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The Kantowski-Sachs cosmological model sourced by a Skyrme field and a cosmological constant is
considered in the framework of general relativity. Assuming a constant radial profile function α ¼ π=2
for the hedgehog ansatz, the Skyrme contribution to Einstein equations is shown to be equivalent to an
anisotropic fluid. Using dynamical system techniques, a qualitative analysis of the cosmological equations
is presented. Physically interesting features of the model such as isotropization, bounce and recollapse are
discussed.
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I. INTRODUCTION

The Kantowski-Sachs metrics [1] describe spatially
homogeneous anisotropic space-times with a four-
dimensional isometry group whose three-dimensional
subgroup acts multiply transitively on two-dimensional
spherically symmetric surfaces (for a clear introduction to
the subject see [2] and [3]).
The global structure of these models was described by

Collins [4], who was also the first who analyzed the model
as a two-dimensional dynamical system for the case of
perfect fluid with vanishing cosmological constant.
The dynamic of Kantowski-Sachs models has been

investigated in the presence of various types of sources
such as matter and radiation [5], scalar fields [6,7] and in
Einstein-Yang-Mills theory [8]. Some interesting aspects
of these models such as the isotropization [9–11] and the
bouncing behavior [12] have also been studied in detail.
The study of the Kantowski-Sachs models as dynamical

systems with compact state space have been presented in
[13] and [14]. The dynamical system has been extended to
include also a cosmological constant [15]. For further
details on Kantowski-Sachs models and their description
through dynamical system theory see [16] and [17].
Kantowski-Sachs models have been also considered in
theories beyond general relativity such as string cosmology
[18], extended theories of gravity [19–23], bimetric theo-
ries of gravity [24] and so on.
Moreover, since the metric inside the horizon of a black

hole is isometric to a Kantowski-Sachs cosmology, it has
been used to study the singularity resolution in loop
quantum gravity [25–28].
From the observational point of view, the possibility of

distinguish between standard Friedmann-Robertson-Walker

models and spatially homogeneous but anisotropic models
using cosmological datawas also considered (see [29–31] and
references therein). In particular, Kantowski-Sachs cosmol-
ogies have been studied in a series of recent papers [32–34]
motivated by the observed distribution of inhomogeneities
and anisotropies in the cosmic background radiation, and by
the possibly different evolution and propagation of perturba-
tions in bouncing and nonbouncing cosmologies.
Recently, self-gravitating Skyrme fields in a Kantowski-

Sachs gravitational field were considered [35]. The Skyrme
model is a nonlinear theory of pions. Although not involving
quarks, it can be regarded as an approximate, low energy
effective theory of QCD. The main motivation for construct-
ing and studying this model is that is has topological soliton
solutions that can be interpreted as baryons (Skyrmions).
Thus, besides leading to the discovery of new exact analytic
solutions of the four-dimensional Skyrme model [36,37],
these studies have shed light on the bound on the cosmo-
logical constant and the bounds on the Skyrme couplings
[38], suggesting a possible intrinsic relation between the
coupling of the Skyrme field and gravity. For this reason, the
dynamics of cosmological models sourced by Skyrme fields
is worth being investigated.
In this paper we consider the Einstein-Skyrme system

with a cosmological constant in four dimensions as pre-
sented in [35] and [38]. We focus on the Kantowski-Sachs
spacetime and assume a constant radial profile function
α ¼ π=2 for the hedgehog ansatz in order to simplify our
analysis. This allows us to reduce the field equations to a
simple dynamical system which, in spite of its simplicity,
shows a physically relevant and interesting behavior. In
particular, two stable fixed points are found, determining the
asymptotic behavior of the whole solution space.
The paper is structured as follows. In Sec. II the

cosmological equations are considered. In Sec. III the
equations are recast as a three-dimensional autonomous
dynamical system. Relevant dynamical features, namely
the stability properties of fixed points, invariant
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submanifolds and equilibrium sets are analyzed. In Sec. IV
physically relevant aspects, such as the behavior of exact
solutions at fixed points, the conditions for bouncing
behavior and isotropization, are discussed. A relation
between the cosmological constant and the parameters of
the Skyrme model is also found. In Sec. V some con-
clusions are eventually drawn.

II. COSMOLOGICAL EQUATIONS

The Einstein-Skyrme system with a cosmological con-
stant in four dimensions is described by the total action

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ þ SSk;

where R is the Ricci scalar, Λ represents the cosmological
constant, G is the Newton constant and SSk is the contri-
bution from the Skyrme field. In order to introduce the
Skyrme action SSk, let us consider some notations [39–41].
The Skyrme model is a generalized nonlinear sigma

model where the Skyrme field U takes values on a specific
target manifold, the Lie group SUð2Þ. The Lie algebra
associated to SUð2Þ will be denoted as suð2Þ. Let g be a
Lie algebra and let g� be its dual space (called also the
coalgebra). The adjoint representation of g is the linear map

g → Homðg; gÞ∶ X → adX;

where adXðYÞ ¼ ½X; Y�; X; Y ∈ g. When g is a semisimple
Lie algebra, there is a canonical way to identify g and g�.
Indeed, the semisimple Lie algebras over R and C are
characterized by the fact that the Killing form of the algebra
g, is nondegenerate:

BðX; YÞ ¼ TrðadX ∘ adYÞ; X; Y ∈ g:

The trace can be evaluated by taking an arbitrary basis for g,
being the trace independent of the basis choice.
For the considered model, one can define

Ri
μti ≡ Rμ ¼ U−1∇μU;

Fμν ¼ ½Rμ; Rν�;

where the latin indices correspond to the group indices;
ti ¼ −iσi, σi being the Pauli matrices, i.e. the basis of
suð2Þ; Rμ being a suð2Þ-valued current. The Skyrme
action is then defined as

SSk ¼
K
2

Z
d4x

ffiffiffiffiffiffi
−g

p
Tr

�
1

2
RμRμ þ λ

16
FμνFμν

�
;

where K and λ are coupling constants, the latter also
involving a dimensionless parameter e introduced by
Skyrme to stabilize the solitons [42]. Both are related to
the pion decay constant Fπ as follows:

K ≔ F2
π=4; λ ≔ 4=e2F2

π:

The Einstein equations acquire a term that can be
identified with the energy-momentum tensor TS

μν derived
by the variation of the Skyrme action

Gμν þ Λgμν ¼ 8πGTS
μν; ð1Þ

and the Skyrme equations read

∇μRμ þ
λ

4
∇μ½Rν; Fμν� ¼ 0: ð2Þ

These equations, being nonlinear in nature, are quite
difficult to approach. A possible strategy aimed to make
the field equations more tractable is to choose a certain
ansatz for spherically symmetric systems, the so-called
hedgehog ansatz.
Let us first recall the following standard parametrization

of the SUð2Þ-valued scalar field U:

UðxμÞ ¼ Y0Iþ Yiti; U−1ðxμÞ ¼ Y0I − Yiti;

where Y0 ¼ Y0ðxμÞ and Yi ¼ YiðxμÞ satisfy

ðY0Þ2 þ YiYi ¼ 1:

The name hedgehog derives from the fact that the fields
of this configuration point radially outward from the origin
of the inner space at all points in space-time. In terms of the
group element U, the hedgehog ansatz reads

U ¼ I cos αþ niti sin α; U−1 ¼ I cos α − niti sin α;

where ni (i ¼ 1; 2; 3) are given by

n1 ¼ sin θ cosϕ; n2 ¼ sin θ sinϕ; n3 ¼ cos θ:

The function α is the so-called radial profile function.
When dealing with spherically symmetric space-times,
α depends on the coordinates of a two-dimensional
Lorentzian manifold, namely α¼αðyÞ with yA, A ¼ 0; 1.
In terms of the variables Y0 and Yi, the ansatz
corresponds to

Y0 ¼ cos α; Yi ¼ ni sin α:

All the above-defined quantities can be expressed in terms
of the radial profile function and the metric functions.
Eventually the hedgehog ansatz allows to reduce the
Skyrme equations in Eq. (2), that is a system of coupled
nonlinear partial differential equations, to a single scalar
equation (see [35] for step-by-step calculations).
In what follows we consider the additional restriction for

the metric to be the Kantowski-Sachs one, which reads
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ds2 ¼ −dt2 þ AðtÞ2dr2 þ BðtÞ2½dθ2 þ sin θ2dϕ2�:

Moreover, we consider the particular case of a constant
radial profile function α ¼ π=2 for which the scalar Skyrme
equation is identically solved. We remark that, in spite of its
simplicity, this solution is not trivial, because it actually
affects the gravitational equations of motion through a
nonvanishing and nonconstant energy momentum tensor.
Under these hypotheses, once the stress-energy tensor is
expressed in terms of the metric functions, Eq. (1) even-
tually reads

2
_B _A
BA

þ 1

B2
þ

_B2

B2
− Λ ¼ 8πG

�
K
B2

�
1þ λ

2B2

��
; ð3Þ

2
B̈
B
þ 1

B2
þ

_B2

B2
− Λ ¼ 8πG

�
K
B2

�
1þ λ

2B2

��
; ð4Þ

_B _A
BA

þ B̈
B
þ Ä
A
− Λ ¼ −8πG

�
Kλ
2B4

�
: ð5Þ

In the equations above the dot represents derivation with
respect to time. The Skyrme parameters Fπ and e are fixed
by fitting the energies of a quantized Skyrmion to the
masses of the nucleon and Δ resonance. From flat space-
time results [43], one gets 8πGK ∼ 1.5 × 10−39 and
λ ∼ 2 × 10−31 m2. In this particular case the parameter K
acts as a rescaling of the Newton constant: Geff ¼ GK;
therefore, we henceforth set 8πGK → k. Motivated by
the numerical evaluation above, in what follows we will
consider 0 < k < 1.
A close inspection of the equations reveals that the

contribution of the Skyrme action to the Einstein equations
traces an anisotropic fluid. In particular, the Skyrme field
behaves as a fluid with different radial and tangential
pressures, whose energy momentum tensor can be written
as follows:

Tμν ¼ ðρþ ptÞuμuν þ ptgμν þ ðpr − ptÞχμχν; ð6Þ

where uμ is the four-velocity and χμ a unit spacelike vector
in the radial direction, i.e. χμ ¼ A−1δμr . Moreover ρ repre-
sents the energy density, pr the radial pressure measured in
the direction of χμ and pt the transverse pressure measured
in the orthogonal direction to χμ. Then, by comparison with
Eqs. (3)–(5), the quantities appearing in Eq. (6) read

ρ ¼ 1

B2

�
1þ λ

2B2

�
; ð7Þ

pr ¼ −ρ; ð8Þ

pt ¼ ωtρ; ωt ¼ −1þ 2ðλþ B2Þ
λþ 2B2

: ð9Þ

We remark that this analogy is only valid under the
considered hypotheses and it should be possible to dis-
tinguish between the Skyrme field and an anisotropic fluid
by taking into account linear perturbations. Nevertheless,
this analogy allows us to draw a parallel that will be helpful
in the following analysis.
Such an anistropic fluid satisfies all the energy

conditions—weak, strong and dominant energy condition
[44,45]. Let us now consider the behavior of the cosmo-
logical constant; it violates the strong energy condition,
since it gives a positive contribution for the variation of the
expansion of the geodesics curves in the congruence, in
contrast to the convergency effect of matter. When we
consider this additional effect, the total fluid, composed by
both the Skyrme fluid and the cosmological constant, could
violate or fulfill the strong energy condition depending on
the relative contribution of the pressure terms. In order to
verify the strong energy condition, the positive tangential
pressure of the Skyrme fluid must compensate the negative
pressure of the cosmological constant:

pt ≥ Λ: ð10Þ

III. DYNAMICAL SYSTEM ANALYSIS

It is convenient to recast the equations as an autonomous
system of first order nonlinear differential equations and
then to perform a local analysis to characterize the stability
of the stationary points corresponding to specific cosmo-
logical solutions. In this particular model, as will be shown
below, due to the introduction of suitably defined variables,
it is possible to perform a compactification of the phase
space gaining information on the behavior of the model at
infinity.
The Einstein field equations can be written in terms of

propagation equations for the usual volume expansion
scalar θ, the shear scalar σ2 ¼ 1

2
σμνσμν (where σμν is the

shear tensor) and the 3-curvature scalar ð3ÞR which, for the
Kantowski-Sachs metric, are

ð3ÞR ¼ 2

B2
; ð11Þ

σ ¼ 1ffiffiffi
3

p
�
_A
A
−

_B
B

�
; ð12Þ

θ ¼
_A
A
þ 2

_B
B
: ð13Þ

The Friedmann equations become

_θ þ 1

3
θ2 þ 2σ2 ¼ Λ −

kλð3ÞR2

8
; ð14Þ
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_σ þ θσ −
1

2
ffiffiffi
3

p ð3ÞR ¼ −
kð3ÞR
4

ffiffiffi
3

p ðλð3ÞRþ 2Þ; ð15Þ

ð3Þ _Rþ 2

3
θð3ÞR −

2ffiffiffi
3

p ð3ÞRσ ¼ 0; ð16Þ

ð3ÞRþ 2

3
θ2 − 2σ2 ¼ 2Λþ kð3ÞR

�
1þ λð3ÞR

4

�
: ð17Þ

The quantity 1
9
θ2 þ 1

6
ð3ÞR is strictly positive even if θ ¼ 0;

this means that the new variable D≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
9
θ2 þ 1

6
ð3ÞR

q
is a

well-defined normalization. From Eq. (17) one gets the
following constraint:

D2 ¼ 1

3

�
σ2 þ Λþ kð3ÞR

2
þ kλð3ÞR2

8

�
: ð18Þ

It is then possible to introduce new dimensionless variables

Q ¼ θ

3D
; Σ2 ¼ σ2

3D2
; ΩΛ ¼ Λ

3D2
;

Ωk ¼
ð3ÞR
6D2

and Ωs ¼
kλð3ÞR2

24D2
:

This allows to construct a compact state space since the
constraint in Eq. (18) becomes

Q2 þΩk ¼ 1; ΩΛ þ Σ2 þ kð1 −Q2Þ þΩs ¼ 1:

Then one can have a complete picture of the cosmological
behavior once one introduces a normalized time derivative
0 ≡ d

dτ ¼ 1
D

d
dt. Since D is real valued and strictly positive,

it provides a monotonically increasing time variable.
Deriving all the variables with respect to τ, the equations
of motion become

θ0 ¼ 3D½−Σ2 þ 2ΩΛ −Q2ðkþ 1Þ þ ðk − 1Þ�; ð19Þ

σ0 ¼
ffiffiffi
3

p
D½ð1 −Q2Þð1þ kÞ − 2þ 2ΩΛ − 3QΣþ 2Σ2�;

ð20Þ

R0 ¼ 12D2ð1 −Q2ÞðΣ −QÞ: ð21Þ

One also gets

D0 ¼ 1

3D

�
θθ0

3
þ 1

4
R0
�
: ð22Þ

The dynamical system can then be recast in the following
form:

Q0 ¼ Q

�
θ0

θ
−
D0

D

�
; ð23Þ

Ω0
Λ ¼ −2ΩΛ

D0

D
; ð24Þ

Σ0 ¼ Σ
�
σ0

σ
−
D0

D

�
; ð25Þ

Ω0
k ¼ 2Ωk

�
Σ −Q −

D0

D

�
; ð26Þ

Ω0
s ¼ 2Ωs

�
2ðΣ −QÞ −D0

D

�
: ð27Þ

Eventually, making use of the constraint in Eq. (18), the
system is reduced to a three-dimensional autonomous
dynamical system in the new variables Q, Σ, ΩΛ:

Q0 ¼ ðQ2 − 1Þð1 − kð1 −Q2Þ þQΣþ Σ2 − 2ΩΛÞ; ð28Þ

Σ0 ¼ kð1 −Q2Þð1 −QΣÞ − ð1 − Σ2Þ½1þQðQþ ΣÞ�
þ 2ð1 −QΣÞΩΛ; ð29Þ

Ω0
Λ ¼ 2½Qð2 − kð1 −Q2ÞÞ þ ΣðQþ Σ − 1Þ − 2ΩΛ�ΩΛ:

ð30Þ

The system has a compact phase space defined as follows:

S ¼ fðQ;Σ;ΩΛÞ ∈ Rj − 1 ≤ Q ≤ 1;−1 ≤ Σ ≤ 1;

0 ≤ ΩΛ ≤ 1; 0 ≤ 1 − ΩΛ − Σ2 − kð1 −Q2Þ ≤ 1g:

An example is depicted in Fig. 1.
The system in Eqs. (28)–(30) admits eight stationary

points listed in Table I. The eigenvalues of the Jacobian
matrix evaluated at the equilibrium points allow to char-
acterize their stability; the results are listed in Table II. The
points A and G are attractors. The point B and the point H
are repellers. The points C, D, E, F are unstable of the
saddle type having at least two eigenvalues with real part of
opposite signs. It is worth stressing that the two points D
and E are always placed outside the physical region S of the
phase space.
The system also displays a curve of equilibrium points

lying in the Q ¼ Σ plane and is defined by

−
ffiffiffiffiffiffiffiffiffiffiffi
1 − k
4 − k

r
≤ Q ≤

ffiffiffiffiffiffiffiffiffiffiffi
1 − k
4 − k

r
;

ΩΛ ¼ 1

2
ð1þ 2Q2 þ kðQ2 − 1ÞÞ:

ð31Þ

The Jacobian matrix evaluated at the points of the equi-
librium set has two real eigenvalues of opposite signs
and a third, vanishing, eigenvalue [except for the point with
Q ¼ Σ ¼ 0 and ΩΛ ¼ ð1 − kÞ=2, which has vanishing
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eigenvalues requiring further investigation]. Thus it is a
normally hyperbolic equilibrium set.
The system in Eqs. (28)–(30) has three invariant sub-

manifolds characterized by Q ¼ 1, Q ¼ −1 and ΩΛ ¼ 0,
depicted in Figs. 2, 3, and 4.

IV. EXACT SOLUTIONS AT FIXED POINTS,
BOUNCES, ISOTROPIZATION

It is interesting to test whether the dynamics described
by the system Eqs. (3)–(5) leads to physically relevant

conditions such as isotropization. We first show the
procedure which allows to reconstruct the time evolutions
of the two scale factors at the fixed points. Then we
consider the conditions allowing bouncing solutions.
Eventually, isotropization is discussed.

A. Solution reconstruction

A first step toward the physical interpretation of the
found solutions is the analysis of the metric functions at the
fixed points [14,46]. The evolution of the two scale factors
A and B can be reconstructed as follows. The Raychauduri
equation can be rewritten in terms of the dimensionless
variables:

FIG. 1 (color online). Phasespaceof thesysteminEqs. (28)–(30).
Wehavearbitrarily setk ¼ 0.5.Theorbits corresponding tophysical
solutions are bounded in the region delimited by the three submani-
folds Q ¼ 1, Q ¼ −1, ΩΛ ¼ 0 and the surface arising from the
constraints. Only six out of the eight fixed points are depicted, the
remaining two being outside of the allowed region of physical
solutions. The thick (red) curve is an arc of a parabola corresponding
to the normally hyperbolic equilibrium set.

TABLE I. Stationary points for the system in Eqs. (28)–(30)
with p ¼

ffiffiffiffiffiffi
1þk
2þk

q
, s ¼ 1

2þk and q ¼ − 1þ2k
2þk . For the sake of

completeness we have also reported the corresponding values
of ΩK e ΩS.

Point Q Σ ΩΛ ΩK ΩS

A −1 −1 0 0 0
B −1 0 1 0 0
C −1 1 0 0 0
D −p −p 1 s q
E p p 1 s q
F 1 −1 0 0 0
G 1 0 1 0 0
H 1 1 0 0 0

TABLE II. Stability of the stationary points in Table I. In the
last three columns the sign of the real part of the eigenvalues for
the linearized system is represented.

Point Stability λ1 λ2 λ3

A Stable (attractor) −6 −6 −6
B Unstable (repeller) 4 3 2
C Unstable (saddle) −6 −2 2
D Unstable (saddle) 0 < 0 > 0
E Unstable (saddle) 0 < 0 > 0
F Unstable (saddle) 6 −2 2
G Stable (attractor) −4 −3 −2
H Unstable (repeller) 6 6 6

1.0 0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2 (color online). In the submanifold Q ¼ 1 there are three
equilibrium points corresponding to the points F , G and H of
Table I. In this submanifold, F (down-left, black) is unstable of
the saddle type; G (top-center, blue) is stable and H (down-right,
red) is unstable. Thus, in this subspace, G is a future attractor.
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_θ ¼ −
�
1þ 2Σ2

Q2
−
ΩΛ

Q2
þ Ωs

Q2

�
θ2

3
ð32Þ

and then can be evaluated for each fixed point to give
the analytic behavior of the volume expansion scalar θ.
It is useful to rewrite Eq. (32) in terms of a deceleration
parameter

q ¼ 2Σ2

Q2
−
ΩΛ

Q2
þ Ωs

Q2
⟹ _θ ¼ −ð1þ qÞ θ

2

3
: ð33Þ

Then, for each fixed point one can evaluate the correspond-
ing q. Two classes of solution are obtained. For the
stationary points A, C, F and H, one gets

q ¼ 2; θ ∼ t−1: ð34Þ

These points are characterized by Q2 ¼ 1 and Σ2 ¼ 1; this
allows to solve in terms of both scale factors A and B to
obtain either

B ∼ const and A ∼ t; ð35Þ

or

B ∼ t2=3 and A ∼ t−1=3; ð36Þ

depending on the sign of Σ. Thus, these points represent
Kasner-like solutions.
For the two points that have zero shear and ΩΛ ¼ 1,

namely B and G, one gets

q ¼ −1; θ ∼ const: ð37Þ

A vanishing shear implies the same evolution for both A
and B that is driven by the cosmological constant, the sign
of the exponent depending on the sign of Q:

B ∼ A ∼ e�
ffiffi
Λ
3

p
t; ð38Þ

thus these points represent de Sitter-like solutions.
Analogously, for the equilibrium set Eq. (31) the accel-
eration parameter is always q ¼ −1.
One can easily check that these results are consistent

with those found in [15] for the vacuum boundary. Indeed,
setting k ¼ 0 and Ωs ¼ 0, that is, for a vanishing Skyrme
source terms, the constraints become

Ωk ¼ 1 −Q2;

ΩΛ ¼ 1 − Σ2:

and the system can be expressed in terms of the variablesQ
and Σ (remembering also that, in this correspondence,
Σ → −Qþ)). The correspondence is straightforward and
reads as shown in Table III.

1.0 0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3 (color online). In the submanifold Q ¼ −1, there are
three equilibrium points corresponding to the points A, B and C
of Table I. In this submanifold, A (down-left, blue) is stable; B
(top-center, red) is unstable and C (down-right, black) is unstable
of the saddle type. Thus, in this subspace, A is a future attractor.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Q

FIG. 4 (color online). In the submanifoldΩΛ ¼ 0, there are four
equilibrium points corresponding to the points A, C, F and H of
Table I. The points C (top-left, black) and F (down-right, black)
are unstable of the saddle type; H (up-right, red) is unstable; A
(down-left, blue) is stable. Thus, in this subspace, A is a future
attractor.
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B. Bounce and recollapse

The motivation to consider bouncing behavior in
Kantowski-Sachs models is twofold [12]. First, the geom-
etry of the universe at a bounce might be different from
the isotropic and spatially homogeneous Friedmann-
Robertson-Walker spacetimes. Second, one might expect
the Kantowski-Sachs geometry, having the same sym-
metries as the spatially homogeneous interior region of
the extended (vacuum) Kruskal solution, suitable for
describing the turning point in black hole collapse and
subsequent expansion.
Following [12], let us define an expansion parameter for

each scale factor

x ¼
_B
B

and y ¼
_A
A
: ð39Þ

A bounce in the scale factor A occurs at time t ¼ t0 if and
only if yðt0Þ ¼ 0 and _yðt0Þ > 0, the analogous conditions
holding in order to have the bounce in B. Hence, in general
there can be a bounce in just one of the two scale factors.
According to the above-mentioned conditions, from

Eqs. (3)–(5) a bounce in A requires

Λ >
kλ

2Bðt0Þ4
; ð40Þ

i.e. the Strong Energy Condition of the total matter-energy
content has to be violated. A similar analysis of Eq. (3)–(5)
shows that a bounce in B is impossible. Indeed, Eqs. (3)–(5)
imply 2_x ¼ −kðpr þ ρÞ; since the radial pressure and the
energy density for the Skyrme fluid are related by pr ¼ −ρ
[see Eq. (8)] this means that x ¼ 0⟺ _x ¼ 0.
Besides the bounce behavior, the condition for expand-

ing or recollapsing solutions can be easily singled out. For
istance, one can notice that subtracting Eq. (4) from Eq. (3)
and assuming _B ≠ 0 (i.e. x ≠ 0), the relation between the
two scale factor is trivial, in a sense:

_B ¼ constA : ð41Þ

Then, Eq. (4) only contains the function B and the system
reduces to two equations that read:

_x ¼ 1

2

�
k
~B

�
1þ λ

2 ~B

�
þ Λ − 3x2 −

1

~B

�
ð42Þ

_~B ¼ 2 ~Bx: ð43Þ

where ~B ¼ B2. This system admits two fixed points in
the ðx; ~BÞ-plane, namely, P1 ¼ ð0; f−ðΛ; k; λÞÞ and P2 ¼
ð0; fþðΛ; k; λÞÞ where

f�ðΛ; k; λÞ ¼
1 − k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2kþ k2 − 2kλΛ

p

2Λ
ð44Þ

For each point, there is always a pair of eigenvalues with
opposite signs ðλi;−λiÞ, namely

λ1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ kð2 − kþ 2λΛþ SÞ � S

kΛ

r
ð45Þ

with S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1þ kÞ2 − 2kλΛ

p
. By definition ~B must be

positive thus, one finds that the two fixed points exist in the
following range:

0 < λ <
1 − 2kþ k2

2kΛ
; ð46Þ

P1 being neutrally stable, P2 being unstable of saddle type.
We stress that for both the fixed points ~B is constant, i.e. a
constant scale factor B, thus the condition _B ≠ 0 is violated.
Moreover, Eq. (41) implies that, at the fixed points, the
scale factor A vanishes thus the cosmological model meets
a singularity.
Interestingly enough, this analysis reveals a connection

between the cosmological constant and the parameters
of the Skyrme model. Considering the Skyrme parameters
reported above and recalling that the cosmological constant
value is Λ ∼ 10−52 m−2, one can deduce that the conditions
on the model parameters in Eq. (46) are fulfilled for such
estimations, thus for a large portion of the phase space, the
solutions will evolve toward expansion.
Thus, we distinguish two behaviors, namely, solutions

in the basin of the stable fixed point P1 and unbounded
solutions, which respectively correspond to the orbits in
the basin of attraction of point A and G of the previous
analysis. Their physical interpretation can be immediately
understood considering the corresponding evolution of the
scale factors A and B which can be readily determined by
numerically integrating the system of Eqs. (3)–(5); the
result presented in Fig. 5. The system admits two type of
solutions, recollapsing solutions belonging to a finite
region containing the lower (blue) static solution (corre-
sponding to the neutrally stable fixed point P1) and
expanding solutions (influenced by the unstable fixed point
P2). It is worth stressing that, being A and B two scale
factors, the physical solutions are those living in the A > 0
and B > 0 region. Thus the actual behavior is the follow-
ing: for the initial condition in the bounded region, there are
solutions with expanding scale factor B and recollapsing

TABLE III. Correspondence between fixed point in II and those
found in [15].

Skyrme A B C F G H

Perfect fluid −Kþ −dS −K− þKþ þdS þK−
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scale factor A. The other solutions, for generic initial
conditions outside the bounded region, are characterized
by an exponential expansion of both the scale factors at late
time (see below). A very different behavior is observed in
the case of a vanishing cosmological constant where only
recollapsing solutions are present.

C. Isotropization

For generic initial conditions outside the bounded, finite,
stability basin dominated by the center fixed point P1 in
Fig. 5, namely, for all the orbits converging to the attractor
fixed point G of the previous analysis corresponding to de
Sitter-like expanding solutions, the dimensionless shear
parameter Σ2 undergoes an exponential decay. This means
that the cosmological solutions exhibit isotropization
within a finite amount of time, as one can easily see from
Fig. 6. It is worth stressing that, in this context, isotropiza-
tion means a vanishing shear parameter, i.e. the two scale
factors are characterized by the same functional depend-
ence on time. Indeed, Kantowski-Sachs metrics are topo-
logically inequivalent to Robertson-Walker models, the
former having a four-dimensional isometry group, but no
three-dimensional simply transitive subgroup, acting on
the three space. The same results can be achieved using
the equivalent definition of anisotropic parameter of the
expansion given in [11]. A similar behavior is observed
for the evolution of the energy density ρ and anisotropic
pressure parameters ωi of the Skyrme fluid, derived in
Eqs. (7)–(9), see Fig. 7.

The other isotropic fixed point is B, that is a repeller,
while other fixed points are anisotropic. Three of them
are repellers (H) or saddle (C;F ). This translates into the
possibility to have both isotropic and anisotropic initial
conditions or intermediate anisotropic conditions leading
to structure formation, provided a sufficiently small
anisotropy.
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FIG. 6 (color online). Time evolution of the dimensionless
shear parameter Σ2 for initial conditions outside the basin of the
periodic solutions. The parameters’ values are chosen to be the
same as in Fig. 5.
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FIG. 7 (color online). Time evolution of (a) the energy density
and (b) the pressure parameters ωθ ¼ ωϕ of the Skyrme fluid for
initial conditions outside the basin of the recollapsing solutions.
The parameters’ values are chosen to be the same as in Fig. 5.
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FIG. 5 (color online). Behavior of the scale factors in the
ðA; BÞ-plane. The parameters’ values are arbitrarily chosen in the
range Eqs. (13) as: Λ ¼ 1, k ¼ 0.5, λ ¼ 0.2. The upper (red)
point and the lower (blue) point correspond to the fixed points P1

and P2 respectively.
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V. CONCLUSIONS

We have considered the Kantowski-Sachs the cosmo-
logical model sourced by a Skyrme field and a cosmo-
logical constant in the framework of general relativity. The
hedgehog ansatz, together with the assumption of a con-
stant radial profile function α ¼ π=2, allows to recast the
stress-energy tensor of the Skyrme field as an anisotropic
fluid whose contribution to the evolution of the solutions
has been analyzed.
We have shown that the cosmological equations can

be reduced to a simple three-dimensional autonomous
dynamical system with compact phase space. Three invari-
ant two-dimensional submanifolds are found, namely
Q ¼ �1 and ΩΛ ¼ 0. In the region of the phase space
corresponding to physical cosmological solutions, six
isolated fixed points are found: two points being attractors,
two points being repellers, the remaining four points being
unstable of the saddle type. The functional dependence on

time of the two scale factors A and B corresponding to each
of these solutions has been reconstructed. The system also
displays a normally hyperbolic equilibrium set.
A simple analysis shows that, while a bounce in the scale

factor B is impossible, a bounce in the scale factor A is
possible when the strong energy condition is violated.
Two types of late time behaviors are found, either

anisotropic collapsing solutions of Kasner-like type, or
exponentially expanding solutions of de Sitter–like type.
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