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In previous publications we have proposed that inflation can be realized in a second minimum of the
standard model Higgs potential at energy scales of about 1016 GeV, if the minimum is not too deep and if a
mechanism which allows a transition to the radiation dominated era can be found. This is provided, e.g., by
scalar-tensor gravity models or hybrid models. Using such ideas we had predicted the Higgs boson mass to
be of about 126� 3 GeV, which has been confirmed by the LHC, and that a possibly measurable
amount of gravity waves should be produced. Using more refined recent theoretical calculations of the
renormalization group equations we show that such scenario has the right scale of inflation only for small
Higgs mass, lower than about 124 GeV, otherwise gravity waves are overproduced. The precise value is
subject to some theoretical error and to experimental errors on the determination of the strong coupling
constant. Finally we show that introducing a moderately large nonminimal coupling for the Higgs field the
bound can shift to larger values and be reconciled with the LHC measurements of the Higgs mass.
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In [1–3] we have proposed that inflation in the early
Universe can be realized for a narrow band of values of the
top quark and Higgs boson masses, for which the standard
model (SM) Higgs potential develops a second local
minimum [4–8] at energy scales of about 1016 GeV.
Such a scenario is viable if a successful transition to a
radiation-dominated era can be obtained, which we have
shown to be possible in Ref. [1] using an explicit
model in the framework of a scalar-tensor theory of gravity
developed in [9,10] and in [3] using a hybrid inflationary
model with an additional weakly coupled scalar, in
standard gravity. Such a generic scenario could be realized
only for a Higgs mass mH in the range mH ¼
ð126.0� 3.5Þ GeV, the error being mainly due to the
theoretical uncertainty of the 2-loops renormalization
group equations (RGE) used in that calculation. Such a
prediction for the Higgs mass range has turned out to be
surprisingly compatible with the measurement of a Higgs
mass of 125.9� 0.4 GeV by the LHC [11,12].
As it is well known, inflation can generate quantum

mechanically tensor (gravity wave) modes, usually para-
metrized through r, the ratio of tensor-to-scalar perturba-
tion spectra at large scales. In [1,2] we had predicted a
relatively large amplitude for r in our scenario, which is set
by the overall height of the second minimum, which can be
computed up to the precision of the RGE calculations and
of the experimental input for the standard model param-
eters: mH, the top mass mt, and the strong coupling
constant αs. However the situation has recently changed,
since more refined theoretical calculations of the standard

model potential have been performed, therefore making
more precise the correspondence between the input param-
eters and the scale of the second minimum. Recently the
tensor modes had been claimed to be measured by the
BICEP2 collaboration [13] with a large amplitude, which
corresponds to a scale of about 2 × 1016 GeV, but a more
recent analysis [14] has shown that such a claim is invalid
and only an upper bound at that scale can be set.
In this paper we update our results, using the results of

[6,7] for the Higgs effective potential, and show that if the
theoretical errors are under control the scale of inflation is
generically larger than 2 × 1016 GeV and can be reconciled
with experiments only ifmH ≲ 124 GeV (plus a theoretical
error, at present estimated to be of order 0.3 GeV). Similar
conclusions have been recently found by [15] in the case of
inflation from the Higgs false vacuum with an additional
scalar weakly coupled to the Higgs, in standard gravity. Of
course such conclusion can be changed if extra ingredients
are added to the standard model. We show the results that
can be obtained by introducing a nonminimal coupling of
the Higgs to gravity. Of course less minimal modifications,
such as a direct coupling of the Higgs to an extra scalar, can
also easily shift the scale of inflation. Finally, provided the
scale of inflation due to the Higgs potential is low enough,
we also reanalyze the specific model based on scalar tensor
theories [1], which realizes the exit to a radiation dominated
era, showing that it could reproduce observations on r and
on the scalar spectral index ns.
As in [1–3] we consider the potential for the Higgs field

χ in the SM of particle physics. For very large values of the
Higgs field such potential can be written as

VðχÞ≃ λeffðχÞ=4χ4; ð1Þ*notari@fe.infn.it
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where λeff is some effective quartic coupling [6] which is
very close, but not identical, to the quartic coupling λ.
Due to the running of couplings λeff can become very small
at high energies, while keeping always positive values
(stability regime). In such conditions the potential can have
an additional minimum at very high field values. While this
is at present disfavored by the current calculations and
measurements in the SM it still not ruled out. In particular
this can still happen if the top quark mass has a low value
compared to the present best fit [16,17].
If the Higgs field starts in the false minimum at χ0 and

dominates the energy density of the Universe, the Friedmann
equation leads to a stage of inflationary expansion

H2 ≃ Vðχ0Þ
3M2

≡H2
I ; aðtÞ ∝ eHIt ð2Þ

where aðtÞ is the scale factor, H ≡ _a=a is the
Hubble rate and M is the reduced Planck mass
(M≡ 2.435 × 1018 GeV).
A nontrivial model-dependent ingredient is a mechanism

to achieve a graceful exit from inflation, that is a transition
to a radiation-dominated era, in a nearly flat Universe at a
sufficiently high-temperature. In [1] we have proposed that
the Higgs field can tunnel to the other side of the potential
barrier by nucleating bubbles [18] that can successfully
collide and percolate, in the presence of a scalar tensor
theory of gravity. Alternatively in [3] we had proposed that
a smooth transition may happen also in standard gravity, in
the presence of an extra scalar field very weakly coupled to
the Higgs field. The main point of both mechanism is that
they do not affect appreciably the SM runnings of cou-
plings, since in the first model there is only a gravitational
coupling to the standard model, and in the second case the
dimensionless coupling constant is extremely small, of
order 10−11. For this reason precise connections with low
energy parameters still hold even in the presence of such
new fields. Of course it is possible that such a new scalar
can also interact with the Higgs field with a large direct
coupling and in this case this could also affect the RGE
equations and we briefly discuss later such possibilities.
Subsequently the Higgs field could roll down the

potential, reheat the Universe, and finally relax in the
present true vacuum with v ¼ 246 GeV. In the scalar-
tensor theory of gravity model an extra scalar field ϕ is
introduced, the Brans-Dicke scalar or dilaton, which has an
interaction term of the form fðϕÞR, where R is the Ricci
scalar and fðϕÞ > 0 thus sets the value of the Planck mass.
The presence of such field makes the Planck mass time-
dependent, and therefore alsoH during Inflation: this slows
down the expansion sufficiently enough if fðϕÞ grows
faster than ϕ2 for large ϕ values, since a stage of
quasiexponential expansion is followed by a stage of
power-law (even decelerated) expansion [9,10]. During
the exponential phase the quantum fluctuations in ϕ lead to

a nearly scale-invariant spectrum of perturbations. During
the subsequent decelerated phase, H decreases rapidly, and
therefore the expansion is sufficiently slowed down, so that
many bubbles can be nucleated in a Hubble patch and
subsequently collide and reheat the Universe, leading to a
spatially flat radiation dominated Universe.
As discussed in [1], after tunneling we require the field ϕ

to relax to zero if a suitable potentialUðϕÞ is present, which
allows us to identify the present reduced Planck mass with
the quantity M and, at the same time, to satisfy constraints
from fifth-force experiments and time-dependence of the
Newton constant GN ¼ 1=ð8πM2Þ [19]. We will discuss
this issue further in the present paper.
An alternative to scalar-tensor theories is given by

models [3] with a direct tiny coupling of the Higgs field
to an additional scalar field, which induces a time-
dependence directly into Γ by flattening the barrier in the
potential.
It is crucial to note that a graceful exit can be realized in

the above models only if there is a very shallow false
minimum, otherwise the tunneling rate would be negligibly
small in the scalar-tensor model, since the probability is
exponentially sensitive to the barrier [18]. Such shallow-
ness is required also in the hybrid model since a change in
the barrier by a large amount would introduce a departure
from an almost flat scalar spectral index. So, the shape of
the potential is very close to the case in which there is just
an inflection point and thus we have a generic prediction for
the scale of inflation and for r, while the specific model
only affects the prediction for the spectral index of
cosmological density perturbations nS.
Using the recent state-of-the-art theoretical calculations

given in [6,7], we show the specific values of the top and
Higgs masses which allow for the presence of a false
minimum. Such calculations are now so accurate that also
the precise value of α3ðmZÞ inside the present allowed
experimental range α3 ¼ 0.1184� 0.007 [16] is a relevant
parameter. As an example, in Fig. 1 we also show the Higgs
potential for very specific values of mt and mH, showing
agreement with Fig. 7 of [6]. The extremely precise values
shown in the caption are not to be taken sharply, because of
a theoretical uncertainty, estimated to be of about 0.3 GeV
on mH and about 0.15 GeV on mt.
Increasing (decreasing) mt, one has also to increase

(decrease) mH in order to develop the shallow false
minimum; accordingly, the value of both Vðχ0Þ and χ0
increase (decrease). The solid blue lines in Fig. 2 show the
points in the mt −mH plane where the shallow SM false
minima exists, for different values of α3ðmZÞ in the 3-sigma
range. The red dashed lines show the regions in (mH;mt)
which corresponds to a value of r compatible with
observations, directly given by the height of the potential
via the equation r ¼ Vðχ0Þ

ð2.24×1016 GeVÞ4 0.2 and it turns out that

these lines point to a too small value ofmH compared to the
present experimental values. Of course this is a valid
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conclusion under the assumption that the theoretical errors
on mH are now estimated to be of about 0.3 GeV by [6,7].
This scenario could still be compatible with data only if the
theoretical errors in the RGE and the matching conditions
were larger, say of about 1 GeV.1

Discarding such possibility we show that this could be
cured by introducing a nonminimal coupling ξχ2R also for
the Higgs field, similarly to what was proposed by [23,24],
albeit in a different class of models. This transforms the
potential in the slow roll phase in the Einstein frame in the
following form (see [9] and citations therein):

VðχÞ ¼ λeff=4χ4

ð1þ ξðχ2=M2ÞÞ2

which suppresses the potential at large field values and we
show in Fig. 3 that a large value of ξ allows for the potential
to fit CMB observations, also for larger mH, compatible

with the LHC measurements. However let us comment that
this is based only on a tree level analysis and when having a
value of the extra coupling constant ξ larger than Oð1Þ we
have to be careful about the regime of validity of the theory,
similarly to the models proposed in [25], due to the fact that
a new cutoff scale appears, MPl=ξ. If such scale is higher
than the energy scale of inflation, given by V1=4 this should
make the model consistent. Such a situation is not easy to
achieve, but it is better fulfilled ifmH −mt are small and α3
is large, which allows ξ to have a lower value. The
discussion about consistency of this kind of models after
quantum corrections includes the fact that the cutoff scale is
field-dependent and it has been discussed by several papers
(see, e.g., [26–29]).
Finally we also show the results for the ns − r plot for the

scalar tensor model proposed in [1] in Fig. 4. Such a model
is based on the introduction of an additional nonminimally
coupled field ϕ with the following action:

−S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
LSM þ ð∂μϕ∂μϕÞ

2
−
M2

2
fðϕÞR −UðϕÞ

�

ð3Þ

where LSM is the standard model Lagrangian and the
potentialU is not specified and assumed to be relevant only
after inflation to stabilize the field. The coupling function is
given by:
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FIG. 1 (color online). Higgs potential as a function of the Higgs
field χ in units of mPl ¼ 1.22 × 1019 GeV. We fixed
α3ðmZÞ ¼ 0.1184. The upper curve correspond to mH ¼ 125,
mt ¼ 171.0305, which shows good agreement with the results
of [6], fig. 7. The lower curve corresponds to mH ¼ 123.2,
mt ¼ 170.1228, and a value of r ¼ 0.28. As mentioned in the text
and discussed in [1], in order to have a sizable tunneling
probability through the left side, the barrier must be very low,
almost as in an inflection point. Note that the value of the
potential at the inflection point correctly reproduces Fig. 7 of [6].
We disagree with the recent update on the scenario of the present
paper given in [20] immediately after the BICEP2 claims. The
reader can check that Fig. 2 of such update does not reproduce
Fig. 7 of [6], leading to a conclusion which underestimates r by
more than 2 of magnitudes.
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FIG. 2 (color online). The solid lines indicate the mt −mH
values compatible with a shallow Higgs false minimum, taking a
3σ variation of αsðmZÞ around its central value of 0.1184. Here
the Higgs is assumed to be minimally coupled (ξ ¼ 0). There is
an uncertainty of about 0.15 GeV in mt and a horizontal one of
0.3 GeV inmH due to the present [6,7] theoretical uncertainties in
the RGE. The red dashed lines represent the values of the tensor-
to-scalar ratio associated to the energy scale of the minimum,
where we displayed the r ¼ 0.2þ0.07

0.09 values which correspond
to the early claims by BICEP2 [13]. However since such a claim
has been shown to be wrong by [14] and only an upper
bound r < 0.12 (95% CL) can be set. The present experimental
values for the parameters are mH ¼ ð125.7� 0.4Þ GeV,
mt ¼ ð173.21� 0.51� 0.71Þ GeV, α3 ¼ 0.1185ð6Þ [22].

1Note also that such a conclusion is in agreement with [21],
which also concludes that the height of the potential is too high
with the present values of mH and mt. For instance Fig. 4 of such
paper shows that only very low mH or very high αs (more than 3
sigma from the present measured values) would lead to accept-
able values of r. Note also that [21] performs the analysis of the
number of efolds, ns and r, only for the hybrid type of model
introduced in [3], while in the present paper we focus on the
scalar-tensor type of model introduced in [1].
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fðϕÞ≃ 1þ β

�
ϕ

M

�
2

þ
X
n≥4

γn

�
ϕ

M

�
n

ð4Þ

with the requirement that fðϕÞ > ϕ2, which is guaranteed
for instance if the couplings γn are positive. Under these
conditions HðtÞ starts almost constant and after a sufficient
umber of efolds starts decreasing as a power law, allowing
for a tunneling transition when H4 becomes equal to the
tunneling rate per unit volume Γ. As a simple example we
will study the case in which γ4 > 0 and all other couplings
are vanishing. If the Higgs fields is at the minimum and it is
not evolving during inflation the only time dependent
quantity is ϕ and so we can go the Einstein frame with
a metric defined by ḡμν ≡ fðϕÞgμν and study the evolution
of a canonically normalized field Φ defined through
dΦ ¼ dϕ

ffiffiffiffiffiffiffiffiffiffiffi
KðϕÞp

, where

KðϕÞ≡ 2fðϕÞ þ 3M2f02ðϕÞ
2f2ðϕÞ :

In this frame the action becomes:

SE ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−ḡ

p ½M2R̄ − ð∂̄ΦÞ2 − 2L̄SM�; ð5Þ

where the bar represents quantities in the Einstein frame.
The Higgs potential contained in L̄SM is now VðχÞ=fðΦÞ2,
so that the potential energy at the false Higgs minimum χ0
gives rise to a potential term for Φ

Sχ0E ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p
V̄; V̄ ≡ Vðχ0Þ

fðΦÞ2 : ð6Þ

This acts as a hill-top potential for the Φ field and we
assume that Φ rolls down the potential from small to high

values. Given the potential we define as usual the slow-roll
parameters

ϵðNÞ ¼ 1

2

���� 1V̄
dV̄

dðΦ=MÞ
����
2

ηðNÞ ¼ 1

V̄
d2V̄

dðΦ=MÞ2 ð7Þ

We solve numerically the Klein-Gordon equation for Φ
under such a potential assuming that it starts as close to zero
as possible [i.e., with an initial value ΦI given by the
quantum fluctuations ΦI ¼ H̄=ð2πÞ] together with the
Friedmann equation, which gives us a numerical solution
for ΦðNÞ, where N is the number of efolds at some value of
the scale factor ā, defined asN ≡ lnðāF=āÞ, where āF is the
scale factor at the end of the inflationary stage, defined by
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FIG. 3 (color online). The contours indicate different values of the tensor-to-scalar ratio r associated to the energy scale of the
minimum when introducing a the nonminimal coupling ξ; we show it as a function of the Higgs and top mass for the central value of α3
(left plot) and for a larger value (3σ deviation, right plot). There is a (vertical) uncertainty of about 0.15 GeV inmt and a (horizontal) one
of 0.3 GeV in mH due to the present [6,7] theoretical uncertainties in the RGE.
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FIG. 4 (color online). Spectral index nS and tensor-to-scalar
ratio r for the scalar-tensor model of [1]. Here the number of
efolds is assumed to be N̄ ¼ 60. Only one nonvanishing
parameter γ4 was assumed to be present in Eq. (4) and the
various points along the black lines correspond to different values
of γ4.

ALESSIO NOTARI PHYSICAL REVIEW D 91, 063527 (2015)

063527-4



either ϵ or η becoming of order 1. Finally we evaluate the
quantities

r≡ PT=PS ¼ 16ϵN̄ nS ¼ 1 − 6ϵN̄ þ 2ηN̄

where N̄ is the number of efolds that corresponds to a
certain cosmological scale. We take N̄ ¼ 60 although the
precise number depends on the history of the evolution
subsequent to inflation. The results are shown in Fig. 4.2

The above scenario assumes that a mechanism for the
field Φ to relax to its minimum at late time can be found.
Such minimum has to be located at scales Φ ≪ M,
otherwise the value of the Planck mass during inflation
and the present values would differ and we would lose the
connection between the scale of inflation and the value of
Vðχ0Þ=M4

Pl, obtained through the standard model effective
potential with the parameters measured today. This would
make the problem of overproduction of gravity waves even
more severe, since the relevant quantity during inflation in
this case would be even bigger than the value Vðχ0Þ=M4

Pl
which we can compute today from the effective potential.

Generically moreover the condition that at late times
Φ ≪ M would also guarantee that we recover Einstein
gravity (i.e., that we can satisfy fifth force constraints and
also that the Planck mass is not varying rapidly with time
[19]). Actually the condition on the final value for Φ is that,
before nucleosynthesis, we reach f ≈ 1, which in the case
of having only the coupling γ4 ≠ 0 reduces to the condition
ϕ=M ≪ γ−1=44 . In order to achieve such relaxation to small
values we may introduce a potential and a convenient
choice seems to introduce it directly in the Einstein frame
as a potential UðΦÞ. At the same time we have to be careful
because we do not want such potential to become dominant
during inflation and we do not want such potential to
induce extra stages of inflation after the tunneling tran-
sition, otherwise our conclusions would be changed. Such
an extra inflationary stage can actually arise if we introduce
a polynomial potential UðΦÞ ∝ Φn, since after tunneling
we are working at values Φ ≫ M and so the slow-roll
conditions would be satisfied. In order to avoid such
complications we introduce here as an example an expo-
nential potential which does not lead to additional inflation
but to a rapid evolution for Φ to small values. The potential
that we consider is of the form UðΦÞ ¼ μ4ðesΦ − 1Þ, where
μ is a mass scale and s is a parameter, which we will choose
as an explicit example equal to 2. Interestingly we observe
that such potential also arises from a simple power law
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FIG. 5 (color online). Evolution after tunneling for a specific example assuming that the Higgs field starts at rest at a value χT ¼ 0.6χ0
and with a decay rate Γχ ¼ 10−2χT . We have also chosen γ4 ¼ 5 × 10−6, and the fieldΦ is taken to start at rest at a valueΦ=M ¼ 32: this
would correspond to a decay happening when the Hubble rate HT is equal to the tunneling rate Γ, with the condition that Γ is smaller
than the inflationary Hubble rate HI by a factor ðΓ=HIÞ4 < 10−7 which ensures that no large bubbles are produced during inflation and
subsequently imprinted in the CMB [10]. We used here a potential UðΦÞ ¼ μ4ðe2Φ − 1Þ with μ ¼ 108 GeV. The upper left panel shows
the evolution of the temperature produced by the decay of the Higgs, the upper middle panel shows the evolution of the field Φ, and the
upper right panel shows the Hubble rate (solid line) compared to the Hubble rate during radiation dominationH ¼ 1=ð2tÞ (red, dashed).
The bottom left plot shows the relative energy densities in the potential VðχÞ=fðΦÞ2 (green, dotted), in the potential UðΦÞ (blue solid)
and in radiation ρR (red dashed). The bottom middle plot shows the evolution of f − 1, which is proportional to the difference between
the effective Planck mass and M. Finally the bottom right panel shows the quantity α2 of Eq. (A2) (solid blue), compared to the bound
coming from fifth force experiments of about 10−3 (red, dashed).

2Note that in Ref. [1] the calculations were obtained in an
expansion for Φ ≪ M for the slow-roll parameters, which does
not hold for very small γ4, therefore leading to incorrect results
for γ4 ≪ 10−4, which corresponds to a sizable r in Fig. 4.
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potential UJðϕÞ ∝ ϕn in the Jordan frame, where n is a
large exponent: in fact after a frame transformation U ¼
UJ=ð1þ fÞ2 we have checked numerically that for Φ ≫ 1
this corresponds to an Einstein frame potential of the
form UðΦÞ ∝ esΦ, where we find the correspondence
s ¼ ðn − 8Þ=5. Note that for n ¼ 8 we would get a flat
potential (because the denominator ð1þ fÞ2 and the
numerator would have the same power) and instead we
recover the e2Φ case for n ¼ 18. Note also that at small ϕ
the subtraction of zero point energy is automatically
obtained with a power law UJ. Using now the Einstein
frame potential the scale μ has to be chosen such that at the
tunneling epoch, for a field value of Φ ¼ ΦT , the potential
UðΦTÞ ≪ V̄. Typical values for ΦT are at least of order
20-60 (depending on the value of γ4 and on the precise time
at which the tunneling transition happens). We show in
Fig. 5 of the Appendix how the field evolves in the presence
of a radiation component in an example, starting from the
tunneling time until nucleosynthesis, showing that the
condition f ≈ 1 can be reached and fifth force bounds
can be satisfied. Note that, in cases in which the field has
not completely yet relaxed to zero, there can be a tiny time-
dependent correction to the Planck mass, which can lead to
interesting phenomenology. We leave however more
detailed discussions for further analysis.
In conclusion we have shown that a mechanism in which

the energy density for inflation is provided by the Higgs
field starting in a shallow false minimum can be compatible
with observations only if mH ≲ 124 GeV (and also mt has
to be smaller than about 171 GeV). This is significantly
lower than experimental observations unless the theoretical
error on the RGE, of about 0.3 GeV on mH according to
[6,7], is largely underestimated. We have also shown that
introducing a large nonminimal coupling of the Higgs of
order 102–103 can push this upper bound on larger values,
closer to present observations. Such bounds could be also
be evaded by modifying the shape of the potential in a
model-dependent way. For instance a possibility would be
to introduce direct couplings of the Higgs with the extra
scalar as in [30], which would change the potential either at
tree level or in the RGE, or perhaps to allow a faster change
of the barrier in hybrid models during inflation (see [15]).
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APPENDIX

We numerically solve in this appendix the evolution
equations after tunneling which describe: (i) the Higgs field
which starts from a value χT < χ0, then quickly evolves
toward its minimum and decays with a rate Γχ into radiation
and finally relaxes at the usual electroweak vacuum v, (ii) a
radiation component with energy density ρR sourced by the

Higgs field and simply diluted as aðtÞ−4, (iii) the field Φ
in the Einstein frame which evolves under the potential

VT ≡ VðχÞ
fðΦÞ2 þ UðΦÞ which contains both the Einstein frame

Higgs potential and a potential UðΦÞ assumed to be
subdominant before tunneling (iiii) the metric with expan-
sion rate H which is sourced by the sum of the energy
densities of such components:

χ̈ þ 3H _χ þ ∂VT

∂χ þ Γχ _χ ¼ 0

_ρR þ 4HρR − Γχ _χ
2 ¼ 0

Φ̈þ 3H _Φþ ∂VT

∂Φ ¼ 0

H2 ¼ VT þ _χ2

2
þ _Φ2

2
þ ρR

3M2
ðA1Þ

The decay rate of Higgs into other particles is large
(since the couplings in the SM are large at high field values)
and so the field should relax very quickly to zero, resulting
in overdamped oscillations. Modeling the decay rate
exactly is a very tough problem in a field dependent
nonequilibrium situation, however our conclusions are
not very much dependent on the details of reheating, since
we are interested in the evolution of Φ, so we assume
simply a large constant decay rate (we choose in the
example the value Γχ ¼ 10−2χT). As we said we also
assume UðΦÞ ¼ μ4ðesΦ − 1Þ. We analyze first the example
s ¼ 2, μ ¼ 108 GeV and we show in Fig. 5, that Φ rolls to
small values, so that f ≈ 1, when the temperature is still
well above nucleosynthesis. A quantity we are interested in
is the following

α ¼ −2
d log fðΦÞ

dΦ
ðA2Þ

which is linked to the PPN parameters [19]: the experimental
bounds are satisfied if α2 ≪ 10−3, and this is shown also in
Fig. 5. We also define a temperature given approximately as
T ≡ ðρR=g�Þ1=4, where we use g� ¼ 102. The parameter μ is
bounded since we want μ4esΦT ≪ V0, which leads to μ ≪
ð1011–1013Þ GeV for s ¼ 2. At the same time μ has to be
also large enough otherwise the field would not roll down
toward its minimum before nucleosynthesis. Note that Φ
tracks the radiation component and the expansion goes like
a ∝ t1=2. Such an evolution is intriguing because at late time
it may show up as a nontrivial extra radiation component in
the energy budget of the Universe and it may also lead to
small variations of the Planck mass at late time. Moreover,
note that adding a small mass term mΦΦ2 to U it is also
possible to have a late time behavior for Φ with cold dark
matter properties if mΦ is of the order of H at matter
radiation equality,OðeVÞ. Note that for larger values of s the
behavior is always tracking radiation, with a smaller relative

ALESSIO NOTARI PHYSICAL REVIEW D 91, 063527 (2015)

063527-6



energy density for increasing s. For smaller values of μ
clearly the evolution is slower and takes place at a later
time.
Note that instead if s < 2 we have a scalar-field

dominated evolution in which aðtÞ grows faster than during
radiation. For instance in the case s ¼ 1 we have aðtÞ ∝ t2

and this produces about 20-30 efolds of extra accelerated
evolution during which the perturbations are not reentering

the horizon, and this should be taken into account in the
calculation of cosmological observables, such as ns and r.
In such cases it is compulsory to have also an additional
mass term and a decay rate in order to get rid of such an
extra component before nucleosynthesis.
We stress that there is room for wide variations in

parameter space and so we leave this for a more detailed
future work.
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