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We investigate the effect of averaging inhomogeneities on expansion and large-scale structure growth
observables using the exact and covariant framework of macroscopic gravity (MG). It is well known that
applying the Einstein’s equations and spatial averaging do not commute and lead to the averaging problem
and backreaction terms. For the MG formalism applied to the Friedman-Lemaitre-Robertson-Walker
(FLRW) metric, the extra term can be encapsulated as an averaging density parameter denoted ΩA. An
exact isotropic cosmological solution of MG for the flat FLRW metric is already known in the literature;
we derive here an anisotropic exact solution. Using the isotropic solution, we compare the expansion
history to current available data of distances to supernovae, baryon acoustic oscillations, cosmic microwave
background last scattering surface data, and Hubble constant measurements, and find −0.05 ≤ ΩA ≤ 0.07
(at the 95% confidence level). For the flat metric case this reduces to −0.03 ≤ ΩA ≤ 0.05. The positive part
of the intervals can be rejected if a mathematical (and physical) prior is taken into account. We also find that
the inclusion of this term in the fits can shift the values of the usual cosmological parameters by a few to
several percents. Next, we derive an equation for the growth rate of large-scale structure in MG that
includes a term due to the averaging and assess its effect on the evolution of the growth compared to that of
the Lambda cold dark matter (ΛCDM) concordance model. We find that an ΩA term of an amplitude range
of [−0.04;−0.02] lead to a relative deviation of the growth from that of the ΛCDM of up to 2%–4% at late
times. Thus, the shift in the growth could be of comparable amplitude to that caused by similar changes in
cosmological parameters like the dark energy density parameter or its equation of state. The effect could
also be comparable in amplitude to some systematic effects considered for future surveys. This indicates
that the averaging term and its possible effect need to be tightly constrained in future precision
cosmological studies.
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I. INTRODUCTION

The rapid improvement in the quantity and quality of
incoming and future observational data has encouraged
the field of astrophysics to aim for a precise and accurate
cosmology. In such a context, the understanding and
control of systematic effects in the data and modeling
have become essential to such an endeavor. Indeed, in order
to constrain the information extracted from the data to a
percent-precision level, it is necessary to consider nuisance
effects and contaminants that affect the data at this level.
These effects include not only systematics related to data
measurements but also corrections in the theoretical mod-
eling including nonlinear and relativistic effects.
One effect worth exploring is the averaging problem in

relativity and cosmology that may effect the precision and
accuracy of the cosmological constraints derived from the
data [1–26]. The problem originates from the fact that
spatial averaging (or smoothing out inhomogeneities) in
the Universe is an operation that does not commute
with applying the Einstein field equations (EFEs). In other

words, the field equations derived from the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric that describes
the Universe at very large scales will be different from the
equations derived at smaller scales and then averaged over
large distances and volumes in the Universe. This is due to
the nonlinear nature of the field equations of general
relativity. The presence of this noncommutation is well
known in the literature and usually gives additional terms
in the Friedmann equations known as backreaction terms
[27–83]. This backreaction has been in general agreed upon
by now to be too small to affect dramatically the overall
dynamics of the Universe, however it remains an open
question whether this backreaction can affect the con-
straints on cosmological parameters at the percent-
precision level and thus if it should be considered at the
same footing as other systematics in cosmological analyses.
In this paper, we address some aspects of this question.
The averaging procedures and the resulting backreac-

tion terms provide mathematical formalisms on how
smaller scale inhomogeneities in the Universe can affect
the dynamics at large scales. Such averaging schemes
provide effective dynamical equations that explicitly
relate the “macroscopic” observables to the underlying
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“microscopic” structure. The construction of averaging
schemes for general relativity has a long history and there
has been many proposed methods [1–26]. While some
have proposed averaging schemes that use only scalar
evolution equations, e.g. [8,9,11,13,14,18], a great deal of
effort was put into developing a fully covariant averaging
procedure that can be applied to tensor equations [1,2,5].
Perhaps one of the most promising covariant schemes

was proposed by [1,2] and is referred to as macroscopic
gravity (MG) in the literature. This was inspired by some
earlier work on the subject matter [16,17]. The formalism
derives the macroscopic gravitational field equations based
on the usual Einstein’s equation plus a tensor term due to
the averaging process. These new field equations can be
solved for a specific macroscopic geometry (for example
the FLRW metric) without explicit reference to the micro-
scopic geometries. The solutions to the macroscopic
equations will give the dynamical equations with additional
terms due to the averaging that are related to the micro-
scopic geometries. This became an attractive framework for
cosmology and the macroscopic gravity field equations
have been solved for the flat FLRW metric [84–86] and
some authors have explored the cosmological implications
of the formalism [41,66].
In this paper we analyze the effect of terms due to the

macroscopic gravity averaging scheme on constraints from
the expansion history and the growth rate of large-scale
structure in the Universe.
The structure of the paper is as follows. In Sec. II, we

give an overview of the macroscopic gravity formalism.
Then, in Sec. III we detail the approach to systematically
obtain exact solutions in macroscopic gravity. We briefly
rederive the flat FLRW isotropic solution and introduce a
new anisotropic exact solution. In Sec. IV, we compare the
macroscopic gravity observables of the isotropic solution to
the expansion history data. In Sec. V we derive the growth
equation for the flat FLRW model. Finally we conclude in
Sec. VI. Units are chosen throughout the paper such
that c ¼ 1.

II. THE AVERAGING AND MACROSCOPIC
GRAVITY FORMALISM

In this section we will introduce Zalaletdinov’s macro-
scopic gavity formalism detailed in Refs. [1,2]. The macro-
scopic gravity formalism consists of a covariant averaging
procedure, a method of assigning derivatives to the aver-
aged geometric objects, and the application of the averag-
ing procedure to the EFE and the Cartan’s structure
equations in order to derive an effective EFE giving the
coarse grained macroscopic dynamics.
The average of an arbitrary tensor field Pα

β at a point x
over some averaging region Σx surrounding the supporting
point x is defined as

Pα
βðxÞ¼

1

VΣx

Z
Σx

Pα0
β0 ðx0ÞAα

α0 ðx;x0ÞAβ0
βðx0;xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
d4x0

ð1Þ
where VΣx

¼ R
Σx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þp

d4x0 is the 4-volume of the
averaging region for support point x, and Aα

α0 ðx; x0Þ,
Aβ0

βðx0; xÞ are arbitrary bivectors (i.e. two point vectors
whose primed index transforms like a vector at x0 and
unprimed index transforms as a vector at x) which
satisfy the conditions limx0→xAα

β0 ðx0; xÞ ¼ δαβ and

Aα
β0 ðx; x0ÞAβ0

γ00 ðx0; x00Þ ¼ Aα
γ00 ðx; x00Þ. The first condition

ensures that the average tensor at a supporting point x
[Pα

βðxÞ] becomes the value of the original tensor field at x
when the averaging region goes to zero [limΣx→0 Pα

βðxÞ ¼
Pα

βðxÞ] and the second ensures that Aa
β0 ðx; x0Þ is the

inverse operator of Aα0
βðx0; xÞ. The most natural and well-

known bivector is what is known as the bivector of geodesic
parallel displacement [gα

0
βðx0; xÞ] [87] which satisfies both

the required conditions and hence can be used as the
“averaging bivector.” In fact, when the averaging bivector is
the bivector of geodesic parallel displacement, the above
definition of tensor averaging is similar to the one used by
Isaacson in his well-known paper on gravitational radiation
[16,17] with the exception that in the latter, the integration
is over the background while in the above definition, the
integration is over the actual microscopic geometry, i.e. in
the above equation the measure

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þp

is that of the
microscopic metric rather than that of the macroscopic
background metric. However, when defining the differ-
entiation of average tensors, using the bivector of geodesic
parallel displacement introduces some complications which
we will discuss below, so it won’t be the one used in the
macroscopic gravity formalism.
In order to define derivatives of average tensors, the

averaging region at each supporting point is defined accord-
ing to the following prescription which Zalaletdinov calls
“averaging region coordination.” All the points xα

0 ∈ Σx in a
chosen averaging region (Σx) for a supporting point xα are
Lie dragged to a nearby supporting point yα ¼ xα þ Δλξα
along the integral curves of an arbitrary vector field ξα

parametrized by λ, in order to define the averaging region
at that point (Σy), using a bivector referred to as the
coordination bivector which satisfies the two conditions
satisfied by the previous averaging bivector. For simplicity,
the averaging bivector can be taken as identical to the
coordination bivector. Now, the averaging region of
supporting point y (Σy) reads Σy ¼ fyα0 jyα0 ¼
xα

0 þ ΔλξβAα0
βðx0; xÞ; x0α ∈ Σxg.

This procedure is used to construct averaging regions for
all the supporting points in the manifold. The well-defined
coordination between the averaging regions allow us to
write the measure in a region in terms of the measure in a
nearby region as
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðy0Þ

p
d4y0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p �
1þ ΔλAα0

βξ
βðln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
Þ;α0

þΔλðAα0
βξ

βÞ;α0
�
þOðΔλ2Þ

where the semicolon stands for covariant derivation with
respect to the microscopic connection. Using the above
expression, the Lie derivative of the volume VΣx

can be
written as

£ξVΣx
¼ ξαhAβ0

αβ0 iVΣx
ð2Þ

with the angle bracket denoting integration over the
averaging region divided by VΣ, for example Pα ≡
hAα

α0P
α0 i. The Lie derivative of an arbitrary average vector

Pα can be expressed as

£ξPα ¼ ξβðh ~Pα
∶βi þ hAβ0

β;β0Pαi − hAβ0
β;β0 iPαÞ ð3Þ

where we have defined P∶α ≡ P;α þAβ0
αP;β0 , the comma

stands for partial derivative, and the over tilde represents
the bilocal extension of a geometric object, for example
~Pα ¼ Aα

α0Pα0 .
In order for the average tensors to be single valued

functions of the supporting point, the partial derivatives

must commute. Since £ξPα ¼ ξβhPαi;β − Pβξa;β the com-
mutator of the partial derivatives is given by

Pα
;½βγ� ¼ h ~Pα

∶½βγ�i þ h ~PαAδ½γ∶β�;δi − hAδ½γ∶β�;δiPα:

Requiring the partial derivatives to commute (Pα
;½βγ� ¼ 0)

implies that the averaging bivector satisfies the condition

Aα0 ½β;γ� þAα0 ½β;δ0Aδ0
γ� ¼ 0: ð4Þ

Furthermore, from Eq. (2) the condition for the Lie
dragging of an averaging region to be volume preserving
(i.e. £ξVΣx

¼ 0) reads

Aα0
β;α0 ¼ 0: ð5Þ

Now, using the conditions (4), (5) and Eq. (3), the partial
derivatives of an average vector can be written as

Pα
;β ¼ h ~Pα

∶βi: ð6Þ

The bivector of parallel propagation does not in general
satisfy conditions (4) or (5), so it is not possible to set up the
averaging region coordination using that as the averaging
bivector. However, it has been shown [88] that for an
arbitrary metric there always exists a bivector satisfying
Eqs. (4) and (5), and that satisfying these two conditions is
equivalent to the bivector being the product of two vector

bases Aa
β0 ðx; x0Þ ¼ eαðiÞðxÞeðiÞβ0 ðx0Þ with the structure func-

tions Ck
ij being constant (where ½eðiÞ; eðjÞ� ¼ Ck

ijeðkÞ).

Choosing different ei (i.e. different averaging bivectors)
will give different averaged fields for a given microscopic
tensor field [see Eq. (1)].
In order to obtain an effective EFE, it is necessary to

know what averaged geometric object gives the effective
dynamics. In the Zalaletdinov formalism, the “bilocal
extension of the connection coefficients” defined as

F α
βγ ≔ Aα

ϵ0 ðAϵ0
β;γ þAϵ0

β;σ0Aσ0
γ Þ ð7Þ

which transforms like a connection at x, like a scalar at x0,
and reduces to the microscopic connection Γα

βγ in the limit
x0 goes to x, is what should be averaged in order to get the
effective macroscopic connection coefficient. There will be
a macroscopic curvature tensor (Ma

βγδ) and a macroscopic
metric (Gαβ) corresponding to the macroscopic connection
(hF α

βγi). Additionally, there exists a connection (πaβγ)
corresponding to the averaged microscopic Riemann
tensor (R̄a

βγδ). The difference between the two connection
coefficients is defined as the affine deformation tensor
(Aa

βγ ¼ hF α
βγi − πaβγ).

By averaging out the Cartan structure equations, the
metric compatibility equation, their integrability conditions
and the microscopic EFE, the macroscopic gravity field
equations can be constructed and shown to be of the form

gαϵMαγ −
1

2
δϵγgμνMμν ¼ 8πGðTϵ

γ þ TðgravÞϵ
γÞ ð8Þ

where Mβγ denotes the macroscopic Ricci tensor, gαϵ the
average of the inverse microscopic metric, Tϵ

γ the averaged
stress energy tensor, and TðgravÞϵ

γ the gravitational stress
energy tensor.

8πGTðgravÞϵ
γ ¼ −

�
Zϵ

μνγ þ
1

2
δϵγQμν

�
gμν: ð9Þ

Here the correlation 2-form Zα
βγ

μ
νσ is defined as

Zα
βγ

μ
νσ ¼ hF α

β½γF μ
νσ�i − hF α

β½γihF μ
νσ�i ð10Þ

and its traces are as follows: Qα
βρμ ¼ −2Zϵ

βρ
α
ϵγ, Z

ϵ
μνγ ¼

2Zϵ
μδ

δ
νγ and Qμν ¼ Qϵ

μνϵ ¼ Zδ
μνδ where Qα

βρμ is known
as the polarization tensor.
The correlation 2-form has the following symmetries:

Zα
βðγμνσÞ ¼ 0 ð11Þ

Zα
βγ

μ
νσ ¼ −Zμ

νγ
α
βσ ð12Þ

Zα
β½γμνσ� ¼ 0 ð13Þ

and it satisfies the equi-affine constraint
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Zα
αγ

μ
νσ ¼ 0: ð14Þ

The differential properties for the correlation 2-form are set
by a correlation 3-form and a correlation 4-form. It is
possible to set the correlation 3- and 4-forms to zero and
hence greatly simplify the formalism by setting the covar-
iant derivative of the correlation 2-form with respect to the
macroscopic connection to zero.

Zα
β½γμνσ∥λ� ¼ 0 ð15Þ

where ∥ represents covariant derivative with respect to the
macroscopic connection. This equation also ensures that
the averaged stress energy tensor is conserved.
The above equation has the integrability condition,

Zϵ
β½μγδνM

α
ϵκπ� − Zα

ϵ½μγδνM
ϵ
βκπ� þ Zα

β½μϵδνM
γ
ϵκπ�

− Zα
β½μγϵνM

ϵ
δκπ� ¼ 0: ð16Þ

Furthermore, setting the correlation 3- and 4-forms to
zero require the quadratic constraint

Zδ
β½γθκπZ

α
δϵ
μ

νσ� þ Zδ
β½γμνσZ

θ
κπ

α

δϵ� þ Zα
β½γδνσZ

μ
δϵ
θ

κπ�

þ Zα
β½γμδϵZ

θ
κπ

δ
νσ� þ Zα

β½γθδϵZ
μ
νσ

δ
κπ�

þ Zα
β½γδκπZ

θ
δϵ
μ

νσ� ¼ 0: ð17Þ

The average of the Cartan equations implies the affine
deformation tensor needs to satisfy the constraint

Aα½βσ∥ρ� − Aα
ϵ½ρAϵ

βσ� ¼ −
1

2
Qα

βρσ: ð18Þ

Additionally, the average of the integrability condition of
the Cartan equations gives

Aϵ
β½ρMα

ϵσλ� þ Aϵ
β½ρQα

ϵσλ� − Aα
ϵ½ρMϵ

βσλ� − Aα
ϵ½ρQϵ

βσλ� ¼ 0:

ð19Þ

For a given macroscopic metric, Eqs. (11)–(19) can be
solved to derive the correlation 2-form and the correspond-
ing additional terms in the field equations.

III. EXACT COSMOLOGICAL SOLUTIONS TO
MACROSCOPIC GRAVITY EQUATIONS

In order to solve the macroscopic gravity equations,
it is essential to assume that the inverse of the averaged
microscopic metric is equal to the macroscopic metric. This
will restrict the class of solutions but it’s not possible to
avoid this since the theory does not provide a method of
deriving this quantity other than explicitly performing the
averaging.

A. Algorithmic approach to solving the macroscopic
gravity equations

A systematic approach to obtaining an exact solution are
as follows.

(i) Define the metric for the macroscopic geometry
Gα

β and calculate the Riemannian curvature tensor
Mα

βγδ.
(ii) Define the correlation 2-form in terms of 720

arbitrary functions of the coordinates with the
symmetries given by Eq. (11).

(iii) Apply the algebraic cyclic identity equation (12).
(iv) Apply the algebraic equi-affine constraint

equation (14).
(v) Solve the integrability condition equation (16).
(vi) Solve the differential constraint equation (15).
(vii) Solve the quadratic algebraic constraint for the

correlation 2-form equation (17).
Solving these equations will in general give all the
independent components of the correlation 2-form
(although symmetries in the macroscopic geometry can
place further constraints reducing the number of indepen-
dent components).

(i) Now the affine deformation tensor can be solved for
using Eqs. (18) and (19).

(ii) The gravitational stress energy tensor can now be
calculate using Eq. (9).

(iii) Finally any constraints on the gravitational stress
energy tensor due to symmetries in the macroscopic
geometry need to be applied.

All remaining independent functions in the correlation
2-form and the affine deformation tensor will correspond
to different microscopic geometries giving the same macro-
scopic geometry, and are free parameters of the model.
Now the macroscopic EFE (8) can be derived for a given
averaged stress energy tensor.

B. Previously derived spatially homogeneous
and isotropic solutions

The model of cosmological interest is the one with the
macroscopic geometry described by the FLRW metric in
agreement with observations. The macroscopic gravity
solutions for the flat FLRW metric has been studied in
the literature [84–86] with the second reference giving a
systematic analysis of the solutions for the case when the
correlation 2-form (Zα

βγ
μ
νσ) and the affine deformation

tensor (Aα
βγ) are invariant under the six parameter group

of Killing vectors (corresponding to the three transla-
tional and three rotational symmetries of the metric),
and the electric part of the correlation tensor is zero. The
solution to the correlation 2-form was found to be
completely specified by three arbitrary constants A,
h2 and b1 while the affine deformation tensor was
specified by only A. The gravitational stress energy
tensor reads
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8πGTðgravÞα
β ¼

0
BBBBBB@

A2

a2 0 0 0

0 1
3
A2

a2 0 0

0 0 1
3
A2

a2 0

0 0 0 1
3
A2

a2

1
CCCCCCA
: ð20Þ

We have rederived this solution in this work and our
results are in agreement with the findings of [84,85]. In
summary, for the macroscopic line element

ds2 ¼ −dt2 þ a2ðdx2 þ dy2 þ dz2Þ ð21Þ

with an averaged stress energy tensor of the form of a
perfect fluid T̄α

β ¼ diagð−ρ; p; p; pÞ where ρ is the
energy density and p is the anisotropic pressure. The
macroscopic EFEs [(8)] read

_a2

a2
¼ 8πG

3
ρ −

1

3

A2

a2
þ Λ

3
ð22Þ

2ä
a

þ _a2

a2
¼ −8πGp −

1

3

A2

a2
þ Λ ð23Þ

where overdots denote partial differentiation with
respect to the time coordinate t. Hence, the macroscopic
gravity correlations appear like an extra positive spatial
curvature term in the Friedmann’s equations.
The constant A emerges from applying the formalism to

the macroscopic flat FLRW metric. It has no explicit scale
dependence, however, it does implicitly depend on scale in
the sense that the derived expression holds only when the
averaging is performed at a scale large enough to reduce
the macroscopic geometry to completely homogeneous and
isotropic. At smaller scales, the effects due to averaging
will not be captured by this simple expression and will
presumably explicitly depend on the scale.

C. Spatially homogeneous and anisotropic solutions
to macroscopic gravity equations

The exact solutions for macroscopic gravity are known
only for the flat homogeneous and isotropic and the
static spherically symmetric cases [84–86,89]. The non-
static spherically symmetric solution has been found [90]
using “volume preserving coordinates” and an approxima-
tion rather than by solving Eqs. (11)–(19) directly. In this
section we will consider the solution for a macroscopically
homogeneous, anisotropic and spatially flat metric (i.e. a
macroscopically Bianchi type I metric) of the form

dS2 ¼ −dt2 þ aðtÞ2dx2 þ bðtÞ2dy2 þ cðtÞ2dz2: ð24Þ

We note that we will derive this exact solution here just
as a further example for macroscopic gravity but we will
use for the observables and the remaining of the paper the
isotropic solution from the previous subsection.
We will not assume that correlation 2-form Zα

βγ
μ
νσ is

invariant under the three parameter group of Killing vectors
(G3). However, the gravitational stress energy tensor
[Eq. (9)] will be required to be diagonal and invariant
under the action of G3 since the average stress energy
tensor being considered is invariant under the action of G3.
In the language of [86] it’s a “Type II” solution.
The assumptions used to obtain the solutions are as

follows:
(i) The average of the inverse microscopic metric is

equal to inverse macroscopic metric ḡαβ ¼ Gαβ.
(ii) The averaged microscopic stress energy tensor takes

the form T̄a
β ¼ diag½−ρðtÞ; p1ðtÞ; p2ðtÞ; p3ðtÞ�.

(iii) The electric part of the correlation 2-form is zero.
Zα

βγ
μ
νσu

σ ¼ 0 where uσ ¼ ½1; 0; 0; 0� is the timelike
vector orthogonal to the hypersurface of homo-
geneity.

(iv) The affine deformation tensor will be assumed to
be invariant under the action of the group of
Killing vectors. £kðiÞA

a
βγ ¼ 0 where kðiÞ ¼ ∂i and

i ¼ x; y; z.
All the following calculations were performed using

the publicly available tensor algebra package GRTensor
and the commercial computer algebra package Maple.
From Eq. (11) the correlation 2-form ostensibly has 720
independent component. We started by defining the
correlation 2-form with these symmetries in terms of
720 functions of the coordinates. The cyclic identity (13)
gives 250 independent constraints while the equi-affine
relation (14) gives 76 additional independent linear
constraints and the assumption that the electric part of
the correlation tensor is zero gives a further 275,
reducing the number of independent components to
121. The calculations up to this point will be true for
any metric since the metric and its derivatives played no
role in the equations. So for any macroscopic geometry,
the correlation 2-form will have at most 121 independent
components. Now applying the integrability condition
(16) gives an additional 52 constraints bringing the total
number of independent components to 69. Solving the
differential constraint (15) forces all the functions to be
independent of time and we are left with 69 functions of
the position coordinates. The gravitational stress energy
tensor can now be calculated and it will be a diagonal
and depend on 6 of the functions. Applying the require-
ment that the gravitational stress energy tensor is
invariant under the action of G3 gives 6 differential
constraints. Solving them, the gravitational stress energy
tensor reads
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8πGTðgravÞα
β

¼ 1

aðtÞbðtÞcðtÞ

0
BBB@

Aaþ Bbþ Cc 0 0 0

0 Aa 0 0

0 0 Bb 0

0 0 0 Cc

1
CCCA

ð25Þ

where A;B; C are constants. The correlation 2-form now
has 69 independent components, 66 of them are func-
tions of the position coordinates and 3 are constants.
Now the macroscopic EFE (8) reads

_a _b
ab

þ _a_c
ac

þ
_b_c
ac

¼ −
Aaþ Bbþ Cc

abc
þ 8πGρ ð26Þ

b̈
b
þ c̈
c
þ

_b_c
bc

¼ −
A
bc

− 8πGp1 ð27Þ

ä
a
þ c̈
c
þ _a_c
ac

¼ −
B
ac

− 8πGp2 ð28Þ

ä
a
þ b̈
b
þ

_b_c
ab

¼ −
C
ab

− 8πGp3: ð29Þ

It would be of interest to know how this compares to the
dynamics of a homogeneous anisotropic space time with
spatial curvature. Since the FLRW metric with positive
curvature is a special case of the Bianchi type IX, the
natural choice for comparison would be of that type.
The metric for a Bianchi model can in general be written

in the form

dS2 ¼ −dt2 þ ηðiÞðjÞw
ðiÞ
a wðjÞ

b dxadxb ð30Þ

where wðiÞ
a are the components of the invariant basis

1-forms corresponding to the Bianchi type and ηðiÞðjÞ is a
symmetric matrix that is a function of only time. For the
Bianchi IX model the invariant basis 1-forms are [91]

wð1Þ ¼ cosðψÞdθ þ sinðψÞ sinðθÞdϕ
wð2Þ ¼ sinðψÞdθ cosðψÞ sinðθÞdϕ
wð3Þ ¼ dψ þ i cosðθÞdϕ:

The simplest Bianchi IX model for comparison would
be the one with ηðiÞðjÞ ¼ diag½aðtÞ; bðtÞ; cðtÞ�. For this
model the EFEs read

_a _b
ab

þ _a_c
ac

þ
_b_c
ac

¼ −
2a2b2 þ 2b2c2 þ 2a2c2 − a4 − b4 − c4

4a2b2c2
þ 8πGρ

ð31Þ

b̈
b
þ c̈
c
þ

_b_c
bc

¼ −
2a2b2 þ 2a2c2 þ b4 þ c4 − 3a4 − 2b2c2

4a2b2c2
− 8πGp1

ð32Þ

ä
a
þ c̈
c
þ _a_c
ac

¼ −
2a2b2 þ 2b2c2 þ a4 þ c4 − 3b4 − 2a2c2

4a2b2c2
− 8πGp2

ð33Þ

ä
a
þ b̈
b
þ

_b_c
ab

¼ −
2a2c2 þ 2b2c2 þ a4 þ b4 − 3c4 − 2a2b2

4a2b2c2
− 8πGp3:

ð34Þ
The exact macroscopic gravity solutions for the spatially

flat anisotropic metric (26)–(29) have some similarity with
the spatially closed anisotropic solution for the microscopic
EFE. When aðtÞ ¼ bðtÞ ¼ cðtÞ, both sets of equations
have the same form. Equations (26)–(29) reduce to the
flat homogeneous solution described in the previous
section while Eqs. (31)–(34) reduce to the spatially closed
FLRW solution. However, unlike the simple case of the
isotropic solution, it is unclear how to relate these new
terms to a spatial curvature. It is known that the “mix-
master” models described by Eqs. (31)–(34) show chaotic
behavior at early times [92] and it remains to be analyzed
whether the macroscopically anisotropic models have
similar behavior that would wipe out any macroscopic
anisotropies.

IV. EXPANSION HISTORY OBSERVABLES AND
CONSTRAINTS ON MACROSCOPIC GRAVITY

ISOTROPIC SOLUTION

The observational consequence of the macroscopic
FLRW model with its additional “dynamical curvature”
A2=a2 on the luminosity distance measurements and hence
the constraints on the cosmological parameters from the
distance observables has been studied in the literature [41].
In this paper we will apply the additional constraintA2 ≥ 0
(hence ΩA ≤ 0) coming from the constraint equations for
the affine deformation tensor (see [85]). We obtain the
results for the cases with and without this constraint.
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First, we write the macroscopic RW metric as

dS2 ¼ −dt2 þ aðtÞ2½dr2 þ fkðrÞ2ðdθ2 þ sin2θdϕ2Þ� ð35Þ

where

fkðrÞ ¼
8<
:

sinðrÞ if k ¼ 1;

r if k ¼ 0;

sinhðrÞ if k ≤ 0:

and k is the spatial curvature of the macroscopic metric.
If the source is a perfect fluid, the effective EFE reads

H2 ¼ 8

3
πGρ −

k
a2

þ Λ
3
−
1

3

A2

a2
ð36Þ

ä
a
¼ 4

3
πGðρþ 3pÞ þ 1

3
Λ ð37Þ

where the Hubble parameter has been defined as H ¼ _a=a.
The effective Friedman equation (36) can be rewritten in
terms of the current density parameters as

HðaÞ ¼ H0ðΩka−2 þ ΩAa−2 þ ΩΛ þΩma−3Þ12 ð38Þ

where Ωm ≡ 8
3
πGρ0=H2

0 is the matter density parameter,
ΩΛ ≡ Λ=3H2

0 is the cosmological constant density param-
eter,Ωk ≡ −k=H2

0 is the curvature density parameter,ΩA ¼
−A2=3H2

0 is the “gravitational energy” parameter due to
averaging [41], and H0 is the Hubble constant, all evalu-
ated today.
In this work, we make the assumption that light rays

on average follow the null geodesics of the averaged
macroscopic space time and that the only changes to the
luminosity distance are due to the change in the modified
Friedmann equation. Some rays of light are demagnified
and some are magnified but on average photon flux
conservation leads to no net change in the luminosity
distance [72]. So overall, this seems to be a reasonable
assumption for the average of a large number of photons
and is consistent with some of the findings in the literature
[38,43,72]. However some authors have found [30,69,70]
that inhomogeneities could lead to small changes in the
redshift relation and possibly large changes to the lumi-
nosity distance. It is reassuring that the changes in the
redshift were found to be small in those studies while
the changes in the luminosity distance are suppressed on
average by photon flux conservation. Nevertheless, it will
be good to address this point further in the formalism used
in this paper by applying it to the null geodesic equation
and the Sachs equations explicitly, similar to what was done
for the EFE. We leave this full project for future work.
Now, following the usual derivation, the luminosity

distance can be written for the curved FLRW macroscopic
metric as

dL ¼ 1

aH0

ffiffiffiffiffiffiffiffiffijΩkj
p fk

×

�Z
a

a0¼1

ffiffiffiffiffiffiffiffiffijΩkj
p

da0

ðΩka02 þΩAa02 þΩΛa04 þΩma0Þ12
�

ð39Þ

and for the flat FLRW macroscopic metric it reads

dL ¼ 1

aH0

Z
a

a0¼1

da0

ðΩAa02 þ ΩΛa04 þ Ωma0Þ12
: ð40Þ

Due the degeneracy betweenΩA andΩk in the denominator
(i.e. Friedmann equation), for the fits to the data we use
the dynamical energy term that is the sum of the averaging
gravitational energy and geometric curvature (Ωkd ¼
ΩA þΩk) same as Ref. [41].
We fit the cosmological parameters for the FLRW

solution of macroscopic gravity (and other models) using
the available cosmological distance data. The supernova
(SNe) observations from the Union 2.1 data set [93],
cosmic microwave background (CMB) last scattering sur-
face data from WMAP 9 yr data release [94], baryonic
acoustic oscillations (BAO) from WiggleZ [95] and the
Hubble rate from hubble space telescope (HST) measure-
ments [96].
The parameter fits for the various models were per-

formed using χ2 minimization via a maximum likelihood
analysis (i.e. we minimize χ2 ¼ χ2SN þ χ2BAO þ χ2CMBÞ and
Monte-Carlo Markov chain approach using a modified
version of the publicly available package COSMOMC [97].
In order to get the constraints from the supernova data,

we define χ2SN as

χ2SN ¼
X557
1¼1

ðμobsðziÞ − μðziÞÞ2
σ2i

ð41Þ

where μðzÞ ¼ ~m −M ¼ 5log10ðdLðzÞÞ þ 25 is the extinc-
tion corrected distance modulus, σi is the uncertainty in the
ith SNe data point, ~m is the apparent luminosity and dL is
the luminosity distance measured in Mpc. When perform-
ing the fits we effectively marginalize over the absolute
luminosity M.
In order to fit for the CMB surface of last scattering we

define three fitting parameters [98]. The shift parameter R
defined by

Rðz�Þ ¼
ffiffiffiffiffiffiffi
Ωm

p
ð1þ z�ÞDAðz�Þ ð42Þ

the redshift to the surface of last scattering z� given by

z� ¼ 1048ð1þ 0.00124ðΩbh2Þ−0.738Þð1þ g1ðΩmh2Þg2Þ
ð43Þ

where (see for example [99])
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g1 ¼
0.0783ðΩbh2Þ−0.238
1þ 39.5ðΩbh2Þ0.763

g2 ¼
0.560

1þ 21.1ðΩbh2Þ1.81

and the acoustic scale (la) defined as

la ¼ ð1þ z�Þ
πDAðz�Þ
rsðz�Þ

ð44Þ

with the proper angular diameter distance, DAðzÞ ¼
dLðzÞ=ð1þ zÞ2 and the comoving sound horizon

rsðz�Þ ¼
1ffiffiffi
3

p
Z

1
1þz�

0

da

a2HðaÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð3Ωb=4ΩγÞa

p ð45Þ

where Ωγ ¼ 2.469 × 10−5h−2 for TCMB ¼ 2.725K. The
parameters are fitted using

χ2CMB ¼ ΔxiCov−1ðxi; xjÞΔxj ð46Þ

with xi ¼ ðR; la; z�Þ, Δxi ¼ xi − xobsi and Cov−1ðxi; xjÞ
the inverse covariance matrix for the parameters from
Ref. [98].
Next, in order to obtain the constraints from the BAO,

following [100] we define the effective distance DV as

DvðzÞ ¼
�
D2

aðzÞð1þ zÞ2 z
HðzÞ

�1
3 ð47Þ

with the redshift at the decoupling epoch given by

zd ¼
1291ðΩmh2Þ0.251

1þ 0.659ðΩmh2Þ0.828
ð1þ b1ðΩbh2ÞÞ ð48Þ

with

b1 ¼ 0.313ðΩmh2Þ−0.419ð1þ 0.607ðΩmh2Þ0.674Þ
b2 ¼ 0.238ðΩmh2Þ0.233:

The parameter constraints from the BAO are now
given by

χ2BAO ¼
X
i

�
rsðziÞ=DvðziÞ − ðrsðziÞ=DvðziÞÞobs

σi

�
2

:

ð49Þ

We also add the prior, the inverse of the angular diameter
distance at redshift 0.04 equals 6.49405 × 10−3�
0.31512 × 10−3, (i.e. H0 ¼ 74.2� 3.6 km=s for the fidu-
cial model) given by the HST measurements [96], and
the prior Ωbh2 ¼ 0.022� 0.002 given by big bang
nucleosynthesis.
We perform the parameter fits for macroscopic gravity,

Lambda cold dark matter (ΛCDM) and wCDM with a
constant equation of state, by varying the physical dark
matter density (ΩDMh2), the physical baryon density
(Ωbh2), the curvature parameter (Ωk) and in the cases of
macroscopic gravity andwCDM, the dynamic curvature i.e.
the sum of the averaging gravitational energy and geo-
metric curvature (Ωkd ¼ ΩA þΩk) and the equation of
state of dark energy (w) respectively. The values for those
parameters and the derived parameters Ωm;ΩA;ΩΛ and H0

are summarized in Table I, and Fig. 1.
For the macroscopic gravity, we find in the case of models

restricted by the mathematical and physical prior [85],
that −0.027 ≤ ΩA ≤ 0 (68% confidence level). In the
case where we do not impose the prior, we obtain
−0.024 ≤ ΩA ≤ 0.036. As we will discuss further in
Sec. VI, the mathematical prior turned out also to be a
physical prior consistent with the fact that a larger magnitude
of negative backreaction term leads to a larger enhancement
of the growth of structure as supported by studies using
inhomogeneous cosmological models [101,102]. We are
also able to reproduce exactly the results of Ref. [41] where
the table shows that the constrained value for ΩA is
significantly large when the SDSS SNe1A compilation
[103] (which uses the MLCS2k2 light curve fitter) is used.
Table I and Fig. 1 use only SNe data from the Union 2.1
compilation that uses the SALT II light curve fitter.

TABLE I. Marginalized parameter constraints (68% confidence) from the cosmological distance observations (supernova data from
the Union2.1 compilation, the HST data, the last scattering surface data from WMAP9, and the WiggleZ BAO data). The prior here is
ΩA ≤ 0. Results are given for the macroscopic gravity using the curved and flat macroscopic FLRW metric, with and without the prior.

Parameters ΛCDM wCDM MG with prior MG without prior Flat MG with prior Flat MG without prior

ΩK 0.014þ0.018
−0.018 −0.013þ0.017

−0.017 0.0026þ0.0047
−0.0047 0.0075þ0.0059

−0.0057 0 0
ΩΛ 0.688þ0.041

−0.040 0.690þ0.040
−0.040 0.724þ0.020

−0.019 0.692þ0.036
−0.036 0.733þ0.016

−0.015 0.711þ0.023
−0.023

Ωm 0.298þ0.025
−0.025 0.297þ0.025

−0.025 0.295þ0.014
−0.014 0.295þ0.091

−0.092 0.279þ0.013
−0.013 0.280þ0.013

−0.013
H0 71.5þ2.7

−2.7 72.8þ3.0
−3.0 69.9þ1.6

−1.6 69.9þ1.0
−1.0 69.5þ1.2

−1.2 72.8þ3.0
−3.0

ΩA N/A N/A −0.0216þ0.0216
−0.0054 0.0058þ0.0299

−0.0299 −0.0123þ0.0123
−0.0098 0.009þ0.019

−0.019
w −1 −1.12þ0.11

−0.11 −1 −1 −1 −1
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V. GROWTH OF LARGE-SCALE STRUCTURE
IN THE MACROSCOPIC GRAVITY

AVERAGED UNIVERSE

A. Derivation of the growth evolution equations
in macroscopic gravity

In order to study the growth of structure due to small
inhomogeneities in the macroscopically flat Friedmann
universe, we will perturb the metric, the stress energy
tensor, the correlation 2-form and the affine deformation
tensor about the exact macroscopic solution. The new
quantities will be given by

gaβ ¼ gð0Þαβ þ δgaβ ð50Þ

T̄a
β ¼ T̄ð0Þα

β þ δT̄a
β ð51Þ

Zα
βγ

μ
νσ ¼ Zð0Þα

βγ
μ
νσ þ δZα

βγ
μ
νσ ð52Þ

Aa
βγ ¼ Að0Þα

βγ þ δAa
βγ ð53Þ

where the superscript zero denotes the value of the exact
solution and the prefix δ denotes the perturbations about the
exact value. The perturbations are taken to be of order ϵ. By
expanding the macroscopic gravity equations (8)–(19) in
terms of the order parameter up to linear order, it’s possible
to obtain the equations governing the first order terms. The
perturbations we consider will be on scales smaller than
the averaging domain, so they will be the fluctuations that
would be smoothed out from the averaging.
We reproduced the perturbation results of [86], but

present here the derivation steps, and we derive the growth
rate equation further below.
The zeroth order terms will satisfy the original exact

equations while the first order terms will satisfy a linearized
version of the above equations (see [104]). The equa-
tions (11)–(19) at first order will be given by

δZα
βðγμνσÞ ¼ 0 ð54Þ

δZα
βγ

μ
νσ ¼ −δZμ

νγ
α
βσ ð55Þ
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FIG. 1 (color online). Two dimensional marginalized joint contour plots (68% and 95% confidence levels) for the FLRW solution of
the macroscopic gravity using the supernova data from the Union2.1 compilation, the HST data, the last scattering surface data from
WMAP9, and the WiggleZ BAO data. These are the results for the macroscopic gravity model without any prior on ΩA and where
spatial curvature is also allowed.
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δZα
β½γμνσ� ¼ 0 ð56Þ

δZα
αγ

μ
νσ ¼ 0 ð57Þ

δZα
β½γμνσjλ� ¼ 0 ð58Þ

δZϵ
β½μγδνM

α
ϵκπ� − δZα

ϵ½μγδνM
ϵ
βκπ� þ δZα

β½μϵδνM
γ
ϵκπ�

− δZα
β½μγϵνM

ϵ
δκπ�Z

ð0Þϵ
β½μγδνδM

α
ϵκπ� − Zð0Þα

ϵ½μγδνδM
ϵ
βκπ�

þ Zð0Þα
β½μϵδνδM

γ
ϵκπ� − Zð0Þα

β½μγϵνδM
ϵ
δκπ� ¼ 0 ð59Þ

δZδ
β½γθκπZ

ð0Þα
δϵ
μ
νσ� þ δZδ

β½γμνσZ
ð0Þθ

κπ
α
δϵ� þ δZα

β½γδνσZ
ð0Þμ

δϵ
θ
κπ� þ δZα

β½γμδϵZ
ð0Þθ

κπ
δ
νσ� þ δZα

β½γθδϵZ
ð0Þμ

νσ
δ
κπ�

þ δZα
β½γδκπZ

ð0Þθ
δϵ
μ
νσ� þ Zð0Þδ

β½γθκπδZ
α
δϵ
μ
νσ� þ Zð0Þδ

β½γμνσδZ
θ
κπ

α
δϵ� þ Zð0Þα

β½γδνσδZ
μ
δϵ
θ
κπ� þ Zð0Þα

β½γμδϵδZ
θ
κπ

δ
νσ�

þ Zð0Þα
β½γθδϵδZ

μ
νσ

δ
κπ� þ Zð0Þα

β½γδκπδZ
θ
δϵ
μ
νσ� ¼ 0 ð60Þ

δAα½βσjρ� − δAα
ϵ½ρAð0Þϵ

βσ� − Að0Þα
ϵ½ρδAϵ

βσ� ¼ −
1

2
δQα

βρσ

ð61Þ
δAϵ

β½ρMα
ϵσλ� þ δAϵ

β½ρQα
ϵσλ� − δAα

ϵ½ρMϵ
βσλ� − δAα

ϵ½ρQϵ
βσλ�

Að0Þϵ
β½ρδMα

ϵσλ� þ Að0Þϵ
β½ρδQα

ϵσλ� − Að0Þα
ϵ½ρδMϵ

βσλ�

− Að0Þα
ϵ½ρδQϵ

βσλ� ¼ 0 ð62Þ

where j represents covariant derivative with respect to the
unperturbed macroscopic connection.
If Zð0Þα

βγ
μ
νσ; A

ð0Þϵ
βρ ∼OðϵÞ [i.e. A2; h1; b2 ∼OðϵÞ] the

equations governing the first order correlation 2-form and
the affine deformation tensor will be identical to the ones
satisfied by the zeroth order quantities (11)–(19). Therefore
if we assume that electric part of the first order correlation
tensor is zero [zαβγμνσv

σ ¼ 0where vσ ¼ 1
a ð1 − ϕ; δuiÞ] the

first order gravitational stress energy tensor will have the
form of a positive spatial curvature term. The assumption
that Zð0Þα

βγ
μ
νσ ∼OðϵÞ is consistent with the small mean

value for ΩA obtained in Sec. IV.
Since only scalar perturbations are relevant for the

growth of inhomogeneities we will restrict the metric
perturbations to just the scalar part. Now, without any loss
of generality the metric can be written in the conformal
Newtonian gauge as

dS2 ¼ aðηÞ2ð−ð1þ 2ϕÞdη2 þ ð1− 2ψÞðdx2 þ dy2 þ dz2ÞÞ:
ð63Þ

The source will be considered as a perturbed perfect fluid
and the first order stress energy tensor will read

δT̄η
η ¼ −δρ ð64Þ

δT̄η
i ¼

1

a
ðρþ pÞδui ð65Þ

δT̄i
j ¼ δpδij ð66Þ

where δρ is the energy density perturbation, δp is the
pressure perturbation and δui is the comoving peculiar
velocity.
Now the modified Einstein field equation (8) at first

order reads

∇2ϕ − 3HðHϕþ ϕ0Þ ¼ 4πGa2ðδρþ δρAÞ ð67Þ

∇iðHϕþ ϕ0Þ ¼ −4πGa2
�
pþ ρ −

2A2

3a2

�
∇iδu ð68Þ

ϕ00 þ 3Hϕ0 þ ð2H0 þH2Þϕ ¼ 4πGa2
�
δp −

δρA
3

�
ð69Þ

where ∇i is the spatial covariant derivative, δρA is the
energy perturbation to the gravitational stress energy
tensor, a prime denotes the derivative with respect to η,
∇iδu is the irrotational part of the comoving peculiar
velocity of the fluid (which can be written as a divergence
of a function δu) and H is defined as a0

a . Equation (67) is
the (0,0) component, Eq. (68) is the (i,0) component
and Eq. (69) is the ði; jÞ component where i ≠ j. When
there is no anisotropic stress the i ¼ j component gives
ψ ¼ ϕ and has been used to eliminate ψ from the above
equations.
At this point it is convenient to decompose the pertur-

bations into the eigenfunctions of the Laplace equation (see
[105]). Scalar harmonics satisfy ∇2Qþ k2Q ¼ 0 while

vector harmonics are given by Qi ¼ ∇iQ
k .

It becomes apparent that for subhorizon modes (kη ≫ 1)
ϕ and ϕ0 are negligible compared to the spatial derivatives
of ϕ. Hence Eq. (67) can be rewritten as

∇2ϕ ¼ 4πGa2ρ
�
δþ δρA

ρ

�
: ð70Þ

The twice contracted Bianchi identity for the modified
EFE gives

THARAKE WIJENAYAKE AND MUSTAPHA ISHAK PHYSICAL REVIEW D 91, 063534 (2015)

063534-10



T̄α
β∥α þ TðgravÞα

β∥α ¼ 0: ð71Þ

It might at first appear that the stress energy components
are not independently conserved. However that is not the
case. It can be shown that the differential constraint on
the correlation 2-form (15) implies the gravitational stress
energy tensor is conserved [TðgravÞα

β∥α ¼ 0] and hence, the
averaged stress energy tensor is conserved independently.
The first order conservation equations for the averaged

stress energy tensor are given by

δρ0 þ 3Hðδpþ δρÞ − 3ϕ0ðρþ pÞ þ aðpþ ρÞ∇2δu ¼ 0

ð72Þ

1

a4
ððρþ pÞa5∇2δuÞ0 þ∇2δpþ ðρþ pÞ∇2ϕ ¼ 0: ð73Þ

Where, the first equation comes from δT̄α
0jα ¼ 0 and the

second equation comes from the spatial divergence of
δT̄α

ijα ¼ 0. Since we are considering the matter dominated
era, the radiation can be neglected. Hence, p ¼ 0, and
ðρa3Þ is a constant. Defining the density contrast by δm ≡
δρ=ρ and using Eqs. (72) and (73), we can obtain an
evolution equation for the density contrast of the form:

δ00m þHδ0m − 4πGa2ρ

�
δm þ δρA

ρ

�
¼ 0: ð74Þ

In order to proceed, it is necessary to write the pertur-
bation to the gravitational energy density in terms of the
matter energy density. In order to do that we argue that even
though the matter stress energy tensor and the gravitational
stress energy tensor are conserved independently, the
perturbation to the gravitational energy density must be
tightly coupled to the perturbation of the matter energy
density, since the inhomogeneities in the matter cause the
gravitational stress energy. Hence, we can assume that
the comoving peculiar velocity of the gravitational energy
density is the same as the matter comoving peculiar
velocity. With this assumption, the TðgravÞα

0∥α ¼ 0 compo-
nent of the first order conservation equations of the
gravitational stress energy tensor is given by

ðδA − 2ϕÞ0 þ 2

3
a∇δu ¼ 0 ð75Þ

where

δA ≡ δρA
½ 1
8πG

A2

a2 �
: ð76Þ

Using Eqs. (74) and (75) to eliminate δu and integrating,
since δA ¼ 0 when δm ¼ 0, we find

δm −
3

2
δA ¼ 0

which gives

δρA ¼ −
A2δm
12πGa2

: ð77Þ

Substituting the above in Eq. (74) gives the growth
equation

δ00m þHδ0m −
�
4πGa2ρ −

A2

3a2

�
δm ¼ 0: ð78Þ

The above equation in terms of the cosmological time t,
reads

δ̈m þ 2H _δm −
�
4πGρ −

A2

3a2

�
δm ¼ 0

where the dot denotes differentiation with respect to t, and
H is the Hubble parameter _a=a.
In order to conveniently plot the growth, the growth

equation can be written as a function of scale factor

δ00m þ
�
ðlnHÞ0 þ 3

a

�
δ0m −

1

a2H2

�
4πGρ −

A2

3a2

�
δm ¼ 0

ð79Þ

where prime now denotes partial differentiation with
respect to a rather than η.

B. Effect of averaging on the growth rate versus
precision cosmology requirements

In order to compare the growth of structure within a
given model to observational data, it is most common to use
the logarithmic growth factor since that is what is measured
from for example redshift distortions and Lyman-alpha
forests [106–114]

f ¼ d ln δ
d ln a

: ð80Þ

It would be of interest to know how the effects of back-
reaction on the growth compares to that of the dark energy
density of equation of state. Particularly whether the effects
of averaging can be degenerate with a change in these
parameters. For dynamical dark energy models with a
constant equation of state w (see for example [115–123]),
the growth equation is given by

df
d ln a

þ f2 þ
�

_H
H2

þ 2

�
f −

3

2
Ωma−3

H2
0

H2
¼ 0 ð81Þ

with
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H0
2

H2
¼ Ωma−3 þΩKa−2 þ ΩΛa−3ð1þwÞ

_H
H2

¼ 1

2

H2
0

H2
ð−3Ωma−4 − 2ΩKa−3 − 3ð1þ wÞΩΛa−3ð1þwÞÞ:

Substituting δ0 ¼ δ
a f and δ00 ¼ δ

a2 ðf2 − f þ df
d ln aÞ in

Eq. (79) we obtain the growth equation for the macroscopic
gravity model in terms of the growth factor as

df
d ln a

þ f2 þ
�

_H
H2

þ 2

�
f −

�
3

2
Ωma−3 þΩAa−2

�
H2

0

H2
¼ 0

ð82Þ

where

H2

H2
0

¼ Ωma−3 þ ΩKa−2 þΩAa−2 þ ΩΛ

_H
H2

¼ 1

2

H2
0

H2
ð−3Ωma−4 − 2ΩKa−3 − 2ΩAa−3Þ:

We find that a nonzero negative ΩA term of 2%–4% due
to averaging has the effect of enhancing the growth by
2%–4% at late times relative to when no averaging back-
reaction is taken into account (see Fig. 2). These effects
are of the same order as those resulting from changing the
dark energy density parameter or its equation of state
(see Fig. 3).

VI. CONCLUSION

In this work we studied the effects of averaging
inhomogeneities on the expansion history and the growth
rate of large-scale structure using the nonperturbative
framework of macroscopic gravity. The framework is based
an exact mathematical formalism developed to provide a
covariant averaging procedure. The formalism results in
modified Friedmann equations with a new term that
can be viewed as a backreaction term and have been
previously called as the averaging gravitational energy
density parameter ΩA.
As examples of exact solutions to macroscopic gravity

field equations, we rederive here a previous isotropic and
homogeneous solution and we obtain a new homogeneous
but anisotropic solution. Starting from the macroscopically
homogeneous, anisotropic, and spatially flat metric of
Bianchi type-I, we derive the effective Einstein field
equations with new terms due to the averaging process.
These dynamical equations have the form of an anisotropic
generalization to the Friedmann equations obtained for the
isotropic solution and reduce to them when isotropy of the
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FIG. 2 (color online). The relative difference in growth factor
between the macroscopic gravity model MG-ΛCDM and the
ΛCDMmodel withΩΛ ¼ 0.70. A nonzero contribution of theΩA
backreaction term due to averaging increases the growth propor-
tionally to the amplitude of this term. The effect of ΩA is up to
2%–4% at late times on the growth factor function compared to
the ΛCDM model.
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scale factor is restored. Unlike the simple case of the
isotropic solution, it is unclear how to relate these new
terms to a spatial curvature. We use for comparison to
observations the isotropic solution.
We then compare the macroscopic gravity expansion

equations to available data sets from distances to super-
novae, baryon acoustic oscillations, CMB last scattering
surface data, and Hubble constant measurements. We note
that instead of using directly ΩA in the analysis, we use a
term that takes into account its degeneracy with spatial
curvature into the Friedmann equation so ΩA become a
derived parameter.
We find for the isotropic macroscopic FLRW metric

solution −0.05 ≤ ΩA ≤ 0.07 (at the 95% confidence level).
In the flat metric case, the bounds reduce to −0.03 ≤
ΩA ≤ 0.05. If we take into account a mathematical and
physical prior that restricts the sign of the averaging term to
be negative, then the positive part of the interval can be
rejected leading to tighter constraints. It is worth noting that
the other cosmological parameters (ΩΛ, Ωm, ΩK , and H0)
are moved by a few to several percent from their ΛCDM
concordance model values when the averaging term is
included in the analysis.
Next, we explore the effect of the averaging term on the

growth rate of large-scale structure. We rederive previous
results from perturbing the macroscopic gravity field
equations and then derive a growth rate equation that
can be compared to future observations. We assess the
effect of the amplitude of the resulting averaging term on

the growth rate function and find that an ΩA term of
amplitude range interval [−0.04;−0.02] lead to an
enhancement deviation of the growth up to 2%–4% at late
times. This change in the growth is comparable in ampli-
tude to the changes that will be caused by a similar change
in the dark energy density parameter or its equation of state.
Particularly, the effect of increasing the magnitude of the
negative averaging term is to enhance the growth rate of
large-scale structure which is physically consistent with
other results in the literature studying gravitational infall/
clustering using exact inhomogeneous cosmological mod-
els [124]. The effect of the averaging on the growth is also
comparable in amplitude to some systematic affects in
ongoing and future surveys.
We conclude from using the averaging macroscopic

gravity formalism to assess the effect of inhomogeneities
on the expansion history and the growth rate of structure
that this effect needs to be tightly constrained and analyzed
in the future for a precise and accurate cosmology.
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