there is a conical
singularity at r1.

7Note that without choosing the correct sign σ ¼ −1 in the
super-critical case, this equation would imply λ̄ < ~γ, in contra-
diction to the condition (22).

8Equation (27) is a quadratic equation in ξ, which has the
second solution ξ ¼ 2, usually referred to as the Melvin or Kasner
branch [6,7]. However, (29) would then imply pϕ ≠ 0 for λ ¼ 0,
which is why we discard this branch.

9Unless λ̄ ¼ 2; we discard this exceptional case in our
discussion.
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Even though these static solutions do exist in the super-
critical case, it is not a priori clear whether they are stable
(attractor) solutions. In order to answer this question, we
next investigate general time-dependent solutions.

V. NUMERICAL RESULTS

Although the vacuum equation (10a) is linear, the
complete system is still highly nonlinear due to the junction
conditions (26), (27) and Eqs. (10b), (10c), which deter-
mine ~η; η—and thus ~γ; γ. We therefore solve these equa-
tions numerically.
The numerical solutions are obtained by specifying

appropriate initial data, as discussed below, and integrating
forward in time using the dynamical equations (10a), (27)
for α (and ~α), as well as the constraints (10b), (10c) in the
limit r → r0 (~r → ~r0) for η0 (~η0).

10 The constraint (26) is
only enforced at initial time. Analytically, it is conserved
automatically11 and can thus be used as an important
consistency check on the numerics at later times.
The discretization scheme and numerical algorithm are

the same as in [11], and is explained in detail there in
Appendix C. In what follows, we first discuss the choice of
initial data and boundary conditions and then present the
results.

A. Initial data and boundary conditions

The numerical integration starts at some initial time,
which—without loss of generality—we choose to be
~ti ¼ ti ¼ τi ¼ 0. We will denote all functions evaluated
at this time with a subscript i.
First of all, we must specify the initial radial profiles

~αið~rÞ and αiðrÞ. Since our first main objective is to check
whether the static solutions discussed in Sec. IV are stable,
we choose the corresponding flat profile as initial data:

~αið~rÞ ¼ 0 ¼ αiðrÞ: ð35Þ

Consequently, the initial radial coordinate position of the
cylinder is

~r0i ¼ r0i ¼ R: ð36Þ

Next, we have to choose initial velocity profiles ∂~t ~αið~rÞ
and ∂tαiðrÞ. If we set these to zero as well, the solution will
remain static for all times. This is of course not what we are
interested in, so we will choose some nonzero profile
functions.

In the interior, regularity at the axis (11a) implies

∂ ~r∂~t ~αið0Þ ¼ 0: ð37Þ
At the cylinder surface, the velocity profile is related to the
initial expansion rate Hi via

∂~t ~α0i ¼
d ~α0i
d~t

¼ Hi

~γi
; ð38Þ

where the first equality uses ∂ ~r ~αi ¼ 0 which is satisfied for
our choice (35). The most general initial velocity can thus
be written as

∂~t ~αið~rÞ ¼
Hi

~γi
~F

�
~r
R

�
; ð39Þ

and similarly

∂tαiðrÞ ¼
Hi

γi
F

�
r
R

�
; ð40Þ

with some profile functions ~F and F, satisfying the
boundary conditions

~F0ð0Þ ¼ 0; ~Fð1Þ ¼ 1 ¼ Fð1Þ: ð41Þ
Note that in the sub-critical case the domain of definition of
F is ½1;∞Þ, but for super-critical string tensions it is the
same as that of ~F, viz. [0, 1]. We will specify ~F and F when
discussing the solutions below.
This completes the specification of initial data. Indeed,

the remaining variables, ~η0i and η0i, are determined by the
regularity condition (11b) together with the constraints
(10b) and (26). Specifically,

~η0i ¼
Z

R

0

d~r ~r ½ð∂ ~r ~αiÞ2 þ ð∂~t ~αiÞ2� ð42aÞ

¼ H2
i

γ2i

Z
R

0

d~r ~r ~F2ð~r=RÞ ð42bÞ

¼ H2
i R

2

e−2~η0i þH2
i R

2

Z
1

0

dxx ~F2ðxÞ; ð42cÞ

an implicit equation for ~η0i which can be solved numeri-
cally. It is also interesting that ~η0i is a direct measure of the
gravitational energy stored inside the cylinder initially,
which is suggested by (42a). In fact, it is (up to a constant
factor) nothing but the so-called C-energy introduced by
Thorne [21]. The exterior η0i is then obtained from (26),
evaluated at initial time:

λ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2~η0i þH2

i R
2

q
− σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2η0i þH2

i R
2

q
: ð43Þ

The sign σ again ensures that this has a real solution for η0i
in both the sub- and super-critical case.

10The radial profiles of η; ~η can be obtained as well using (10b)
or (10c) in the bulk; but they decouple from the rest and are thus
not needed—only η0; ~η0 enter via the junction conditions.

11Note that we also use energy conservation, which takes the
form λ ¼ constant.
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The complete set of initial data therefore consists of the
two parameters λ̄, HiR and the two functions ~FðxÞ; FðxÞ,
which are all dimensionless.
Finally, we have to impose boundary conditions for ~α; α

at the boundary of the domain of integration. In the interior,
this is the Neumann boundary condition (11a). In the
exterior, we have to distinguish two cases.
For sub-critical string tensions, the exterior r-domain is

actually infinite. But the numerical treatment introduces an
artificial boundary at some maximal value rmax. Since we
want to model an empty, infinite exterior, the adequate
boundary condition would be an outgoing wave condition.
However, it is well known that such a criterion is neces-
sarily nonlocal in time in the case of cylindrically sym-
metric waves (see [25] for a review, and [26] for a
discussion in the context of GR). Therefore, it is computa-
tionally quite expensive and so we simply choose the most
primitive alternative of making the domain of integration
large enough so that the waves which are initially produced
near the cylinder cannot reach rmax by the end of the
numerical simulation.
In the super-critical case, the exterior domain ends at

r ¼ 0. We will enforce the same Neumann boundary
condition ∂rαjr¼0 ¼ 0 as at the interior axis in this case,
in order to avoid α becoming singular, which would imply a
curvature singularity.

B. Sub-critical tension

Before turning to the super-critical case in Sec. V C, let
us first present a dynamical solution for a sub-critical
tension. This will help us gain confidence in the numerical
solver and explicitly demonstrate that the deficit angle
geometry reviewed in Sec. IV is an attractor solution. As an
example let us choose the parameters

λ̄ ¼ 0.5; HiR ¼ 0.1; ð44Þ

and the functions

~FðxÞ ¼ 1; FðxÞ ¼ exp

�
−
ðx − 1Þ2

δ2

�
; ð45Þ

with δ ¼ 0.1, i.e. the initial velocity is localized around the
regularized string.
Figure 1 shows the combined radial profile of the metric

function ~α and α for various moments of time. The initial
velocity profile leads to a rapid increase around the position
of the cosmic string. Subsequently, it falls back down,
thereby emitting cylindrically symmetric gravitational
waves. Meanwhile, the coordinate position of the cylinder
(indicated as dots in the plots) stays approximately con-
stant. The small oscillations in the r-profile of α of
frequency ∼1=R are due to waves in the interior of the
cylinder which are reflected at the axis and partially
reflected at the cylinder’s surface. At late times, α

asymptotically settles back to a constant profile, i.e. back
to the static deficit angle solution we started with.
This can also be seen from Fig. 2(a) which shows the

expansion rate H ≡ dα0=dτ as a function of time. After
starting with a positive value, it becomes negative, turns
around and asymptotically approaches zero. The oscillatory
modulations are again due to the gravitational waves which
are moving back and forth in the interior. Finally, Fig. 2(b)
shows the effective equation of state of the stabilizing
pressure pϕ. Again, the oscillatory behavior is imprinted in
the evolution; but more importantly, we see that it never
becomes smaller than −1, and therefore pϕ is physically
reasonable in the sense that it satisfies the null energy
condition. Furthermore, at late times it approaches zero, in
agreement with the prediction (32).
We checked that the qualitatively same behavior is found

for other values of λ̄ and HiR, as long as they satisfy the
condition (20): the system always approaches the static
conical defect geometry at late times. Hence, this solution is
indeed an attractor in the case of sub-critical string tensions.

C. Super-critical tension

Next, let us turn to the actual case of interest—super-
critical string tensions. As an example, we consider the
parameters

λ̄ ¼ 1.5; HiR ¼ 0.35; ð46Þ

and a flat initial velocity profile for both12 ~α and α:

FIG. 1 (color online). The radial profile of α at different values
of τ for a sub-critical tension. The dots indicate the shell’s
position, left of which the plotted function is ~αð~rÞ. After the initial
perturbation is carried away in form of outgoing gravitational
waves, the metric settles back to the static deficit angle geometry.

12This choice can be justified a posteriori, because the attractor
solutions at asymptotically late times approach roughly constant
r-profiles. But we checked that the same attractor solutions are
approached for other initial velocity profiles, like e.g. a Gaussian
as before. Furthermore, they are still approached if HiR is made
smaller, i.e. if the system is perturbed with less energy.

FLORIAN NIEDERMANN AND ROBERT SCHNEIDER PHYSICAL REVIEW D 91, 064010 (2015)

064010-8



~FðxÞ ¼ 1; FðxÞ ¼ 1: ð47Þ

This time, the system shows a qualitatively completely
different behavior. The expansion rate H, depicted in
Fig. 3(a), instead of going to zero, approaches a constant
nonzero value. This is one of the main results of the present
paper: The static defect angle geometry is no stable solution
in the case of super-critical string tensions. Instead, the
attractor solutions are those in which the string expands in
axial direction at a constant rate.
The equation of state of the azimuthal pressure is shown

in Fig. 3(b). It also approaches a constant value at late
times; but more importantly, it is again always larger than
−1 and hence consistent with a radial stabilization by
means of physically reasonable matter. However, the
asymptotic value of pϕ=λ depends on the tension, as will
be discussed in Sec. VI, which will ultimately lead to a
break down of stabilizability.
The radial coordinate position of the cylinder is now no

longer approximately constant, but approaches a constant
velocity, as can be seen in Fig. 4. Quite remarkably, it turns
out that in the exterior coordinate patch, this asymptotic

velocity is 1; this is just the speed of light, since in the
coordinates (9) radial light rays correspond to dr ¼ �dt.
This means that no signal from beyond the dashed line in
Fig. 4(b) can ever reach the string, drawn as a solid (green)
line, or in other words: A horizon is formed outside the
super-critical cosmic string. This is the second main result
of our analysis.
On the other hand, the asymptotic velocity in the interior

coordinate patch is less than 1, so no horizon is formed
inside the regularized string. Note that, even though the
exterior speed asymptotically approaches unity, it always
stays below 1. Otherwise, there would also be contra-
dictions because: (i) the shell represents a massive object,
which cannot travel exactly at the speed of light; (ii) moving
at the speed of light is a coordinate invariant statement, so if
it did hold in the exterior, it would also have to hold in the
interior coordinate patch.
In the example we showed in Fig. 4, the conical

singularity at r ¼ 0, from the string’s point of view, is
hidden behind the horizon. However, this is no generic
feature of the solutions, because the actual position of the

(a)

(b)

FIG. 2. For sub-critical tensions, both the axial expansion rate
H (a) and azimuthal pressure pϕ (b) oscillate and approach zero at
late times, in accordance with the analytic predictions for the
static solution. The numerical error estimates do not exceed the
line thickness.

(a)

(b)

FIG. 3. For super-critical tensions, the axial expansion rate H
(a) and azimuthal pressure pϕ (b) both tend to constant, non-zero
values at late times. This shows that the static solution is not an
attractor anymore. The numerical error estimates are indicated by
the gray bands. The dashed lines correspond to the analytic
predictions derived in Sec. VI.
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horizon depends on the initial condition HiR: smaller
values move the dashed line in Fig. 4(b) to the left. By
choosing HiR small enough, the horizon can be pushed so
far that it crosses the axis, implying that the conical
singularity is no longer hidden. But as will be shown in
Sec. VII, for time dependent geometries the conical
singularity can be avoided altogether.

D. Radial geometry

As already mentioned, the intrinsic geometry on the
cylindrical shell is fully characterized by the axial expan-
sion rate H, because after fixing R this expansion is the
only nontrivial feature of the induced metric (12). However,
the full metric (9) contains much more information, namely
how space inside and outside the shell is curved in the
radial direction, and how it evolves in time. The interior is
of particular interest because we want to model a cosmic
string with no strong dynamics inside, and so we would like
the interior cross-sectional area to be approximately con-
stant in order to have a successful regularization. Fixing R
only keeps the shell’s circumference constant, but does not
a priori say anything about the area. The constant velocity
of the shell in the interior could even lead one to suspect
that the area might actually be growing. However, the
constancy of the velocity is of course a coordinate depen-
dent statement, so one has to look at the invariant13 area.
Furthermore, it would be nice to get some intuition about
what the exterior geometry actually “looks like.”
The radial warping of the full metric can be visualized by

drawing embedding diagrams of the two-dimensional

temporal and axial slices (i.e. t; z ¼ constant) in a fictitious
three-dimensional space. These diagrams are shown in
Fig. 5, where the interior is drawn red (dark gray) and the
exterior green (light gray). The series of diagrams in each
row corresponds to snapshots taken at equidistant times τ,
starting at τ ¼ 0 on the left and increasing to the right.
Figure 5(a) corresponds to the sub-critical case λ̄ ¼ 0.5.

The exterior space is cut off at some finite radius in the
pictures, but actually extends to infinity. One can clearly
see how the shell creates a deficit angle, making the
exterior space conical. As time evolves, the disturbance
induced by the initial conditions moves outwards in
the form of a cylindrical gravitational wave, and the
geometry asymptotically settles to the static defect angle
solution.14

The super-critical case λ̄ ¼ 1.5 is shown in Fig. 5(b).
Here, the exterior space closes up and ends in a conical
singularity, making the space compact. The causal structure
is visualized by adding a radial light ray that is initially
emitted from the exterior axis (solid blue lines).
Asymptotically, it stays at a finite distance away from
the shell, in accordance with the formation of a horizon.
Furthermore, one can already see from these diagrams that
the interior area indeed stays approximately constant, in
accordance with a successful stabilization, whereas the
exterior area increases. To make these statements more
quantitative, Fig. 6(a) shows the interior 2D area

~AðτÞ ≔ 2π

Z
~r0ðτÞ

0

~re~η−2~αd~r: ð48Þ

The gravitational waves moving back and forth inside the
shell lead to very small oscillations in this area, but at late
times it indeed approaches a constant value. In Sec. VI we
will derive an analytic prediction for its value, which is
shown as a dashed line. Hence, our numerical solution
can indeed be viewed as a successful regularization of a
stabilized cosmic string. On the other hand, the exterior
area AðτÞ, plotted in Fig. 6(b), gets larger at an asymp-
totically constant rate.
Finally, Fig. 5(c) shows the embedding geometry for the

same super-critical tension λ̄ ¼ 1.5, but with initial con-
ditions which remove the conical singularity, as discussed
in Sec. VII. These nontrivial initial conditions lead to a
much more rapid increase in the exterior area for the first
time steps. But apart from that, the qualitative behavior is
the same as in the case with conical singularity. In
particular, the interior area again approaches the constant
value and the exterior size keeps growing, see Figs. 6(c)
and 6(d). However, the asymptotic growth rate is smaller
than in the conical case, showing that the speed at which the

(a) (b)

FIG. 4 (color online). For super-critical string tensions, the
shell’s position approaches a constant velocity in the interior and
in the exterior coordinate patch. In the interior, this asymptotic
velocity is< 1 and its actual value depends on λ̄. In the exterior, it
is generically ¼ 1, implying a horizon. The coordinates in either
patch only range from the axes to the shell, so the gray regions are
not part of the spacetime.

13It is still slicing dependent, but this does not affect the
question whether the area is asymptotically constant or growing.

14The initial defect angle is slightly larger than the final one,
because initially the nonzero value of H gives an additional
contribution.
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exterior space gets larger is not only set by the string
tension, but also influenced by the amount of C-energy that
is needed to smooth out the conical singularity.

VI. ANALYTIC RESULTS

From the numerical investigations we learned that for
super-critical string tensions, the system asymptotically
approaches a constant axial expansion rate H at late times.

In this section, we will derive the analytic relation between
the tension λ̄ and HR. To this end, we first of all make use
of the fact that the numerical results reveal another quite
generic behavior: For different choices of initial conditions
the shell generically approaches a constant (coordinate)
velocity

_~r0ð~tÞ → ~v < 1 and _r0ðtÞ → 1: ð49Þ

FIG. 5 (color online). Embedding diagrams of the radial geometry at equidistant time steps Δτ. The interior of the regularized string is
drawn red (dark gray), the exterior green (light gray). In the super-critical cases, a light ray emitted from the exterior axis towards the
shell is drawn as a solid dark line, visualizing the formation of a horizon.
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Plugging this into (18), we conclude that ~γ and γ also
approach constants15:

~γ →
HR
~v

; γ → HR: ð50Þ

Substituting this into the junction condition (26), we obtain

λ̄ ¼ HR

�
1þ 1

~v

�
: ð51Þ

This is not yet the relation we are looking for, because it
still contains the additional unknown parameter ~v. But the
numerics show that the value of ~v only depends on λ̄ (and
not on the initial conditions). Hence, there should be a
second relation between the parameters lifting the degen-
eracy of (51). However, in order to derive this relation
analytically, one needs to know the complete interior
geometry of the attractor solution. Fortunately, it turns
out that this solution can indeed be found.
We look for a solution ~αwhich leads to a shell coordinate

which is changing with a constant rate ~v, i.e. ~r0 ¼ ~v ~t. (For
simplicity, we assume that initially ~r0 ¼ 0. The general case
with an initial offset, which has to be used when comparing

to the numerical solutions, is simply obtained by letting
~t → ~tþ const) Together with (15), this condition fixes the
time dependence of ~α0 :

~α0 ¼ ln
�
~v ~t
R

�
: ð52Þ

In order to extend this function into the interior space of the
shell, we look for scaling solutions of (10a) which depend
on ~r only through the ratio x ≔ ~r=~t. The only solution of
this type, which is also compatible with (52), is

~αð~t; ~rÞ ¼ ln

�
~t
Ω
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ
�
; ð53Þ

with

Ω ≔
R
~v

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~v2

p 	
: ð54Þ

Integrating (10b) and (10c) then yields

~ηð~t; ~rÞ ¼ 2 ln

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
!
; ð55Þ

where the elementary flatness condition ~ηj~r¼0 ¼ 0 was
implemented. The complete scaling solution for the interior
region now reads

(a) (b)

(c) (d)

FIG. 6 (color online). Interior (left column) and exterior (right column) area of the super-critical cosmic string geometry with (upper
row) and without (lower row) conical singularity at the exterior axis. The interior area approaches a constant value, confirming a
successful stabilization, whereas the exterior area keeps growing.

15Using (50) to eliminate γ in (26) shows that the solution
asymptotically approaches the critical bound (21) from above.
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d~s2 ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ2
�
Ω2

4

�
−d~t2 þ d~r2

~t2 − ~r2

�
þ ~t2

Ω2
dz2
�

þ
�

Ωx
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
�

2

dϕ2; ð56Þ

which is an exact vacuum solution.
We can now evaluate (55) at the shell, use (19) and (50)

to finally obtain

HR ¼ 4~v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~v2

p

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~v2

p
Þ2
: ð57Þ

This is the second relation we were looking for.16 The two
equations (51) and (57), which allow one to determine the
parameter combination HR as a function of the tension λ̄,
are the main analytical result of our paper. For small
velocities ~v ≪ 1 we find a linear dependence

HR ≈ λ̄ − 1: ð58Þ

The exact system does not possess solutions for arbi-
trarily large tensions. In fact, there is the rather stringent
bound λ̄ < 27=16 ≈ 1.69 corresponding to a velocity
~v ¼ 4=5. Below that value there are two branches of
solutions corresponding to ~v < 4=5 and ~v > 4=5. Only
the former branch turns out to be an attractor. These results
are summarized in Figs. 7 and 8. The solid line depicts
the analytical result for the attractor branch, whereas the
dashed line depicts the other branch. Each dot corresponds
to one run of the numerics for different values of λ̄. Of
course, the number of time step was chosen such that the
convergence of H and ~v was sufficiently accurate. The
corresponding error bars, usually not exceeding the size of
the dots, are also shown. The dots lie almost perfectly on
the solid line which shows that we have indeed found the
correct attractor solutions. Moreover, Fig. 8 nicely illus-
trates that the linear dependence of Hubble on λ̄ in (58),
drawn as a dotted line, is a very good approximation for
almost the whole regime.
At first sight, the physical origin of the bound λ̄ < 27=16

is unclear because it looks as if the system cannot be solved
for larger tensions. This puzzle can be resolved by
calculating the pressure in the ϕ-direction, which we
implemented to stabilize the physical circumference of
the shell. This can be done by evaluating (29) for the
scaling solutions described above. The resulting relation
between pϕ and λ̄ is shown in Fig. 9. We see that for
λ̄ < 128=81 ≈ 1.58, the equation of state of pϕ satisfies the
null energy condition, i.e. it is greater than −1. This means
that the shell can be stabilized by means of physically

reasonable matter. However, for λ̄ > 128=81—which hap-
pens before the maximum value 27=16 is reached—the
equation of state drops below −1, indicating that it is no
longer possible to have a stabilized shell. Consequently, we
should not trust the scaling solutions in this regime because
their derivation relied explicitly on that assumption. In this
regime a different approach that allows for an angular
expansion of the shell is needed. This would require to go
beyond the effective shell description of the transverse
sector and could be achieved by studying the full Nielsen-
Olesen setup as done numerically in [10]. This work also
allows for a nontrivial cross-check of our effective descrip-
tion. More precisely, in [10] it was found that a string with
unit winding number begins to expand in transverse
directions once17 λ̄ > 1.57� 0.06. This is in perfect

FIG. 7 (color online). There are scaling solutions only for
λ̄ < 27=16 ≈ 1.69. Above that value the system (51) and (57) has
no real solution. Below, there are two branches, one correspond-
ing to ~v < 4=5 and the other to ~v > 4=5. The red dots, showing
the numerical results, single out the former branch as being the
attractor solution and thus physically interesting.

FIG. 8 (color online). The axial expansion rate of the super-
critical string as a function of the tension λ̄. The linear relation
(58) corresponds to a good approximation.

16Note that, even though it relates local shell parameters, it
implicitly depends on the entire interior geometry through the use
of (55); for instance, it knows about the regularity a the axis.

17The translation to our variables is achieved by the identi-
fication λ̄ ¼ 8πjnjη2=m2

p which holds in the Bogomol’nyi limit.
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agreement with our result. Note that at this point HR is
already close to one, and we are therefore no longer
insensitive to the microscopic details of the string. The
perfect numerical agreement between both approaches thus
seems to be an accident, and indeed, for higher winding
numbers, the stability bound derived in the NO setup is
slightly below the one derived in our setup. This demon-
strates that quantitative predictions get sensitive to the
underlying UV model once HR is of order one.
We also checked explicitly that the numerically deter-

mined radial profiles of ~α and ~η approach the analytic
solutions (53) and (55), respectively. Within the numerical
error bars, we found perfect agreement after the system was
evolved sufficiently far in time.
Another consistency check of our analysis concerns the

cross-sectional area of the interior space. As has been
argued before, the area should be constant for the regu-
larization to work properly. After substituting the scaling
solution in (48), we find

~A ¼ πR2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~v2

p
Þ2

4~v2
ln ð1 − ~v2Þ; ð59Þ

which reduces to the flat space result in the limit ~v → 0 as
expected. Most importantly, this expression is time inde-
pendent (and finite for ~v < 1) showing that our regulari-
zation scheme is stable. The analytical value is depicted in
Fig. 6(a) as a dashed line. It is approached by the numerical
solution consistently.
The fact that the area inside the shell is exactly constant

for the scaling solution suggests that the radial movement
of the shell is just a coordinate relict. Accordingly, we will
show in Appendix B that we can introduce new coordinates
for which the shell sits at a constant coordinate position and
the whole time dependence of the metric is related to the
expansion in axial direction. Moreover, we will show that
the scaling solution is equivalent to a solution discussed by

Witten [16] and Gregory [17], describing a “cigar”-shaped
universe. In both works the vacuum solution was discussed
but without matching it to an actual matter model. To our
knowledge this has been achieved for the first time within
our super-critical string setup.
One might wonder whether the analytic scaling solution

discussed above could also describe the asymptotic form
of the exterior spacetime by simply replacing ~v by v ¼ 1.
However, this cannot work because Eq. (57) could then
also be derived from the exterior18 and would thus give the
contradictory result HR ¼ 0. Thus, the actual exterior
solution cannot converge to the v ¼ 1 scaling solution,
at least not everywhere. This can also be understood by
realizing that in the scaling solution the shell moves at
constant (coordinate) velocity; hence, for v ¼ 1 it would
always move exactly with the speed of light, which is
impossible for a massive shell (and would also contradict
~v < 1, as already mentioned earlier). In other words, the
actual attractor solution in the exterior would have to be
one in which the shell’s speed is not constant but only
approaches 1 at late times, and can thus not be the simple
scaling solution.
Nevertheless, we found that the numerical solution does

indeed approach the v ¼ 1 scaling solution for most r
including the axis, but starts to deviate from it close to the
shell. Moreover, the concrete form of these deviations
remains sensitive to the initial conditions for all times, so it
seems impossible to make any further generic statements
about the full exterior attractor solution.
The convergence towards the scaling solution suffi-

ciently far away from the string can also be seen qualita-
tively in the embedding diagrams in Figs. 5(b) and 5(c),
which nicely agree with the cigar shape of the scaling
solution. The cigar keeps growing and presumably
becomes infinitely long as τ → ∞, cf. Figs. 6(b) and 6(d).
Finally, let us emphasize that the relation we derived here

relates the expansion rate to the tension of the (regularized)
super-critical string. The conical singularity at the exterior
axis can be interpreted as another (unregularized) sub-
critical string. This point of view was for instance taken in
Ref. [17]. However, the corresponding deficit angle—and
thus the tension of this sub-critical string—is not generi-
cally related to the expansion rate. Instead, it can be chosen
independently, and in particular even be set to zero, as we
will show in the next section [see also Fig. 5(c)]. In
summary, a sub-critical string only creates a deficit angle
and does not inflate, whereas a super-critical string inflates
in axial direction at the rate determined by the system (51)
and (57).
Our results are also relevant for 6D braneworld

models. In this case the string is replaced by a 3-brane

FIG. 9 (color online). The string can be radially stabilized by
physical matter as long as λ̄ < 128=81 ≈ 1.58. For larger values
of the tension the equation of state drops below −1 indicating that
a stabilized shell cannot be realized physically.

18It would only differ by the finite and constant overall factor
expð−ηjr¼0Þ corresponding to the conical singularity at the
exterior axis.
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corresponding to our Universe. A generalized version of
Eq. (58) then plays the role of a modified Friedmann
equation. This higher dimensional picture is discussed
in Sec. IX.

VII. REMOVING THE CONICAL SINGULARITY

In Sec. IV, we saw that for super-critical string tensions,
the static solution necessarily has a conical singularity at
the exterior axis. This means that the vacuum Einstein
equations are actually not satisfied there; instead, there is a
second (unregularized, sub-critical) string sitting at the
axis, the tension of which must be suitably dialed according
to the tension of the original (regularized, super-critical)
string. This is of course rather unsatisfactory, because we
wanted to model a single super-critical cosmic string.
Physically, there is no reason why the second string should
be necessary.
This suggests that the second string—or equivalently,

exterior conical singularity—is an artifact caused by the
too strong assumption of having a static geometry. And
indeed, for time dependent solutions, this need not be the
case. The absence of a conical singularity is equivalent to
ηjr¼0 ¼ 0. Using the vacuum field equation (10b), we can
rewrite this as

ηjr¼0 ¼ η0 −
Z

r0

0

r½ð∂tαÞ2 þ ð∂rαÞ2�dr¼! 0: ð60Þ

For (regular) static solutions, α is constant and so ηjr¼0 ¼ η0,
which is nonzero. But for time dependent solutions, the
integral in (60) is positive. Hence, if η0 > 0, one can always
chose initial conditions for α, such that (60) is fulfilled at the
initial time. But then it will in fact be fulfilled for all times,
since the constraint (10c) implies that ∂tηjr¼0 ¼ 0 (if α is
regular, which we assume). Whether η0 is positive, again
depends on the string tension and the initial conditions for
~α. Specifically, using the junction condition (26), one can
show that (for super-critical tensions) η0 > 0 is equivalent to

λ̄ < ~γ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2R2

p
: ð61Þ

Thus, if λ̄ lies inside the nonempty interval

~γ þ jHjR < λ̄ < ~γ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2R2

p
; ð62Þ

the conical singularity at the exterior axis can always be
removed by a suitable choice of initial data for α.
In the numerical examples that we studied, condition

(61) was always satisfied. Indeed, for the flat profile
function FðxÞ ¼ 1, Eq. (42) implies that the bound (61)
is well above the bound λ̄ < 27=16, beyond which the
solutions discussed above are no attractors anyway,
see Fig. 10.
However, the rather arbitrary choice of initial profiles

(47) does not automatically lead to a smooth axis. But we

checked that the late time asymptotic behavior, as well as
the relation between string tension and expansion rate, still
persist if the initial data for α is deformed such that (60) is
satisfied and the exterior geometry is perfectly smooth.
In other words, the deficit angle at the exterior axis

corresponds to a static, sub-critical string that is put there in
addition to the actual super-critical string of interest. Its
tension is a parameter that is completely controlled by the
initial data; in particular, it can be set to zero whenever (62)
is satisfied. Furthermore, the expansion rate H is com-
pletely insensitive to this sub-critical string and is instead
set by the tension of the super-critical string. This can also
be understood from the formation of the horizon: an
observer comoving with the cylindrical shell cannot even
see the axis, and hence cannot tell whether there is a conical
singularity or not. Therefore, intrinsic quantities like H
cannot depend on the exterior defect angle either.
The fact that the conical singularity can be removed in the

dynamical case, while being physically satisfactory, raises
another question: How does the system know which side of
the shell is the interior and which the exterior? After all, both
regions are described by the same metric ansatz and share the
same boundary conditions at the axes. Still, the numerical
results show that the shell’s velocity approaches unity only in
the exterior, implying that the two regions do in fact evolve
differently. Clearly, this difference must already be incorpo-
rated in the initial conditions. If those were completely
symmetric as well, no difference between “inside” and
“outside” could ever emerge.
And indeed there is such a difference: the difference

between ~η0i and η0i, measuring the gravitational C-energy
in the interior and exterior, respectively. In the case in
which the exterior conical defect was removed, this differ-
ence was caused by choosing a nontrivial initial profile for
α only in the exterior. In the case with conical singularity,
both initial profiles were chosen identically, but the
localized energy-density corresponding to the conical
defect also adds to the exterior C-energy, while there is

FIG. 10 (color online). Region plot of parameter space, as
explained in the text.
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no such contribution in the interior. Thus, in both cases
η0i was larger than ~η0i, or in other words, there was more
C-energy in the exterior than in the interior.
The symmetry of the setup then implies that the opposite

also holds: If we interchange initial conditions, such that
there is more C-energy in the “interior,” then the velocity
will approach 1 there, and a constant < 1 in the “exterior.”
But in this situation, we would simply interchange the
names interior and exterior, because there should not be a
horizon in the interior if we want to view it as a
regularization of a thin cosmic string. Hence, the initial
conditions should always be chosen such that there is less
C-energy in the interior; or equivalently, the side with less
C-energy should be identified as the actual interior. Note
that, in particular, this qualification of inside and outside
does not depend on whether there is a conical singularity at
either axis.
As already remarked, in the completely symmetric case

~η0i ¼ η0i there can be no difference between inside and
outside. In fact, we found that there is a finite region19

~η0i ≈ η0i for which no difference emerges. In these cases
both velocities approach unity, and so one cannot identify
an interior, and can thus not speak of a regularized cosmic
string. We therefore did not further investigate these cases.

VIII. PARAMETER PLOT

Our findings can nicely be summarized in the parameter
plot shown in Fig. 10. It assumes a trivial radial profile of ~α,
which we chose as initial data for the numerics. (If the
radial profile is nontrivial, ~η0 is not rigidly related to HR,
and so the parameter space becomes three-dimensional.
Hence, this plot is only valid at initial time.)
In the purple (dark gray) region, the string is sub-critical

and the static defect angle solution is an attractor. Between
the solid purple (dark gray) and orange (light gray) lines,
the system is critical; this region is not covered in the
present paper. Above the orange line, the string is super-
critical, and in the shaded region it approaches the axially
expanding scaling solutions discussed in Secs. V C and VI.
The upper bound of this region is λ̄ ¼ 27=16 ≈ 1.69,
beyond which there is no solution for ~vðλ̄Þ anymore and
hence the geometry cannot approach the scaling solutions,
cf. Sec. VI. However, before this bound is reached, the
equation of state for pϕ becomes less than −1 for λ̄ ¼
128=81 ≈ 1.58 (dotted black line), which should be inter-
preted as the statement that the string thickness cannot be
stabilized anymore, in accordance with [10]. Therefore, we
did not further investigate the upper white region. Finally,
the dashed black line corresponds to the bound (61),
beyond which the conical singularity at the exterior axis
could not be removed. It is well above the orange region,
implying that in the cases we studied, which dynamically

approach the analytic scaling solutions of Sec. VI, the
conical singularity can always be removed.

IX. BRANEWORLD IN 6D

Our results are in particular interesting with respect to
six-dimensional braneworld scenarios where the string is
promoted to a 3-brane and the coordinates ðr;ϕÞ label the
two extra dimensions. Related models have been studied
extensively in the past for both compact [27] as well as
infinite extra dimensions [28]; for a more recent work see
[11]. The general hope is to find solutions for which the
gravitational impact of a brane tension or, equivalently, a
4D cosmological constant, is fully absorbed by the extrinsic
curvature corresponding to the embedding of the brane in
the bulk. Such a mechanism would make the cosmological
constant invisible to a brane observer and would therefore
allow to address the cosmological constant problem [29].
In this section, we present the corresponding super-

critical solutions. The Einstein-Rosen coordinates (9) can
be easily generalized to six dimensions by making the
formal replacements α → 3α in the first and last term and
z → x in the middle term of (9). Here x denotes the three
spatial brane directions. In the exterior region, for instance,
we get

ds2 ¼ e2ðη−3αÞð−dt2 þ dr2Þ þ e2αdx2 þ e−6αr2dϕ2: ð63Þ

The corresponding vacuum equations and junction con-
ditions can be derived in complete analogy to the 4D case
presented above, and the system can then be solved
numerically in a similar fashion. The results that we found
are also analogous: The axial expansion rate H, which in
this case corresponds to the ordinary Hubble parameter,
approaches again a constant, nonzero value. Furthermore,
the coordinate velocity of the brane exhibits the same
asymptotic behavior (49) as in the 4D case, thus implying

~γ →
3HR
~v

; γ → 3HR: ð64Þ

Using the generalized version of (26), we find

λ̄ ¼ 3HR

�
1þ 1

~v

�
; ð65Þ

where now λ̄ ≔ λ=ð2πM4
6Þ, with M6 denoting the six-

dimensional Planck mass and λ the energy per 3D string
volume, corresponding to a 4D cosmological constant or
vacuum energy. The analytic solutions in the interior can be
derived in the same way as before. We find that ~α is still of
the form (53) where the same expression (54) for Ω holds.
For ~η we find19We did not investigate this more quantitatively.
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~ηð~t; ~rÞ ¼ 4

3
ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
�
; ð66Þ

which enables us to generalize (57) to

3HR ¼ ~vð1 − ~v2Þ16
�

2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~v2

p
�4

3

: ð67Þ

As before, in the physically relevant regime where
HR ≪ 1, we can analytically eliminate ~v from the system
(65) and (67), yielding a modified Friedmann equation

3HR ≈ λ̄ − 1: ð68Þ

It should be noted that for a realistic value of the
regularization scale, say R ∼ TeV−1, this equation requires
again a tremendous amount of fine-tuning between the
two terms on the right-hand side in order to describe the
observed accelerated expansion of the Universe. Thus,
these super-critical solutions within pure six-dimensional
GR cannot help with the cosmological constant problem.
The phenomenology of this equation in the context of a
more sophisticated braneworld model [11,28] will be
discussed elsewhere.

X. CONCLUSION AND OUTLOOK

In this paper, we have studied the geometry of a single
super-critical cosmic string. In a marginally super-critical
regime, 1 < λ̄≲ 1.6, the string can consistently be modeled
as a cylindrical shell of fixed circumference 2πR. Within
this parameter region, there are well known static solutions
for which the geometry is compact and closes in a second
singular axis away from the string. By numerically solving
the full system of vacuum and shell matching equations, the
instability of the static solution was demonstrated. It was
shown that the system instead approaches a time-dependent
attractor solution with the following properties:

(i) The string expands in axial direction at a con-
stant rate.

(ii) A horizon is formed away from the string.
(iii) The bulk geometry remains compact but becomes

cigar-shaped and expands.
(iv) In the dynamical solutions, the exterior conical

singularity can always be avoided.
Moreover, an analytic relation between the tension λ, the

string thickness R and the expansion rate H was derived.
Generalized to six-dimensional GR, these solutions

correspond to a simple braneworld model with a single
super-critical, pure tension brane. The corresponding
modified Friedmann equation is given by Eq. (68).
Unfortunately, the parameters of the model have to be
fine-tuned to be in accordance with the observed accel-
erated expansion of the Universe. As a future direction, it
would be interesting to extend these solutions to different

more sophisticated braneworld models. In particular, the
analysis in [11,18] in the context of “brane induced gravity”
(BIG) models in six dimensions can now be extended to
super-critical brane tensions. As another interesting appli-
cation, our solutions allow to directly generalize the 5D
model in [30], describing an effective Kaluza-Klein setup at
small length scales, to the super-critical case. Furthermore,
we are planning to generalize our results to BIG branes with
more than two codimensions. Those setups are discussed in
[28] as potential solutions to the cosmological constant
problem. Ultimately, this will enable us to clarify their
phenomenological status.
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APPENDIX A: CLASSIFICATION
OF EXTERIOR GEOMETRIES

In this Appendix, we give a complete classification of
the character of a vacuum spacetime described by the
metric (3), depending on the gradient∇W ≡ ð∂t�W; ∂r�WÞ.
Furthermore, we discuss which changes of character are
admissible in vacuum, as well as across shells of matter
and show how the change of character across such a shell
depends on the surface energy density.
Following Thorne [19], Appendix A, we define the

“character” of spacetime depending on the orientation
of ∇W as summarized in Table I. Here and henceforth,
“outward” (respectively “inward”) means in direction of
increasing (decreasing) r�, and “future” (“past”) refers to
the direction of increasing (decreasing) t�. In vacuum, W
satisfies the 1D wave equation (7), the general solution of
which can be written as

Wðt�; r�Þ ¼ Wþðt� þ r�Þ þW−ðt� − r�Þ: ðA1Þ
It easy to verify that each orientation of ∇W corresponds
to a certain choice of signs for the derivatives20 W0þ and
W0−, as listed in Table I.

1. Changes of character in vacuum

Let us now discuss which changes of character are
allowed in vacuum regions. The above discussion shows
that a change of character is equivalent to a change of

20Here and henceforth, the primes acting on W� denote the
derivative with respect to their argument (not with respect to r�),
i.e. W0

�ðxÞ ≔ dW�ðxÞ=dx.
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sign of W0þ or W0−. Thus, on the boundary between two
spacetime regions of different character, we have W0þ ¼ 0
or W0− ¼ 0. But since these functions are constant along
null surfaces, it follows that in vacuum, the character can
only change across null surfaces.
Furthermore, since W0þ is constant along an incoming

light ray (dtþ dr ¼ 0), the only possible changes along
incoming rays are those in which W0− changes sign, i.e.
changes within the following sets:

fDþ; D↑; Dþ↑g; fD−; D↓; D−↓g; fDþ↓; D−↑; D×g:

Similarly, along outgoing null rays (dt − dr ¼ 0), the
character can only change within

fDþ; D↓; Dþ↓g; fD−; D↑; D−↑g; fDþ↑; D−↓; D×g:

However, there is a further restriction on the directions of
changes within all these sets, coming from the focusing
theorem for null geodesics [19,31]: It says that
d2W=dσ2 ≤ 0, where σ is the affine parameter along the
null geodesic. Hence, the functionsW0þ andW0− cannot get
larger along any null rays. Thus, e.g. for the first set, the
only admissible changes are

D↑ → Dþ↑ → Dþ; ðA2Þ
and similarly for the other sets. All changes that are finally
possible, are summarized schematically in Fig. 11: they are
exactly those changes which are encountered along any
incoming or outgoing null ray in this diagram. Note that in
the gray shaded regions the Jacobian of the transformation
(8) vanishes, and so these coordinates can only be adopted
in any of the white regions separately. Furthermore, the new
coordinate r which is set equal to W will be a spatial
coordinate for Dþ and D−, but a temporal coordinate for
D↑ and D↓. In a Dþ (respectively D−) region, r decreases
as one moves inward (outward); it cannot start increasing
again, because this would require a change to D− (Dþ),
which is not admissible. Hence, it decreases until even-
tually r ¼ 0, implying an axis that delimits spacetime, as

advertised in Sec. III B. (Similar statements hold in the
temporal case, but there the “axes” correspond to physical,
initial and final collapse singularities.)
There is actually a well-known example of a (vacuum)

spacetime exhibiting all the different characters: the
Gowdy universe [32], in which W ¼ sinðt�Þ sinðr�Þ.
The corresponding vector plot of ∇W is shown in
Fig. 12. The spacetime character exactly matches that of
Fig. 11, with the gray regions degenerated to single lines.
The two axes are located at r� ∈ f0; πg, whereas t� ∈ f0; πg
correspond to the big bang/big crunch singularities.21

Coming back to our general discussion, we find another
important result: It is not possible for a vacuum region
to dynamically evolve from Dþ to D− or vice versa.
Therefore, a sub-critical cosmic string (for which the
exterior geometry is Dþ, see below) can never evolve to
a super-critical string (D− exterior). In particular, super-
critical strings cannot be formed by cylindrical collapse
within classical GR.

2. Changes of character across the shell

Next, let us derive the relations given in Sec. III B,
relating the spacetime character of the region outside the
regularized cosmic string to its tension. In the interior, we
assume the character to be Dþ, in order to have a well-
defined regularization. Thus, we can safely adopt the
Einstein-Rosen coordinates (9a) there. In the exterior,
however, we keep the coordinates (3) because there we

TABLE I. Definition of spacetime character, depending on the
gradient of W.

Character Orientation of ∇W W0þ W0−
Dþ Spacelike outward > 0 < 0
D− Spacelike inward < 0 > 0

D↑ Timelike future > 0 > 0

D↓ Timelike past < 0 < 0

Dþ↑ Lightlike outward-future > 0 ¼ 0

Dþ↓ Lightlike outward-past ¼ 0 < 0

D−↑ Lightlike inward-future ¼ 0 > 0

D−↓ Lightlike inward-past < 0 ¼ 0

D× Zero ¼ 0 ¼ 0

FIG. 11. All admissible changes of character in vacuum regions
can be read off from this diagram, by following incoming or
outgoing null rays.

21By extending the range of t� to ð0; 2πÞ, one could construct
an example where forbidden changes like D↓ → D↑ were
apparently allowed. However, they would be separated by the
singularity at t� ¼ π, so they should be regarded as unphysical.
More generally, the above argument using null geodesics implic-
itly assumes that no singularities are present.
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do not know the character yet. In these coordinates, the
(0,0)-component of the junction conditions (23) reads

λ̄ ¼ ~γ − γ�ð_r�0∂t�W þ ∂r�WÞj0: ðA3Þ

Here, γ� is defined similarly to γ in (14), i.e. γ� ≔
expð−η�0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _r�20

p
and _r�0 ≔ dr�0=dt

�. Furthermore,
continuity of the metric implies W0 ¼ ~r0, which after
differentiating with respect to τ yields

0 ¼ ~γ _~r0 − γ�ð∂t�W þ _r�0∂r�WÞj0: ðA4Þ

Plugging the general solution (A1) of W into (A3)
and (A4), and solving for W0

�j0, we find

W0þj0 ¼
1

2γ�ð1þ _r�0Þ
ð~γ þHR − λ̄Þ; ðA5aÞ

W0−j0 ¼
1

2γ�ð1 − _r�0Þ
ðλ̄ − ~γ þHRÞ: ðA5bÞ

Note that here we used the relation (18) to eliminate _~r0.
Since the prefactors on the right-hand side are manifestly
positive, inspection of Table I immediately reveals that the
spacetime character at the exterior boundary of the shell is

Dþ ⇔ λ̄ < ~γ − jHjR; ðA6aÞ

D↑ or D↓ ⇔ ~γ − jHjR < λ̄ < ~γ þ jHjR; ðA6bÞ

D− ⇔ λ̄ > ~γ þ jHjR; ðA6cÞ

thus verifying the result stated in Sec. III B. The orientation
in the timelike case (A6b) depends on the sign ofH: it isD↑

for H > 0 and D↓ for H < 0. The lightlike cases corre-
spond to the saturation of one of the inequalities, e.g.
Dþ↑ ⇔ λ̄ ¼ ~γ − jHjR and H > 0, etc.
Since ~γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð−2~η0Þ þH2R2

p
, the bounds on λ̄,

delineating the sub-critical and super-critical regimes,
depend on two parameters: ~η0, which measures the gravi-
tational C-energy inside the shell—see Eq. (42a)—andHR,
i.e. the axial expansion rate measured in units of inverse
circumference R−1. If one assumes a flat initial profile
∂~t ~α ¼ const and ∂ ~r ~α ¼ 0 as we did in our numerics, ~η0i and
HR are related via (42), and so the bounds (A6) can be
plotted in a HR-λ̄-diagram. This is shown in Fig. 10, where
the region below the solid purple (dark gray) line corre-
sponds to Dþ, the region in between the two solid lines is
D↑ (or D↓), and everything above the solid orange (light
gray) line is D−.

APPENDIX B: COMOVING COORDINATES

It is straightforward to check that after introducing new
coordinates ðt̄; r̄Þ according to

t̄ ¼ L ln

�
L~t
r2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p �
; ðB1Þ

r̄ ¼ rþ
2

�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

�
; ðB2Þ

with x≡ ~r=~t, the scaling solution (56) takes the form

d~s2 ¼ r̄2

L2
ð−dt̄2 þ e2t̄=Ldz2Þ þ

�
1 −

rþ
r̄

�
−1
dr̄2

þ 4r2þ

�
1 −

rþ
r̄

�
dϕ2: ðB3Þ

Here, L is an arbitrary length scale which can be adjusted
by rescaling (and shifting) t̄. The constant rþ denotes the
position of the (regular) axis in the new coordinates, and
the shell is now sitting at a constant coordinate position
r̄0. The two parameters rþ and r̄0, determining the range
of r̄, are related to R and ~v via

rþ ¼ R
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~v2

p
Þ

2~v
; ðB4aÞ

r̄0 ¼ R
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~v2

p
Þ2

4~v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~v2

p : ðB4bÞ

The metric (B3) is exactly the 4D version of the one
discussed by Witten in 5D [16] and by Gregory for general
dimensionality [33]. The benefit of these coordinates lies in
their simplicity which allows to read off the geometrical
content directly from the metric. The entire dynamics
consists in a de Sitter–like expansion in axial direction,

FIG. 12 (color online). The gradient of W for the Gowdy
universe, W ¼ sinðt�Þ sinðr�Þ. The corresponding spacetime
character matches that of Fig. 11, with the gray regions
degenerated to single lines.
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whereas the radial profile—and hence in particular the
interior area—is completely static. Note that the scaling
solution is only a true attractor for the interior spacetime, i.e.
the red region in Figs. 5(b) and 5(c). However, as discussed
in the main text, the exterior geometry also approaches
the scaling solution with ~v → 1 sufficiently far away from
the shell. Hence, we can use (B3) also to picture the
spacetime outside the string, if we neglect a small region
close to it. Then the axis at rþ corresponds to the south pole
in Figs. 5(b) and 5(c). The case with a conical singularity is
simply obtained by appropriately adjusting the coefficient of
dϕ2 in (B3). Moving away from the axis towards the string,
r̄ → ∞ [because in the limit ~v → 1 Eq. (B4b) implies
r̄0 → ∞] and so the physical circumference approaches a
constant value. The resulting embedding picture corresponds
to a cigar-shaped geometry. In the interior, ~v is bounded by
3=5 and so the ratio r̄0=rþ is always smaller than 9=8. At
this point, one has not yet reached the vertical part of the
cigar, and so the interior embedding geometry always
corresponds to a nearly flat cap. These results nicely agree
with what was found in Figs. 5(b) and 5(c).

APPENDIX C: VALIDITY OF EFT

General relativity viewed as an effective field theory
(EFT) is valid up to the Planck scale MP. Once the
curvature scale exceeds this value, higher order operators
become important and we can no longer trust its classical
predictions. Generically, this happens once the 4D energy

density becomes of order M4
P. For a cosmic string this

depends on both the tension λ and the regularization
scale R. A solid way to derive the regime of validity of
the EFT consists in considering the extrinsic curvature of
the string. More specifically, we focus on the combination
K ≔ ½Kc

c� − ½K0
0� which is determined by the (0,0) com-

ponent of the matching equation (23):

K
MP

¼ λ̄

RMP
: ðC1Þ

Once K exceeds MP, we expect the EFT to break down, or
equivalently, quantum gravity effects to become important.
The super-critical solutions we described are valid for
λ̄ ∼Oð1Þ. Then (C1) implies that classical GR is applicable
if and only if R is much larger than the Planck length
LP ≡M−1

P . Alternatively, this result becomes obvious when
we naively estimate the 4D energy density as the ratio λ=R2

and require it to be smaller than M4
P. In other words, even

though the energy per string length needs to be Planckian in
order to enter the super-critical regime, the energy per
string volume is sub-Planckian if the string’s thickness is
much larger than the Planck length. Also note that the
marginally super-critical solutions only cover the range
HR < 3=4, implying that the expansion energy M2

PH
2 is

always smaller than M2
P=R

2 and hence also sub-Planckian
if R ≫ LP.
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