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The aim of this paper is to confirm in new concrete examples that the semiclassical entropy of a three-
dimensional Lifshitz black hole can be recovered through an anisotropic generalization of the Cardy
formula derived from the growth of the number of states of a boundary nonrelativistic field theory. The role
of the ground state in the bulk is played by the corresponding Lifshitz soliton obtained by a double Wick
rotation. In order to achieve this task, we consider a scalar field nonminimally coupled to new massive
gravity for which we study different classes of Lifshitz black holes as well as their respective solitons,
including new solutions for a dynamical exponent z ¼ 3. The masses of the black holes and solitons are
computed using the quasilocal formulation of conserved charges recently proposed by Gim et al. and based
on the off-shell extension of the ADT formalism. We confirm the anisotropic Cardy formula for each of
these examples, providing a stronger base for its general validity. Consistently, the first law of
thermodynamics together with a Smarr formula are also verified.
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I. INTRODUCTION

During the last decade, there has been an intense activity
to promote the ideas underlying the gauge/gravity duality
[1] in order to have a better understanding of strongly
coupled field theories with anisotropic scaling. These latter
are characterized by a scaling symmetry where space and
time scale with different weights; their gravity dual metric
called the Lifshitz spacetime [2] is given by

ds2 ¼ −
r2z

l2z
dt2 þ l2

r2
dr2 þ r2

l2
d~x2: ð1Þ

Here, z is the dynamical critical exponent which reflects the
anisotropy of the scaling symmetry

t ↦ ~λzt; r ↦ ~λ−1r; ~x ↦ ~λ ~x :

Finite temperature effects are intended to be holographi-
cally introduced through black holes commonly known as
Lifshitz black holes whose asymptotic behaviors match
with the spacetime (1). As it is now well known, for z ≠ 1,

in order for the Einstein gravity to accommodate the
Lifshitz spacetimes, some extra matter source is required
like p-form gauge fields, Proca fields [2–4], Brans-Dicke
scalars [5], or, eventually, nonlinear electrodynamic theo-
ries [6]. There also exists the option of considering higher-
order gravity theories for which there are examples of
Lifshitz black holes without source; see, e.g., [7–12]. In this
paper, we will focus on a combination of these two options
in three dimensions by considering a gravity action given
by a special combination of quadratic curvature corrections
to Einstein gravity known as new massive gravity (NMG)
[13], together with a source described by a self-interacting
scalar field nonminimally coupled to gravity. We are then
interested in the following three-dimensional action

S½g;Φ�¼ 1

2κ

Z
d3x

ffiffiffiffiffiffi
−g

p �
R−2λ−

1

m2

�
RμνRμν−

3

8
R2

��

−
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

2
∇μΦ∇μΦþ ξ

2
RΦ2þUðΦÞ

�
; ð2Þ

where R denotes the scalar curvature, Rμν the Ricci tensor, ξ
stands for the nonminimal coupling parameter, and UðΦÞ
represents the self-interaction potential. There is a variety
of reasons that make this model worth being explored.
Among others, it is well known that nonminimally coupled
scalar fields are excellent laboratories in order to evade
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standard “no-hair” theorems. In fact, it is known that NMG
supports a vacuum Lifshitz black hole for critical exponent
z ¼ 3 [7] that is additionally characterized as the only static
axisymmetric asymptotically Lifshitz solution that can be
written as a Kerr-Schild transformation of the Lifshitz
spacetime (1) [14]. Remarkably, it has been recently shown
that the spectrum of dynamical critical exponents z sup-
ported by newmassive gravity at finite temperature becomes
largely enriched if one includes self-interacting nonmini-
mally coupled scalar fields as sources of the Lifshitz black
holes according to the previous action [15]. Besides, it is
known that in standard three-dimensional anti–de Sitter
(AdS) gravity supported by scalar fields, solitons play a
fundamental role as they can be treated as ground states; the
existence of scalar-tensor solitons turns out to be essential
for microscopically counting for the black holes’ entropy
using the Cardy formula [16]. Here, we check that these
ideas also hold in the case of asymptotically Lifshitz
spacetimes in the presence of scalar fields, by carrying
out the microscopical computation of the black hole entropy
using the anisotropic generalization of the Cardy formula
introduced by Gonzalez et al. [17].
As previously emphasized, the action (2) allows different

classes of Lifshitz black hole configurations with different
values of the parameters and dynamical exponent. With
these solutions at hand, it is tempting to compute their
respective masses. However, the task of identifying the
conserved charges is a highly nontrivial problem whose
difficulty is increased in our case because of two main
reasons. Indeed, we are dealing with Lifshitz black holes
which have a rather nonstandard asymptotic behavior (1),
and even more, the gravity theory we consider (2) contains
quadratic corrections. In order to tackle this problem, we
will test the quasilocal formulation of conserved charges
recently proposed in [18,19] and based on the off-shell
extension of the Abbott-Deser-Tekin (ADT) formalism
[20]. In the ADT formalism, which is a covariant gener-
alization of the ADM method [21], the metric gμν is
linearized around the zero mass spacetime with metric
ḡμν as gμν ¼ ḡμν þ hμν. However, in this approach, the
perturbed metric hμν in the case of Lifshitz black holes may
not satisfy the correct assumptions concerning the falloff
boundary conditions, and consequently yields an expres-
sion for the mass that does not satisfy the first law of
thermodynamics as shown in [22]. This problem has been
recently circumvented by the authors of [18,19] who have
proposed a quasilocal generalization of the ADT formalism
that can be used even with slow falloff conditions. In order
to be as self-contained as possible and even if our work is
focused in the three-dimensional case, we briefly present
the main ingredients of the quasilocal ADT method in
arbitrary dimension D following the notations and results
of [18,19]. One of the interesting aspects of this formalism
lies in the fact that the computations are done only on the
basis of the full Lagrangian defining the theory

S½g;Φ� ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
L;

and the Killing vectors ξμ associated to the conserved
charges without explicitly using the linearization of the
field equations. Here, Φ collectively denotes any matter
content. The main result of Ref. [18] is the following
prescription for the off-shell ADT potential

ffiffiffiffiffiffi
−g

p
Qμν

ADT ¼ 1

2
δKμν − ξ½μΘν� ð3Þ

in terms of the surface term Θμ arising from the variation of
the action

δS ¼
Z

dDx½ ffiffiffiffiffiffi
−g

p ðEμνδgμν þ δΦLÞ þ ∂μΘμ�;

and the off-shell Noether potential Kμν associated to the
identical conservation of the off-shell Noether current

Jμ ¼ ffiffiffiffiffiffi
−g

p ðLgμν þ 2EμνÞξν − Θμ ¼ ∂νKμν:

It is important to remark that the exclusive use of off-shell
conserved currents in the derivation makes that the back-
ground metric is not required to satisfy the field equations.
Another important fact is that the standard linearization
method is only compatible at the asymptotic regime.
Hence, in order to circumvent this problem and to construct
quasilocal charges, the authors in [18,19] consider linear-
izing along a one-parameter family of configurations as has
been advocated, for example, in [23]. More concretely, for
the configurations under study, a parameter 0 ≤ s ≤ 1 can
be introduced which allows the interpolation with the
asymptotic solution at s ¼ 0. In doing so, the quasilocal
conserved charge reads

QðξÞ¼
Z
B
dD−2xμν

�
ΔKμνðξÞ−2ξ½μ

Z
1

0

dsΘν�ðξjsÞ
�
; ð4Þ

where ΔKμνðξÞ≡ Kμν
s¼1ðξÞ − Kμν

s¼0ðξÞ denotes the differ-
ence of the Noether potential between the interpolated
solutions, and dD−2xμν represents the integration over the
codimension-two boundary B. In our case (2), the involved
quantities are given by

Θμ¼2
ffiffiffiffiffiffi
−g

p �
Pμαβγ∇γδgαβ−δgαβ∇γPμαβγþ1

2

∂L
∂ð∂μΦÞ

δΦ

�
;

ð5Þ

Kμν ¼ ffiffiffiffiffiffi
−g

p ð2Pμνρσ∇ρξσ − 4ξσ∇ρPμνρσÞ; ð6Þ

with Pμνσρ ≡ ∂L=∂Rμνσρ. Notice that we have added
the contribution to the surface term coming from the
scalar field, which was not included in the original of
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Refs. [18,19] since they dealt with the vacuum case. It is
worth to note that generic matter contributions to the
quasilocal ADT formalism have been investigated in [24].
After computing the masses of our solutions, we subject

the quasilocal ADTmethod to two nontrivial tests. First, we
will verify that the first law of thermodynamics holds in
each case by computing the Wald formula [25] for the
entropy as

SW ¼ −2πΩD−2

�
rh
l

�
D−2

½Pαβμνεαβεμν�r¼rh
; ð7Þ

together with the Hawking temperature T; here, rh stands
for the location of the horizon. Independently, in three
dimensions, a Lifshitz black hole characterized by a
dynamical exponent z and mass M has a corresponding
soliton with dynamical exponent z−1 and mass Msol
obtained by operating a double Wick rotation [17]. We
will confirm that our mass expressions are compatible with
the anisotropic generalization of the Cardy formula pro-
posed in [17]

SC ¼ 2πlðzþ 1Þ
��

−
Msol

z

�
z
M

� 1
zþ1

: ð8Þ

This formula is obtained starting from a boundary non-
relativistic field theory and computing the asymptotic
growth of the number of states with fixed energy, assuming
the role of ground state in the bulk is to be played by the
soliton. Notice that for AdS asymptotics, z ¼ 1, this
formula becomes exactly the Cardy formula used in [16]
for the case of standard gravity supported by scalar fields.
Remarkably, both tests will be checked satisfactorily by the
quasilocal ADT method.
The rest of the paper is organized as follows. In the next

section, we will study different classes of Lifshitz black
hole solutions for which we will obtain their mass using the
quasilocal ADT formalism. We explicitly verify the fulfil-
ment of the first law in all these cases. Moreover, for each
Lifshitz black hole solution, we obtain their corresponding
soliton counterpart, compute their mass, and spotlight the
validity of the anisotropic Cardy formula (8). Finally, the
last section is devoted to our conclusions where we also
anticipate the generalization of some of these results to
higher dimensions.

II. NONMINIMALLY DRESSED LIFSHITZ
BLACK HOLES

The field equations obtained by varying the action (2)
read

Gμν þ λgμν −
1

2m2
Kμν ¼ κTμν; ð9aÞ

□Φ − ξRΦ ¼ dUðΦÞ
dΦ

; ð9bÞ

where the higher-order contribution Kμν and the non-
minimally coupled energy-momentum tensor Tμν are
defined by

Kμν ¼ 2□Rμν −
1

2
ðgμν□þ∇μ∇ν − 9RμνÞR

− 8RμαRα
ν þ gμν

�
3RαβRαβ −

13

8
R2

�
; ð9cÞ

Tμν ¼ ∇μΦ∇νΦ − gμν

�
1

2
∇σΦ∇σΦþ UðΦÞ

�
þ ξðgμν□ −∇μ∇ν þ GμνÞΦ2: ð9dÞ

In what follows, we will consider Lifshitz black holes
within the following ansatz

ds2 ¼ −
r2z

l2z
fðrÞdt2 þ l2

r2
dr2

fðrÞ þ
r2

l2
dφ2; ð10Þ

with coordinates ranges defined by −∞<t<∞, 0<r<∞,
and the angular variable 0 ≤ φ < 2πl. We start by rean-
alyzing one of the solutions obtained by some of the
authors in Ref. [15], the single one characterized by having
a nonvanishing Wald entropy and, therefore, suitable for
our analysis. For the exponent z ¼ 3, the configurations of
Ref. [15] only contain the vacuum black hole of NMG [7];
for this reason, we later concentrate on this value of the
exponent and exhibit nonminimally dressed Lifshitz black
holes also in this case.

A. Nonminimally dressed black holes for generic z

The following family of Lifshitz black hole solutions
was found in Ref. [15]

ds2 ¼ −
r2z

l2z

�
1 −M

�
l
r

�zþ1
2

�
dt2

þ l2

r2

�
1 −M

�
l
r

�zþ1
2

�−1
dr2 þ r2

l2
dφ2; ð11aÞ

ΦðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − 3Þð9z2 − 12zþ 11ÞM
2κðz − 1Þðz2 − 3zþ 1Þ

s �
l
r

�zþ1
4

; ð11bÞ

where the scalar field has the self-interaction

UðΦÞ¼ðz−1Þð21z3−13z2þ31z−15Þ
32l2ð9z2−12zþ11Þ Φ2

−
ðz−1Þ3ðz2−3zþ1Þð9z2−12zþ19Þκ

32l2ðz−3Þð9z2−12zþ11Þ2 Φ4; ð11cÞ

and the coupling constants are parametrized by
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m2 ¼ −
z2 − 3zþ 1

2l2
;

λ ¼ −
z2 þ zþ 1

2l2
;

ξ ¼ 3z2 − 4zþ 3

2ð9z2 − 12zþ 11Þ : ð11dÞ

Before proceeding with the computations of the Noether
potential and the surface term in order to derive the mass,
we would like to emphasize some aspects of this solution.
First of all, because of the expression of the scalar field, this
solution has no AdS limit z ¼ 1. The other special value of
the dynamical exponent is given by z ¼ 3, for which the
scalar field as well as the potential vanish identically and
one ends with the vacuum black hole of NMG [7]. We
notice from now that for this class of solution, as well as for
the two other solutions derived below, the allowed potential
always involves a mass term.
It is easy to see that this class of solution has a

nonvanishing Wald entropy and a Hawking temperature
given by

SW ¼ −
π2ðzþ 1Þ2ð3z − 5Þrh
2κðz − 1Þðz2 − 3zþ 1Þ ; ð12Þ

T ¼ ðzþ 1Þrhz
8πlzþ1

; rh ¼ lM
2

zþ1: ð13Þ

Let us now compute the mass through the quasilocal ADT
formalism. For the timelike Killing vector ξt ¼ ð1; 0; 0Þ,
and after some tedious but straightforward computations,
the expressions for the Noether potential and the surface
term are given by

Z
M

0

dMΘr ¼ ðzþ 1Þð9z3 − 31z2 þ 31z − 25ÞM
16κlðz − 1Þðz2 − 3zþ 1Þ

�
r
l

�zþ1
2

−
ðzþ 1Þð15z3 − 60z2 þ 67z − 50ÞM2

32κlðz − 1Þðz2 − 3zþ 1Þ ;

Krt ¼ −
ðzþ 1Þð9z3 − 31z2 þ 31z − 25ÞM

16κlðz − 1Þðz2 − 3zþ 1Þ
�
r
l

�zþ1
2

þ 3ðzþ 1Þðz − 3Þð5z2 − 6zþ 5ÞM2

32κlðz − 1Þðz2 − 3zþ 1Þ :

This implies that the mass M of the Lifshitz black hole
solution (11) turns out to be

M ¼ −
πðzþ 1Þ2ð3z − 5Þ

16κðz − 1Þðz2 − 3zþ 1Þ
�
rh
l

�
zþ1

: ð14Þ

It is simple to verify that the black hole entropy (12)
and the mass (14) satisfy the first law of black hole

thermodynamics dM ¼ TdSW. In fact, they satisfy an
anisotropic version of the Smarr formula

M ¼ T
zþ 1

SW; ð15Þ

which stipulates that the mass M as a function of the
entropy SW is a homogeneous function of degree zþ 1
[26]. Notice that these nice properties are satisfied inde-
pendently of the sign of the mass.
It is also interesting to note that for the vacuum case

z ¼ 3 [7], this expression of the mass coincides with the
one derived in different papers using others formalisms
[8,17,27,28], provided that the Einstein constant is taken
negative κ ¼ −8πG, i.e., by choosing the so-called
“wrong” sign of NMG which turns tensor ghosts at the
linearized level into unitary Fierz-Pauli massive excitations
on maximally symmetric vacua [13]. Clearly, the range of
the dynamical exponent z which ensures a positive mass
strongly depends on the sign of the coupling constant κ.
Imposing the positivity of the mass and the reality of the
scalar field, the critical exponent z must be restricted
according to Table I.
We now derive the corresponding soliton solution which

exists for the same range of parameters and self-interacting
potential than those of the black hole solution (11). This
soliton solution turns out to have a dynamical exponent z−1

and a characteristic scale lz−1 which is a consequence of the
two-dimensional isomorphism between the Lifshitz Lie
algebras with dynamical exponents z and z−1 obtained by
swapping the role of the Hamiltonian with the momentum
generator [17]. We will present in detail the different steps
in this case and only report the main results in the other two
solutions. We first consider the Euclidean version of the
Lifshitz black hole (11) obtained by the Wick rotation
t ¼ iτ,

ds2 ¼ r2z

l2z
fðrÞdτ2 þ l2

r2fðrÞ dr
2 þ r2

l2
dφ2; ð16Þ

where the metric function fðrÞ can be read from Eq. (11),
and the static scalar field remains the same. In order to
avoid conical singularities, the Euclidean time must be
periodic with period β ¼ T−1, that is, 0 ≤ τ < β and the
angle keeps being identified as 0 ≤ φ < 2πl. Under the
Euclidean diffeomorphism defined by

TABLE I. Range of possibilities for the dynamical exponent z
allowing positive mass black holes, M > 0.

κ Range of z

κ > 0 1.7 ≈ 5=3 < z < ð3þ ffiffiffi
5

p Þ=2 ≈ 2.6
κ < 0 2.6 ≈ ð3þ ffiffiffi

5
p Þ=2 < z ≤ 3
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ðτ; r;φÞ ↦
�
τ̄ ¼

�
2πl
β

�1
z

φ; r̄ ¼ β

2πz

�
r
l

�
z
; φ̄ ¼ 2πl

β
τ

�
;

ð17Þ

the line element (16) becomes

ds2 ¼
�
zr̄
l

�2
z

dτ̄2 þ l2

z2r̄2Fðr̄Þ dr̄
2 þ z2r̄2

l2
Fðr̄Þdφ̄2;

Fðr̄Þ ¼ 1 − M̄

�
l
zr̄

�zþ1
2z

; M̄ ¼
�

4

zþ 1

�zþ1
2z

; ð18Þ

i.e., the Euclidean Lifshitz black hole is diffeomorphic to
another asymptotically Lifshitz solution with dynamical
exponent z−1, scale lz−1, and temperature

β̄ ¼ ð2πlÞ1þ1
zβ−

1
z: ð19Þ

It is, in fact, a soliton; its regular character is not manifest
in these coordinates which have the advantage of exposing
the Lifshitz asymptotic behavior with exponent z−1 and
scale lz−1. Finally, the corresponding Lorentzian soliton
obtained through τ̄ ¼ it̄ reads

ds2¼−
�
zr̄
l

�2
z

dt̄2þ l2

z2r̄2Fðr̄Þdr̄
2þz2r̄2

l2
Fðr̄Þdφ̄2; ð20aÞ

Φðr̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − 3Þð9z2 − 12zþ 11ÞM̄
2κðz − 1Þðz2 − 3zþ 1Þ

s �
l
zr̄

�zþ1
4z

: ð20bÞ

Now promoting the fixed constant to a variable one,
M̄ ↦ sM̄, we obtain a one-parameter family of local
solutions which facilitates the computation of the mass
along the same lines as before. Before proceeding with the
computation of the mass, let us analyze this last point
carefully. For the black hole solution, since the constant M
is an integration constant, a parameter swith range s∈ ½0;1�
could have been introduced in the solution via the change
M ↦ sM. This change is useful only for computing the
mass, since in this case, the variation will be operated with
the parameter s, and the surface term will be rather
integrated as

R
1
0 dsΘ

r. Nevertheless, the result is the same
if one promotes the constant M as the moving parameter
and integrating the surface term from 0 to M as we did
previously. Now, for the counterpart soliton, one can start
with the black hole solution parametrized in terms of s and
operate the same diffeomorphism (17). The resulting
soliton solution will correspond to the solution (20) with
M̄ ↦ sM̄, and the integration of the surface term will be
given by

R
1
0 dsΘ

r̄. However, as in the black hole case, the
new variable constant M̄ can be used as the moving
parameter, and the result is exactly the same. Hence,
choosing the Killing vector as ξt̄ ¼ ð1; 0; 0Þ, the Noether
potential and the surface term take the following form

Z
M̄

0

dM̄Θr̄ ¼ ðzþ 1Þð9z3 − 31z2 þ 31z − 25ÞM̄
16κlðz − 1Þðz2 − 3zþ 1Þ

�
zr̄
l

�zþ1
2z

−
ðzþ 1Þð15z3 − 60z2 þ 67z − 50ÞM̄2

32κlðz − 1Þðz2 − 3zþ 1Þ ;

Kr̄ t̄ ¼ ðzþ 1Þð9z3 − 31z2 þ 31z − 25ÞM̄
16κlðz − 1Þðz2 − 3zþ 1Þ

×

�
M̄ −

�
zr̄
l

�zþ1
2z
�
;

giving a unique value for the mass of the Lifshitz soliton,
independent of any integration constant, as expected,

Msol ¼
πzð3z − 5Þ

κðz − 1Þðz2 − 3zþ 1Þ
�
zþ 1

4

�z−1
z

: ð21Þ

It is straightforward to check that the mass of the soliton
and the mass of the black hole have opposite signs (14), as
expected. As long as the mass of the soliton is negative
Msol < 0 (see Table I), the holographic picture unveiled in
Ref. [17] applies: the semiclassical entropy of the Lifshitz
black hole (11) can be understood from the asymptotic
growth of the number of states of a 1þ 1 nonrelativistic
field theory with the ground state corresponding in the bulk
to the soliton (20). This gives rise to the anisotropic
generalization of the Cardy formula (8), which after
evaluation, perfectly coincides with the Wald formula (12)

SW ¼ SC: ð22Þ

We would like to emphasize that the bulk semiclassical
derivation of Ref. [17] is also applicable to negative mass
black holes (positive mass solitons), which as we already
show are compatible with the first law. In this case, the
anisotropic formula involves the absolute values of the
masses and consequently with the first law produces a
negative entropy; i.e., a general formula would be

SC ¼ ϵ2πlðzþ 1Þ
��jMsolj

z

�
z
jMj

� 1
zþ1

; ð23Þ

where ϵ ¼ �1 corresponds to the sign of the black hole
mass. Obviously, for ϵ ¼ −1, a holographic interpretation
makes no sense; even the mere existence of a thermody-
namical one can be challenged.
Moreover, for the vacuum dynamical exponent z ¼ 3

and with κ ¼ −8πG, the soliton mass (21) becomes
Msol ¼ −3=ð4GÞ, which precisely corresponds to the mass
of the vacuum gravitational soliton found in [17]. In the
following sections, we exhibit new nonminimally dressed
Lifshitz solutions for the same exponent z ¼ 3, and since
the involved steps are similar, only the important results are
reported.
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B. Nonminimally dressed black holes for z ¼ 3

For dynamical exponent z ¼ 3, a new family of Lifshitz
black hole solutions is presented:

ds2¼−
r6

l6

�
1−

Ml4

r4

�
dt2þ l2

r2

�
1−

Ml4

r4

�−1
dr2þr2

l2
dφ2;

ð24aÞ

ΦðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M
κð2 − 13ξÞ

s
l2

r2
: ð24bÞ

This configuration is supported by the self-interacting
potential

UðΦÞ ¼ −
2 − 13ξ

2l2
½2Φ2 þ ð2 − ξÞκΦ4�; ð24cÞ

where the nonminimal coupling parameter ξ is not
restricted a priori, and the remaining coupling constants
are related as in vacuum

λ

13
¼ m2 ¼ −

1

2l2
: ð24dÞ

As before, choosing the Killing vector ξt ¼ ð1; 0; 0Þ, the
Noether potential and the surface term are calculated as

Z
M

0

dMΘr ¼ −
2ð4ξ − 1ÞM2l3

κð13ξ − 2Þr4 þ ð104ξ − 17ÞM
κlð13ξ − 2Þ ;

Krt ¼ 2ð4ξ − 1ÞM2l3

κð13ξ − 2Þr4 −
2ð68ξ − 11ÞM
κlð13ξ − 2Þ ;

from which we obtain the mass of the Lifshitz black hole
(24) as

M ¼ −
2πð32ξ − 5Þ
κð13ξ − 2Þ

�
rh
l

�
4

: ð25Þ

It is easy to see that this expression for the mass satisfies the
first law, since the relatedWald entropy and temperature are
expressed by

SW ¼ −
8π2ð32ξ − 5Þrh
κð13ξ − 2Þ ; ð26Þ

T ¼ rh3

πl4
; rh ¼ lM1=4; ð27Þ

which is also compatible with the Smarr formula (15) for
z ¼ 3. The possible values for the nonminimal coupling
parameter warranting the existence of the solution and from
them those allowing positive mass are all summarized in
Table II.

As in the previous case, operating the same diffeo-
morphism (17) with z ¼ 3 on the Euclidean version of the
solution (24), we obtain a Lifshitz soliton whose Lorentzian
counterpart is

ds2 ¼ −
�
3r̄
l

�
2=3

dt̄2 þ l2

9r̄2

�
1 − M̄

�
l
3r̄

�
4=3

�
−1
dr̄2

þ 9r̄2

l2

�
1 − M̄

�
l
3r̄

�
4=3

�
dφ̄2; ð28aÞ

Φðr̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̄
κð2 − 13ξÞ

s �
l
3r̄

�
2=3

; M̄ ¼ 2−4=3: ð28bÞ

Once again, introducing a one-parameter family of locally
equivalent solutions via M̄ ↦ sM̄, the Noether potential
and the surface term are obtained as

Z
M̄

0

dM̄Θr̄ ¼ −
2ð4ξ − 1ÞM̄2

κlð13ξ − 2Þ
�

l
3r̄

�
4=3

þ ð104ξ − 17ÞM̄
κlð13ξ − 2Þ ;

Kr̄ t̄ ¼ 2ð4ξ − 1ÞM̄2

κlð13ξ − 2Þ
�

l
3r̄

�
4=3

−
2ð4ξ − 1ÞM̄
κlð13ξ − 2Þ ;

which, in turn, implies the following fixed mass for the
soliton (28):

Msol ¼
3πð32ξ − 5Þ

21=3κð13ξ − 2Þ : ð29Þ

For ξ > 5=32 and κ < 0, it is straightforward to check that
the generalized Cardy formula (8) fits perfectly with the
expressions of the masses of the Lifshitz black hole (25), its
soliton counterpart (29), and the Wald entropy (26).
Here again, the cases with negative black hole masses,

that can be inferred from Table II, i.e., ξ < 2=13 for κ > 0
and 2=13 < ξ < 5=32 for κ < 0, are compatible with the
first law, the Smarr formula (15), and its entropy can be
rewritten à la Cardy according to the general formula (23)
without further interpretation. In fact, for one of these
nonminimal couplings, namely, ξ ¼ 3=20 < 2=13 with
κ > 0, the solution can be improved by generalizing the
self-interaction with the addition of a cubic contribution.
The result is a sort of rigid dressing of the vacuum z ¼ 3
black hole [7].

TABLE II. Range of possibilities for the nonminimal coupling
parameter ξ.

κ Range of ξ M > 0

κ > 0 ξ < 2=13 ≈ 0.154 ∅
κ < 0 ξ > 2=13 ≈ 0.154 ξ > 5=32 ≈ 0.156
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C. Dressing the vacuum z ¼ 3 black hole for ξ ¼ 3=20

In the scenario where the nonminimal coupling takes the
value ξ ¼ 3=20 and κ > 0, the solution (24) is improved to

ds2 ¼−
r6

l6

�
1−

α
ffiffiffiffiffi
M

p
l2

r2
−
Ml4

r4

�
dt2

þ l2

r2

�
1−

α
ffiffiffiffiffi
M

p
l2

r2
−
Ml4

r4

�−1
dr2þ r2

l2
dφ2; ð30aÞ

ΦðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
20M
κ

r
l2

r2
; ð30bÞ

provided that the self-interaction potential is generalized as

UðΦÞ ¼ −
1

20l2
Φ2 −

α
ffiffiffi
κ

p

5
ffiffiffi
5

p
l2
Φ3 −

37κ

800l2
Φ4; ð30cÞ

with no restrictions in the cubic coupling constant α and
the remaining coupling constants fixed as in (24d).
Additionally to the α ¼ 0 limit, where we consistently
recover the black hole solution (24) for ξ ¼ 3=20, this
solution allows another nontrivial limit: for M → 0 and
α → ∞ keeping fixed the quantity Mv ¼ α

ffiffiffiffiffi
M

p
this sol-

ution becomes just the vacuum z ¼ 3 black hole [7] with
integration constantMv. This solution can be interpreted as
a sort of rigid dressing of the vacuum z ¼ 3 black hole by a
self-interacting scalar field with nonminimal coupling
ξ ¼ 3=20.
Calculating the Wald entropy and temperature of this

black hole gives

SW ¼ −
32π2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4

p
rh

κðαþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4

p
Þ ; ð31Þ

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4

p
rh3

πl4ðαþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4

p
Þ ; rh2 ¼

l2
ffiffiffiffiffi
M

p

2
ðαþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4

p
Þ:

ð32Þ

For the same timelike Killing vector, the expressions of the
Noether potential and the surface term read

Z
M

0

dMΘr ¼ 4α
ffiffiffiffiffi
M

p
r2

κl3
−
ðα2 − 28ÞM

κl
−
20lαM3=2

κr2

−
16l3M2

κr4
;

Krt ¼ 16l3M2

κr4
þ 20lαM3=2

κr2
−
32M
κl

−
4α

ffiffiffiffiffi
M

p
r2

κl3
;

giving the mass

M ¼ −
8πðα2 þ 4Þ

κðαþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4

p
Þ2
�
rh
l

�
4

: ð33Þ

As in the previous examples, the first law is satisfied as well
as the Smarr formula. Notice that the cubic interaction does
not enhance the sign of the mass, which remains negative as
in the case with α ¼ 0.
Following the same lines of the two previous examples,

the corresponding soliton reads

ds2 ¼ −
�
3r̄
l

�
2=3

dt̄2 þ l2

9r̄2
dr̄2

Fðr̄Þ þ
9r̄2

l2
Fðr̄Þdφ̄2; ð34aÞ

Φðr̄Þ ¼
ffiffiffiffiffiffiffiffiffiffi
20M̄
κ

r �
l
3r̄

�
2=3

; ð34bÞ

Fðr̄Þ ¼ 1 − α
ffiffiffiffiffi
M̄

p �
l
3r̄

�
2=3

− M̄

�
l
3r̄

�
4=3

; ð34cÞ

M̄ ¼
�

2

ðα2 þ 4Þðαþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4

p
Þ

�
2=3

: ð34dÞ

In this case, the Noether potential and the surface term yield

Z
M̄

0

dM̄Θr ¼ 4αM̄1=2

κl

�
3r̄
l

�
2=3

−
ðα2 − 28ÞM̄

κl

−
20αM̄3=2

κl

�
l
3r̄

�
2=3

−
16M̄2

κl

�
l
3r̄

�
4=3

;

Krt ¼ −
4αM̄1=2

κl

�
3r̄
l

�
2=3

þ 4ðα2 − 4ÞM̄
κl

þ 20αM̄3=2

κl

�
l
3r̄

�
2=3

þ 16M̄2

κl

�
l
3r̄

�
4=3

:

Finally, the rigid mass of the soliton is given by

Msol ¼
12πðα2 þ 4Þ1=3

21=3κðαþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4

p
Þ2=3 ; ð35Þ

which again allows us to rewrite the entropy (31) à la
Cardy, providing an additional realization of the general
formula (23).

III. CONCLUSIONS

In this paper, we confirm diverse general results con-
cerning Lifshitz black holes in new concrete examples.
More precisely, we are interested in identifying the mass of
any reasonable asymptotically Lifshitz configuration. For
this, we successfully test the quasilocal formulation of
conserved charges recently proposed in [18,19] and based
on the off-shell extension of the ADT formalism [20]. We
focus our attention on the three-dimensional case where the
advantage lies in the fact that our expressions for the
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masses can be checked, on one hand, by using the first law
of black hole thermodynamics and, on the other hand, by
independently verifying the anisotropic generalization of
the Cardy formula [17]. In order to achieve this task, we
supplement the action of new massive gravity [13], which
already supports a Lifshitz black hole in vacuum [7], with
the one of a self-interacting scalar field nonminimally
coupled to gravity. Some of the authors have proven that
this is a useful strategy to enlarge the zoo of three-
dimensional Lifshitz black holes [15]. We start by studying
a family of solutions formerly found in Ref. [15] for the
generic dynamical exponent z and characterized by a
nonvanishing Wald entropy. Later, we concentrate in the
exponent z ¼ 3, relevant for the vacuum [7], but excluded
from the nontrivial configurations exhibited in [15]. We
find a new family of Lifshitz black holes for a generic
value of the nonminimal coupling parameter ξ. Both
families allow massive and quartic contributions in their
self-interactions; however, the last solution is enhanced for
ξ ¼ 3=20 by turning on also a cubic contribution. We
derive the black hole mass of each of these solutions
through the generalization of the ADT formalism. The
advantages of this method lie essentially in the fact that the
expression for the mass can be obtained without assuming
a priori any asymptotic conditions, without linearizing the
equations of motion, and uniquely requiring to work out
with the Lagrangian and the appropriate Killing vector. We
compute the Wald entropy and check that the first law of
black hole thermodynamics is valid in these three cases for
the obtained mass. In fact, all of them satisfy an anisotropic
version of the Smarr formula saying the mass is a
homogeneous function of the entropy with degree zþ 1.
We operate a completely independent verification of the
results of the method in three steps. We first derive the
corresponding soliton solution for the three different
classes of solutions; second, we compute their respective
mass using the same quasilocal formulation of conserved
charges. In order to apply the method in these cases, we use
a one-parameter family of solutions locally equivalent to
the solitons that properly have no integration constants and
consistently obtain a fixed value for their masses. Finally,
we confirm the validity of the anisotropic generalization of
the Cardy formula (8) obtained from holographic argu-
ments under the assumption that the soliton plays in the
bulk the role of the ground state of a nonrelativistic
boundary theory [17]. The family (11) was originally
derived in Ref. [15] together with other two classes of
Lifshitz black hole solutions. It is simple to verify that
the two remaining classes have a zero Wald entropy. In the
interest of performing a cross-check of the efficiency of the
quasilocal method, we verify that the generalized ADT
formalism yields to a zero mass in these cases, which again
fits consistently with the first law and the other tested

formulas. In addition to the zero mass Lifshitz black holes
produced in the studied theory, the three examples analyzed
in the paper contain Lifshitz black holes with negative
mass. It is important to emphasize that our checking of the
first law is performed independently of the sign of the mass.
The same happens for the Smarr formula. Regarding the
anisotropic Cardy formula, we point out a subtlety for these
cases, where, additionally, the mass of the corresponding
soliton is positive. This invalidates the holographic inter-
pretation provided in Ref. [15]; however, their semiclassical
arguments still apply, which allow a general writing of their
formula involving the absolute values of the masses and a
sign correction in the entropy compatible with the first law.
All the cases under study are compatible with this general
formula (23). Returning to the Smarr formula, it would be
interesting to derive the expression (15) by exploiting a
scaling symmetry of the field equations and to derive the
corresponding Noether conserved current. Evaluating this
latter at infinity and at the horizon and equating these two
expressions, the expectation is to obtain the anisotropic
Smarr formula, generalizing the results of [29]. Finally, we
would like to stress that it is worth to pursue testing of this
method by obtaining the mass of higher-dimensional
Lifshitz black holes. This task has been started in [19]
for special cases of the vacuum configurations with square
gravity corrections found in [9], and for which it is known
that the naive extension of the ADT formalism does not
work [22]. See, also, [30] for a different perspective based
on the first law.
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