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We use the feature that the gravitational Compton scattering amplitude factorizes in terms of Abelian
QED amplitudes to evaluate various gravitational Compton processes. We examine both the QED and
gravitational Compton scattering from a massive spin-1 system by the use of helicity amplitude methods. In
the case of gravitational Compton scattering we show how the massless limit can be used to evaluate the
cross section for graviton-photon scattering and discuss the difference between photon interactions and the
zero mass spin-1 limit. We show that the forward scattering cross section for graviton photoproduction has
a very peculiar behavior, differing from the standard Thomson and Rutherford cross sections for a

Coulomb-like potential.
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I. INTRODUCTION

The treatment of electromagnetic interactions in quan-
tum mechanics is well known and the discussion of
electromagnetic effects via photon exchange is a staple
of the graduate curriculum. In particular photon exchange
between charged particles can be shown to give rise to the
Coulomb potential as well as to various higher order effects
such as the spin-orbit and Darwin interactions [1]. The fact
that the photon carries spin-1 means that the electromag-
netic current is a four-vector and manipulations involving
such vector quantities are familiar to most physicists. In a
similar fashion, graviton exchange between a pair of
masses can be shown to generate the gravitational potential
as well as various higher order effects, but in this case the
fact that the graviton is a spin-2 particle means that
gravitational “currents” are second rank tensors and the
graviton propagator is a tensor of rank four. The resultant
proliferation of indices is one reason why this quantum
mechanical discussion of graviton exchange effects is not
generally treated in introductory texts [2].

Recently, by the use of string-inspired methods, it has
been demonstrated that the gravitational interaction factor-
izes in such a way that a gravitational amplitude can be
written as the product of two more familiar vector ampli-
tudes [3—7]. This factorization property, totally obscure at
the level of the action, is a fundamental property of gravity
and has deep consequences at the loop amplitude level,
since many gravitational amplitudes can be constructed by
an appropriate product of gauge theory integrand numer-
ators [8]. This feature has triggered a good deal of new
results in extended supergravity [9-20], but quite remark-
ably these techniques can be applied as well to pure
gravity [7,21].
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One remarkable property of amplitudes with emission of
one or two gravitons is their factorization in terms of
Abelian QED amplitudes [7,22]. This factorization prop-
erty has the important consequence that the low-energy
limit of the gravitational Compton amplitude for graviton
photoproduction is directly connected to the low-energy
theorem for QED Compton amplitudes [7].

In a previous paper [22] this property was used to evaluate
processes such as graviton photoproduction and gravita-
tional Compton scattering for both spin-0 and spin-% systems
by simply evaluating the corresponding electromagnetic
amplitude for Compton scattering. This simplification
permits the treatment of gravitational effects without long
tedious computations, since they are now no more difficult
than corresponding electromagnetic calculations. The sim-
plicity offered through factorization has important conse-
quences for the computations of long-range corrections to
interaction potentials containing loops of intermediate
photons or gravitons [23-26]. In this paper we extend such
considerations to electromagnetic and gravitational inter-
actions of spin-1 systems. These calculations are useful not
only as a generalization of our previous results but also, since
the photon carries spin one, such methods can be used to
consider the case of photon-graviton scattering, although
there are subtleties in this case due to gauge invariance.

In all the cases under study, we show that the low-energy
limit of the differential cross section has a universal
behavior independent of the spin of the matter field on
which photon or graviton is scattered. We demonstrate that
this is a consequence of the well-known universal low-
energy behavior in quantum electrodynamics (QED) and
the squaring relations between gravitational and electro-
magnetic processes.

© 2015 American Physical Society
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The forward differential cross section for the Compton
scattering of photons on a massive target has the well-
known constant behavior of the Thomson cross section,

oS o
lim —Jabs 2% 1.1
o0 dQ 2m? (1.1)

while the small-angle limit of gravitational Compton
scattering of gravitons on a massive target has the expected
behavior due to a 1/r long-range potential of a Rutherford-
like cross section,

_deSST 16G2m?
lim = =
0,0 dQ 9%

(1.2)

We explain in Sec. VI why this formula reproduces the
small-angle limit of the classical cross section for light
bending in a Schwarzschild background.

The forward limit of the graviton photoproduction cross
section has the rather unique behavior

; dolys  4Ga 3
60 dQ e (13)
This limit is independent not only of the spin S but as well
of the mass m of the target. The small-angle dependence is
typical of an effective 1/r*> potential. We provide an
explanation for this in Sec. VI.

It may be very difficult to detect a single graviton [27]
but photons are easily detected so it would be interesting
to be able to use the graviton photoproduction process
to provide an indirect detection of a graviton. The cross
section in Eq. (1.3) is suppressed by a power of Newton’s
constant G but, being independent of the mass m of the
target, one can discriminate this effect from that of
Compton scattering.

In the next section then we quickly review the electro-
magnetic interaction and derive the spin-1 couplings. In
Sec. IlI, we analyze the Compton scattering of a spin-1
particle. The corresponding gravitational couplings are
derived in Sec. IV and the graviton photoproduction and
gravitational Compton scattering reactions are calculated
via both direct and factorization methods. In Sec. V we
discuss photon-graviton scattering and the subtleties asso-
ciated with gauge invariance. In Sec. VI we consider the
forward small-angle limit of the various scattering cross
sections derived in the previous section. We show that
Compton, graviton photoproduction and the gravitational
Compton scattering have very different behavior. We
summarize our findings in a brief concluding section.

II. BRIEF REVIEW OF ELECTROMAGNETISM

In this section we present a quick review of the
electromagnetic and gravitational interactions and the
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results given in our previous paper. The electromagnetic
interaction of a system may be found by using the minimal
substitution id, — iD, = i0, — eA, in the free particle
Lagrangian, where A, is the photon field. In this way the
Klein-Gordon Lagrangian

LS50 = 0,470 — m2gpT, (2.1)

which describes a free charged spinless field, becomes
L5790 = (9, —ieA,)PT (0" + ieA")p + m* ',  (2.2)

after this substitution. The corresponding interaction
Lagrangian can then be identified as

L50 = ieA, V' ¢+ AP p. (23
where
CVD := CVD — (VD)C. (2.4)
Similarly, for spin—%, the free Dirac Lagrangian,
Lot = (¥ - my. (2.5)
becomes
L5711 = (i — eA —m)y, (2.6)
and the interaction Lagrangian is found to be
Lot = —eiAy. (2.7)
The resulting single-photon vertices are then
<pf|V(e}r)LM|pi>S:O = —ie(py+ pi). (2.8)
for spin-0 and
PV |pi)ss = —iea(py)rtu(py).  (2.9)

for spin-1, and in the case of spin O there exists also a two-
photon (“seagull”) vertex

<Pf|VngW|Pi>s=o = 2ie’n”. (2.10)
The photon propagator in Feynman gauge is
—inh
D¥(q) =1 2.11
f (q) q2 + ie ( )

The consequences of these Lagrangians were explored in
Ref. [22] and in the present paper we extend our consid-
erations to the case of spin-1, for which the free Lagrangian
has the Proca form
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1
L7 = —EB,LB”” + m?B;,B*, (2.12)
where B, is a spin one field subject to the constraint
"B, =0 and B, is the antisymmetric tensor

B™ = 9"B* — O"B". (2.13)

The minimal substitution then leads to the interaction
Lagrangian

<> <>

‘CSZI = iEAMBlﬁ(”uavﬂ - ”(lyvv)Ba

nt

- eZAMAUB(ITBﬂ (’7/41/’7(1/} - ’7;4(1’71//})’ (214)
and the one, two photon vertices
1 A
<Pf, €B|V£n2ﬂ|pi» €a)s—1 = _ZeeBﬁ((pf + Pi)”ﬂaﬂ — pfipla
=1 pP)erq.
2 . * fe1 17
<pf’€B|V£3n2W|pi9€A>S:1 = ie’ep, (20 = nn
- 77“”’7/}”)6/«1- (2 15)

However, Eq. (2.15) is not the correct result for a
fundamental spin-1 particle such as the charged W-boson.
Because the W arises in a gauge theory, there exists an
additional W-photon interaction, leading to an “extra”
contribution to the single photon vertex,

1
(prs €B|5V£rr)lﬂ|pi’ €a)s—1

= iecp,(n™(pi = ps)’ = (pi = P)))eaa-  (2.16)

The meaning of this term can be seen by using the mass-
shell Proca constraints p; - €4 = py-eg =0 to write the
total on-shell single photon vertex as

€ - Pie} ‘Pr i Pfe} " Pi

AmpcimP = ¢? |:2€ - €} [
s=1 AE pi ki pi kg

€D
pi ki

—9[6A e} ky] '€Z<
1
LP:’ < k;

(g=27[ 1
: 2p; - k;

Pi- kf

ea [eiki] - e}, kyl - e

m

lEquivalently, one can use the relativistic identity

* *
eBuQ'eA_gAyQ'eB_l_q_z
mZ

where §° = 5
m

e%es en(p =+ i) ¢ is the spin four-vector.

Topk©

ealeiki] - piey - €7, kgl

i 1
(g Gﬂ/iy(sl’gqysé “om (Pr =+ Pi)u€s - qea - 61>7
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<Pf’€B|(Vem + 5Vem)”|pi»€A>S:I
= —ieepy((pr + i)'l — 20 (pi — py)P

+20%(pi = pp)*)€a (2.17)
wherein we observe that the coefficient of the term
—n*(p; — ps)’ + 0" (p; — ps)* has been modified from
unity to two. Since the rest frame spin operator can be
identified via'

B]B; — BB, = —ie;(f|Sili). (2.19)
the corresponding piece of the nonrelativistic interaction
Lagrangian becomes

e I R

Lin = 95 (f18]i) - V x A, (2.20)
where g is the gyromagnetic ratio and we have included a
factor 2m which accounts for the normalization condition
of the spin one field. Thus the extra interaction required by
a gauge theory changes the g-factor from its Belinfante
value of unity [28] to its universal value of two, as
originally proposed by Weinberg and more recently but-
tressed by a number of arguments [29,30]. Use of g = 2 is
required (as shown in [31]) in order to assure the validity of
the factorization result of gravitational amplitudes in terms
of QED amplitudes, as used below.

III. COMPTON SCATTERING

The vertices given in the previous section can now be
used to evaluate the Compton scattering amplitude for a
spin-1 system having charge e and mass m by summing the
contributions of the three diagrams shown in Fig. 1,
yielding

—ei-e}}

€; - €r - J 6*’ j
_ € pf)—eA-[ei,ki]eg(f—pf—f—pl)}

pi ki Pi'kf

1
ol ki) fen ki]ez]

.Pf_WGA- [€;7kf]'pi€E' [€i,ki]'piH, (3'1)

(2.18)
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(a) (b) (©

FIG. 1. Diagrams relevant to Compton scattering.

with the momentum conservation condition p; +k; =
py + ky and where we have defined

S-[O.R]-T:==S-QT-R-S-RT-Q.

We can verify the gauge invariance of the above form by
noting that this amplitude can be written in the equivalent
form

2

pi'kipi'kf €p €A(p, i f pz)

+glleg - Fr-ea)(pi- Fi- py)

+(ep- Fi-€a)(pi- Fr-py)]
e
=S [pi-kylep - Fy-Fi-eq)

2

—pi-ki(ey Fi- Fr-€y)]
(9-27 .

i (e Fr-pp)(pi-Fi€a)

—(eg- Fi- pi)(pi-Fy-eq)l|s (3.2)

where F}* = €kl — e/kj and F' = /'K — e}*k;. Since
F;; are obviously invariant under the substitutions
€ir = €ir+ Ak, i = 1,2, itis clear that Eq. (3.1) satisfies
the gauge invariance strictures

* Comp __ Comp __
€fﬂkIfAmP,w,s:1 = k?'f?AmPﬂy.szl =0.

(3.3)
Henceforth in this manuscript we shall assume the g-factor
of the spin-1 system to have its “natural” value g = 2, since
it is in this case that the high-energy properties of the
scattering are well controlled and the factorization methods
of gravity amplitudes are valid [29,30].

In order to make the transition to gravity in the next
section, it is useful to utilize the helicity formalism [32],
whereby we evaluate the matrix elements of the Compton
amplitude between initial and final spin-1 and photon states
having definite helicity, where helicity is defined as the
projection of the particle spin along the momentum
direction. We shall work initially in the center of mass
frame. For a photon incident with four-momentum k;, =
pem(1,2) we choose the polarization vectors
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by
A A en oA

€ = _7%(3“ +id;9), A=+,
while for an outgoing photon with k¢, = pem(1,cosOcmZ +
sinfcyX) we use polarizations

(3.4)

A
€j[f — __f (COS QCM'% —|— llfj\) - SiIl 9CM2)7

V2

A=+,
(3.5)

We can define corresponding helicity states for the spin-1
system. In this case the initial and final four-momenta
are p; = (Ecm. —pemz) and pr=(Ecm,—pem(cosbemz+
sinfcyX)) and there are transverse polarization four-
vectors

_
ej_fﬂ: (0,2F NG >,
08 G b 15 Sin B
o, = <0’qE cos Ok \/zzersm CMZ)’ (3.6)

while the longitudinal mode has polarization four-vectors

0

€xy = — (Pems —Ecm?),

0

€= (Pem: —Ecm(cos Ocmz + sinfept)).  (3.7)

In terms of the usual invariant kinematic variables

s=(pi + k;)?, t=(kj— kf>2’ u=(p;i— kf)z,
we identify
_s—m?
s +m?
Ecy =
CM 2\/5
(s —m®)2 + s (m* = su)
COSEHCM: s —m? T s —m?
Lo (—st) (3.8)
sin— =7 )
2 M T w2

The invariant cross section for unpolarized Compton
scattering is then given by

dggirlnp 1 1 Z 1 Z |Bl( b d) 2
_ _ — ao, c )
dt 167(s — m2)2 3 a.b=—0.+ 2 cd=—+
(3.9)
where
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B'(ab;cd) = (ps,biky,d|Amps P | pi.aski,c)  (3.10)
is the Compton amplitude for scattering of a photon with
four-momentum k;, helicity a from a spin-1 target having
four-momentum p;, helicity ¢ to a photon with four-
momentum ky, helicity d and target with four-momentum
Py helicity b. The helicity amplitudes can be calculated
straightforwardly. There exist 3> x 2°> = 36 such ampli-
tudes but, since helicity reverses under spatial inversion,
parity invariance of the electromagnetic interaction
requires that”

|B!(ab;cd)| = |B'(=a — b;—c — d)|.

Also, since helicity is unchanged under time reversal, but
initial and final states are interchanged, time reversal
invariance of the electromagnetic interaction requires that

|B'(ab; cd)| = |B' (ba; dc)|.

Consequently there exist only twelve independent helicity
amplitudes. Using Eq. (3.1) we can calculate the various
helicity amplitudes in the center of mass frame and then
write these results in terms of invariants using Eq. (3.8),
yielding

5 ((s =m*)* + m?t)?

w%++rkﬂk=ww—ﬁ—_”:26(s_m%%u—mﬂ

m* — su)?
B! (++;—=)| = [B'(——; ++)| = 2¢? G _(m2)3(uzm2>
mt
B (i) = B (s =) = 267 m2)3(tu -
5212

Bl Dl = 1B ) = 2 s

B! (++;+=)| = |B (== =+)| = [B' (++; =)
= |B' (== +-)|
m?t(m* — su)
(s = m?)>(u —m?)
B! (+=:++)| =[B! (—+: —=)| = [B' (= +: ++)]
= |B'(+=: =)
m?t(m* — su)
(s —m?)3(u—m?)’

=2¢?2

=2¢? (3.11)

and

*Note that we require only that the magnitudes of the helicity
amplitudes related by parity and/or time reversal be the same.
There could exist unobservable phases.
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BY04544)] = B0 —)] = B (+0:+-+)
= B (~0;—)
> V2m(tm? 4 (s — m?)?)\/—t(m* — su)
(s —m?)*(u—m?)
B(04:4-)] = B! (0 —$)] =[B! (+0:—)
= B (~0;+-)
V2msty/—t(m* — su)
(s —m?)*(u—m?)
[B' (04 —+)| =B (0—+-)| =[B! (+0;+-)]
= B (~0;—+)
Y V2mlty/—t(m* = su)
(s —m?)*(u—m?)
|B'(0+:—=)|=[B'(0—:++)| = |B' (+0;——)]
=[B! (=0:++)]
V2m(=t(m* = su)):
(s —m?)3t(u—m?)
|B'(00;++)| = [B' (00;——)]
(2tm? + (s —m?)?) (m* — su)
(s—m?)>(u—m?)
(m?t((s —m?)? + 2st)
(s—m?)*(u—m?)

(3.12)

=2¢?

=2¢?

=2¢?2

|B1(00;+-)| =|B'(00; —+)| =2¢?

Substitution into Eq. (3.9) then yields the invariant cross
section for unpolarized Compton scattering from a spin-1
target,

do$onP _ et
dt 127(s — m*)*(u — m?)?
x [(m* = su+ 1) (3(m* — su) + 1)
+2(t —m?)(t — 3m?)),

(3.13)

which can be compared with the corresponding results
for unpolarized Compton scattering from spin-0 and spin-
% targets found in Ref. [22]:

df’gmgp et 4 2y 42
-0 _ _ 2,
dt 4ﬂ(s—m2)4(u—m2)2[(m su)+mr]
Com
Ao "1 o4 (m? = su) (2(m* — su) + 2) + m22 (2m? — 1))
e 87 (s —m*)*(u—m?)? '

(3.14)

Usually such results are written in the laboratory frame,
wherein the target is at rest, by use of the relations
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2 __

s—m?>=2mw;, u—m>= —2may,

0 0
m* —su = 4m2a),-a)fcos271‘, m’t = —4m2a)iwfsin27L,
(3.15)
and
a  d 20} (1—cos)) \ _@F (3.16)
dQ 2mdcosfp \ 1+%(1—-cosb)) = ’

Introducing the fine structure constant a = e?/4z, we
find then

d”ﬁgn;pﬂ o w;“ 0L . 40L wi . ,00)\?
dfl =33 Kcos“i—l-mn“?) (1—|—2Zsm27>

1

1607 . ,0 0,\ 32! 0
3 4L<1+2wl HZTL)J%@“ISi 87L]
m m
dacom{, 20)3 0
e (et
m* ; m
2 0
P oabL
+2 zsm“E},
do o™ 2 @ 0 0
| S A

We observe that the nonrelativistic laboratory cross
section has an identical form for any spin

NR )
=2 (cost 4 gint O @
=57 [(cos z—i—sm 2><1+0<m>)],

(3.18)

Comp
doyy, g

dQ

which follows from the universal form of the Compton
amplitude for scattering from a spin-$ target in the low-
energy (w <« m) limit, which in turn arises from the
universal form of the Compton amplitude for scattering
from a spin-§S target in the low-energy limit

(S,Mf;€f|Amp§°mp|S,Mi;ei>a,<<m =2e%¢} €6y, + s
(3.19)

and obtains in an effective field theory approach to
Compton scattering (3312

That the seagull contribution dominates the nonrelativistic
cross section is clear from the feature that

€5 D€ P

Ampg,, ~2e
p-k

®
~ X AMPgeqoun = 2626; -€;. (3.20)
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IV. GRAVITATIONAL INTERACTIONS

In the previous section we discussed the treatment the
familiar electromagnetic interaction, using Compton scat-
tering on a spin-1 target as an example. In this section we
show how the gravitational interaction can be evaluated via
methods parallel to those used in the electromagnetic case.
An important difference is that while in the electromagnetic

case we have the simple interaction Lagrangian
Lin = —eA,J¥, (4.1)

where J* is the electromagnetic current matrix element, for
gravity we have

Lo = — g neTH, (4.2)

Here the field tensor 4, is defined in terms of the metric via

9w = M + Kh/,w’ (43)

where k is given in terms of Newton’s constant by

k* = 322G. The Einstein-Hilbert action is

2
ScEinstein-Hilbert = / d4x\/ —gp R, (4-4)

where

1 1
V=9= \/—detg:expitrxlogg: 1 +§’7ﬂyhuv+"'
(4.5)

is the square root of the determinant of the metric and R :=
Rlﬂﬁyg"” is the Ricci scalar curvature obtained by con-
tracting the Riemann tensor R, ,, with the metric tensor.
The energy-momentum tensor is defined in terms of the
matter Lagrangian via

5y/=gL
7, =2 V" (4.6)
V=9 ¢

The prescription Eq. (4.6) yields the forms
T;jvzo = 8;¢¢Tay¢ + au¢Ta/4¢ - g/w(alldﬂalqﬁ - m2¢T¢)’

(4.7)
for a scalar field and
T,ib:% =y 17/,,1'%1, +1yyi%ﬂ —= G (L(X; - m)]l//, (4.8)
4 4 2
for spin-1, where we have defined
l/‘/isﬂw =gV — (iV,p)y. (4.9)

The one graviton emission vertices of Fig. 2(a) can now
be identified as
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I

I
Dy by +
| nv
Pi + Di + v
| |
(a) (b)

FIG. 2. (a) The one-graviton and (b) two-graviton emission
vertices from either a scalar, spinor or vector particle.

K
=iz PPt + pepi =" (py-pi=m?)),

(4.10)

1 uv
(Prl Ve |pi)s—o =

for spin-0,
191712
(Pl Verk 1) sy
K 1 L1
= —lzu(pf) Z?’”(Pf*’l%) +Zy (pf+p,»)” u(p;),
(4.11)

1

5> and

for spin-
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<Pf»€B|ng>fvw|Pn€A>S:1
= —ig e - ea(Pi P+ Pipy) — €5 pi(Pel +€4pY)
—ex-pr(pieg +piey) + (s pi—m)(eey +esey’)
—n*[(pi- pp—m)ey-€x—e€p-piea- pyll, (4.12)

for spin-1. There also exist two-graviton (seagull) vertices
shown in Fig. 2(b), which can be found by expanding the
stress-energy tensor to second order in /,,. In the case of
spin-0

N uv,af
PV pidses
= ik’ {Iﬂy’pglgg_a/}(pip? + P?Pf)

1
-5 (i [PEaP ol [l p? pf )

1

) 1
_ E <I;u/,aﬁ _ Enﬂynaﬂ> (pf - pi— mz):| s (413)

where

(’7ay77/)’5 + 71{1(3’1/}}')' (4 14)

| =

I afyd —

in-1
For spin-;

2)uv, .0 1 0
(pr|Val @ |pi)sos = i?alpy) [ n(r*(py+ P + 7 (g + p2)*) + 1 (" (ps + pi)* + 7" (ps + Pi))

16

16

while for spin-1

2
2)uv, K
<Pf,€B;kf|Vérgcbpg|Pi’€A§ki>S=1 4

3 i
+—(py+ pi) ey (I, 4 [P emv) 4 1—65’""“7/175 (1w 1P p ., — Iaﬂ’ﬂgl’w’agpip)] u(p;),

(4.15)

=—i— [+[piﬂpfa - ’7(1/5(171' Py mZ)] (77;4/)’71/{7 =+ NucMup — 77;41/77/){7)

+MypMap(PivPso + PicPru) = NawPipPfo = NpuPicP fa — NpoPivPfa — NacPipP fu

+ (i P = m*) Natipo + Naollp)] + Nuolap(PiP o + PipPr) = NawPipP o = NpuPipPta
~NppPiwPfa~NapPipP v+ (Pi* Pr =M Malpy + Napllp)) + Muplap(PiuP o + PiaP 1)
~NawPipP fe ~NpuPicP fa ~ MpoPiul fa ~NasPipPfu + (Pi* Py = 1) Nayllpe + Naotlp)]

+ M6 Map(PiuP sy + PipPsu) = NaulipPsp = NpuPipP fa = NppLinP fa ~ NapPipP fu

+ (i s = m*) Naylpp + Napllpn)) = M Map(PipP o + PiaP sp) = NapPipPso = NppPicPfa
~NpaPipPfa = NasPisPsp + (Pi* Pr = 1) Haplips +Mpplac)] = HpoNap(PiuP o + PivP s)
—NawPipP v = NpuPivP g = MpuPiul g« = NawPipP pu + (Pi - P = m%) Magullpy + Mgl

+ (NapPig = NauPip) MpsP fo = MpuP o) + MasPiv = NawPicMppP = MpuP )

+ (”aapiu - naﬂpia) (nﬂppfu - nﬂvpfp) + (”appiu - ﬂaypip) (nﬁdpfﬂ - nﬁﬂpfa)}ez (eg) .

Finally, we require the triple graviton vertex of Fig. 3:

*

(4.16)
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y iK 1 3
Tk d) = == [(I apys = na/my(s> {k"k” + (k=q)(k=q) +q"q" ="

2

2

+ 24,4, [1'7 I 15 + P01 oy = PHoggl™ 5 = 17 g1 ]

H1aad" Mapl™ 15 + 161" ap) + 420" MapI™ 15 + 1,51 )

= @ Nap™ 5 + 0,51 ap) = 1T G Napl 500 + Myslapio)] + 20 I ysLap 1ok — @) + 17 511515 (k — )
— 1% o515 00k" — I o515 15K" ) + q* (1", oo’ + Lug o 17" 5) + 1 7, Lpinl™ 5+ Lol )

1 1
+ |:(k2 + (k - q)z)(l(w'aﬁlyé.cy + Io-y‘aﬁlyé,aﬂ - 57,]/41/ <Ia/i,y5 - _naﬁnyé))

- (kznaﬂpw’y& + (k - q)znyﬁlﬂy'aﬂ):|:| .

We work in harmonic (de Donder) gauge which satisfies,
in lowest order,

1
Dy = 50,h, (4.18)

with

h = teh,,, (4.19)

and in which the graviton propagator has the form

1

Dagys(q) 3 (MayMps + Nashpy — Naplys)-  (4.20)

i
@ tie
Then just as the (massless) photon is described in terms of a
spin-1 polarization vector ¢, which can have projection

1]
(helicity) either plus- or minus-1 along the momentum

FIG. 3. The three graviton vertex.

4
N\

(a) (b)

© (d)

FIG. 4. Diagrams relevant to graviton photoproduction.

2

(4.17)

direction, the (massless) graviton is a spin-2 particle which
can have the projection (helicity) either plus- or minus-2
along the momentum direction. Since A, is a symmetric
tensor, it can be described in terms of a direct product of
unit spin polarization vectors,

helicity = +2: hy) = ¢fe;,

helicity = —2: hiy” = e;e;, (4.21)
and just as in electromagnetism, there is a gauge
condition—in this case Eq. (4.18)—which must be sat-
isfied. Note that the helicity states given in Eq. (4.21) are
consistent with the gauge requirement, since

nverel =nee; =0, and kler =0.  (4.22)
With this background we can now examine reactions
involving gravitons, as discussed in the next section.

A. Graviton photoproduction

We first use the above results to discuss the problem of
graviton photoproduction on a target of spin-1—y + § —
g + S—for which the four diagrams we need are shown in
Fig. 4. The electromagnetic and gravitational vertices
needed for the Born terms and photon pole diagrams—
Figs. 4(a), 4(b), and 4(d)—have been given above. For the
photon pole diagram we require the graviton-photon
coupling, which is found from the -electromagnetic
energy-momentum tensor [34]

1
w — _F;szoj +ZgﬂyFaﬂFa/j’

and yields the photon-graviton vertex”

T (4.23)

“Note that this form agrees with the previously derived form
for the massive graviton-spin-1 energy-momentum tensor—
Eq. (4.12)—in the m — 0 limit.
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K
<k,c,e,c|Vgr ki er) = 15 e} - ei(Kj Kk} + kiky) — €F

=k - kiey e — € - ki€ - kyl].

Finally, we need the seagull vertex which arises from the
feature that the energy-momentum tensor depends on
pi»py and therefore yields a contact interaction when
the minimal substitution is made, yielding the spin-1
seagull amplitude shown in Fig. 4(c):

(pr.epskp,erer|T|pis€as Kis €7) seagun
i
= EK'E[E; “(pr+ Pi)€} - €€ - €a

* * *
— €B . pief . €i€f c €4

—€p- 6,-6} . pfe; < €4
— €4 €i€f - Pi€r - €p

— € €q€i - (pr+ piey - €3l
(4.25)

— €4 D€} €€ - €p

The individual contributions from the four diagrams in
Fig. 4 are given in the Appendix and have a rather complex
form. However, when added together we find a much

tude is found to be proportional to the already calculated
Compton amplitude for spin-1—Eq. (3.1)—times a uni-
versal factor. That is,

<pf; kf’ €f€f|T|pi; ki, €i> = H x (€;a€iﬂT%€)mpton(S = 1))7

(4.26)
where
_ kprFropi k€ prkpopi—€ppiksopy
726 kzkf 726 klkf ’
(4.27)
and €%, ,,;TCOmpm(S) is the Compton scattering amplitude

for particles of spin-S calculated in the previous section.
The gravitational and electromagnetic gauge invariance of
Eq. (4.26) is obvious, since it follows directly from the
gauge invariance already shown for the Compton amplitude
together with the explicit gauge invariance of the factor H.
The validity of Eq. (4.26) allows the calculation of the cross
section by helicity methods since the graviton photopro-
duction helicity amplitudes are given by

C'(ab;cd) = H x B'(ab; cd), (4.28)
where B'(ab;cd) are the Compton helicity amplitudes
found in the previous section. We can then evaluate the
invariant photoproduction cross section using

ki(Kret + e/ky) — e - ky(kvel) + kie) + kg -

PHYSICAL REVIEW D 91, 064008 (2015)

ki(efel +erell’)

(4.24)
|
dol° 1 1
= — _ |C1
(4.29)
yielding
d g}f]to _ e’k*(m* — su)
dt 967t(s — m?)*(u — m?)?
x [(m* = su+ 12)(3(m* — su) + 1)
+ 2(t — m?) (¢t — 3m?)]. (4.30)
Since
=5 (s (4.31)
e\ =2t )7 '
the laboratory value of the factor H is
k2m? cos? 9
|Hya|* = = (4.32)

262 sin?l nZie, 30,

the corresponding laboratory cross section is

photo Comp
doyy, s —|H |2d61ab,S*l
dQ el
0

: 6:\2 16w? 0
x(1+2&sin2§> + O Gin2 2L

m 3m? 2
.0 Rt . 0
x (1 —I—Z%sinzé) + 3’:4’ sinﬁé}. (4.33)

The factor |H,,|? can be thought of as “dressing” the
photon into a graviton. We see that just as in Compton
scattering the low-energy laboratory cross section has a
universal form, which is valid for a target of arbitrary spin,

dolys 2000 L0 6L
70 = Gacos 7<ctn 700 2—|—Sln 2)

(4.34)

X <1 + O(a)l> )

m
In this case the universality can be understood from the
feature that at low energy the leading contribution to the
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graviton photoproduction amplitude comes not from the
seagull, as in Compton scattering, but rather from the
photon pole term,

e} . e,»ej} - k;
Ampy—pole_)Ki X k7<pf;S7 Mf|‘]/4|pi;S7Mi>-

wem 2kp-k;
(4.35)

The leading piece of the electromagnetic current has the
universal low-energy structure

(pps S Mys|J,|pisS. M)

e Pr—Pi
—_(pf_l_pi)yéMf,Mi(l_'—O( f )), (4.36)

2m m

where we have divided by the factor 2m to account
for the normalization of the target particle. Since
ki-(ps+p:) m2ma}, we find the universal low-energy
amplitude

et etk

foTrp

= Kew ———"——,
2ky - k;

NR
y-pole

Amp (4.37)

whereby the resulting helicity amplitudes have the form

oL

. + cosL
%SIHGL 1+cos0, =5 32 COSz—HZL +4+=——,

sink

A NR Ke 1—COS(7‘L
mp =—F
y-pole
P22 Lsing, (1=costL —COSOTLsinzﬂ f—=—+
2 L\T—cos0, ) — sing 2 - .

(4.38)

Squaring and averaging, summing over initial, final spins
we find

—Gacos? £

dofiys 0
dQ  w-0 2

0 0 0
ctn’ TLcos2 7L +sin? 7’“) . (4.39)

as found above—cf. Eq. (4.34).

The power of the factorization theorem is obvious and, as
we shall see in the next section, allows the straightforward
evaluation of even more complex reactions such as gravi-
tational Compton scattering.

B. Gravitational Compton scattering

In the previous section we observed some of the power of
the factorization theorem in the context of graviton photo-
production on a spin-1 target in that we only needed to
calculate the simpler Compton scattering process rather
than to consider the full gravitational interaction. In this
section we tackle a more challenging example, that of
gravitational Compton scattering—g + S — g + S—from
a spin-1 target, for which there exist the four diagrams
shown in Fig. 5.

PHYSICAL REVIEW D 91, 064008 (2015)

T~

(© (d)

(b)

W

FIG.5. Diagrams relevant for gravitational Compton scattering.

The contributions from the four individual diagrams can
now be calculated and are quoted in the Appendix. Each of
the four diagrams has a rather complex form. However,
when added together the result simplifies enormously.
Defining the kinematic factor

&> pi-kip;- kg o (s =m*)(u—m?)

864 ki . kf 1664 t

Y = . (4.40)

the sum of the four diagrams is found to be given by

<pf,€B;kf’€f€f|Ampgrav|piv€A;ki’€i€i>S:1
=YX <pf’€B;kiv€f|Ampem|piv€A;kiv€i>5:1

x <pf;ki’ef|Ampem|pi;kiv€i>5:0’ (4.41)
where
<pf;ki7€f|Ampem|pi;ki’€i>S:0
€; €% . €; - et n.
oo | LEE B SR | (aa2)

pi ki Pi- kf
is the Compton amplitude for a spinless target.

InRef. [22] the identity Eq. (4.41) was verified for simpler
cases of spin-0 and spin—%. This relation is a consequence of
the general relations between gravity and gauge theory tree-
level amplitudes derived from string theory as explained in
[26]. Here we have shown its validity for the much more
complex case of spin-1 scattering. The corresponding cross
section can be calculated by helicity methods using the
identity

D'(ab;cd) = Y x B'(ab; cd) x A%(cd), (4.43)
where B! (ab; cd) is the spin-1 Compton helicity amplitude
calculated in Sec. II while
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AO(4+4) = 262 m‘; —su i is found to be
(s = m*)(u —m*)
Aoy =282 ! (4.44)  gpeCom 4
—) =2e , R -Com,
(s — m?)(u — m?) dog—y ~ _ K
dt 7687 (s —m?)*(u—m?)*1?
are_the helicity amplit_udes.for spin zero Cpmpton scatter.ing. x [(m* = su)?(3(m* = su) + £2)(m* = su+ %))
Using Eq. (4.41) the invariant cross section for unpolarized ot o 5
spin-1 gravitational Compton scattering, +m*t*(3m* —1)(m* —1)]. (4.46)
-Comy
N IV . . .
dt 167(s —m?)*3 pa This form can be compared with the corresponding unpo-
a==0. + N larized gravitational Compton cross sections found
(4.45) i Ref. [22]:
|
Com
do "™ (m* = su)>(2(m* = su) + 2) + m®* (2m? - 1))
dt T 512x (s — m?)*(u — m?)?
do %C(?mp K 4 4 8 4
= - *]. 4.47
aQ  2567%(s — m*)*(u — m?)*i? (™ = su)” + mr] (4.47)
The corresponding laboratory frame cross sections are
dofy ™ 0, 0. . .6 w; . 0.\
al = G2m? f 2L 72X n2 2k
Q w,. e’ 5 cos” S sint 0 J( 1420 sin
16 0, 6 0L i 0 16 o} 0 0 0
?—2 (cos >+ sin® 5 > <1 20 22L> +?m’4 s1n27L <cos 2L + sin* ;)}
do lga[():ng a);’ eL 9L (9L w; HL L 9 QL
dT = G2m2w_? {(ctn“icos“?—i—sin“?) +ZZI (ctn2 5 —0—51 7) < > L 4 sin® 2)]
dalga_bcgilg ) a)jz‘” 4 eL L

We observe that the low-energy laboratory cross section has
the universal form for any spin
ol

(4.49)

g-Comp
do Olab.s

0
10 = G*m? [ctn4 7L cos

N
> = + sin? 7—1—(’)

It is interesting to note that the dressing factor for the
leading (++) helicity Compton amplitude,

20,
2

sin2¢’

2

2.2
Ylat =

SU lab K“m=COS
)
2e

m4
—t

(4.50)

[ S)]

is simply the square of the photoproduction dressing factor
H, as might intuitively be expected since now both photons
must be dressed in going from the Compton to the

[
gravitational Compton cross section.” In this case the
universality of the nonrelativistic cross section follows from
the leading contribution arising from the graviton pole term

€ - €;)? (Kks 4 Kk

[N

K
Ampq pole o<m 4kf k (

Here the matrix element of the energy-momentum tensor has
the universal low-energy structure

°In the case of +— helicity the dressing factor is

2

K
|YHA+7| :Tezmz, (451)

so that the nonleading contributions will have different dressing
factors.
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K
§<pf;S7Mf|T;w|pi;S’Mi>

4 (pfﬂpll/ + prp,,,)éMf (l —+ O(

where we have divided by the factor 2m to account for the
normalization of the target particle. We find then the
universal form for the leading graviton pole amplitude

K.2

A " (et e)2
mpg—pole nﬁ)el Smkf ) kl- (€f 6,)

X (p;-kepy-kp+pi-kipy- ki)éMf,M,
(4.54)

Since p - k =— ma the corresponding helicity amplitudes
become

(14cos@)> COSNTL

2(1-cosf) — SiHZH_L t+=-
Am =47Gm
py -pole =G (1=cos ;)2 sin4L
L
2(1=cos ) — smzﬂL

(4.55)

Squaring and averaging, summing over initial, final spins we
find

dos Comp

0 40 0
% — G*m? |ctn* 2L ) L 4 sint 2L ., (4.56)

as found in Eq. (4.49) above.

V. GRAVITON-PHOTON SCATTERING

In the previous sections we have generalized the results
of Ref. [22] to the case of a massive spin-1 target. Here
we show how these techniques can be used to calculate
the cross section for photon-graviton scattering. In the
Compton scattering calculation we assumed that the spin-1
target had charge e. However, the photon couplings to the
graviton are identical to those of a graviton coupled to a
charged spin-1 system in the massless limit, and one might
assume then that, since the results of the gravitational
Compton scattering are independent of charge, the grav-
iton-photon cross section can be calculated by simply
taking the m — 0 limit of the graviton-spin-1 cross section.
Of course, the laboratory cross section no longer makes
sense since the photon cannot be brought to rest, but the
invariant cross section is well defined in this limit,

do¥S7™  4xG?(352u® — 4su + 1)
9
dt m—0 35212

(5.1)

PHYSICAL REVIEW D 91, 064008 (2015)

and it might be naively assumed that Eq. (5.1) is the
graviton-photon scattering cross section. However, this is
not the case and the resolution of this problem involves
some interesting physics.

We begin by noting that in the massless limit the only
nonvanishing helicity amplitudes are

2
N
D' (4 +4) - = D' (==5==) g = 872G —

2
D! (== 4+4)mg = D' (+45==)pump = 8ﬂGu7
D'(00; +4),,_o = D'(00;—=), o = SﬂG%,

which lead to the cross section

dosm |
dt = 1677.’S23 Z L;JD ab Cd
1 1 stout 22
= Teny?3 .2 37O) X 2% L—2+t_2+ ﬂ]
dr st +ut + s2u?
:7G2T’ (5.3)

in agreement with Eq. (5.1). However, this result demon-
strates the problem. We know that in Coulomb gauge the
photon has only two transverse degrees of freedom,
corresponding to positive and negative helicity—there
exists no longitudinal degree of freedom. Thus the correct
photon-graviton cross section is actually

do
o 16Jrs23 Z_ D ID'(abicd)

c=+,—

1 1 stout
2 -0
= 16ns? 2(877G) X 2 % L2 + tz}
st 4 u
= 27G> , 5.4
§212 ( )

which agrees with the value calculated via conventional
methods by Skobelev [35]. Alternatively, since in the center
of mass frame

dt wCM
aQ

we can write the center of mass graviton-photon cross
section in the form

d 1 + cosd %o

dQ sin* HCTM

(5.5)

(5.6)

again in agreement with the value given by Skobelev [35].

So what has gone wrong here? Ordinarily in the mass-
less limit of a spin-1 system, the longitudinal mode
decouples because the zero helicity spin-1 polarization
vector becomes
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€O—>l p p+m_2_|_... %
”m—»Om ’ 2p '
1 m
= 0,—2
mpﬂ+< 2pz>+

However, the term proportional to p, vanishes when
contracted with a conserved current by gauge invariance
while the term in % vanishes in the massless limit. That the
spin-1 Compton scattering amplitude becomes gauge
invariant for the spin-1 particles in the massless limit
can be seen from the fact that the Compton amplitude
can be written as

(5.7)

2
[Tr(F,FsFpFp)

+ Tr(F;F4FFg) + Tr(F,FsF3F ;)
1
2 (Tr(FiFf)Tr(FAFB)

+ Tr(FiFa)Tr(FpF) + Tr(FFp)Tr(FpFy))l,
(5.8)

which can be checked by a bit of algebra. Equivalently, one
can verify that the massless spin-1 amplitude vanishes if
one replaces either 4, by p;, or €, by py,. However, what
happens when we have fwo longitudinal spin-1 particles is
that the product of longitudinal polarization vectors is
proportional to 1/m?, while the correction term to the
four-momentum p, is O(m?) so that the product is non-
vanishing in the massless limit. That is why the multipole
D(00;++),,_o = D(00; ——),,_, is nonzero. One can deal
with this problem by simply omitting the longitudinal
degree of freedom explicitly, as we did above, but this
seems a rather crude way to proceed. Should not this
behavior arise naturally?

The problem here is that as long as the mass of the spin-1
particle remains finite everything is fine. However, when
the spin-1 particle becomes massless the theory becomes
undefined. This can be seen from the neutral spin-1 (Proca)
Lagrangian, which has the form

1
;Cl — _ZF/'W

1 1
=~ (0,APA =~ OAPA) + S mPAM. (59)

1
P43 m*A,A¥

The classical equation of motion then becomes

HF,, +m*A, = 0. (5.10)
Taking the divergence of Eq. (5.10) we find
m*d“A, =0, (5.11)
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which yields the constraint m>9“A, = 0. Then provided
that m?> # 0 we have the stricture 9“A, = 0, which is the
condition that changes the number of degrees of freedom
from four to three, as required for a spin-1 particle.
However, in the massless limit, this is no longer the case.
Another way to see this is to integrate by parts, whereby
Eq. (5.9) can be written in the form

1
Ll = 5 A0 A, with O = g0 - 9.
(5.12)

In particle physics the photon propagator is given by the
inverse of this operator—O;j—which is defined via
OO = &, [1]. However, the operator O* does not
have an inverse, since it has a zero eigenvalue, as can be
seen by operating on a quantity of the form d,A(x) where
A(x) is an arbitrary scalar function. The solution to this
problem is well known. The Lagrangian must be altered by
adding a gauge fixing term,

1 A
El 0 — ZFW/ - 5(81414”)2,

m (5.13)
where A is an arbitrary constant. We now have O =
O — (1 —2)0"0” which does possess an inverse—

o =& (n,, — 1%%). It is this gauge fixing term, which
is required in the massless limit, and which eliminates the
longitudinal degree of freedom. This degree of freedom acts
like simple scalar field (spin-O particle) and must be
subtracted from the massless limit of the spin-1 result.
Indeed, from Ref. [22] we see that the massless limit of the

++ graviton scattering from a spin-0 target becomes

D(4+) = (26%) x ¥ = 82G . (5.14)
while the +— helicity amplitude vanishes. This scalar
amplitude is identical to the amplitude D,(00;++) and
eliminates the longitudinal degree of freedom when sub-
tracted from the massless spin-1 limit.

An alternative way to obtain this result is to use the
Stueckelberg form of the spin-1 Lagrangian, which
involves coupling a new spin-0 field B [36]:

1 ,m 1 1
LS:_ZFW/FW +7<Aﬂ+%8ﬂ3) (AM_FE(?MB)

- % (0,4 + mB)(D,A" + mB). (5.15)

Aslong as m # 0 the fields A, and B are coupled. However,
if we take the massless limit Eq. (5.15) becomes

1 1 1
Ls— =2 FuF* =5 0,A"0,A" +20,B0"B,  (5.16)

m—0
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and represents the sum of two independent massless fields
—a spin-1 component A, with the Lagrangian (in Feynman
gauge A =1)

1

L:g:—z

F,

1 1
FH — EaﬂA”ayA = _iA”DAw (5.17)
for which we do have an inverse and an independent spin-0
component having the Lagrangian

1

L= EaﬂBG"B. (5.18)
It is the scattering due to the spin-1 component which is
physical and leads to the graviton-photon scattering ampli-
tude, while the spin-0 component is unphysical and
generates the longitudinal component of the massless limit
of the graviton-spin-1 scattering.

As a final comment we note that the graviton-graviton
scattering amplitude can be obtained by dressing the
product of two massless spin-1 Compton amplitudes [4]:

<Pf7 €BE€p; kf» €f€f|AmPg’r§v|Pi€A€A; ki, €i€i>m=o,s=2
=Y x <pfv€B;kfv€f|Amp§V?1mp|piv€A;ki€i>m:O.S:l
x (py.epikp. €| Ampen™|pi. €4 ki€;)—o.5-1-
(5.19)

Then for the helicity amplitudes we have

E (445 44)nmo = Y(B! (445 44)u0)® (5:20)
where E*(++;++) is the graviton-graviton ++;-++
helicity amplitude while B! (++; ++) is the corresponding
spin-1 Compton helicity amplitude. Thus we find

3

K su s\ 2 s
= W (2e22) =826, (521
16¢* ¢ X( ¢ u) SﬂGut’ (5:21)

EX(++3+4) o
which agrees with the result calculated via conventional
methods [37]. In this case there exist nonzero helicity
amplitudes related by crossing symmetry. However, we
defer detailed discussion of this result to a future
communication.

VI. THE FORWARD CROSS SECTION

The forward limit, i.e., @, — 0, of the laboratory frame,
Compton cross sections evaluated in Sec. Il has a universal
structure independent of the spin S of the massive target

(6.1)

reproducing the Thomson scattering cross section.
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For graviton photoproduction, the small angle limit is
very different, since the forward scattering cross section is
divergent—the small angle limit of the graviton photo-
production of Sec. IVA is given by

photo

fim 7l _ 40a (6.2)
6,~0 dQ 0;

and arises from the photon pole in Fig. 4(d). Notice that this
behavior differs from the familiar 1/6* small-angle
Rutherford cross section for scattering in a Coulomb-like
potential. This divergence of the forward cross section
indicates that a long range force is involved but with an
effective 1/r> potential. This effective potential arising
from the y-pole in Fig. 4(d) is the Fourier transform with
respect to the momentum transfer g = k; — k; of the low-
energy limit given in Eq. (4.37). Because of the linear
dependence in the momenta in the numerator one obtains

/ﬁeizﬁL _
(2r)3 lg| 27°r*°

and this leads to the peculiar forward scattering behavior of
the cross section. Another contrasting feature of graviton
photoproduction is the independence of the forward cross
section on the mass m of the target.

The small angle limit of the gravitational Compton cross
section derived in Sec. IV B is given by

(6.3)

-Com
i dofy ™ 16G*m?
1m =

0~0 dQ 6}

(6.4)

The limit is, of course, independent of the spin S of the
matter field. Finally, the photon-graviton cross section
derived in Sec. V, has the forward scattering dependence

docm 32G2w%M
bou—0 dQ Oy

(6.5)

The behaviors in Egs. (6.4) and (6.5) are due to the graviton
pole in Fig. 5(d), and are typical of the small-angle behavior
of Rutherford scattering in a Coulomb potential.

The classical bending of the geodesic for a massless
particle in a Schwarzschild metric produced by a pointlike
mass m is given by b = 4Gm/0 + O(1) [38], where b is
the classical impact parameter. The associated classical
Ccross section is

+0(073),  (6.6)

daclassical - b |ldb _ 16G2m2
dQ  sin6|do o
matching the expression in Eq. (6.4). The diagram in
Fig. 5(d) describes the gravitational interaction between
a massive particle of spin-S and a graviton. In the forward
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scattering limit the remaining diagrams of Fig. 5 have
vanishing contributions. Since this limit is independent of
the spin of the particles interacting gravitationally, the
expression in Eq. (6.4) describes the forward gravitational
scattering cross section of any massless particle on the
target of mass m and explains the match with the classical
formula given above.

Equation (6.5) can be interpreted in a similar way, as the
bending of a geodesic in a geometry curved by the energy
density with an effective Schwarzschild radius of v/2Gwcy
determined by the center-of-mass energy [39]. However, the
effect is fantastically small since the cross section in Eq. (6.5)
is of order £}/ (A%6¢,) where ¢3 = hG/c® ~ 1.62107° m
is the Planck length, and A the wavelength of the photon.

VII. CONCLUSION

In Ref. [22] it was demonstrated that the gravitational
interactions of a charged spin-0 or spin—% particle are greatly
simplified by use of the recently discovered factorization
theorem, which asserts that the gravitational amplitudes
must be identical to corresponding electromagnetic ampli-
tudes multiplied by universal kinematic factors. In the
present paper we demonstrated that the same simplification
applies when the target particle carries spin-1. Specifically,
we evaluated the graviton photoproduction and graviton
Compton scattering amplitudes explicitly using direct and
factorized techniques and showed that they are identical.
However, the factorization methods are enormously simpler
and allow the use of familiar electromagnetic calculational
methods, eliminating the need for the use of less familiar
and more cumbersome tensor quantities. We also studied
the massless limit of the spin-1 system and showed how the
use of factorization permits a relatively simple calculation

of graviton-photon scattering. Finally, we discussed a
|
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subtlety in this graviton-photon calculation having to do
with the feature that the spin-1 system must change from 3
to 2 degrees of freedom when m — 0 and studied why the
zero mass limit of the spin-1 gravitational Compton
scattering amplitude does not correspond to that for photon
scattering. We noted that graviton-graviton scattering is
also simply obtained by taking the product of Compton
amplitudes dressed by the appropriate kinematic factor.

We discussed the main feature of the forward cross
section for each process studied in this paper. Both the
Compton and the gravitational Compton scattering have the
expected behavior, while graviton photoproduction has a
different shape that could in principle lead to an interesting
new experimental signature of a graviton scattering on
matter. An extension of the present discussion at loop order
and implications for the photoproduction of gravitons from
stars [40,41] will be given elsewhere.
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APPENDIX FEYNMAN DIAGRAM
CONTRIBUTIONS TO GRAVITATIONAL
PHOTOPRODUCTION AND COMPTON
SCATTERING

Here we give the detailed contributions from each of the
four diagrams contributing to graviton photoproduction and
to gravitational Compton scattering. In the case of graviton
photoproduction—Fig. 4—we have the four pieces.

1. Graviton photoproduction: Spin-1

Born-a: Amp, (S =1)
ke

=———|e; " pileg - €€} - pre; - pp— €y ky€h - pre}€a —€a - D€} Pr€} €5+ Py kp€h - €€t - €3]

piki

+ € - €ile - ki€y - pref - py— € kg€l prey ki — py-ki€p - pre; - €+ py - kpel - ki€g - €3]
—€p - kilep €€} pr€s - pr—€pky€h - pre; € — € prey - pre€} - €p + Py kpey - €€ - €3]

*

*

—€p - €/€7 €€ Prp; - ki]. (A1)
Born-b: Amp, (S =1)
Ke
= Tk, € - Prlea - €3€} - Di€} - pi— €5 - i€} - Di€; - €x + €x  kp€} - pi€} - €5 — Py~ kye} - €x€} - €]
i kg . : . .
+ €5 kilea - 61'6} ) Pi€;~ "Pi— € Pie}? : Pi€;~ "€p T € kfe; : Pi€;~ "€ —Di kfe} ) €A€; €]
+eieplea ki€;- ) Pie;' “Pi—Pi- ki€;- ) Pie} "€p T €7 kf€;- : Pie} ki—p;- ka;' ) €A€; - kil
— €4 €p€; - pie - €p; - kgl (A2)
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Seagull-c: Amp. (S = 1) = kele} - €;(€p - €x€} - (Pr + Pi) — €x " Prep - € — €5 Pi€s ~ €})

— €p €4€A " €€ Pi— €4 €4€R  €i€7 - P+ €7 - €46 - €3€; + (P + Pi)ls (A3)

and finally, the photon pole contribution

y-pole-d: Ampy(S =1)
eK * * * * * *
= T3k, e - €alel - (py + pi)(ky - ki€l - € — €7 - kiei - kp) + € - ki(€; - eiki - (pi + py) — € - kiei - (pr + pi))]
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In the case of gravitational Compton scattering—Fig. 5—we have the four contributions.

2. Gravitational Compton scattering: Spin-1

Born-a: Amp,(S=1)
2 1 2( % 2 * * 2 * *
=K m[(ei'm) (€f‘Pf) €A'€B—(€f'Pf) €ipilea-kieg € +ex-€i€ - p;)
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Born-b: Amp,(S=1)
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and finally the (lengthy) graviton pole contribution is
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g-pole-d: Amp,(S =1)

K2
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