
Models of dark matter halos based on statistical mechanics:
The classical King model

Pierre-Henri Chavanis,1 Mohammed Lemou,2 and Florian Méhats2
1Laboratoire de Physique Théorique, Université Paul Sabatier,

118 route de Narbonne, 31062 Toulouse, France
2CNRS and IRMAR, Université de Rennes 1 and INRIA-Rennes Bretagne Atlantique, France

(Received 15 October 2014; published 30 March 2015)

We consider the possibility that dark matter halos are described by the Fermi-Dirac distribution at finite
temperature. This is the case if dark matter is a self-gravitating quantum gas made of massive neutrinos at
statistical equilibrium. This is also the case if dark matter can be treated as a self-gravitating collisionless
gas experiencing Lynden-Bell’s type of violent relaxation. In order to avoid the infinite mass problem and
carry out a rigorous stability analysis, we consider the fermionic King model. In this paper, we study the
nondegenerate limit leading to the classical King model. This model was initially introduced to describe
globular clusters. We propose to apply it also to large dark matter halos where quantum effects are
negligible. We determine the caloric curve and study the thermodynamical stability of the different
configurations. Equilibrium states exist only above a critical energy Ec in the microcanonical ensemble and
only above a critical temperature Tc in the canonical ensemble. For E < Ec, the system undergoes a
gravothermal catastrophe and, for T < Tc, it undergoes an isothermal collapse. We compute the profiles of
density, circular velocity, and velocity dispersion. We compare the predictions of the classical King model
to the observations of large dark matter halos. Because of collisions and evaporation, the central density
increases while the slope of the halo density profile decreases until an instability takes place. We show that
large dark matter halos are relatively well described by the King model at, or close to, the point of marginal
microcanonical stability. At that point, the King model generates a density profile that can be approximated
by the modified Hubble profile. This profile has a flat core and decreases as r−3 at large distances, like the
observational Burkert profile. Less steep halos are unstable. For large halos, the flat core is due to finite
temperature effects, not to quantum mechanics. We argue that statistical mechanics may provide a good
description of dark matter halos. We interpret the discrepancies as a result of incomplete relaxation like in
the case of stellar systems.
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I. INTRODUCTION

According to contemporary cosmology, the Universe
is made of about 70% dark energy, 25% dark matter, and
5% baryonic (visible) matter [1]. Thus, the overwhelming
preponderance of matter and energy in the Universe is
believed to be dark, i.e. unobservable by telescopes. The
dark energy is responsible for the accelerated expansion of
the Universe revealed by several astrophysical observations
of distant type Ia supernovae [2]. Its origin is mysterious
and presumably related to the cosmological constant
introduced (then banished) by Einstein [3] or to some
form of exotic fluid with negative pressure such as the
Chaplygin gas [4] (see, e.g., [5] for a review). On the other
hand, dark matter is necessary to account for the “missing”
mass of galaxies inferred from the virial theorem [6],
and for the observed flat rotation curves of galaxies
[7,8]. Its nature is one of the most important puzzles in
particle physics and cosmology. Many candidates for dark
matter have been proposed, the most popular ones being the
axions and the weakly interacting massive particles [9,10].

Dark matter is usually modeled as a cold classical
collisionless gas with vanishing pressure. In the cold dark
matter (CDM) model, primordial density fluctuations are
generated during the inflation and become the seeds of the
bottom-up structure formation model. The CDM model
with a cosmological constant successfully describes the
accelerated expansion of the Universe, the temperature
fluctuations of the cosmic microwave background, and the
large-scale structures of the Universe [11,12]. However, it
seems to encounter many problems at the scale of galactic
or subgalactic structures. Indeed, CDM simulations [13]
lead to r−1 cuspy density profiles at galactic centers (in the
scales of the order of 1 kpc and smaller) while most rotation
curves indicate a smooth core density [14]. On the other
hand, the predicted number of satellite galaxies around
each galactic halo is far beyond what we see around the
Milky Way [15]. This constitutes the “small-scale crisis
of CDM.”
These problems might be solved, without altering the

virtues of the CDM model, if dark matter is composed of
quantum particles such as fermions (e.g. massive neutrinos)
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or bosons (e.g. axions). The wave properties of dark matter
can stabilize the system against gravitational collapse
providing halo cores instead of cuspy profiles. In these
models, the formation of dark matter structures at small
scales is suppressed by quantum mechanics. Therefore,
quantum mechanics could be a way to solve the problems
of the CDM model such as the cusp problem and the
missing satellite problem.
Some authors have proposed that dark matter is a gas of

bosons at T ¼ 0 forming Bose-Einstein condensates
(BECs). In this scenario, dark matter halos may be under-
stood as the ground state of some gigantic bosonic atom
where the boson particles are condensed in a single
macroscopic quantum state ψðrÞ. At the scale of galaxies,
gravity can be treated with the Newtonian framework so the
evolution of the wave function ψðr; tÞ is governed by the
Gross-Pitaevskii-Poisson system. Using the Madelung [16]
transformation, the Gross-Pitaevskii equation [17,18] turns
out to be equivalent to hydrodynamic (Euler) equations
involving an isotropic pressure due to short-range inter-
actions (scattering) and an anisotropic quantum pressure
arising from the Heisenberg uncertainty principle. At large
scales, quantum effects are negligible and one recovers the
classical hydrodynamic equations of the CDM model
which are remarkably successful in explaining the large-
scale structures of the Universe. At small scales, gravita-
tional collapse is prevented by the repulsive scattering of
the bosons or by the uncertainty principle. This model
could solve the cusp problem and the missing satellites
problem.
The possibility that dark matter could be in the form of

BECs has a long history (see, e.g., [19–21] for some
reviews). In some works [22–44], it is assumed that the
bosons have no self interaction. In that case, gravitational
collapse is prevented by the Heisenberg uncertainty prin-
ciple which is equivalent to a quantum pressure. This leads
to dark matter halos with a mass-radius relation MR ¼
9.95ℏ2=Gm2 [23,41,45]. In order to account for the mass
and size of dark matter halos (typically M ¼ 3 × 1011M⊙
and R ¼ 10 kpc), the mass of the bosons must be
extremely small, of the order of m ∼ 10−24 eV=c2 [22].
Ultralight scalar fields like axions may have such small
masses (multidimensional string theories predict the
existence of bosonic particles down to masses of the
order of m ∼ 10−33 eV=c2). This corresponds to “fuzzy
cold dark matter” [28]. In other works [40,41,46–59], it
is assumed that the bosons have a repulsive self inter-
action measured by a scattering length a > 0. In that case,
gravitational collapse is prevented by the pressure
arising from the scattering. In the Thomas-Fermi (TF)
approximation, which amounts to neglecting the quantum
pressure, the resulting structure is equivalent to a
polytrope of index n ¼ 1. The radius of the halo is given
by R ¼ πðaℏ2=Gm3Þ1=2, independent on its mass M
[40,48,50,51]. For a ∼ 106 fm, corresponding to the values

of the scattering length observed in terrestrial BEC experi-
ments [60], the mass and size of dark matter halos are
reproduced if the bosons have a mass m ∼ 1 eV=c2 [51].
This mass is much larger than the mass m ∼ 10−24 eV=c2

required in the absence of self interaction. This may be
more realistic from a particle physics point of view. The
general mass-radius relation of self-gravitating BECs
at T ¼ 0 with an arbitrary scattering length a, connecting
the noninteracting limit (a ¼ 0) to the TF limit
(GM2ma=ℏ2 ≫ 1), has been determined analytically and
numerically in [40,41]. These papers also provide the
general density profile of dark matter halos interpreted
as self-gravitating BECs at T ¼ 0.
However, the BEC scenario in its simplest formulation

encounters serious problems. In the noninteracting case,
the mass of the bosons must be extremely small, of the
order of m ∼ 10−24 eV=c2, in order to reproduce the
properties of dark matter halos. The existence of particles
with such small masses remains dubious (although not
impossible a priori). Furthermore, the mass of the halo
decreases with the radius which is in contradiction with
the observations that reveal that the mass increases with
the radius. On the other hand, for self-interacting BECs
in the TF approximation, the radius of the halos turns out
to be independent on their mass, and fixed by the
properties of the bosons (their mass and scattering
length). This is a major drawback of the BEC model
because it implies that all the halos should have the same
radius (unless the characteristics of the bosons change
from halo to halo), which is clearly not the case. It is
possible that the BEC model at T ¼ 0 describes only
dwarf dark matter halos. In order to describe large halos,
finite temperature effects should be taken into account.
Finite temperature effects in the self-gravitating Bose
gas have been studied in [61–68] using different
approaches. When temperature effects are included in
the model, the system takes a core-halo structure with a
small condensed core (equivalent to a BEC at T ¼ 0)
surrounded by an extended isothermal atmosphere of
noncondensed bosons.1 These structures may be more
realistic to describe dark matter halos [69].
Another possible scenario is that dark matter is made of

fermions (such as massive neutrinos) instead of bosons.
This model also solves the cusp problem and the missing
satellite problem. In that case, gravitational collapse is
prevented by the Pauli exclusion principle. The distribution
function satisfies f ≤ ηPauli0 ≡ gm4=h3 where g ¼ 2sþ 1 is
the spin multiplicity of the quantum states (in the numerical
applications, we shall take s ¼ 1=2 and g ¼ 2). The fact

1As discussed further in footnote 5, the BEC model at T ¼ 0
may also account for the observations of large dark matter halos
provided that we take into account the radiative halo that
surrounds the condensed (solitonic) core. In this point of view,
it is the radiative halo that provides the correct size of large halos,
not their solitonic core.
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that the distribution function is bounded implies that the
density cannot diverge. At T ¼ 0, the halos are completely
degenerate and, except for a matter of scales, they are
similar to classical white dwarf stars where gravitational
collapse is prevented by the quantum pressure of the
electrons [70,71]. Their mass-radius relation is MR3¼
1.49×10−3h6=ðG3m8Þ [70]. This model could describe
dwarf dark matter halos. However, in order to describe
large halos, like in the case of the bosonic scenario, it may
be necessary to consider the Fermi gas at finite temperature.
Indeed, the mass of a self-gravitating Fermi gas at T ¼ 0
decreases with its size which is not consistent with the
observations. A detailed study of phase transitions in the
self-gravitating Fermi gas at finite temperature has been
performed by Chavanis [72–76]. This study shows how a
degenerate compact object forms as the energy and the
temperature are reduced. Originally, the self-gravitating
Fermi gas at finite temperature with neutrino masses in the
∼eV=c2 range was proposed as a model for dark matter
halos (e.g.M ¼ 1012M⊙ and R ¼ 100 kpc) and clusters of
galaxies [22,77–82]. Then it was suggested that degenerate
superstars composed of weakly interacting fermions in the
∼10 keV=c2 range could be an alternative to the super-
massive black holes that are reported to exist at the center of
galaxies (e.g. M ¼ 2.6 × 106M⊙ and R ¼ 18 mpc in our
Galaxy) [83–87]. Finally, it was argued that a weakly
interacting fermionic gas at finite temperature could pro-
vide a self-consistent model of dark matter that describes
both the center and the halo of the galaxies [88–90]. In that
model, the system has a core-halo structure with a small
condensed core (equivalent to a fermion ball at T ¼ 0)
surrounded by an extended isothermal atmosphere. Since
the density of a self-gravitating isothermal gas decreases as
r−2 at large distances [70], this model is consistent with the
flat rotation curves of the galaxies. On the other hand, since
the core is degenerate in the sense of quantum mechanics
(Pauli exclusion principle), it leads to flat density profiles at
the center and avoids the cusp problem of CDM models. In
addition, the gravitational collapse of fermionic matter
leads to a compact object (fermion ball) at the center of
galaxies that could be an alternative to a central black
hole [88].2

One difficulty with the finite temperature self-gravitating
Bose and Fermi gases is to explain how the particles have
thermalized and how they have reached a statistical
equilibrium state. Indeed, the collisional relaxation time
of a self-gravitating halo is usually very large and exceeds
the age of the Universe by many orders of magnitude [1].

To solve this time scale problem,3 we propose that dark
matter halos can be treated as a collisionless gas having
experienced a form of violent relaxation.4 This process,
introduced by Lynden-Bell [93] in stellar dynamics, and
worked out by Chavanis [94–97], leads to a distribution
function similar to the Fermi-Dirac distribution function.
The coarse-grained distribution function satisfies f̄ ≤ ηLB0
where ηLB0 is the initial value of the distribution function
before mixing. In that case, the origin of “degeneracy” is
due to dynamical constraints (Liouville’s theorem) instead
of quantum mechanics (Pauli’s principle). This theory was
initially developed to describe collisionless stellar systems
such as elliptical galaxies for which the nondegenerate limit
may be the most relevant [93]. However, this approach with
dynamical degeneracy retained could also apply to dark
matter halos [96,98]. In that case, gravitational collapse is
prevented by Lynden-Bell’s type of exclusion principle.
Furthermore, this scenario provides a much more efficient
relaxation mechanism than the fermionic scenario. Indeed,
the violent relaxation of collisionless systems (leading to
the Lynden-Bell statistics) takes place on a few dynamical
times while the collisional relaxation of fermions (leading
to the Fermi-Dirac statistics) is very long and possibly
exceeds the age of the Universe by many orders of
magnitude. Therefore, it is not clear how the fermions
have thermalized in the whole cluster. In addition, in
the fermionic scenario, the thermodynamical temperature
T is expected to be very low so that the halos would be
completely degenerate and would appear very different
from what is observed (except in the case of dwarf halos).
By contrast, in Lynden-Bell’s theory, the temperature is an
effective out-of-equilibrium temperature Teff , correspond-
ing to a virialized state, that can be much larger than the
thermodynamical temperature. This could account for the
value of the temperature inferred from the rotation curves of
the galaxies by using the virial theorem. Therefore, the
Lynden-Bell theory predicts a large effective temperature
(even if T ¼ 0 initially), a density profile decreasing as r−2

at large distances consistent with the flat rotation curves of
galaxies, and an effective exclusion principle at short
distances that could avoid the cusp problem and lead to
fermion balls mimicking black holes [96,97], just like in the

2These results can be transposed to bosonic dark matter where
the BEC nucleus (soliton) is the counterpart of the fermion ball
[91,92]. However, we shall argue later that these core-halo
structures (fermionic or bosonic) are thermodynamically unstable
because they are saddle points of entropy at fixed mass and
energy.

3The relaxation time can be shorter if the system is coupled to a
thermal bath instead of being isolated. However, as discussed
in Appendix B of paper II, it is unlikely that dark matter halos
are coupled to a thermostat.

4A spatially homogeneous collisionless self-gravitating
system described by the Vlasov-Poisson system undergoes
gravitational collapse (Jeans instability) and forms regions of
overdensity. When the density has sufficiently grown, these
regions collapse under their own gravity at first in free fall.
Then, as nonlinear gravitational effects become important at
higher densities, these configurations undergo damped oscilla-
tions and phase mixing. They heat up and finally settle into a
quasistationary state (QSS) with a core-halo structure on a coarse-
grained scale.
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fermionic scenario. As a result, the Lynden-Bell theory has
the same properties as the fermionic theory while solving
the time scale problem and the temperature problem
[96,97]. This makes this scenario very attractive.5

The dark matter halos formed by Jeans instability and
violent relaxation can merge and create bigger structures.
This is called hierarchical clustering.6 This is also a process
of violent relaxation. If dark matter is collisionless, a large
halo should not evolve anymore after having reached a
virialized state. As a result, it cannot have very high
densities. In order to be more general, and because very
little is known concerning the nature of dark matter, we
consider the possibility that the core of dark matter halos
can be collisional [101]. This seems to be necessary to
explain the presence of black holes7 at the center of large
dark matter halos as proposed by Balberg et al. [104].
When collisional effects are taken into account, dark matter
halos behave similarly to globular clusters. However, the
collisions between particles do not correspond to two-body
encounters as in globular clusters but rather to collisions
similar to those in a gas.8 On the other hand, in fermionic
dark matter halos, the Pauli exclusion principle must be
taken into account. As a result, collisions tend to establish a
Fermi-Dirac distribution at finite temperature. This distri-
bution is not very different from Lynden-Bell’s distribution
but collisions allow the central concentration of the system
to evolve in time towards large values.
In a recent series of papers, de Vega and Sanchez

[105–109] compared the predictions of the finite temper-
ature self-gravitating Fermi gas with observations of dark
matter halos. They argued that small halos are degenerate
quantum objects while large halos are nondegenerate
classical objects. Assuming that the smallest known halos
are completely degenerate, they found that the mass of the

fermions must be of the order of 2 keV=c2 corresponding
possibly to sterile neutrinos.9 Concerning the rotation
curves, they obtained encouraging results showing that
the description of dark matter halos in terms of the Fermi-
Dirac distribution may be a good starting point.10 de Vega
and Sanchez justify the Fermi-Dirac distribution by quan-
tum mechanics (for a system of fermions at statistical
equilibrium) although, as explained above, it may be due to
Lynden-Bell’s form of relaxation. We shall consider the two
possibilities since they lead to similar distribution functions
[76]. Actually, quantum degeneracy and Lynden-Bell’s
type of degeneracy compete with each other [96,98].11

In their study, de Vega and Sanchez use the usual
Fermi-Dirac distribution. However, when coupled to grav-
ity, this distribution has infinite mass so that it cannot
constitute a physical model. Furthermore, this infinite mass
problem precludes the possibility of studying the stability
of the cluster (except if we enclose the cluster within an
artificial “box”). For these reasons, we propose, as a next
step, to describe dark matter halos by the fermionic King
model which is a truncated Fermi-Dirac distribution. This
model was introduced independently by Ruffini and Stella
[78] and Chavanis [112]. It can be viewed as a generali-
zation of the classical King model to the case of fermions.
This model has a finite mass so it is more realistic than
the Fermi-Dirac distribution. The fermionic King model
can be derived [112] from a kinetic equation (the fermionic
Landau equation) assuming that the particles leave the
system when their energy overcomes a critical escape
energy ϵm. This derivation is valid both for quantum
particles (fermions) and for collisionless self-gravitating
systems undergoing Lynden-Bell’s form of violent relax-
ation. In the nondegenerate limit, the fermionic King model
reduces to the classical King model.
The classical King model [113] was introduced in the

context of stellar systems in order to describe globular
clusters made of classical point mass stars. On the basis of
thermodynamics, we would expect that a system of

5There exists a process similar to violent relaxation in dark
matter made of condensed bosons called gravitational cooling
[99]. A spatially homogeneous system of bosons at T ¼ 0
described by the Schrödinger-Poisson equation undergoes gravi-
tational collapse (Jeans instability), oscillates, and settles into a
compact bosonic object through the radiation of a complex scalar
field. As a result, the system reaches a QSS made of a solitonic
core surrounded by a halo made of scalar radiation. The halo is
similar to a thermal halo so this process may explain how self-
gravitating bosons can thermalize and acquire a large effective
temperature Teff even if T ¼ 0 formally. The presence of the
radiative halo may also explain why the mass of the halos
increases with their radius. In the analogy between bosons and
fermions, the solitonic core corresponds to the fermion ball and
the halo made of scalar radiation corresponds to the isothermal
halo predicted by Lynden-Bell’s theory.

6This process shares some analogies with the process of two-
dimensional decaying turbulence in hydrodynamics [100].

7We shall argue later that black holes at the center of galaxies
are favored over fermion balls [102,103].

8The relaxation time due to strong short-range collisions is
large (of the order of the Hubble time) but still much smaller than
the relaxation time due to weak long-range encounters.

9Very recently, other authors [110] obtained a smaller mass
m ¼ 200 eV=c2 based on the analysis of the velocity dispersion
of dwarf spheroidal galaxies.

10There remains, however, quantitative discrepancies with
observations (Burkert profile) indicating that more elaborate
models are required. In particular, the density profile of iso-
thermal systems decreases as r−2 [70] at large distances while the
density profile of dark matter halos decreases as r−3 [13,14].

11It is likely that the mixing process giving rise to a Fermi-
Dirac distribution at finite temperature is due to violent collision-
less relaxation (Lynden-Bell) while the maximum accessible
distribution function η0 is fundamentally fixed by quantum
mechanics (Pauli). Indeed, the maximum distribution function
of the spatially homogeneous collisionless gas prior to violent
relaxation is f0 ¼ ð1=2ÞηPauli0 ¼ ðg=2Þm4=h3 since the gas has
a relativistic Fermi distribution f ¼ ηPauli0 =ð1þ epc=kBTÞ [111].
Therefore, the Lynden-Bell bound is equal to half the Pauli
bound: ηLB0 ¼ f0 ¼ ηPauli0 =2 ¼ ðg=2Þm4=h3.
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classical point mass stars in gravitational interaction
reaches a statistical equilibrium state described by the
Boltzmann distribution. However, it is well known that
no statistical equilibrium state exists for self-gravitating
systems because the Boltzmann entropy has no maximum
in an unbounded domain (the isothermal sphere, corre-
sponding to the Boltzmann distribution coupled to the
Poisson equation, has infinite mass) [1]. Therefore, the
statistical mechanics of self-gravitating systems is essen-
tially an out-of-equilibrium problem [114]. The absence
of a statistical equilibrium state is related to the fact that
self-gravitating systems such as globular clusters have the
tendency to evaporate. However, evaporation is a slow
process and a globular cluster can be found, for inter-
mediate times, in a quasistationary state close to the
Michie-King distribution [113,115] which is a truncated
Boltzmann distribution12 with parameters slowly changing
with time.
The caloric curve of the King model was determined by

Katz [116]. Like in the case of box-confined isothermal
spheres [117,118], equilibrium states exist only above a
critical energy Ec. These configurations are metastable but
their lifetime is considerable since it scales as eN (except
close to the critical point) [119]. For globular clusters, for
which N ∼ 106, this lifetime is so large that metastable
states can be considered as stable states. In this sense, we
can say that self-gravitating systems with E > Ec do reach
a statistical equilibrium state described by a truncated
Boltzmann distribution (even if there is no statistical
equilibrium state in a strict sense). However, because of
evaporation, the energy of a self-gravitating system slowly
decreases. For E < Ec, there is no equilibrium state any-
more. Therefore, when the energy passes below this
threshold, the system undergoes a gravothermal catastrophe
[118] and experiences core collapse [120–122]. This
corresponds to a saddle-node bifurcation. For classical
self-gravitating systems, such as globular clusters, core
collapse leads to the formation of a binary star surrounded
by a hot halo (at the collapse time, the singular density
profile has infinite central density but zero central mass)
[123,124]. The binary can release sufficient energy to stop
the collapse and even drive a reexpansion of the cluster in a
postcollapse regime [125]. This is followed by a series of
gravothermal oscillations [126,127]. It is estimated that

about 80% of globular clusters are described by the King
model while 20% have undergone core collapse [1]. For
self-gravitating systems made of fermions (white dwarfs,
neutron stars, dark matter halos), the collapse stops when
the core of the system becomes degenerate in virtue of the
Pauli exclusion principle. In that case, we have to take
quantum mechanics into account. To treat dark matter, we
propose to use the fermionic King model [78,112].
The fermionic King model was studied by Ruffini and

Stella [78] who determined the density profiles of dark
matter halos for various values of the central potential. Our
series of papers is intended to complete their study in the
following directions. We determine the caloric curves of the
fermionic King model for arbitrary values of the degen-
eracy parameter and study in detail the phase transitions
that may occur between a gaseous phase unaffected by
quantum mechanics and a condensed phase dominated by
quantum mechanics. In this way, we generalize the study of
phase transitions in the self-gravitating Fermi gas at finite
temperature confined within a box performed by Chavanis
[72–76]. This generalization is important since the fer-
mionic King model provides a more relevant description of
dark matter halos than box models. Therefore, we obtain
realistic caloric curves of dark matter halos. We also
determine the density profile, the velocity dispersion
profile, and the circular velocity profile of the different
configurations in order to compare the predictions of the
fermionic King model to the observations of dark matter
halos. In the present paper (paper I), we consider the
nondegenerate limit corresponding to the classical King
model. The nondegenerate limit is expected to be valid for
large dark matter halos so it is a good starting point. In our
companion paper [128] (paper II), we consider the fer-
mionic King model for arbitrary values of the degeneracy
parameter. Degeneracy effects are expected to be important
for dwarf and intermediate-size dark matter halos. A short
account of our results is given in [129].
The paper is organized as follows. In Sec. II, we discuss

models of dark matter halos based on statistical mechanics
and we introduce the classical and fermionic King models.
In Sec. III, we formulate the general problem of determin-
ing the structure of a spherically symmetric self-gravitating
system described by a distribution function of the
form f ¼ fðϵÞ with f0ðϵÞ < 0, where ϵ ¼ v2=2þ ΦðrÞ is
the individual energy of the particles. We introduce the
“generalized entropy” associated to this distribution and
discuss its physical interpretation. In Secs. IV–VI, we apply
this general formalism to the classical King model and
compute several quantities of interest. We show that the
King model leads to configurations with an isothermal
core, an isothermal halo, and a polytropic envelope of index
n ¼ 5=2. In Sec. VII, we compare the predictions of the
classical King model to the observations of dark matter
halos. Because of collisions and evaporation, the central
density increases while the slope of the halo profile

12Since the isothermal sphere has an infinite mass, the basic
idea of Michie [115] and King [113] is to introduce a bound on
the energy of the stars so that, if a star has a too large energy, it
escapes the system. The energy bound introduces automatically a
bound on the radius of the system that is interpreted as a tidal
radius beyond which the stars are lost by the cluster. The Michie-
King distribution can be derived from the classical Landau
equation. The King distribution [113] simply amounts to sub-
tracting a constant from the Boltzmann factor so that the
distribution function vanishes when the energy reaches its
maximum value ϵm. The Michie [115] distribution includes, in
addition, effects of anisotropy.
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decreases until an instability takes place. We show that dark
matter halos are relatively well described by a King model
at, or close to, the point of marginal microcanonical
stability. At that point, the King model generates a density
profile that can be approximated by the modified Hubble
profile [1]. This profile has a flat core and decreases as r−3

at large distances, like the observational Burkert [14]
profile. Less steep halos are unstable. The flat core is
due to finite temperature effects, not to quantummechanics.
On the other hand, the large distance behavior of the
density profile is due to the polytropic nature of the King
distribution at high energies that departs from the iso-
thermal Boltzmann distribution. We conclude that statis-
tical mechanics provides a good description of dark matter
halos when evaporation is taken into account. The agree-
ment is very good in the core of the system that is well
relaxed. The discrepancies that remain in the halo may be
interpreted as a result of an incomplete relaxation, like in
the case of stellar systems.
Although our results are exposed in the context of dark

matter halos, our study of the classical King model
presented in this paper also applies to globular clusters
(see Appendix D).

II. MODELS OF DARK MATTER HALOS BASED
ON STATISTICAL MECHANICS

We consider the possibility that dark matter halos can be
described by the Fermi-Dirac distribution

f ¼ η0
1þ eβϵþα ; ð1Þ

where fðr; vÞ gives the mass density of particles with
position r and velocity v, ρðrÞ ¼ R

fðr; vÞdv gives the mass
density of particles with position r, ΦðrÞ is the gravitational
potential determined by the Poisson equation ΔΦ ¼ 4πGρ,
η0 is the maximum accessible value of the distribution
function, ϵ ¼ v2=2þ ΦðrÞ is the individual energy of the
particles by unit of mass, β is the inverse temperature, and
ϵF ¼ −α=β is the chemical potential (Fermi energy). In the
nondegenerate limit α → þ∞, we can make the approxi-
mation eβϵþα ≫ 1, implying f ≪ η0, and the Fermi-Dirac
distribution reduces to the Boltzmann distribution

f ¼ η0e−ðβϵþαÞ: ð2Þ
As recalled in the introduction, the Fermi-Dirac distri-

bution may have two origins: (i) It may describe a gas of
fermions at statistical equilibrium, in which case η0 ¼
gm4=h3 is the maximum accessible value of the distribution
function fixed by the Pauli exclusion principle; (ii) it may
result from the violent relaxation of a collisionless system
of particles (classical or quantum) as described by Lynden-
Bell [93] and worked out by Chavanis [94–97]. In that case,
Eqs. (1)–(2) are valid for the coarse-grained distribution

function (usually denoted f̄) and η0 is the maximum value
of the fine-grained distribution function.13 We shall con-
sider the two possibilities since the distribution functions
are formally the same. In the quantum interpretation, β ¼
m=kBT where T is the thermodynamical temperature. In
Lynden-Bell’s interpretation, β ¼ η0=Teff where Teff is a
generalized (out-of-equilibrium) temperature. In order to
unify the notations, we write β ¼ 1=T where T has the
dimension of an energy by unit of mass.
When coupled to the gravity through the Poisson

equation, the Fermi-Dirac distribution (1) has an infinite
mass since it reduces to the Boltzmann distribution (2) at
large distances where the system is diluted (nondegener-
ate). As a result, the density decreases as ρ ∼ r−2 for
r → þ∞ [70] which is not normalizable. In order to avoid
the infinite mass problem, we use a truncated Fermi-Dirac
distribution. Specifically, we use the fermionic King model
that we write as (see paper II)

f ¼ A
e−βðϵ−ϵmÞ − 1

1þ A
η0
e−βðϵ−ϵmÞ

if ϵ ≤ ϵm; ð3Þ

f ¼ 0 if ϵ ≥ ϵm; ð4Þ
where ϵm is the escape energy above which the particles are
lost by the system and μ≡ η0=A is a dimensionless
parameter that measures the importance of degeneracy.
The chemical potential (Fermi energy) is related to the
escape energy by ϵF ≡ −α=β ¼ ϵm − ð1=βÞ lnðη0=AÞ (see
paper II). For ϵ ≪ ϵm, we can make the approximation
e−βðϵ−ϵmÞ ≫ 1 and we recover the Fermi-Dirac distribution
(1). The fermionic King model was introduced heuristically
by Ruffini and Stella [78] as a natural extension of the
classical King model to fermions in order to describe dark
matter halos made of massive neutrinos. This distribution
function was independently introduced by Chavanis [112]
where it was derived from a kinetic equation (the fermionic
Landau equation) assuming that the particles leave the
system when they reach a maximum energy ϵm. The kinetic
derivation given in [112] is valid either for quantum
particles (fermions) or for collisionless self-gravitating
systems (classical or quantum) experiencing Lynden-
Bell’s type of relaxation. This derivation can also be
extended to noncondensed bosons by simply replacing
1 − f=η0 by 1þ f=η0 in the kinetic equation. This leads to
the bosonic King model

13In the general case, the theory of violent relaxation leads to a
coarse-grained distribution function f̄ that is a superposition of
Fermi-Dirac distributions [93,95]. The single Fermi-Dirac dis-
tribution function (1) is obtained when the fine-grained distri-
bution function takes only two values f ¼ η0 and f ¼ 0. It may
also provide an approximation of more general cases where η0
represents the maximum value of the fine-grained distribution
function. The fine-grained distribution function coincides with
the initial distribution function before the system has mixed.
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f ¼ A
e−βðϵ−ϵmÞ − 1

1 − A
η0
e−βðϵ−ϵmÞ

if ϵ ≤ ϵm; ð5Þ

f ¼ 0 if ϵ ≥ ϵm: ð6Þ
In the nondegenerate limit μ ¼ η0=A → þ∞, we can

make the approximation ðA=η0Þe−βðϵ−ϵmÞ ≪ 1 and we
recover the classical King model

f ¼ A½e−βðϵ−ϵmÞ − 1� if ϵ ≤ ϵm; ð7Þ
f ¼ 0 if ϵ ≥ ϵm: ð8Þ

For ϵ ≪ ϵm, we can make the additional approximation
e−βðϵ−ϵmÞ ≫ 1 and we recover the Boltzmann distribution
(2). The classical King model describes globular clusters
and, possibly, large dark matter halos for which degeneracy
effects (due to the Pauli exclusion principle for fermions or
the Liouville theorem for collisionless systems undergoing
violent relaxation) are negligible.

III. THE GENERAL FORMULATION
OF THE PROBLEM

Before studying specifically the classical King model in
Sec. IV, we formulate the problem for a general distribution
function of the form f ¼ fðϵÞ with f0ðϵÞ < 0 describing
spherical clusters. This will allow us to extend our study to
various situations in future works without having to recall
the general formalism at each time. We emphasize that the
scalings derived below (for the energy, temperature, tidal
radius, etc.) are “universal,” i.e. they do not depend on the
precise form of the considered distribution function.

A. Variational principles

For any functional of the form

S ¼ −
Z

CðfÞdrdv; ð9Þ

where CðfÞ is a convex function (i.e. C00 > 0), we consider
the following maximization problems:

SðE;MÞ ¼ max
f

fS½f�jE½f� ¼ E;M½f� ¼ Mg ð10Þ

and

Jðβ;MÞ ¼ max
f

fJ½f� ¼ S½f� − βE½f�jM½f� ¼ Mg; ð11Þ

where

E ¼ 1

2

Z
fv2drdv þ

Z
ρΦdr ¼ K þW ð12Þ

is the energy (K is the kinetic energy andW is the potential
energy) and

M ¼
Z

ρdr ð13Þ

is the mass.
The critical points of the maximization problem (10) are

determined by the variational principle

δS − βδE − αδM ¼ 0; ð14Þ

where β and α are Lagrange multipliers associated with the
constraints E and M. The critical points of the maximiza-
tion problem (11) are determined by the variational
principle

δJ − αδM ¼ 0; ð15Þ

where α is a Lagrange multiplier associated with the
constraint M. Obviously, the maximization problems
(10)–(11) have the same critical points (canceling the first
order variations). They are given by the equation

C0ðfÞ ¼ −βϵ − α; ð16Þ

where ϵ ¼ v2=2þ ΦðrÞ is the individual energy of the
particles by unit of mass. Since C is convex, this equation
can be reversed to give f ¼ Fðβϵþ αÞ where FðxÞ ¼
ðC0Þ−1ð−xÞ. We note that f0ðϵÞ¼−β=C00ðfÞ, so that f0ðϵÞ
keeps the same sign everywhere. Since fðϵÞ is positive and
vanishes at the escape energy ϵm, we must have f0ðϵÞ < 0
close to the escape energy. Therefore, f0ðϵÞ < 0 every-
where and, consequently, β > 0. In conclusion, the temper-
ature is positive and the distribution function decreases
monotonically with ϵ until it vanishes at ϵm. For future
convenience, we write FðxÞ ¼ AF ðxÞ, where A is a
constant with the dimension of a distribution function
and F is a dimensionless function (it can still depend on
A and on other “external” parameters). This amounts to
writing CðfÞ ¼ ACðf=AÞ and F ðxÞ ¼ ðC0Þ−1ð−xÞ. Then
the critical points of the maximization problems (10)–(11)
are given by

f ¼ AF ðβϵþ αÞ: ð17Þ

We assume that both A and F (or equivalently A and C) are
given. In the maximization problem (10), β and α must be
related to E and M. In the maximization problem (11), β is
prescribed and α must be related to M.
A distribution function of the form of Eq. (17) is a (local)

maximum of S at fixed E and M if, and only if,

δ2G≡ −
Z

C00ðfÞ ðδfÞ
2

2
drdv −

1

2
β

Z
δρδΦdr < 0 ð18Þ

for all perturbations δf that conserve mass and energy at
first order, i.e. δE ¼ δM ¼ 0. A distribution of the form of
Eq. (17) is a (local) maximum of J at fixedM if, and only if,
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the inequality of Eq. (18) is satisfied for all perturbations δf
that conserve mass, i.e. δM ¼ 0. The derivation of these
results can be found in [130].
To study the maximization problems (10)–(11), we use a

thermodynamical analogy. We call S the entropy, J the free
energy,14 β ¼ 1=T the inverse temperature, and −α=β the
chemical potential. The maximization problem (10) in
which the energy and the mass are fixed is associated to
the microcanonical ensemble (MCE) and the maximization
problem (11) in which the temperature and the mass are
fixed is associated to the canonical ensemble (CE). We shall
be interested by local and global maxima of entropy at fixed
mass and energy in MCE, and by local and global maxima
of free energy at fixed mass in CE. Different interpretations
of the variational problems (10)–(11) are discussed in
Appendix A of paper II.

B. The fundamental differential equation

The maximization problems (10)–(11) determine distri-
bution functions of the form f ¼ fðϵÞ with f0ðϵÞ < 0. Such
distribution functions, which depend only on the individual
energy ϵ of the particles, describe spherically symmetric
self-gravitating systems [1]. Inversely, any distribution
function of the form f ¼ fðϵÞ with f0ðϵÞ < 0 is a critical
point of the maximization problems (10)–(11) for a specific
entropy of the form of Eq. (9). In practice, it is convenient
to prescribe a form of distribution function f, determine the
corresponding entropy S, and consider the variational
problems (10)–(11). This is how we proceed in Sec. IV
and in paper II. However, for the moment, we remain very
general.
As we have seen, a distribution function f ¼ fðϵÞ with

f0ðϵÞ < 0 can always be written in the form of Eq. (17).
We assume furthermore that fðϵÞ vanishes at some
escape energy ϵm and that f ¼ 0 for ϵ ≥ ϵm. Therefore
F ðβϵm þ αÞ ¼ 0. If x0 denotes the zero of F ðxÞ, we have
βϵm þ α ¼ x0. This relation shows that ϵm is not a new
parameter but that it is equivalent to the Lagrange multiplier
α (for a given value of β). In the following, we shall work in
terms of ϵm and β instead of α and β. Introducing the shifted
function F sðxÞ ¼ F ðxþ x0Þ, satisfying F sð0Þ ¼ 0, we
can write fðϵÞ in the form

f ¼ AF s½βðϵ − ϵmÞ� if ϵ ≤ ϵm; ð19Þ

f ¼ 0 if ϵ ≥ ϵm: ð20Þ

The local density is defined by

ρ ¼
Z

fdv: ð21Þ

Substituting Eqs. (19)–(20) in Eq. (21), we get

ρ ¼ A
Z

vmðrÞ

0

F s

�
β

�
v2

2
þ ΦðrÞ − ϵm

��
4πv2dv; ð22Þ

where vmðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðϵm − ΦðrÞÞp

is the local escape velocity.
These expressions are valid only for r ≤ R, where R is the
radius of the cluster such that vmðRÞ ¼ 0, i.e. ΦðRÞ ¼ ϵm.
This is the distance at which the density vanishes:
ρðRÞ ¼ 0. For r > R, we have ρ ¼ 0. In the King model,
R represents the tidal radius. Making the change of
variables w ¼ ðβ=2Þ1=2v, we obtain

ρ ¼ 4π

�
2

β

�
3=2

A

×
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βðϵm−ΦðrÞÞ
p

0

F sðw2 þ βΦðrÞ − βϵmÞw2dw: ð23Þ

Defining χðrÞ ¼ βðϵm − ΦðrÞÞ and k ¼ βðϵm − Φ0Þ, where
the index 0 refers to the center of the cluster, the foregoing
equation can be rewritten as

ρ ¼ 4π

�
2

β

�
3=2

A
Z ffiffiffiffiffiffi

χðrÞ
p

0

F sðw2 − χðrÞÞw2dw: ð24Þ

At that point, it is convenient to introduce the family of
functions

InðzÞ ¼ 4π

Z ffiffi
z

p

0

F sðw2 − zÞw2ndw ðz ≥ 0Þ: ð25Þ

For future reference, we note the identity

I0nðzÞ ¼
1

2
ð2n − 1ÞIn−1ðzÞ ð26Þ

that can be established by a simple integration by parts.
In terms of these functions, the density profile can be
written as

ρ ¼ A

�
2

β

�
3=2

I1ðχÞ: ð27Þ

The central density is

ρ0 ¼ A

�
2

β

�
3=2

I1ðkÞ: ð28Þ

Therefore, we obtain

14The free energy is usually defined by F ¼ E − TS so that
J ¼ −βF. The function J is sometimes called the Massieu
function. To simplify the terminology we will call it here the
free energy.
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ρ ¼ ρ0
I1ðχÞ
I1ðkÞ

: ð29Þ

Substituting these results in the Poisson equation

ΔΦ ¼ 4πGρ ð30Þ
and introducing the rescaled distance

ζ ¼ r=r0; ð31Þ
where

r0 ¼
1

ð4πGβρ0Þ1=2
ð32Þ

is the core radius, we obtain the fundamental ordinary
differential equation

1

ζ2
d
dζ

�
ζ2

dχ
dζ

�
¼ −

I1ðχÞ
I1ðkÞ

ð33Þ

with the boundary conditions

χð0Þ ¼ k; χ0ð0Þ ¼ 0: ð34Þ
This differential equation is defined for ζ ≤ ζ1 where

ζ1 ¼ R=r0 ¼ ð4πGβρ0Þ1=2R ð35Þ
is the dimensionless radius of the cluster determined by the
condition χðζ1Þ ¼ 0. The function χðζÞ decreases mono-
tonically with ζ. The differential equation (33) defines a
one-parameter family of density profiles with parameter k
(the normalized central potential) going from 0 toþ∞. The
dimensionless radius ζ1 is a function of k. We also note
that f ¼ AF s½w2 − χðζÞ�.

C. The equation of state

For a spherically symmetric distribution function fðϵÞ,
the local pressure is defined by

p ¼ 1

3

Z
fv2dv: ð36Þ

Substituting Eqs. (19)–(20) in Eq. (36), and introducing the
variables defined in Sec. III B, we obtain

p ¼ 1

3
A

�
2

β

�
5=2

I2ðχÞ: ð37Þ

We note that the density ρðrÞ and the pressure pðrÞ are
functions of χðrÞ and T (for a given A): ρ ¼ ρ½χðrÞ; T� and
p ¼ p½χðrÞ; T�. Eliminating χðrÞ between Eqs. (27) and
(37) we find that the cluster is described by a barotropic
equation of state p ¼ pTðρÞ parametrized by the

temperature T (for a given A). We note the universal
scaling p ¼ β−5=2ϕðβ3=2ρÞ. Furthermore, one can easily
check that the condition of hydrostatic equilibrium ∇pþ
ρ∇Φ ¼ 0 is automatically satisfied for a system described
by a distribution function of the form f ¼ fðϵÞ (see
Appendix C). Therefore, the differential equation (33)
may be derived equivalently from the fundamental equation
of hydrostatic equilibrium [70] with the equation of state
specified above (see Appendix C).

D. The normalized temperature

Using Eqs. (29) and (31), the mass profile MðrÞ ¼R
r
0 ρðr0Þ4πr02dr0 is given by

MðrÞ ¼ 4πρ0r30

Z
ζ

0

I1ðχÞ
I1ðkÞ

ζ2dζ: ð38Þ

Combining this equation with the differential equation (33),
we get

MðrÞ ¼ −4πρ0r30ζ2χ0ðζÞ: ð39Þ

Applying this equation at r ¼ R, and using Eqs. (32) and
(35), we obtain

η≡ βGM
R

¼ −ζ1ðkÞχ0½ζ1ðkÞ�: ð40Þ

This relation can also be derived from the Gauss theorem
dΦ=dr ¼ GMðrÞ=r2 applied at r ¼ R. The parameter η is
the dimensionless inverse temperature normalized by the
size R of the system. This is the correct dimensionless
parameter when we work in a box of fixed radius R
[117,118]. However, in the present problem, the size of
the configuration R is not a fixed parameter. The fixed
parameter is A, not R. We need therefore to normalize the
inverse temperature by A. Combining Eqs. (28) and (35),
we find that

R2 ¼ ζ21β
1=2

8π
ffiffiffi
2

p
GI1ðkÞA

: ð41Þ

Substituting this relation in Eq. (40), we obtain

~β≡ βG2M4=3ð8πA
ffiffiffi
2

p
Þ2=3 ¼ ½−ζ21χ0ðζ1Þ�4=3

I1ðkÞ2=3
: ð42Þ

This equation relates the normalized inverse temperature ~β
to the parameter k.

E. The normalized energy

The total energy E ¼ K þW can be computed as
follows. Using the virial theorem 2K þW ¼ 0 we have
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E ¼ −K; ð43Þ

so we just need to compute the kinetic energy. The kinetic
energy can be written in terms of the pressure defined by
Eq. (36) as

K ¼ 3

2

Z
pdr: ð44Þ

Substituting Eq. (37) in Eq. (44), and using Eqs. (31) and
(35), we obtain

K ¼ 1

2
A

�
2

β

�
5=2 R3

ζ31

Z
ζ1

0

I2½χðζÞ�4πζ2dζ: ð45Þ

According to Eqs. (40), (43), and (45), the total energy
normalized by R is

ϵ≡ ER
GM2

¼ −
1

ζ1ðkÞη2ðkÞI1ðkÞ
Z

ζ1ðkÞ

0

I2½χðζÞ�ζ2dζ: ð46Þ

This is the proper normalization of the energy when we
work in a box of fixed radius R [117,118]. However, in the
present problem, as explained previously, we must normal-
ize the energy by A, not by R. Using Eqs. (40)–(42), we
obtain

~E≡ E

G2M7=3ð8 ffiffiffi
2

p
πAÞ2=3

¼ −
1

~β7=4ðkÞI1ðkÞ3=2
Z

ζ1ðkÞ

0

I2½χðζÞ�ζ2dζ: ð47Þ

This equation relates the normalized energy ~E to the
parameter k.

F. The normalized radius

According to Eqs. (41)–(42), the radius of the cluster
normalized by A is given by

~R≡ RGM1=3ð8πA
ffiffiffi
2

p
Þ2=3 ¼ ζ1ðkÞ ~β1=4ðkÞ

I1ðkÞ1=2
: ð48Þ

This equation relates the normalized radius ~R to the
parameter k. The normalized distance is then given by

GM1=3ð8πA
ffiffiffi
2

p
Þ2=3r ¼

~RðkÞ
ζ1ðkÞ

ζ: ð49Þ

G. The chemical potential

The escape energy is related to the radius of the cluster
and to its mass by

ϵm ¼ ΦðRÞ ¼ −
GM
R

: ð50Þ

Using Eq. (40), we find that −βϵm ¼ ηðkÞ. Therefore, the
chemical potential (times −β) is equal to −βϵF ¼ α ¼
x0 þ ηðkÞ. On the other hand, using Eq. (42), the normal-
ized escape energy varies along the series of equilibria
according to

~ϵm ≡ ϵm
G2M4=3ð8πA ffiffiffi

2
p Þ2=3 ¼ −

ηðkÞ
~βðkÞ : ð51Þ

H. The normalized density

According to Eqs. (27) and (42), the normalized density
profile is given by

ρðrÞ
32πA2G3M2

¼ I1½χðζÞ�
~β3=2ðkÞ : ð52Þ

The normalized central density is related to k by

~ρ0 ≡ ρ0
32πA2G3M2

¼ I1ðkÞ
~β3=2ðkÞ : ð53Þ

In general, the central density is a monotonically increasing
function of k. Therefore, the parameter k can be interpreted
as a measure of the central density. We call it the
concentration parameter. It can also be interpreted as the
normalized central potential (with the opposite sign).

I. The normalized circular velocity

The circular velocity is defined by [1]

v2cðrÞ ¼
GMðrÞ

r
: ð54Þ

Using Eq. (39), we obtain

v2cðrÞ ¼ −4πGρ0r20ζχ0ðζÞ: ð55Þ

According to Eqs. (32) and (42), the normalized circular
velocity profile is given by

v2cðrÞ
G2M4=3ð8πA ffiffiffi

2
p Þ2=3 ¼ −

ζχ0ðζÞ
~βðkÞ : ð56Þ

We also note that v2cðRÞ ¼ GM=R ¼ −ϵm.

J. The normalized velocity dispersion

The local velocity dispersion (in one direction) of a
spherically symmetric distribution function fðϵÞ is
defined by
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σ2ðrÞ ¼ pðrÞ
ρðrÞ ¼

1

3ρ

Z
fv2dv: ð57Þ

Using Eqs. (29) and (37) we obtain

σ2ðrÞ ¼ 2

3β

I2½χðζÞ�
I1½χðζÞ�

: ð58Þ

The central velocity dispersion is therefore

σ20 ¼
2

3β

I2ðkÞ
I1ðkÞ

: ð59Þ

According to Eq. (42), the normalized velocity dispersion
profile is given by

σ2ðrÞ
G2M4=3ð8πA ffiffiffi

2
p Þ2=3 ¼

2

3~βðkÞ
I2½χðζÞ�
I1½χðζÞ�

: ð60Þ

The normalized central velocity dispersion is related to k by

~σ20 ≡ σ20
G2M4=3ð8πA ffiffiffi

2
p Þ2=3 ¼

2

3~βðkÞ
I2ðkÞ
I1ðkÞ

: ð61Þ

K. The parameter K

Instead of working with k it is sometimes convenient to
work in terms of the parameter

K ¼ −
Φ0

σ20
ð62Þ

that is more directly accessible to observations and numeri-
cal simulations. For example, this parameter was used by
Katz [116] and Cohn [120] in their studies of globular
clusters. Since k ¼ βðϵm − Φ0Þwith ϵm¼ΦðRÞ¼−GM=R,
we get Φ0 ¼ −ðkþ ηÞ=β where ηðkÞ is given by Eq. (40).
Combining this relation with Eq. (59), we obtain

K ¼ 3

2
½kþ ηðkÞ� I1ðkÞ

I2ðkÞ
: ð63Þ

For the classical King model, K is a monotonically
increasing function of k so it can be used equivalently to
parametrize the series of equilibria. For an extended
classical King cluster (large k), we have β ∼ 1=σ20 and
Φ0 ≫ ΦðRÞ ¼ ϵm so that k ∼ −Φ0=σ20 ∼K.

L. Kinetic and thermodynamic specific heats

If we define the kinetic temperature Tkin through the
relation K ¼ ð3=2ÞNkBTkin (where K denotes the kinetic
energy), we find from the virial theorem (43) that the kinetic
caloric curve is simply given by E ¼ −ð3=2ÞNkBTkin.
Therefore, the kinetic specific heat is

Ckin ¼
dE
dTkin

¼ −
3

2
NkB < 0: ð64Þ

It has a constant negative value. However, Tkin is not the
thermodynamic temperature in the present case. The
thermodynamic temperature is T ¼ 1=β and the thermody-
namic specific heat is

C ¼ dE
dT

: ð65Þ

When the distribution function is non-Boltzmannian, the
kinetic and thermodynamic caloric curves TkinðEÞ and TðEÞ
can be very different.15 As we shall see in Sec. IV for the
Kingmodel, the thermodynamic specific heat is not constant
and differs from Eq. (64).

M. Ensembles inequivalence and Poincaré theory
on the linear series of equilibria

The maximization problems (10)–(11) have the same
critical points. They correspond to the distribution function
(17). However, these maximization problems may not be
equivalent (e.g. regarding the second variations). The
stability of the distribution function (17) may differ in
MCE and CE. As a result, the set of solutions of (10) may
not coincide with the set of solutions of (11). It can be
shown that the solution of a maximization problem is
always the solution of a more constrained dual maximiza-
tion problem [132]. Therefore, a solution of (11) with given
β is always a solution of (10) with the corresponding E. In
the thermodynamical analogy, this means that “canonical
stability implies microcanonical stability”: ð11Þ ⇒ ð10Þ.16
However, the converse in wrong: a solution of (10) is not
necessarily a solution of (11). When this happens, we speak
of ensembles inequivalence. Ensembles inequivalence is
generic for systems with long-range interactions but it is not
compulsory [133].
In order to determine the stability of a distribution

function according to the maximization problems (10)–(11)
we can use the theory of Poincaré on the linear series of
equilibria [134]. This is a powerful graphical method that
just requires us to determine the critical points of (10)–(11)
and plot the series of equilibria βðEÞ. This theory uses the
fact that β ¼ ∂S=∂E in MCE (the inverse temperature is the
conjugate of the energy with respect to the entropy) and
E ¼ −∂J=∂β in CE (minus the energy is the conjugate
of the inverse temperature with respect to the free energy).

15In particular, the thermodynamic specific heat is necessarily
positive in CE while the kinetic specific heat may be positive
or negative in CE [131].

16This can be checked at the level of the second order
variations. Indeed, if inequality (18) is satisfied for all perturba-
tions δf that conserve mass (canonical stability criterion), it is a
fortiori satisfied for all perturbations that conserve mass and
energy at first order (microcanonical stability criterion).
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It can be shown that a change of stability can occur only at a
turning point or at a bifurcation point of the series of
equilibria. In this paper and in paper II, we shall only
encounter the case of turning points. If we plot β as a
function of −E, we have the following results. In MCE, a
change of stability can only occur at a turning point of
energy where dβ=dE ¼ ∞. A mode of stability is lost if the
curve rotates clockwise and gained if it rotates anticlock-
wise. In CE, a change of stability can only occur at a
turning point of temperature where dβ=dE ¼ 0. A mode of
stability is lost if the curve rotates clockwise and gained if it
rotates anticlockwise. We refer to Katz [135] and Chavanis
[76] for an application of the Poincaré theory to the case of
self-gravitating systems.

IV. THE CLASSICAL KING MODEL

In this section, we apply the general formalism devel-
oped previously to the case of the classical King model.

A. The distribution function

The classical King model is defined by

f ¼ A½e−βðϵ−ϵmÞ − 1� if ϵ ≤ ϵm; ð66Þ
f ¼ 0 if ϵ ≥ ϵm; ð67Þ

where ϵm is the escape energy at which the particles leave
the system (f ¼ 0). For ϵ → −∞, the King distribution
reduces to the Boltzmann distribution f ∼ Ae−βðϵ−ϵmÞ and,
for ϵ → ϵ−m, it reduces to f ∼ Aβðϵm − ϵÞ corresponding to a
polytropic distribution of index n ¼ 5=2 [1]. Therefore, the
King model generically describes a cluster with an iso-
thermal core, an isothermal halo, and a polytropic envelope
of index n ¼ 5=2. The proportion of these different regions
depends on the concentration parameter k as shown in the
sequel. The distribution function fðϵÞ is represented
in Fig. 1.

The King distribution is of the form of Eqs. (19)–(20)
with

F sðxÞ ¼ e−x − 1: ð68Þ

The corresponding entropy is given by Eq. (9) with (see
paper II)

CðfÞ¼A

��
1þ f

A

�
ln

�
1þ f

A

�
−
f
A

�
− ln

�
η0
A

�
f: ð69Þ

For the King model, the functions InðzÞ defined in the
general case by Eq. (25) can be written, after an integration
by parts, as

InðzÞ ¼
8πez

2nþ 1

Z ffiffi
z

p

0

e−w
2

w2nþ2dw: ð70Þ

These functions may be expressed in terms of the error
function. Their asymptotic behaviors for small and large
values of z are easily obtained. For z → 0, we get

InðzÞ ∼
8π

ð2nþ 1Þð2nþ 3Þ z
ð2nþ3Þ=2; ð71Þ

so that I1ðzÞ ∼ ð8π=15Þz5=2 and I2ðzÞ ∼ ð8π=35Þz7=2. For
z → þ∞, we get

InðzÞ ∼
4πez

2nþ 1
Γ
�
nþ 3

2

�
; ð72Þ

so that I1ðzÞ ∼ π3=2ez and I2ðzÞ ∼ ð3=2Þπ3=2ez. The density
profile of the King model is given by Eq. (29) where χ is
the solution of the differential equation (33)–(34) with the
function I1ðzÞ defined by Eq. (70). The density profile
vanishes at a radius r ¼ R corresponding to the tidal radius.
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FIG. 1. The distribution function fðϵÞ in scaled variables
showing the isothermal core, isothermal halo, and polytropic
envelope.

0 0.2 0.4 0.6 0.8
r

-3

-2

-1

0

1

2

3

v

k=7.44

ε = ε
m

R
f = 0

FIG. 2. Phase-space portrait of the King model for k ¼ kMCE ¼
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to ϵ ¼ ϵm, is given by wm ¼ ffiffiffiffiffiffiffiffiffi
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in scaled variables.
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The phase space portrait of the King model is represented
in Fig. 2.

B. The equation of state

The equation of state pTðρÞ of the King model is defined
by the parametric equations (27) and (37) where I1ðzÞ and
I2ðzÞ are given by Eq. (70).
For χ → þ∞, we find that

ρ∼A

�
2

β

�
3=2

π3=2eχ ; p∼
1

3
A

�
2

β

�
5=2 3

2
π3=2eχ ; ð73Þ

leading to the isothermal equation of state

p ∼
ρ

β
: ð74Þ

This equation of state is valid at high densities.
For χ → 0, we find that

ρ ∼ A

�
2

β

�
3=2 8π

15
χ5=2; p ∼

1

3
A

�
2

β

�
5=2 8π

35
χ7=2; ð75Þ

leading to the polytropic equation of state

p ∼
1

7

�
15

4πAβ

�
2=5

ρ7=5: ð76Þ

This equation of state is valid at low densities.
For Φ → −∞ the density is related to the gravitational

potential by the Boltzmann distribution ρðΦÞ ∝ e−βΦ and
for Φ → ϵm the density is related to the gravitational
potential by the distribution ρðΦÞ ∝ ðϵm − ΦÞ5=2 corre-
sponding to a polytrope of index n ¼ 5=2. The relation
ρðΦÞ is represented in Fig. 3.

C. The polytropic limit k → 0

In the limit k → 0, the function χ is always small, so we
can use the approximation (71) everywhere. As a result,

the King model is equivalent to a pure polytrope
(p ¼ Kρ1þ1=n) of index n ¼ 5=2 and polytropic constant
K ¼ ð1=7Þð15=4πAβÞ2=5. Defining θ ¼ χ=k and ξ¼ ζ=

ffiffiffi
k

p
,

we find that the differential equation (33) reduces to the
Lane-Emden equation

1

ξ2
d
dξ

�
ξ2

dθ
dξ

�
¼ −θ5=2 ð77Þ

θð0Þ ¼ 1; θ0ð0Þ ¼ 0; ð78Þ

corresponding to a polytrope n ¼ 5=2 [70]. Solving
this equation numerically, we obtain ξ1 ¼ 5.36 and
θ01 ¼ −7.63 × 10−2. Using the theory of polytropes, we
can analytically obtain the mass-radius relation and the
expression of the energy. This allows us to obtain an
analytical expression of the series of equilibria ~βð ~EÞ for
k → 0. We proceed as follows.
Using the virial theorem 2K þW ¼ 0, the total energy

E ¼ K þW is given by

E ¼ W
2
: ð79Þ

The potential energy of a polytrope of index n < 5 is

W ¼ −
3

5 − n
GM2

R
: ð80Þ

Specializing on the index n ¼ 5=2, and using Eq. (79), we
obtain

E ¼ −
3

5

GM2

R
: ð81Þ

The mass-radius relation of a polytrope of index n < 5 is

Mðn−1Þ=nRð3−nÞ=n ¼ Kðnþ 1Þ
Gð4πÞ1=n ω

ðn−1Þ=n
n ; ð82Þ

where ωn ≡ −ξðnþ1Þ=ðn−1Þ
1 θ01. For n ¼ 5=2, we have

ω5=2 ≡ −ξ7=31 θ01 ¼ 3.83. Using the expression of K in terms
of A and β given above, Eq. (82) takes the form

M3R ¼ λ

G5A2β2
ð83Þ

with λ ¼ 225ω3
5=2=ð8192π4Þ ¼ 1.58 × 10−2. Combining

Eqs. (81) and (83), we get

E ¼ −
3G6M5A2β2

5λ
: ð84Þ

Introducing the dimensionless temperature, the dimension-
less energy, and the dimensionless radius defined by
Eqs. (42) and (47)–(48), Eqs. (83)–(84) lead to
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FIG. 3. The density ρðΦÞ in scaled variables showing the
isothermal core, isothermal halo, and polytropic envelope.
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~R ¼ λð8π ffiffiffi
2

p Þ2
~β2

¼ 20.0
~β2

; ð85Þ

~β ¼ 8π

�
10λ

3

�
1=2

ð− ~EÞ1=2 ¼ 5.77ð− ~EÞ1=2: ð86Þ

The radius and the energy are related by ~R ¼ −3=ð5 ~EÞ.
According to Eqs. (42) and (71), we also have

~β ¼
�
15

8π

�
2=3

ð−ξ21θ01Þ4=3k1=3 ¼ 2.02k1=3 ð87Þ

from which we get ~R ¼ 4.90k−2=3 and ~E ¼ −0.123k2=3.
These relations are valid for k → 0, hence for ~β → 0,
~E → 0, and ~R → þ∞. We also note that ϵ → −3=5 and
η ∼ −ξ1θ01k ∼ 0.409k → 0 when k → 0.

D. The isothermal limit k → ∞
In the limit k → þ∞, the function χ is always large,

except close to the tidal radius, so we can use the
approximation (72) in almost all the cluster. As a result,
the King model is almost equivalent to an isothermal
sphere (p ¼ ρ=β). Defining ψ ¼ k − χ and ξ ¼ ζ, we find
that the differential equation (33) reduces almost every-
where to the Emden equation

1

ξ2
d
dξ

�
ξ2

dψ
dξ

�
¼ e−ψ ; ð88Þ

ψð0Þ ¼ 0; ψ 0ð0Þ ¼ 0; ð89Þ
corresponding to the isothermal sphere [70].

V. THE PROPER THERMODYNAMIC
TREATMENT (FIXED A)

In this section, we develop the proper thermodynamic
treatment of the King model associated to the maximization
problems (10)–(11). As explained in Sec. III, in order to
solve these maximization problems, we must work at fixed
A, not at fixed R. Therefore, the thermodynamical param-
eters must be normalized by A, not by R. Accordingly, the
thermodynamical parameters denoted β, E, and R in this
section correspond to the dimensionless parameters ~β, ~E,
and ~R defined by Eqs. (42) and (47)–(48). On the other
hand, S and J refer to S=M and J=M.
In Figs. 4–5, we plot the inverse temperature β and the

energy −E as a function of the normalized central potential
k parametrizing the series of equilibria.
For small k, the system is equivalent to a polytrope of

index n ¼ 5=2 and the functions βðkÞ and EðkÞ are
approximately given by Eqs. (86)–(87) represented as
dashed lines in Figs. 4–5. For large k, the system is similar
to the isothermal sphere (n ¼ þ∞). As for a classical
isothermal sphere confined within a box (see, e.g., Figs. 3

and 5 in [72]), the curves βðkÞ and EðkÞ present damped
oscillations about some asymptotes β ¼ β∞ and E ¼ E∞.
For the King model, β∞ ¼ 0.731 and E∞ ¼ −1.07. The
temperature has a first peak at (kCE ¼ 1.34, βc ¼ 1.63) and
the energy has a first peak at (kMCE ¼ 7.44, Ec ¼ −1.54).
For box-confined isothermal spheres, we have kboxCE ¼ 3.47
and kboxMCE ¼ 6.56 where kbox ¼ βðΦðRÞ − Φ0Þ.
Instead of parametrizing the series of equilibria by k, we

can use the parameter K defined in Sec. III K. For the King
model, the function KðkÞ was computed by Katz [116].
It is recalled in Fig. 6 for completeness. From this figure,
we find that KCE ¼ 5.21 and KMCE ¼ 8.13. Using the
results of Sec. IV, we can easily establish that Kð0Þ ¼
ð7=2Þð1 − ξ1θ

0
1Þ ¼ 4.93 and KðkÞ ∼ k for k → þ∞.

The series of equilibria βð−EÞ is plotted in Fig. 7. This
curve updates the one given by Katz [116] that was drawn
by hand for large values of k. This curve has a snail-like
structure (spiral) similar to the series of equilibria of
classical isothermal spheres confined within a box (see,
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FIG. 4. Series of equilibria giving the inverse temperature β as a
function of the concentration parameter k for the classical King
model. The dashed line corresponds to the analytical formula
obtained in the polytropic approximation.
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FIG. 5. Series of equilibria giving the energy −E as a function
of the concentration parameter k for the classical King model.
The polytropic approximation is valid for relatively low values of
E, before the inflection point of the curve EðkÞ occurring at about
k ∼ 0.6 and E ∼ −0.1.
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e.g., Fig. 1 in [72]). We note, however, that the energy is
always negative in the present case. This is a consequence
of the virial theorem (43) for a self-confined system. By
contrast, for box-confined isothermal spheres, there is an
additional term in the virial theorem due to the pressure
against the boundary, so the energy can be either positive or
negative. The concentration parameter k increases along the
series of equilibria. For small k, the system is equivalent to
a polytrope of index n ¼ 5=2 and the function βðEÞ is
approximately given by Eq. (86) represented as a dashed
line in Fig. 7. This is valid for E → 0− and T → þ∞. For
large k, the system approaches an isothermal sphere
(n ¼ þ∞) and the series of equilibria spirals about the
limit point (E∞, β∞).
In MCE, where the control parameter is the energy E,

there exist equilibrium states only for E > Ec with Ec ¼
−1.54 (first turning point of energy). The critical energy Ec
is the equivalent of the Emden energy for box-confined
isothermal spheres [136]. For E < Ec there is no equilib-
rium state and the system undergoes a gravothermal
catastrophe. For classical particles, this leads to a singu-
larity corresponding to a tight binary surrounded by a
hot halo.17 In CE, where the control parameter is the

temperature T, there exist equilibrium states only for
T > Tc with Tc ¼ 0.613 (first turning point of temper-
ature). The critical temperature Tc is the equivalent of the
Emden temperature for box-confined isothermal spheres
[136]. For T < Tc there is no equilibrium state and the
system undergoes an isothermal collapse. For classical
particles, this leads to a singularity corresponding to a Dirac
peak containing all the mass.18

We now investigate the stability of the classical
King distributions according to the maximization problems
(10)–(11). The stable part of the series of equilibria in each
ensemble defines the caloric curve.
We first consider the canonical ensemble (11) in which

the control parameter is the temperature T. For T → þ∞
the system is stable in CE since it is equivalent to a
polytrope with an index n ¼ 5=2 smaller than the critical
value n ¼ 3 in CE [140]. Using the Poincaré theory, we
conclude that the series of equilibria is stable until the first
turning point of temperature CE and that it becomes
unstable after that point. In other words, the King distri-
bution is a maximum of free energy at fixed mass for
k < kCE and a saddle point of free energy at fixed mass for
k > kCE. Since the series of equilibria always rotates
clockwise, a mode of stability is lost at each turning point
of temperature, so the system is more and more unstable as
k increases.
We now consider the microcanonical ensemble (10) in

which the control parameter is the energy E. For E → 0 the
system is stable in MCE since it is equivalent to a polytrope
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FIG. 6. Relation between the parameters k and K. The bullets
indicate the limits of canonical and microcanonical stability.
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FIG. 7. Series of equilibria (parametrized by k) giving the
inverse temperature β as a function of the energy −E for the
classical King model.

17This is the most probable structure in MCE. Indeed, we can
increase indefinitely the entropy S of a self-gravitating system at
fixed mass and energy by approaching two particles at a very
close distance to each other and redistributing the released energy
in the halo in the form of kinetic energy (see Appendix A of
[137]). The binary has a small mass 2m ≪ M but a huge potential
energy Ebinary → −∞. Since the total energy is fixed in MCE, the
kinetic energy (temperature) of the halo T → þ∞ and, con-
sequently, the entropy S ∼ 3

2
NkB lnT → þ∞. Since the halo is

“hot,” it has the tendency to extend at large distances. It can be
shown [137] that the divergence of entropy is maximum when the
mass in the core is the smallest, corresponding, in the discrete
case, to a binary. We can also formulate this argument in terms of
the density of states [138]. The density of states of a self-
gravitating system diverges for N ≥ 3 because we can form a pair
with a binding energy tending to −∞ and transfer this energy to
the kinetic energy of the other particles which grows to þ∞ to
maximize the volume of phase space they explore.

18This is the most probable structure in CE. Indeed, we can
increase indefinitely the free energy J of a self-gravitating system
at fixed mass by collapsing all the particles at the same point (see
Appendix B of [137]). It can be shown [137] that the divergence
of free energy is maximum when the mass in the core is the
largest. We can also formulate this argument in terms of the
partition function [138]. The partition function of a self-gravi-
tating system diverges for N ≥ 2 when all the particles are
concentrated at the same point [139].
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with an index n ¼ 5=2 smaller than the critical value n ¼ 5
in MCE [140]. Using the Poincaré theory, we conclude that
the series of equilibria is stable until the first turning point
of energy MCE and that it becomes unstable after that
point. In other words, the King distribution is a maximum
of entropy at fixed mass and energy for k < kMCE and a
saddle point of entropy at fixed mass and energy for
k > kMCE. Since the series of equilibria always rotates
clockwise, a mode of stability is lost at each turning point
of energy, so the system is more and more unstable as k
increases.
Accordingly, there exists a region of ensemble inequi-

valence between points CE and MCE in Fig. 7, i.e. for
configurations with kCE < k < kMCE, where kCE ¼ 1.34
and kMCE ¼ 7.44 (we check, in passing, that kCE < kMCE

since a canonical equilibrium is always a microcanonical
equilibrium). This part of the series of equilibria is stable in
MCE (entropy maxima at fixed mass and energy) but
unstable in CE (saddle points of free energy at fixed mass).
It corresponds to configurations with negative specific heat
C ¼ dE=dT < 0. We know that such configurations are
forbidden in CE while they are allowed in MCE. These
results are very similar to those obtained for box-confined
isothermal spheres (see, e.g., the reviews [76,138,141]).
Since there is no global maximum of free energy at fixed

mass for classical self-gravitating systems (see footnote 18),
the configurations with k < kCE in CE are only metastable
(local maxima of free energy at fixed mass). Similarly,
since there is no global entropy maximum at fixed mass and
energy for classical self-gravitating systems (see foot-
note 17), the configurations with k < kMCE in MCE are
only metastable (local maxima of entropy at fixed mass and
energy). However, the probability to cross the barrier of free
energy in CE, or the barrier of entropy in MCE, and leave a
metastable state, is a very rare event because it scales as e−N

[76,119]. For self-gravitating systems with a large number
of particles (for example globular clusters contain about
N ¼ 106 stars and the number of particles in dark matter
halos is much larger) this probability is totally negligible.
Therefore, in practice, metastable states are stable states
[76,119]. In this sense, self-gravitating systems described
by the King model with k < kCE in CE and with k < kMCE
in MCE can be considered to be at statistical equilibrium,
even if there is no statistical equilibrium state in a strict
sense. Their lifetime is controlled by evaporation and
gravitational collapse as discussed in the introduction.
The physical caloric curve in CE corresponds to the part

of the series of equilibria represented in Fig. 7 up to point
CE and the physical caloric curve in MCE corresponds to
the part of the series of equilibria represented in Fig. 7 up to
point MCE. They are made of long-lived metastable states.
In Figs. 8–9, we plot the entropy S as a function of the

energy −E in MCE and the free energy J as a function of
the inverse temperature β in CE. Since δS ¼ βδE (for a
fixed mass M) in MCE, we find that SðkÞ is extremum

when EðkÞ is extremum. Similarly, since δJ ¼ −Eδβ (for a
fixed mass M) in CE, we find that JðkÞ is extremum when
βðkÞ is extremum. This explains the “spikes” observed in
Figs. 8–9. Similar spikes are found for box-confined
isothermal spheres in Newtonian gravity (see Figs. 4 and
6 in [72]) and for box-confined self-gravitating systems
described by a linear equation of state in general relativity
(see Fig. 5 in [142]). The series of equilibria becomes
unstable after the first spike in each ensemble. This is in
agreement with the fact that the states on the unstable
branches (after the first spike) have lower entropy or lower
free energy than the states on the stable branch (before the
first spike).
In Fig. 10, we plot the tidal radius R as a function of the

inverse temperature β in CE. For T → þ∞ the tidal radius
tends to þ∞ and it decreases as T decreases. At the critical
temperature Tc the value of the tidal radius is RCE ¼ 3.50.
This is the minimum stable value of the radius in CE (as we
have seen previously, the part of the curve situated after the
turning point of temperature is unstable). In Fig. 11, we plot
the tidal radius R as a function of the energy −E in MCE.
For E → 0− the tidal radius tends to þ∞. As E decreases,
the radius first decreases up to the value Rmin ¼ 1.07
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FIG. 8. Entropy versus energy for the classical King model.
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FIG. 9. Free energy versus inverse temperature for the classical
King model.

CHAVANIS, LEMOU, AND MÉHATS PHYSICAL REVIEW D 91, 063531 (2015)

063531-16



(reached at E ¼ −1.26) then increases. At the critical
energy Ec the value of the tidal radius is RMCE ¼ 1.24.
In Fig. 12, we plot the central density normalized by

32πA2G3M2 as a function of k. This curve is monotonic
so that the parameter k can be considered as a measure of
the central density. Using the results of Sec. IV, we can
easily establish that ~ρ0 ∼ ð8π=15Þ2k2=ð−ξ21θ01Þ2 ∼ 0.584k2

for k → 0 and ~ρ0 ∼ π3=2ek=~β3=2∞ ∼ 8.91ek for k → þ∞.

Finally, even if we have not represented the curves ~ϵmðkÞ
and ~σ20ðkÞ for brevity, we give their asymptotic values. We
find that ~ϵm ∼ −0.202k2=3 and ~σ20 ∼ 0.141k2=3 for k → 0

and we find that ~ϵm → −0.651 and ~σ20 → 1.37 for k → þ∞.

VI. THE EFFECT OF FIXING R INSTEAD OF A

For box-confined self-gravitating classical isothermal
spheres, the temperature and the energy are normalized
by the box radius R (see, e.g., [76]). This is the proper
normalization in that context because the box radius is a
fixed quantity. By analogy, we could normalize the temper-
ature and the energy of the classical King model by the tidal
radius R (the radius at which the density drops to zero).
This normalization was considered by Lynden-Bell and
Wood [118] and, more recently, by Casetti and Nardini
[143]. However, as already noted by Katz [116], this
normalization is not correct for a thermodynamical analy-
sis. Indeed, when we study the maximization problems
(10)–(11), we must consider that A, not R, is fixed. It is only
under this condition that the theory of Poincaré applies and
that the turning points of energy and temperature corre-
spond to a change of thermodynamical stability in MCE
and CE according to the maximization problems (10)–(11).
If we fix R instead of A, the turning points of energy and
temperature do not correspond to a change of thermody-
namical stability in MCE and CE. It is not clear whether
these turning points signal another form of instability.
We can give several arguments why A should be kept

fixed instead of R (see also the arguments given in the
appendix of Katz [116]): (i) Basically, we must fix A
because it explicitly enters in the expression of the entropy
functional defined by Eqs. (9) and (69). In order to apply
the theory of Poincaré, all the parameters that appear in the
entropy functional must be fixed along the series of
equilibria; they act as external parameters; (ii) it is only
when A is regarded as given that a self-gravitating system
described by a distribution function of the form (19)–(20)
has a well-defined barotropic equation of state pTðρÞ as
discussed in Sec. III C; (iii) according to Eq. (50), fixing R
is equivalent to fixing ϵm. However, we expect that the tidal
radius and the escape energy change along the series of
equilibria as we vary the energy or the temperature.
Therefore, on a mathematical and physical point of view,
it is more relevant to fix A rather than R.
To make the difference between the two prescriptions

clear, we consider in this section the effect of fixing R
instead of A. Accordingly, in this section, the thermody-
namical parameters β and E correspond to the dimension-
less parameters η and ϵ defined by Eqs. (40) and (46). On
the other hand, S and J still refer to S=M and J=M (their
expressions are unchanged whether A or R is fixed).
In Fig. 13 we plot the series of equilibria βð−EÞ for fixed

R. This curve is obtained from Eqs. (40) and (46) by
varying k from 0 to þ∞. It starts from ð−E; βÞ ¼ ð3=5; 0Þ
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FIG. 10. Tidal radius versus inverse temperature for the
classical King model.
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FIG. 11. Tidal radius versus energy for the classical King
model.
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FIG. 12. Central density as a function of k in semilog scales.
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[see Eq. (81)] and makes a spiral for large values of k about
the point ðE∞; β∞Þ ¼ ð−1.65; 0.476Þ. The series of equi-
libria presents a first turning point of temperature at
k0CE ¼ 3.98, β0c ¼ 0.840 and a first turning point of energy
at k0MCE ¼ 8.50, E0

c ¼ −2.13. However, as discussed above,
the meaning of these turning points regarding the stability
of the system is unclear. At least, they indicate that, when R
is fixed, there is no equilibrium below E0

c, or above β0c. We
also note that there is no possible equilibrium for E > −3=5
when R is fixed.
Since δS ≠ βδE and δJ ≠ −Eδβ when R is fixed instead

of A, the entropy SðkÞ and the energy EðkÞ on the one hand,
and the free energy JðkÞ and the inverse temperature βðkÞ on
the other hand, do not have their extrema at the same values
of k. As a result, the curves SðEÞ and JðβÞ present turning
points instead of spikes (compare Figs. 14–15 to Figs. 8–9).
Figure 16 recapitulates the difference between fixing A

or R. First, we note that the curve SðkÞ is the same in the
two cases. When A is fixed, the energy ~EðkÞ and the
entropy SðkÞ have their extrema at the same points. When R
is fixed, the extrema of ϵðkÞ and SðkÞ are different.

VII. COMPARISON OF THE CLASSICAL KING
MODEL WITH THE OBSERVATIONS OF DARK

MATTER HALOS

In order to compare a specific theoretical model of dark
matter halos with observations, it is necessary to introduce
quantities that are directly measurable. In the present
section, we introduce such quantities. We define them
for an arbitrary distribution function so they can be applied
to various models in future works. Then we explicitly
calculate these quantities for the classical King model and
compare the results with observations.19
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FIG. 13. Series of equilibria βð−EÞ for the classical King model
when R is fixed instead of A.
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FIG. 14. Entropy versus energy plot for the classical King
model when R is fixed instead of A. This figure reveals a paradox
when R is fixed because the configurations with k < k0MCE (that
could be expected to be entropy maxima) have a lower entropy
than the configurations with k > k0MCE (that are unstable).
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FIG. 15. Free energy versus inverse temperature plot for the
classical King model when R is fixed instead of A.
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FIG. 16. Entropy S, energy ~E (normalized by A), and energy ϵ
(normalized by R) as a function of k.

19Throughout the paper, we neglect the role of baryons in our
analysis. This assumption is usually well justified because the
baryonic component represents only a few percent (less than 5%)
of the total mass of the galaxy [8,144]. This is true not only for
dwarf spheroidals and low surface brightness galaxies where
baryons count for less than 0.01% of the galaxy mass [145], but
even for large galaxies. It has been suggested that baryons may
have an important effect in the core of the halos because they can
erase dark matter cusps [146]. However, the validity of this
scenario has been criticized [147,148] and remains an open
problem (see [149] for recent results).
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A. The halo radius and the tidal radius

We consider a spherical cluster described by a distribu-
tion function of the form fðϵÞ with f0ðϵÞ < 0. The density
profile of the system is given by Eq. (29). Following de
Vega and Sanchez [105–109], we define the halo radius rh
such that ρðrhÞ=ρ0 ¼ 1=4. The dimensionless halo radius
ζh is therefore determined by the equation

I1½χðζhÞ�
I1ðkÞ

¼ 1

4
: ð90Þ

This is a function ζhðkÞ of the variable k parametrizing the
series of equilibria. The halo radius is then given by rh ¼
r0ζh where r0 is defined by Eq. (32). The radial distance
normalized by the halo radius can bewritten as r=rh ¼ ζ=ζh.
The tidal radius normalized by the halo radius is given by

R
rh

¼ ζ1ðkÞ
ζhðkÞ

≡RðkÞ: ð91Þ

The function RðkÞ is plotted in Fig. 17 for the classical
King model. For k → 0, we find that R → Rð0Þ ¼ 2.75
[this asymptotic value can be directly obtained from the
study of the Lane-Emden equation (77) from which we get
ξh ¼ 1.945 and ξ1 ¼ 5.36] and for k → þ∞, we find that
R → þ∞. We note that the tidal radius normalized by the
halo radius increases monotonically with k while the tidal
radius normalized by A initially decreases with k and finally
makes damped oscillations (see Figs. 10–11).

B. The density profile

The density profile normalized by the central density is
given by

ρðrÞ
ρ0

¼ I1½χðζÞ�
I1ðkÞ

: ð92Þ

The normalized density profile ρðrÞ=ρ0 corresponding to
the classical King model is plotted as a function of the
normalized radial distance r=rh in Figs. 18–19 in

logarithmic and linear scales respectively for different
values of k. Roughly speaking, for a given value of k,
the core and the halo of the distribution are isothermal
(provided that k is sufficiently large) while the envelope is
polytropic with an index n ¼ 5=2. This is because the
density is high in the core and the halo, and low in the
envelope (see Sec. IV B). It is the polytropic nature of
the envelope that confers to the system a finite radius.
Indeed, a purely isothermal system extends to infinity
and has infinite mass. By contrast, a polytrope with index
n ¼ 5=2 has a compact support.
The proportion of the isothermal region with respect to

the polytropic one depends on k.
For k → 0, the density profile almost coincides with that

of a polytrope of index n ¼ 5=2 (in Figs. 18–19, the King
profile with k ¼ kCE ¼ 1.34 is indistinguishable from a
pure n ¼ 5=2 polytrope). In that case, the tidal radius R is
of the order of the halo radius rh.
For k → þ∞, the tidal radius R is rejected toþ∞ and the

density profile approaches the profile of the classical
isothermal sphere except at very large distances r ∼ R
where the density drops to zero, ensuring a finite mass. For
rh ≪ r ≪ R, the density decreases algebraically as r−α

with α ¼ 2. Actually, the density profile exhibits damped
oscillations about the r−2 profile20 as for the classical
isothermal sphere (see, e.g., Fig. 7 in [76]). However, our
study shows that the profiles with k > kMCE ¼ 7.44 are
thermodynamically unstable. Therefore, the oscillations of
the density profile are not physically relevant.

0 2 4 6 8 10
k

0

50

100

150

200

R
/r

h

k
CE

=1.34

k
MCE

=7.44

R/r
h
=3.31

R/r
h
=38.5

FIG. 17. Tidal radius normalized by the halo radius R=rh as a
function of k. For k ¼ kCE ¼ 1.34, one finds that R=rh ¼ 3.31.
For k ¼ kMCE ¼ 7.44, one finds that R=rh ¼ 38.5.
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FIG. 18. Normalized density profiles of the classical King
model in logarithmic scales for (left to right) k ¼ kCE ¼ 1.34
(E ¼ −0.188, β ¼ 1.63), k ¼ 5 (E ¼ −0.965, β ¼ 0.893), k ¼
kMCE ¼ 7.44 (E ¼ −1.54, β ¼ 0.589), k ¼ 15 (E ¼ −1.09,
β ¼ 0.735), and k ¼ 30 (E ¼ −1.07, β ¼ 0.732). Dotted line:
modified Hubble profile. Dashed-dotted line: isochrone profile.
Dashed line: Burkert profile.

20These oscillations give rise to those of βðkÞ and EðkÞ in
Figs. 4–5, leading to the spiral βðEÞ of Fig. 7. Therefore, the onset
of gravitational collapse in CE and MCE (associated with the
turning points of temperature and energy) can be traced back to
the oscillations of the density profile.
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As k decreases, the effective slope of the density profile
increases. For k ¼ kMCE ¼ 7.44 the density profile
decreases approximately as r−α for rh ≪ r ≪ R with an
effective slope α ∼ 3. For k ¼ 5 the density profile has an
effective slope α ∼ 4. In MCE, the King model is stable
(k < kMCE) as long as the effective slope α is approximately
larger than 3. In CE, the King model is stable (k < kCE)
only when it is close to the n ¼ 5=2 polytrope.
The dotted line represents themodifiedHubble profile (see

Appendix A) that has a slope α ¼ 3 [1]. It fits the core of the
isothermal spherewell for r < 1.63rh [1]. It also fits theKing
modelwith k ∼ kMCE well up to∼5rh. The dashed-dotted line
represents Hénon’s isochrone profile (see Appendix B) that
has a slopeα ¼ 4 [150]. It fits theKingmodel with k ∼ 5well
up to ∼2rh. The dashed line represents the Burkert profile
corresponding to the observations of darkmatter halos [14]. It
has a slope α ¼ 3 (see Sec. VII F).
In MCE, the isochrone profile is stable, the modified

Hubble profile is close to the limit of marginal stability, and
the classical isothermal profile is unstable. In CE, the
isochrone profile, the modified Hubble profile, and the
classical isothermal profile are all unstable.
Globular clusters and dark matter halos are believed to

result from a process of violent relaxation. Violent relax-
ation usually generates a density profile with a core-halo
structure. The density in the core is flat while it decreases in
the halo as r−α with α ¼ 4 [151–154]. This is the same
exponent as Hénon’s isochrone profile. This also corre-
sponds to a King model with a concentration parameter
k ∼ 5 that is stable in MCE (but unstable in CE). We argue
in Appendix A of paper II that the concentration parameter
kðtÞ increases monotonically with time because of colli-
sions21 and evaporation until an instability takes place at
kMCE. Such an evolution is shown numerically by Cohn

[120] in the case of globular clusters. Since the effective
slope α of the density profile decreases with k (see Fig. 20),
we conclude that αðtÞ decreases monotonically with time.
In MCE, the King profile is stable as long as αðtÞ ≥ 3 (i.e.
kðtÞ ≤ kMCE ¼ 7.44) and it becomes unstable afterwards.
In CE, the King profile destabilizes at kðt�Þ ¼ kCE ¼ 1.34
before even producing an effective power law.

C. The circular velocity

The circular velocity is defined by Eq. (54). The value
of the circular velocity at the halo radius is vcðrhÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMh=rh

p
, where Mh ¼ MðrhÞ is the halo mass. Using

Eq. (55), the circular velocity normalized by its value at
r ¼ rh is given by

vcðrÞ
vcðrhÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζχ0ðζÞ
ζhχ

0ðζhÞ

s
: ð93Þ

The normalized circular velocity vcðrÞ=vcðrhÞ correspond-
ing to the classical King model is plotted as a function of
the normalized radial distance r=rh in Figs. 21–22 in
logarithmic and linear scales respectively for different
values of k. We first note that the rotation curve does
not sensibly depend on the value of k in the range
0 ≤ r ≤ rh. By contrast, differences appear for r ≥ rh.
For k → 0, the system is close to a polytrope of index

n ¼ 5=2 and the tidal radius R is of the order of the halo
radius rh. For r > R, the density of the dark matter halo is
equal to zero so the rotation curve has a Keplerian profile
(not represented).
For k → þ∞, the density decreases as r−2 at large

distances, like for the classical isothermal sphere, leading
to a flat rotation curve. Actually, the rotation curve presents
damped oscillations about the plateau (due to the oscil-
lations of the density profile) that are clearly visible in
logarithmic scales. However, the profiles with k > kMCE ¼
7.44 are thermodynamically unstable so these oscillations
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FIG. 19. Normalized density profile of the classical King model
in linear scales for (bottom to top) k ¼ 1.34, k ¼ 5, k ¼ 7.44,
k ¼ 15, and k ¼ 30.
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FIG. 20. Effective slope of the density profile in the halo as a
function of the concentration parameter k. The point of micro-
canonical marginal stability kMCE ¼ 7.44 corresponds to α ¼ 2.7
close to 3. The slope α ¼ 4 corresponds to k ¼ 3.3.

21For globular clusters, collisions refer to weak long-range
interactions (two-body encounters) and for dark matter halos they
refer to strong short-range interactions.
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are not physically relevant. In addition, real halos do not
extend at such large distances where these oscillations
would appear (if they were relevant).
For smaller values of k, the density decreases more

rapidly than r−2 at large distances and consequently the
rotation curve decreases with the distance. For k ∼ kMCE,
the rotation curve presents a maximum close to the halo
radius rh before decreasing. This is in agreement with the
observations (see Sec. VII F). The modified Hubble profile
fits the King profile with k ¼ kMCE relatively well up to the
tidal radius R ¼ 38.5rh. Similarly, the isochrone profile fits
the King profile with k ¼ 5 relatively well up to the tidal
radius R ¼ 9.33rh. Therefore, the fit is better on the
rotation curves than on the density profiles.

D. The velocity dispersion

The local velocity dispersion of a spherically symmetric
distribution function fðϵÞ is defined by Eq. (57). According
to Eq. (58), the velocity dispersion profile normalized by
the central velocity dispersion is given by

σ2ðrÞ
σ20

¼ I2½χðζÞ�I1ðkÞ
I1½χðζÞ�I2ðkÞ

: ð94Þ

The normalized velocity dispersion profile σ2ðrÞ=σ20
corresponding to the classical King model is plotted
as a function of the normalized radial distance r=rh in
Figs. 23–24 in logarithmic and linear scales respectively for
different values of k. For sufficiently large k, these curves
clearly show the isothermal region where the velocity
dispersion is almost uniform (coinciding with the temper-
ature T) and the polytropic region where the velocity
dispersion decreases rapidly with the distance. For
k → 0, the system almost coincides with a polytrope of
index n ¼ 5=2 and the velocity dispersion is far from being
uniform. Actually, it is related to the density profile by
σ2ðrÞ ¼ Kρ2=5ðrÞ where K is the polytropic constant
defined in Sec. IV C. As k increases, the velocity dispersion
becomes more and more uniform in the inner region of the
distribution that extends at larger and larger radii. For
k → þ∞, the system is almost isothermal except at very
large distances, close to the tidal radius R. For k ∼ kMCE,
the system is isothermal for r < 2rh and polytropic for
2rh < r < R ¼ 38.5rh. Using Eq. (59), we find that
the ratio between the central velocity dispersion and the
temperature behaves as σ20=T ∼ ð2=7Þk for k → 0, while
σ20=T → 1 for k → þ∞ as expected.

E. The functions F and G

Applying Eq. (39) at r ¼ rh, we find that the halo mass
Mh normalized by ρ0r3h is given by

Mh

ρ0r3h
¼ −4π

χ0½ζhðkÞ�
ζhðkÞ

≡ FðkÞ: ð95Þ

This is a function FðkÞ of the parameter k parametrizing the
series of equilibria. For the classical King model, this
function is plotted in Fig. 25. Its asymptotic values can be
obtained analytically. For k → 0, the system reduces to a
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FIG. 22. Normalized rotation curve of the classical King model
in linear scales for (bottom to top) k ¼ 1.34, 5, 7.44, 15, and 30.
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FIG. 23. Normalized velocity dispersion of the classical King
model in logarithmic scale for (left to right) k ¼ 1.34, 5, 7.44, 15,
and 30.
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FIG. 21. Normalized rotation curve of the classical King model
in logarithmic scales for (left to right) k ¼ 1.34, 5, 7.44, 15,
and 30.

MODELS OF DARK MATTER HALOS BASED ON … PHYSICAL REVIEW D 91, 063531 (2015)

063531-21



pure polytrope of index n ¼ 5=2 and one finds Fð0Þ ¼
1.89 [using ξh ¼ 1.945 and θ0h ¼ −0.293 obtained from
the study of the Lane-Emden equation (77)–(78)]. For
k → þ∞, the system tends to the classical isothermal
sphere and one finds Fðþ∞Þ ¼ 1.76 [using ξh ¼ 3.63
and ψ 0

h ¼ 0.507 obtained from the study of the Emden
equation (88)–(89)]. We see in Fig. 25 that the function
FðkÞ decreases monotonically between these two values.
We note that this function does not change much as a
function of k so that it has an almost universal value ∼1.8.
For k ¼ kMCE, corresponding to the stability threshold in
MCE, we get FðkMCEÞ ¼ 1.76.
Applying Eq. (31) at r ¼ rh and using Eq. (32), we

obtain the expression of the temperature normalized by
Gρ0r2h:

1

βGρ0r2h
¼ 4π

ζ2hðkÞ
: ð96Þ

Combining Eqs. (59) and (96), we find that the central
velocity dispersion normalized by Gρ0r2h is given by

σ20
Gρ0r2h

¼ 8π

3

1

ζ2hðkÞ
I2ðkÞ
I1ðkÞ

≡ GðkÞ: ð97Þ

This is a functionGðkÞ of the parameter k parametrizing the
series of equilibria. For the classical King model, this
function is plotted in Fig. 26. As for the function FðkÞ, its
asymptotic values can be obtained analytically. For k → 0,
one finds Gð0Þ ¼ 0.949 and for k → þ∞, one finds
Gðþ∞Þ ¼ 0.954. We see in Fig. 26 that the function
GðkÞ first decreases, reaches a minimum Gmin ¼ 0.929
at k ¼ 3.45, then increases towards its asymptote. We note
that this function does not change much as a function
of k so that it has an almost universal value ∼0.95. For
k ¼ kMCE, we get GðkMCEÞ ¼ 0.946.
We note that v2cðrhÞ=Gρ0r2h ¼ Mh=ρ0r3h ¼ FðkÞ.

Therefore, using Eqs. (95) and (97), we obtain

v2cðrhÞ
σ20

¼ FðkÞ
GðkÞ : ð98Þ

This function varies between 1.99 for k → 0 and 1.84 for
k → þ∞. For k ¼ kMCE, it takes the value 1.86.

F. Application to dark matter halos

Some measurable quantities of dark matter halos are the
central density ρ0, the central velocity dispersion σ0, the
halo radius rh, and the halo mass Mh. They are given for
different types of galaxies (dwarf and large) in Table I of
Ref. [106]. On the other hand, the circular velocities vcðrÞ
are known with precision from galaxy observational data.
The observation of the rotation curves of a large number of
galaxies shows that the density of dark matter halos can be
represented by a universal profile, called the Burkert profile
[14], given by the empirical law

ρðrÞ
ρ0

¼ 1

ð1þ xÞð1þ x2Þ ; x ¼ r
rh

: ð99Þ

The Burkert profile decreases at large distances as r−3 like
the Navarro-Frenk-White (NFW) profile [13]. This leads to
a mass profile MðrÞ diverging logarithmically with r.
However, contrary to the NFW profile, the Burkert profile
presents a flat core density for r → 0 instead of exhibiting a
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FIG. 24. Normalized velocity dispersion of the classical King
model in linear scale for (bottom to top) k ¼ 1.34, 5, 7.44, 15,
and 30.
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r−1 density cusp. Density cusps are not observed in dark
matter halos unless they contain a massive central
black hole.
The rotation curve corresponding to the Burkert profile is

v2cðrÞ ¼ 2πG
ρ0r3h
r

�
lnð1þ xÞ − arctan xþ 1

2
lnð1þ x2Þ

�
:

ð100Þ

After normalization by the circular velocity at the halo
radius, we get

vcðrÞ
vcðrhÞ

¼ 1.98ffiffiffi
x

p
�
lnð1þ xÞ − arctan xþ 1

2
lnð1þ x2Þ

�
1=2

:

ð101Þ

The halo mass is obtained by integrating Eq. (99) from
zero to rh. This yields

Mh

ρ0r3h
¼ 1.60: ð102Þ

Alternatively, using the observational data given in Table I
of [106], we find that

Mh

ρ0r3h
∼ 2.5;

σ20
Gρ0r2h

∼ 0.4: ð103Þ

The comparison between Eqs. (102) and (103) shows that
we should not give too much importance on the precise
values of these quantities. We just note that the typical
values of these quantities deduced from the Burkert profile,
or directly from the observations, are consistent with
those obtained theoretically with the classical King model
(see Sec. VII E). Actually, it can be shown [155] that many
models of dark matter halos yield values of Mh=ρ0r3h and
σ20=Gρ0r

2
h that agree with the observational results.

Therefore, the comparison between theory and observa-
tions for these quantities is not very discriminatory.
The density profiles and the circular velocity profiles

obtained from the King model for different values of the
concentration parameter k are compared with the Burkert
profile in Figs. 18–22. In the range 0 ≤ r ≤ rh, all the
theoretical curves coincide, whatever the value of k, and
they are in good agreement with the Burkert profile.22 This

corresponds to the region where the distribution function is
isothermal. This suggests that the core of dark matter halos
is isothermal. Actually, it can be shown [155] that many
models of dark matter halos yield the same density and
velocity profiles in this range of radial distances, so the
agreement with the Burkert profile for r ≤ rh cannot be
considered as a vindication of a particular theoretical
model. By contrast, at larger distances r > rh, the theo-
retical profiles sensibly depend on k and the comparison
with the Burkert profile gives more stringent constraints on
the acceptable models. We note that the virial radius of dark
matter halos is of the order of 10–100rh [107], so we have
to compare the theoretical profiles with the Burkert profile
on distances greater than rh.
For k → þ∞, we recover the classical isothermal profile.

However, this profile does not agree with the observational
Burkert profile at large distances because the density
decreases too slowly. For rh ≪ r ≪ R, the density
decreases as r−2 instead of r−3 and the rotation curve
forms a plateau while the observational rotation curves
slightly decrease at large distances. Therefore, the King
profiles with a large value of the concentration parameter k
are not in agreement with the observations. This is con-
sistent with our theoretical study since we find that the King
models with k > kMCE ¼ 7.44 are thermodynamically
unstable.
For k → 0, the King model is equivalent to a polytrope of

index n ¼ 5=2. This profile does not agree with the Burkert
profile because the density drops to zero too rapidly. In
addition, the tidal radius is of the order of the halo radius
while observational rotation curves extend well beyond the
halo radius. Therefore, the King models with a low value
of the concentration parameter k are not in agreement with
the observations. This is consistent with our theoretical
study since we argue in Appendix A of paper II that the
concentration parameter kðtÞ increases with time as a result
of collisions and evaporation so that sufficiently old halos
should have relatively large values of k.
The best agreement with the Burkert profile is achieved

for the King models with k ∼ kMCE. In that case, the density
profile can be approximated by the modified Hubble profile
(see Appendix A) that decreases as ðr=rhÞ−3 like the
Burkert profile. The prefactors are respectively 0.534
and 1. The rotation curves corresponding to the modified
Hubble profile and Burkert profile have a similar behavior.
They achieve a maximum before decreasing. The maxi-
mum is located at ðr=rh; vc=vcðrhÞÞ ¼ ð2.37; 1.17Þ for the
modified Hubble profile and at (3.25,1.30) for the Burkert
profile. This difference lies in the error bars of the
observations (at least 20%). We also note that the tidal
radius of the King model with k ¼ kMCE is equal to 38.5rh
which is of the same order of magnitude as the observa-
tional virial radius of dark matter halos. Therefore, we
conclude that the observations of dark matter halos,
represented by the empirical Burkert profile, can be

22We note that the Burkert density profile behaves as
ρ=ρ0 − 1 ∝ r for r → 0 while the King density profiles behave
as ρ=ρ0 − 1 ∝ r2 for r → 0 which is the natural behavior of
spherically symmetric systems. We recall that the Burkert profile
is purely empirical so we should not give too much credit to its
precise behavior for r → 0 (its main property is to have a flat
core). We also note that the difference of behavior between the
Burkert profile and the King profiles for r → 0 is almost
imperceptible on the rotation curves.
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relatively well explained by a King model at, or close to, the
limit of microcanonical stability. Strictly speaking, the
density profiles of dark matter halos are not universal
since they depend on the concentration parameter k, but it is
natural to expect that most observed halos have a concen-
tration parameter close to kMCE, which explains why their
profile is quasiuniversal (the same is true for globular
clusters). Indeed, the concentration parameter cannot be
much smaller than kMCE since kðtÞ increases with time, and
it cannot be larger than kMCE since, at that concentration,
the clusters become thermodynamically unstable and col-
lapse. Therefore, large dark matter halos that have not
collapsed should have a concentration parameter of the
order of k ∼ kMCE, and this happens to be consistent with
the observations.
In conclusion, we propose to describe large dark matter

halos by a classical King model at the point of marginal
stability in MCE. It can be approximated by a modified
Hubble profile with a slope α ¼ 3.23 This profile approx-
imately accounts for the observed rotation curves of dark
matter halos up to the tidal radius R ¼ 38.5rh which is of
the same order of magnitude as the virial radius of dark
matter halos (∼10–100rh). The fact that we observe dark
matter halos with a slope α ¼ 3 instead of α ¼ 4 (a typical
outcome of collisionless violent relaxation [151–154]) may
be an indication that dark matter is collisional. Indeed,
collisions and evaporation increase the concentration kðtÞ
and decrease the slope αðtÞ from the initial state ki ∼ 5
and αi ¼ 4 (∼ Hénon’s isochrone profile) to the final state
kf ¼ kMCE ¼ 7.44 and αf ∼ 3 (∼modified Hubble profile).
The same is true for globular clusters (see Appendix D).

G. Universal scaling laws

It is an empirical fact that the surface density Σ0 ¼ ρ0rh
is approximately the same for all galaxies [107] even if their
sizes and masses vary by several orders of magnitude (see,
e.g., Table I of [106]). Its typical value is Σ0¼120M⊙=pc2.
As a result, it is convenient to rewrite Eqs. (95) and (97) in
terms of Σ0 instead of ρ0. We get

Mh

Σ0r2h
¼ FðkÞ; σ20

GΣ0rh
¼ GðkÞ: ð104Þ

Considering Σ0 as a constant,
24 these equations exhibit the

scalings Mh ∼ r2h, σ20 ∼ rh, and σ20 ∼M1=2
h . Introducing

relevant scales, the foregoing relations may be rewritten as

Mh

M⊙
¼ FðkÞ Σ0

M⊙=pc2

�
rh
pc

�
2

; ð105Þ

σ20
ðkm=sÞ2 ¼ 4.3010−3GðkÞ Σ0

M⊙=pc2
rh
pc

: ð106Þ

For theKingmodel, the quantitiesFðkÞ andGðkÞ are plotted
in Figs. 25–26. As we have seen in Secs. VII E–VII F,
these quantities do not change much with k and have
the typical values 1.8 and 0.95 respectively. Furthermore,
we have explained that the concentration parameter k
should be close to kMCE. This fixes the prefactors in
Eqs. (105)–(106) to the values 1.76 and 0.946 respectively.
We emphasize that the scalings (105)–(106) do not

depend on the distribution function chosen to model dark
matter halos. Only the functions FðkÞ and GðkÞ depend on
the model. Furthermore, most models of dark matter halos
give values of FðkÞ and GðkÞ that sensibly have the same
order of magnitude [155]. Therefore, the observation of the
scaling laws (105)–(106) cannot be considered as a
vindication of a particular theoretical model.
Remark: For large dark matter halos, which are non-

degenerate, the central velocity dispersion σ20 ¼ kBT=m
represents the ratio of the temperature of the cluster on the
mass of the particles (this is valid for sufficiently large k). It
is possible to determine σ0 observationally (see Table I of
[106]). However, since the temperature of the clusters is
unknown, we cannot determine the mass m of the particles
that compose them. Assuming that dark matter halos are
made of fermions, the mass of the fermions can be obtained
only from the observation of dwarf dark matter halos that
are degenerate (see [105,106] and paper II).

H. Comparison with other works

In a nice series of papers [105–109], de Vega and
Sanchez propose to model dark matter halos as a
self-gravitating gas of fermions at finite temperature
described by the Fermi-Dirac-Poisson system (Thomas-
Fermi approximation). This idea is not new since several
works in the past already considered fermionic dark matter
halos at finite temperature (see the introduction). However,
de Vega and Sanchez confront this model to observations
and give convincing arguments that the mass of the
fermions should be of the order of 2 keV=c2. This mass
scale corresponds to warm dark matter. The dark matter
particle could be a sterile neutrino. In their first papers
[105,106], they argue that the cusp problem and the satellite
problem of CDM are solved by quantum mechanics
(Pauli exclusion principle). This is valid for small halos
(M < 106M⊙) for which quantum effects are important. In
particular, the most compact known dwarf halo (Willman 1)
with mass M ¼ 0.39 × 106M⊙ may be considered as a
completely degenerate self-gravitating Fermi gas at zero
temperature stabilized by quantum mechanics. However,

23The fact that the modified Hubble profile can be interpreted
as a King model at the limit of microcanonical stability may also
explain why it gives a good fit to certain elliptical galaxies [1],
globular clusters [156], and clusters of galaxies [157].

24Actually, this is not true for the largest dark matter halos
where Σ0 can reach values of the order of 7000M⊙=pc2 instead of
Σ0 ¼ 120M⊙=pc2 (see Table I of [106]).
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for large dark matter halos (M > 106M⊙), which constitute
most of the available observational data (see Table I of
[106]), quantum effects are negligible and the classical limit
applies.25 Therefore, in Ref. [107], de Vega and Sanchez
describe large dark matter halos by the Boltzmann dis-
tribution. In that case, the cusp problem is solved by finite
temperature effects, not by quantum mechanics. de Vega
and Sanchez argue that large dark matter halos have a
universal profile corresponding to the classical isothermal
profile. This profile, which has a homologous structure
[70], has been considered by many authors in the past. de
Vega and Sanchez show that this profile agrees with the
Burkert profile for r < rh. However, if we continue the
comparison at larger distances, up to the typical virial
radius of dark matter halos (∼10–100rh), severe disagree-
ments appear between the classical isothermal profile and
Burkert profile (see Fig. 27) as discussed in Sec. VII F. In
particular, the classical isothermal sphere (in addition of
being thermodynamically unstable) leads to flat rotation
curves while the observed circular velocity decreases with
the distance. Therefore, the classical isothermal profile
cannot correctly describe dark matter halos up to the virial
radius. de Vega and Sanchez recognize this problem since
they argue, in their last papers [108,109], that a deviation to
isothermality must be present in the halo in order to account
for the observations. To this aim, they consider a family of
empirical density profiles of the form

ρðrÞ
ρ0

¼ 1

½1þ ð42=α − 1Þð rrhÞ2�α=2
ð107Þ

and mention that these profiles with α ∼ 3 are appropriate
to fit galaxy observations up to the virial radius (see also
[158]). Then they use the Eddington equation [1] to
determine the corresponding distribution function fðϵÞ.
They obtain a rather complicated expression but they
manage to show that the distribution function is isothermal
at low energies and nonisothermal at high energies.
However, no justification of the density profiles (107) is
given, so their approach remains essentially empirical.
By using a different approach, we arrived at a similar

conclusion from more physical considerations. We pro-
posed to model dark matter halos by the fermionic King
distribution. For large halos, we can neglect quantum
effects and use the classical King distribution. We argued,

on the basis of kinetic considerations and stability analysis,
that dark matter halos should be described by the King
distribution at, or close to, the point of marginal micro-
canonical stability. It turns out that, at this point, the King
profile can be approximated by the modified Hubble
profile up to the tidal radius. The modified Hubble profile
corresponds to the profile of Eq. (107) with α ¼ 3 (see
Appendix A). Our study provides therefore a physical
justification of the empirical profile with α ∼ 3 considered
by de Vega and Sanchez [109] (see also [158]).
Furthermore, it shows that this profile comes from a
distribution function that is close to the classical King
distribution. This distribution is isothermal (Boltzmannian)
at low energies and polytropic (with an index n ¼ 5=2) at
high energies. By contrast, the physical meaning of the
distribution function fðϵÞ that de Vega and Sanchez [109]
obtain from Eq. (107) by using the Eddington formula is
less clear. Therefore, our approach provides a new light on
their results.

VIII. CONCLUSION

In this paper, we have studied in detail the thermody-
namical properties of the classical King model. This model
was originally introduced to describe globular clusters
[113,115] but we have proposed to apply it also to the
case of large dark matter halos. The King model is a
physically motivated model that can be justified by
statistical mechanics and kinetic theory once the evapora-
tion of high energy particles is properly taken into account.
This distribution has a finite mass, contrary to the classical
isothermal distribution, so there is no need to enclose the
system within an artificial box. This generalization is
important because it allows us to plot the caloric curves
and make a rigorous stability analysis of the different
configurations. We have found that the system is canoni-
cally stable for k < kCE ¼ 1.34 and microcanonically
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FIG. 27. Comparison between the observational Burkert profile
(dashed line), isothermal profile (upper solid line), King model at
the limit of microcanonical stability (lower solid line), and
modified Hubble profile (dotted line).

25Since the classical limit applies to most dark matter halos for
which we have observational data, we cannot rule out the
possibility that dark matter is made of bosons instead of fermions.
For large halos, the quantum nature of the particles (fermions or
bosons) does not play any role (actually, this depends on whether
the bosons are self interacting or not, as discussed in paper II).
The distinction between bosonic and fermionic dark matter can
be made only by considering dwarf halos for which we have only
a few observational results. Therefore, the possibility that dark
matter is made of bosons should not be rejected.
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stable for k < kMCE ¼ 7.44 (as previously obtained by
Katz [116]) where k is the concentration parameter. The
classical isothermal distribution, corresponding to the limit
k → þ∞, is thermodynamically unstable. The marginal
King distribution in MCE turns out to be close to the
modified Hubble profile and the marginal King distribution
in CE turns out to be close to a polytrope of index n ¼ 5=2.
Realistic globular clusters and dark matter halos are very
different from n ¼ 5=2 polytropes. They have a concen-
tration parameter kCE < k < kMCE. They are unstable in CE
while they are stable in MCE. This is a manifestation of
ensembles inequivalence.
We have then compared the classical King model to

the observations of dark matter halos. In particular,
Figs. 18–22 compare the prediction of the King model
with the Burkert profile (dashed line) that fits a large
variety of dark matter halos. The best agreement, up to the
virial radius of about 10–100rh, is obtained for k ∼ kMCE,
that is to say for the King model at, or close to, the limit of
microcanonical stability. This is physically natural since
the concentration parameter kðtÞ increases with time as a
result of collisions and evaporation until an instability
takes place at k ¼ kMCE [120]. Therefore, most halos that
have not collapsed should have a concentration parameter
close to its maximum stable value kMCE. At that value, the
King distribution generates a density profile that is close to
the modified Hubble profile with a slope α ∼ 3. The King
models with α < 3 are unstable. Our study therefore
provides a physical justification, from the King model,
of the empirical density profiles with α ∼ 3 considered
by de Vega and Sanchez [108,109] (see also [158]).
Furthermore, it shows that statistical mechanics properly
modified to take evaporation into account may provide a
good approach to understand the structure of dark mat-
ter halos.
The agreement between the modified Hubble profile and

the Burkert profile is very good in the core for r ≤ rh.
Therefore, it appears that the core of dark matter halos is
isothermal. This thermalization may be due to a collision-
less violent relaxation or to a collisional relaxation, as
explained in the introduction. We emphasize that finite
temperature effects produce flat core densities and, there-
fore, solve the problems of the CDM model without the
need to advocate quantum mechanics (that is relevant only
for dwarf halos). On the other hand, the agreement between
the modified Hubble profile and the Burkert profile is less
good in the halo for r ≥ rh. We can have two points of view.
We can argue that the difference lies in the error bars of
observations so that the modified Hubble profile provides
an equally good, or even better, description of dark matter
halos than the Burkert profile. Indeed, we have shown in
Sec. VII F that the two profiles are qualitatively similar,
differing from each other by 20–30%, which is in the error
bars of the observations. Of course, the superiority of the
modified Hubble profile over the Burkert profile is that it

can be justified physically as an approximation of the King
model at the limit of microcanonical stability while the
Burkert profile is a purely empirical model (fit) deduced
from the observations. Alternatively, we can adopt a
completely different point of view and argue that the
King model is not relevant to describe dark matter halos.
Indeed, the difference between the modified Hubble profile
and the Burkert profile may be considered to be too strong.
In that point of view, we should recall that the King model
is usually justified for collisional self-gravitating systems,
governed by the Landau equation, undergoing a continuous
evaporation [113]. If dark matter halos are purely collision-
less, governed by the Vlasov equation, there is no con-
tinuous evaporation justifying the King distribution. In this
point of view, the structure of dark matter halos results from
an incomplete collisionless violent relaxation [93],
described by other types of distribution functions (different
from the King model), as in the case of stellar systems [1].
Although the cores of dark matter halos appear to be
isothermal (possibly justified by the statistical theory of
violent relaxation [93]), their halo is not totally relaxed (in
the sense of Lynden-Bell). The same observation is made
for elliptical galaxies. Models of incomplete violent relax-
ation are difficult to develop although some nice attempts
have been made in [159–161]. We note that the King model
can also provide a model of incomplete violent relaxation if
the system is tidally truncated [97,112]. In that case, the
evaporation is due to the fluctuations of the gravitational
field during violent relaxation. It is important to know if
dark matter halos are collisionless or collisional. The fact
that the density profiles of dark matter halos decrease as r−3

instead of r−4 (the typical outcome of violent relaxation
[151–154]), and the presence of black holes at the center of
the halos (see below), suggests that collisions play a certain
role in dark matter halos.26

We finally conclude on some speculations concerning
the evolution of dark matter halos, assuming that they are
collisional and described by the King model. For the
classical King model, equilibrium states exist in MCE
only above a critical energy Ec and for a concentration
parameter k < kMCE. Because of collisions and evapora-
tion, the energy EðtÞ of a self-gravitating system slowly
decreases during its evolution while its concentration
parameter kðtÞ increases. When EðtÞ passes below Ec,

26Actually, these results can also be understood in the case
where dark matter is collisionless. Isolated collisionless self-
gravitating systems such as elliptical galaxies have a density
profile decreasing as r−4 [1]. This can be understood as a result
of incomplete violent relaxation [151–154,159–161]. If dark
matter halos are collisionless we must explain why their
density profile decreases as r−3 instead of r−4. A possibility
is that they are subjected to an external stochastic forcing
due to their environment. This stochastic forcing may have an
effect similar to collisions. It may generate a density profile
decreasing as r−3. It may also trigger the formation of a central
black hole.
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there is no equilibrium state anymore and the system
undergoes a gravitational collapse (gravothermal catastro-
phe). This corresponds to a saddle-node bifurcation. As
explained previously, large dark matter halos that are
observed in the Universe are expected to be close to
marginally stable King distributions with k ∼ kMCE.
However, some halos may have reached the instability
threshold and undergone gravitational collapse. If the halos
are made of fermions, the collapse stops when their core
becomes degenerate as a consequence of the Pauli exclu-
sion principle.27 Therefore, complete collapse is arrested by
quantum mechanics. To study the phase transition between
a nondegenerate gaseous sphere and a degenerate compact
object, we can use the fermionic King model. This is the
subject of paper II. It is shown that gravitational collapse
leads to the formation of a degenerate compact object
(fermion ball) with a much smaller mass and radius than the
original halo, accompanied by the expulsion of a hot and
massive envelope. Indeed, by collapsing, the fermion ball
releases an enormous energy that heats the envelope. As a
result, the envelope is ejected, and dispersed, at very large
distances so that, at the end, only the degenerate nucleus
remains. This process is reminiscent of the formation of red
giants and the supernova explosion phenomenon, but it
occurs on a cosmological scale and is considerably much
slower (of the order of the Hubble time). This could be a
mechanism28 of the formation of dwarf dark matter halos
that are completely degenerate.
One important result of our study in paper II is that large

dark matter halos cannot harbor a fermion ball, unlike the
proposition that has been made in the past [88], because the
“nucleus-halo” structures that have been considered by
these authors are unreachable: they correspond to saddle
points of entropy at fixed mass and energy. Therefore, it
should not be possible to observe a large dark matter halo
with a fermion ball. This may explain why black holes at
the center of galaxies are favored over fermion balls
[102,103]. These black holes could be formed by the
mechanism discussed by Balberg et al. [104] if dark matter
is collisional. Because of collisions, the concentration
parameter kðtÞ increases until the point of gravothermal
catastrophe kMCE. During the gravothermal catastrophe, as
the central concentration and central temperature increase,
the system undergoes a dynamical (Vlasov) instability of
general relativistic origin and collapses into a black hole.
During this process, only the core collapses. This creates a

black hole of large mass29 without affecting the structure of
the halo. Therefore, this process leads to large halos
compatible with the Burkert profile for r > 0 but harboring
a central black hole at r≃ 0.
However, the fermionic scenario should not be aban-

doned. Indeed, the structure of dark matter halos crucially
depends on their size through the value of the degeneracy
parameter μ as discussed in paper II. Several configurations
are possible, making the study of the fermionic King model
very rich. The system can be nondegenerate (large halos),
partially degenerate (intermediate size halos), or com-
pletely degenerate (dwarf halos). Therefore, we can have
core-halo configurations with a wide diversity of nuclear
concentration. This may account for the diversity of dark
matter halos observed in the Universe. This also suggests
that the rotation curve of dark matter halos is nonuniversal.
We finally mention very recent papers that are relevant to

our study. Shapiro and Paschalidis [162] argue that the core
of dark matter halos may be collisional despite the
criticisms that have been raised in the past. They also
show that a central black hole (resulting from the grav-
othermal catastrophe) produces a power-law cusp that has
some similarities with the Bahcall-Wolf cusp in star clusters
(such cusps are physically distinct from the cusp present in
the NFW profile). On the other hand, Destri [163] performs
numerical simulations of the Vlasov-Poisson system in the
context of dark matter and finds results that are different
from the N-body simulations. This suggests that N-body
simulations may not be reliable because they approximate
1070 (or more) particles of mass ∼2 keV=c2 by 1010

“superparticles” of mass 104M⊙ ∼ 1050 GeV=c2. Destri
[163] finds that Vlasov (collisionless) simulations lead to
hollow cores instead of the cusps obtained in N-body
simulations. This may challenge the DARKexp model
[164] which is a modification of the Lynden-Bell [93]
distribution function based on the Vlasov equation
(collisionless evolution).30 The DARKexp model accounts
for the results of N-body simulations (in particular it
reproduces the NFW cusp) but, consequently, disagrees
with the Vlasov simulations of Destri [163]. We note
that neither cusps nor hollow cores are consistent with
the observations [14]. We suggest that they may be erased
by quantum mechanics or by collisional effects leading to
flat cores. Finally, we point out that collisions are not

27As discussed in the introduction, gravitational collapse may
also be arrested by the formation of a BEC if dark matter is made
of bosons.

28This is not the only mechanism. Dwarf halos are thought to
result from the Jeans instability of a spatially homogeneous
primordial gas. Then they merge to form larger structures during
hierarchical clustering. However, it is not impossible that large
halos having reached the point of gravothermal instability
collapse again to form smaller structures.

29For weakly interacting systems such as globular clusters, the
gravothermal catastrophe leads to a singularity (binary þ hot
halo) that has an infinite density but zero mass [120]. For strongly
collisional systems such as, possibly, the core of dark matter
halos, the gravothermal catastrophe leads to a black hole with a
large mass [104]. This difference is important to emphasize.

30In our opinion, the Lynden-Bell theory is fundamentally
correct; see, for example, the good prediction of this theory in
the case of the Hamiltonian Mean Field (HMF) model [165,166].
Its accuracy or inaccuracy at accounting for the observations is
related to the problem of incomplete relaxation (lack of ergodicity
or inefficient mixing) [93].
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crucial for the validity of our approach (even though
they would provide a clear justification of our theory).
Another source of relaxation may be due to violent
relaxation or to the stochastic effect of the environment
(see footnote 26).

APPENDIX A: THE MODIFIED
HUBBLE PROFILE

The modified Hubble profile is given by [1]

ρðrÞ
ρ0

¼ 1

½1þ ð rr0Þ2�3=2
; ðA1Þ

where

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9σ2

4πGρ0

s
ðA2Þ

is the King radius (or core radius) with σ2 ¼ kBT=m. The
modified Hubble profile provides a good fit of the density
profile of the isothermal sphere for r ≤ 2r0 [1]. However,
the profiles differ at larger distances. For r → þ∞, the
modified Hubble profile decreases as r−3 while the density
of the isothermal sphere decreases as r−2. The halo radius,
defined in Sec. VII A, is given by

rh ¼
ffiffiffi
a

p
r0; a ¼ 42=3 − 1: ðA3Þ

Therefore rh ¼ 1.23r0. The modified Hubble profile can be
rewritten as

ρðrÞ
ρ0

¼ 1

ð1þ ax2Þ3=2 ; x ¼ r
rh

: ðA4Þ

This is a particular case of the family of density profiles
defined by Eq. (107) with α ¼ 3. The corresponding
rotation curve is

v2cðrÞ ¼ 4πG
ρ0r3h
r

�
sinh−1ð ffiffiffi

a
p

xÞ
a3=2

−
x

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ax2

p
�
: ðA5Þ

After normalization by the circular velocity at the halo
radius, we obtain

vcðrÞ
vcðrhÞ

¼ 2.18

�
sinh−1ð ffiffiffi

a
p

xÞffiffiffi
a

p
x

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ax2
p

�
1=2

: ðA6Þ

The normalized density profile ρðrÞ=ρ0 and the normalized
circular velocity profile vcðrÞ=vcðrhÞ are plotted as a
function of the normalized distance r=rh in Figs. 18–19
and 21–22. They are compared to the Burkert profiles. The
halo mass is obtained by integrating Eq. (A4) from zero to
rh. This yields

Mh

ρ0r3h
¼ 1.75: ðA7Þ

We also have

σ2

Gρ0r2h
¼ 4π

9a
¼ 0.919: ðA8Þ

These values can be compared to those obtained in
Sec. VII E for the King model. They are relatively close
to those corresponding to the marginal King model
(kMCE ¼ 7.44). Actually, the modified Hubble profile
provides a good fit of the marginal King profile up to
5rh for the density and up to R ¼ 38.5rh for the circular
velocity.
The density profile (A1) gives rise to a surface density

profile that is similar to the Hubble-Reynolds law fitting the
surface brightness of many elliptical galaxies. This is why it
is called the modified Hubble profile [1]. This analytic
profile was also introduced empirically by King [156] to fit
the observed profiles of globular clusters. For that reason, it
is sometimes called the King profile. A few years later,
King [113] developed a more physical model of globular
clusters from a kinetic theory leading to the distribution
function (66) generating a one-parameter family of density
profiles. To avoid ambiguity, we refer to the profile (A1) as
the modified Hubble profile and the one-parameter family
of profiles produced by the King distribution (66) as the
King profiles. As we have seen, the modified Hubble
profile provides a good fit of the King profile at the point of
marginal microcanonical stability.

APPENDIX B: THE ISOCHRONE CLUSTER

The density profile and the circular velocity profile of the
isochrone cluster can be written as [1]

ρðrÞ ¼ M
4πb3

2Aþ 1

ð1þ AÞ2A3
; ðB1Þ

v2cðrÞ ¼
GM
b

A − 1

ðAþ 1ÞA ; ðB2Þ

where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
r
b

�
2

s
ðB3Þ

and b is the core radius. The central density is given by
ρ0 ¼ 3M=ð16πb3Þ. Therefore, we obtain

ρðrÞ
ρ0

¼ 4

3

2Aþ 1

ð1þ AÞ2A3
: ðB4Þ

The halo radius, defined in Sec. VII A, is determined by the
condition
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1

4
¼ 4

3

2Ah þ 1

ð1þ AhÞ2A3
h

: ðB5Þ

We find Ah ¼ 1.50. Then we obtain rh=b ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
h − 1

p
¼ 1.12. Finally, we can write

r
rh

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 1

A2
h − 1

s
: ðB6Þ

Equations (B4) and (B6) determine the normalized density
ρðrÞ=ρ0 as a function of the normalized distance r=rh.
These equations are parametrized by A ≥ 1. The normal-
ized circular velocity profile is given by

v2cðrÞ
v2cðrhÞ

¼ A − 1

ðAþ 1ÞA
ðAh þ 1ÞAh

Ah − 1
: ðB7Þ

Using MðrÞ ¼ rv2cðrÞ=G, we find that the halo mass is
given by

Mh

ρ0r3h
¼ 16π

3

1

ðAh þ 1Þ2Ah
: ðB8Þ

Numerically, we obtain Mh=ρ0r3h ¼ 1.77.
The isochrone cluster was introduced by Hénon [150]

who looked for the condition under which the orbital period
of a star depends only on its energy. We note that the
density profile of the isochrone cluster decreases as r−4 at
large distances like the density profile of many elliptical
galaxies [1]. We also recall that the isochrone profile
provides a good fit of the King profile for k ∼ 5 (more
precisely k ∼ 3.3). We can also compare the isochrone
cluster to the empirical density profile arising from the
collapse of a cold uniform sphere [154]:

ρðrÞ
ρ0

¼ 1

1þ 3x4
; x ¼ r

rh
: ðB9Þ

They both decay as r−4 at large distances. However, close
to the center ρðrÞ − ρ0 behaves as r2 and as r4 respectively.
Furthermore, the profile of Eq. (B9) leads to Mh=ρ0r3h ¼
2.17 instead of 1.77 for the isochrone cluster.

APPENDIX C: HYDROSTATIC EQUILIBRIUM

We consider a distribution function of the form f ¼ fðϵÞ
with ϵ ¼ v2=2þ ΦðrÞ. The local pressure is defined by
Eq. (36). Taking the gradient of this expression, we get

∇p ¼ 1

3
∇Φ

Z
f0ðϵÞv2dv: ðC1Þ

This expression may be rewritten as

∇p ¼ 1

3
∇Φ

Z ∂f
∂v · vdv: ðC2Þ

Integrating by parts, we obtain

∇p ¼ ∇Φ
Z

fdv: ðC3Þ

Using the expression of the local density given by Eq. (21),
the foregoing equation is equivalent to the condition of
hydrostatic equilibrium

∇pþ ρ∇Φ ¼ 0: ðC4Þ

We also recall that a system described by a distribution
function of the form f ¼ fðϵÞ has a barotropic equation of
state p ¼ pðρÞ (see Sec. III C). Dividing Eq. (C4) by ρ,
taking its divergence, and using the Poisson equation (30),
we obtain

∇ ·

�
1

ρ
∇p

�
¼ −4πGρ: ðC5Þ

This is the fundamental equation of hydrostatic equilibrium
for a self-gravitating barotropic gas [70].
We now show that Eq. (33) can be directly obtained from

Eq. (C5). Taking the gradient of Eq. (37), using the identity
(26), and comparing the resulting expression with Eq. (27),
we obtain

∇p ¼ 1

β
ρ∇χ: ðC6Þ

Substituting this relation in Eq. (C5), and using Eq. (27),
we get

Δχ ¼ −4πGAβ
�
2

β

�
3=2

I1ðχÞ: ðC7Þ

From Eqs. (28) and (32), we have

4πGAβ

�
2

β

�
3=2

I1ðkÞ ¼
1

r20
: ðC8Þ

Therefore, Eq. (C7) can be rewritten as

r20Δχ ¼ −
I1ðχÞ
I1ðkÞ

: ðC9Þ

Introducing the variable defined by Eq. (31), we
recover Eq. (33).
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APPENDIX D: ELLIPTICAL GALAXIES
AND GLOBULAR CLUSTERS

A self-gravitating system initially out of mechanical
equilibrium first undergoes a process of violent collision-
less relaxation towards a virialized state. In this regime, the
dynamical evolution of the system is described by the
Vlasov equation. The phenomenology of violent relaxation
has been described by Hénon [151], King [167], and
Lynden-Bell [93]. If a stellar system is initially out of
equilibrium, it collapses under its own gravity, first at
free fall, then undergoes damped oscillations (due to an
exchange of kinetic and potential energy), and finally
reaches a QSS on a coarse-grained scale. This process is
related to phase mixing and nonlinear Landau damping.
Numerical simulations that start from cold and clumpy
initial conditions generate a QSS that fits the de
Vaucouleurs R1=4 law for the surface brightness of elliptical
galaxies quite well [152]. The inner core is flat and almost
isothermal31 while the velocity distribution in the envelope
is radially anisotropic and the density profile decreases as
r−4 [151–154]. These configurations are relatively close to
Hénon’s isochrone profile [150]. One success of Lynden-
Bell’s statistical theory of violent relaxation is to explain
the isothermal core of elliptical galaxies without recourse to
collisions. In contrast, the structure of the halo cannot be
explained by Lynden-Bell’s theory as it results from an
incomplete relaxation. Models of incompletely relaxed
stellar systems have been elaborated by Bertin and
Stiavelli [159], Stiavelli and Bertin [160], and Hjorth
and Madsen [161]. These theoretical models nicely repro-
duce the results of observations and numerical simulations
[168,169]. In these works, the finite extension of the halo is
due to incomplete relaxation. The extension of the halo
may also be limited by tidal effects. In that case, the system
can be described by a King model justified by the theory of
violent relaxation [97,112]. A density slope α ¼ 4 in the
halo is consistent with a King profile of concentration
k ∼ 5. We also note that initially very cold stellar systems
are bar unstable (they experience the radial orbit instability)
and become triaxial with an intrinsic flattening of ∼2∶1
[170]. Their density profile is consistent with the de
Vaucouleurs R1=4 law [170]. In some cases, very cold
initial conditions lead to QSSs that can be better fitted by
the NFW profile [1].
On longer time scales, two-body encounters between

stars must be taken into account and the dynamical
evolution of the cluster is governed by the gravitational
Landau equation [114]. The Landau equation conserves the
mass M and the energy E. It also monotonically increases
the Boltzmann entropy S ¼ −kB

R ðf=mÞ lnðf=mÞdrdv in

the sense that _S ≥ 0 (H-theorem). Because of these proper-
ties, we might expect that a stellar system will relax towards
the Boltzmann distribution which maximizes the entropy
at fixed mass and energy. However, we know that there is
no maximum entropy state for an unbounded self-
gravitating system (the isothermal sphere, corresponding
to the Boltzmann distribution coupled to the Poisson
equation, has infinite mass). Therefore, the gravitational
Landau equation does not relax towards a steady state and
the entropy does not reach a stationary value.
The first stage of the collisional evolution is driven by

evaporation. Because of a series of weak encounters, the
energy of a star gradually increases. When it reaches the
local escape energy, the star leaves the system. Because of
evaporation, the halo expands while the core shrinks as
required by energy conservation. As a result, the entropy
increases permanently as the system evaporates. Since
evaporation is a slow process, the system may achieve,
on intermediate time scales, a QSS that is close to the
Boltzmann distribution. A typical quasistationary distribu-
tion is the Michie-King model [113,115]:

f ¼ Ae−βmj2=ð2r2aÞðe−βmϵ − e−βmϵmÞ; ðD1Þ

where ϵ ¼ v2=2þ ΦðrÞ is the energy and j ¼ r × v is the
angular momentum. This distribution takes into account
the escape of high energy stars and the anisotropy of the
velocity distribution. It can be derived, under some approx-
imations, from the gravitational Landau equation by using
the condition that f ¼ 0 when the energy of the star is
larger than the escape energy ϵm. The King distribution
has a core-halo structure with an isothermal core and a
nonisothermal halo in which the density decreases as r−α

with a slope depending on the concentration parameter k
(see Fig. 20).
Since the distribution function of the King model is not

exactly isothermal, the gradient of temperature (velocity
dispersion) between the core and the halo induces an
evolution of the system on a long time scale driven by
close encounters. This is marked by the increase of the
central density and by the decrease of the core radius.
During the evolution, the system follows a sequence of
King distributions with parameters slowly changing with
time as the system loses mass and energy by evaporation.
The concentration parameter kðtÞ increases monotonically
with time while the slope αðtÞ of the density profile
decreases (see Fig. 20). Such an evolution of kðtÞ is shown
numerically by Cohn [120] in the case of globular
clusters. Initially, ki ∼ 5, corresponding to a density slope
αi ¼ 4, which is the typical outcome of violent relaxation.
As long as kðtÞ < kMCE ¼ 7.44, corresponding to αðtÞ > 3
(approximately), the sequence of King distributions is
stable. Actually, these distributions are metastable (local
maxima of generalized entropy at fixed mass and energy),
but their lifetime is very large, scaling as eN with N ∼ 106

31Here, the temperature is effective and must be understood in
the sense of Lynden-Bell [93]. Furthermore, stellar systems are
believed to be nondegenerate in the sense of Lynden-Bell [93].
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for globular clusters, so these metastable states are stable
states in practice [76,119]. In this sense, self-gravitating
systems described by the King model with kðtÞ < kMCE can
be considered to be at statistical equilibrium, even if there is
no statistical equilibrium state in a strict sense.
When the concentration parameter kðtÞ passes above

the critical value kMCE ¼ 7.44, or when the slope αðtÞ of the
density profile becomes less steep than α ∼ 3, the King
sequence becomes thermodynamically unstable. In that
case, the system undergoes an instability related to the
Antonov instability [117]. This is the so-called gravother-
mal catastrophe [118]. This instability is due to the negative
specific heat of the inner system that evolves by losing
energy, thereby growing hotter. The energy lost is trans-
ferred outward by stellar encounters. Hence the temperature
always decreases outward, and the center continually loses
energy, shrinks, and heats up. This leads to core collapse
[120–122]. Mathematically speaking, core collapse would
generate a finite time singularity. When the evolution is
modeled by the orbit-averaged Fokker-Planck equation,
Cohn [120] finds that the collapse is self similar. The
system develops an isothermal core surrounded by a halo
with a density slope α ¼ 2.23 [120]. The core radius
decreases with time while the central density, central
temperature, and entropy increase. The halo does not
change. At a finite time t ¼ tcoll, the core radius vanishes
while the central density, temperature, and entropy are
infinite. The invariant profile found by Cohn differs from
the King distribution (for which ρ ∼ r−2) beyond a radius of
about 10rcore. Larson [171] and Lynden-Bell and Eggleton
[121] find similar results by modeling the evolution of the
system by fluid equations. In all cases, the authors find a
singular density profile ρ ∝ r−2.2 at the collapse time t ¼
tcoll that is integrable at r ¼ 0. The singularity has infinite
density but contains no mass. In reality, if we come back
to the N-body system, there is no singularity and core
collapse is arrested by the formation of binary stars caused
by three-body collisions. Therefore, for globular clusters,
core collapse leads to the formation of a binary star
surrounded by a hot halo [123,124]. These binaries can
release sufficient energy to stop the collapse and even drive
a reexpansion of the cluster in a postcollapse regime [125].
Then, in principle, a series of gravothermal oscillations
should follow [126,127].

At the present epoch, large clusters of stars like
elliptical galaxies (N ∼ 1011, tD ∼ 108 yr, age ∼1010 yr,
tR ∼ 1019 yr) are in the collisionless regime and their
apparent organization is the result of an incomplete violent
relaxation.
On the other hand, small groups of stars such as globular

clusters (N ∼ 105, tD ∼ 105 yr, age ∼1010 yr, tR ∼ 1010 yr)
are in the collisional regime. They are either in QSSs
described by the King model (k < kMCE), or experiencing
core collapse (k > kMCE). It is estimated that about 80% of
globular clusters are described by the King model while
20% have undergone core collapse [1]. Many globular
clusters have a concentration parameter k ∼ kMCE close to
the limit of microcanonical stability. This is physically
natural since the concentration parameter kðtÞ increases
with time until an instability takes place at k ¼ kMCE [120].
Therefore, most globular clusters that have not collapsed
should have a concentration parameter close to its maximum
stable value kMCE. At that value, the King distribution
generates a density profile that is close to the modified
Hubble profile with a slope α ∼ 3 (see Fig. 18). This profile,
which was introduced empirically before the King model
(see Appendix A), gives a good fit to many globular clusters
[156]. The fact that it corresponds to the marginal King
distribution in the microcanonical ensemble (something that
does not seem to have been realized before) may explain
why it is selected by nature. Because of close encounters,
globular clusters pass from an initial state with ki ∼ 5 and
αi ¼ 4 (violent collisionless relaxation) where the system is
similar to Hénon’s isochrone profile to a final state with
kf ¼ kMCE ¼ 7.44 and αf ∼ 3 (slow collisional relaxation)
where the system is similar to the modified Hubble profile.
Concerning statistical mechanics issues, globular clus-

ters must be studied in the microcanonical ensemble. Most
observed globular clusters are unstable in the canonical
ensemble because they are substantially different from
n ¼ 5=2 polytropes and have therefore a concentration
parameter k > kCE ¼ 1.34. Still, globular clusters with
k < kMCE ¼ 7.44 are stable in the microcanonial ensemble.
The fact that configurations with kCE < k < kMCE are
unstable in the canonical ensemble but stable in the
microcanonical ensemble is a manifestation of ensemble
inequivalence.
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