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A fine set of parameters is introduced for bouncing cosmologies in order to describe the nearly matter-
dominated phase, and which play the same role that the usual slow-roll parameters play in inflationary
cosmology. It is shown that, as in the inflation case, the spectral index and the running parameter for scalar
perturbations in bouncing cosmologies can be best expressed in terms of these small parameters. Further,
they explicitly exhibit the duality that exists between a nearly matter-dominated universe in its contracting
phase and the quasi–de Sitter regime in the expanding one. The results obtained also confirm and extend the
known evidence that the spectral index for an exactly matter-dominated universe (i.e., a pressureless
universe) in the contracting phase is, in fact, the same as the spectral index for an exact de Sitter regime in
the expanding phase. Finally, in both the inflationary and the matter bounce scenarios, the theoretical values
of the spectral index and of the running parameter are compared with their experimental counterparts,
obtained from the most recent Planck data, with the result that the bouncing models discussed here fit
accurate astronomical observations well.
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I. INTRODUCTION

Matter bounce scenarios (MBSs) [1] are characterized by
the Universe being matter dominated at very early times in
the contracting phase and evolving towards a bounce, then
entering into an expanding regime, where it matches the
behavior of the standard hot Friedmann universe. They
constitute a viable alternative to the inflationary paradigm.
It is also well known that matter domination in the

contracting phase leads to the same spectral index, ns, as for
the case of the de Sitter regime in the expanding universe,
namely, ns ¼ 1 [2]. This value does not agree with the
experimental one, ns ¼ 0.9603� 0.0073, which has been
obtained from the most recent Planck data [3]. In contrast,
this observational value can actually be accounted for in
inflationary cosmology, because the Universe does not
inflate exactly following a de Sitter regime. Instead, the
inflaton field slow roll in its potential drives the Universe to
a quasi–de Sitter stage. In such a slow-roll regime, the
leading perturbative term of the spectral index depends on
two small parameters, so-called slow-roll parameters [4],
which are obtained explicitly as functions of the potential
and its derivatives. By conveniently fitting these parame-
ters, one is able to match the theoretical value of the spectral
index with the corresponding experimental one.

Following the inflationary paradigm, in order to obtain a
correct theoretical value of the spectral index in a MBS—
when we consider a single scalar field only—we will
introduce some dimensionless parameters at very early
times in the contracting phase, which we will call quasi-
matter domination parameters. When these parameters are
less than 1, the universe will be nearly matter dominated in
the contracting phase, in exact analogy with the inflationary
universe case, where a small value of the slow-roll
parameters leads to a universe in the expanding phase,
near the de Sitter regime.
Theaimof thepresentwork is toconstructviablebouncing

cosmologies where the matter part of the Lagrangian is
composed of a scalar field and, therefore, which have to go
beyondgeneral relativity, since the flat Friedmann-Lemaître-
Robertson-Walker (FLRW) geometry forbids bounceswhen
onedealswith a single field. (Recall that bounces are allowed
for FLRW geometries with a positive spatial curvature [5].)
Hence, for the flat FLRW geometry, theories such as
holonomy-corrected loop quantum cosmology [6], where
a big bounce appears owing to the discrete structure of space-
time [7], teleparalellism [8], or modified FðRÞ gravity [9],
mustbe taken intoaccount.Whendealingwith these theories,
in order to obtain a theoretical value of the spectral index that
may fit well with current experimental data, a quasimatter-
dominated regime in the contracting phase has to be intro-
duced, which is conveniently fixed by the quasimatter
domination parameters. Moreover, in slow-roll inflation,
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one also considers the running of the spectral index corre-
sponding toNe-foldsbefore theendof the inflation,which in
general is of the order N−2. This value turns out to be very
small when one substitutes forN the minimum number of e-
folds that are needed to solve the horizon and flatness
problems in inflationary cosmology (N > 50), as compared
with its corresponding observational value coming from the
most recent Planck data, −0.0134� 0.009 [3]; this shows
that these slow-roll models are less favored by observations.
In contrast, inMBSs the number of e-folds before the end of
the quasimatter domination regime can be relatively small,
because the horizon problem does not exist in bouncing
cosmologies and the flatness problem is neutral [10]. This
gives ground for the viability of such models, thus making it
possible that for certain MBSs the theoretical values of the
spectral index and the running parameter agree well with
Planck observations.

II. QUASIMATTER DOMINATION PARAMETERS

In general relativity, for the flat FLRW geometry, the
Friedmann and conservation equations for a single scalar
field are

H2 ¼ 1

3

�
_φ2

2
þ V

�
; φ̈þ 3H _φþ Vφ ¼ 0: ð1Þ

Assuming quasimatter domination at early times in
the contracting phase, i.e., _φ2 ≅ 2V ⇒ φ̈ ≅ Vφ, these
equations become

(
H2 ¼ 2

3
V

3H _φþ 2Vφ ¼ 0
⇔

(
H2 ¼ 2

3
a2V

3Hφ0 þ 2a2Vφ ¼ 0.

ð2Þ

Now, in complete analogy to the slow-roll regime in
inflationary cosmology, we define our quasimatter domi-
nation parameters as

ϵ̄ ¼ −1 −
2

3

_H
H2

¼ −
2

3

�
1

2
þ H0

H2

�
≅
1

3

�
Vφ

V

�
2

− 1; ð3Þ

δ̄2 ¼ _̄ϵ

2Hð1þ ϵ̄Þ ≅ −
�
Vφ

V

�
φ

; ð4Þ

and

ξ̄3 ¼ −
1

H
dδ̄2

dt
≅ −

Vφ

V

�
Vφ

V

�
φφ

; ð5Þ

which characterize this regime through the condition
that jϵ̄j ≪ 1.

In view of subsequent calculations, it is important to
obtain the evolution of the parameters ϵ̄ and δ̄2, which is
given by

_̄ϵ ≅ 2Hδ̄2;
dδ̄2

dt
¼ −Hξ̄3: ð6Þ

Since a potential of the form e−
ffiffi
3

p jφj generates exact
matter domination, we will reexpress our potential V as
VðφÞ ¼ e

ffiffi
3

p
φWðφÞ for negative values of the field, thus

obtaining

ϵ̄¼ 2ffiffiffi
3

p Wφ

W
; δ̄2≅−

�
Wφ

W

�
φ

; ξ̄3≅−
ffiffiffi
3

p �
Wφ

W

�
φφ

:

ð7Þ

Thismeans that, for a very flat potentialW, these parameters
are very small and nearly constant. In fact, since the
expressions in (7) resemble those of the slow-roll param-
eters, we conclude that we can choose W as the new
potential, namely, the same potential as is used in slow-roll
inflation. Note also that from (7) one gets the following
hierarchy: jξ̄3j ≪ jδ̄2j ≪ jϵ̄j.
As an example, for the potential WðφÞ ¼ λφ2n one has

ϵ̄¼ 4nffiffiffi
3

p
φ
þ n2

3φ2
≅

4nffiffiffi
3

p
φ
; δ̄2 ¼−

2n
φ2

; ξ̄3 ¼ 4
ffiffiffi
3

p
n

φ3
: ð8Þ

One can also introduce, in the same way as in the inflation
setup, the number of e-folds before the end of the
quasimatter domination period, as follows: aðNÞ¼ eNaf,
where af is the value of the scale factor at the end of
this regime.
With this definition, in the quasimatter approximation

the number of e-folds can be calculated as

N ¼ −
Z

tN

tf

HðtÞdt ≅
Z

φf

φðNÞ

V
Vφ

dφ; ð9Þ

which, in terms of the potential W, becomes

N ≅
Z

φf

φðNÞ

1ffiffiffi
3

p þ Wφ

W

dφ: ð10Þ

For the particular case of the potential WðφÞ ¼ λφ2n, for
instance, one has

N ≅ −
1ffiffiffi
3

p ðφðNÞ − φfÞ −
2n
3
ln

���� φf þ 2nffiffi
3

p

φðNÞ þ 2nffiffi
3

p

����: ð11Þ

Choosing the value of φf when ϵ̄ ¼ −1, one finally
obtains
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N ≅ −
1ffiffiffi
3

p
�
φðNÞ þ 4nffiffiffi

3
p
�
−
2n
3
ln

���� 4nffiffiffi
3

p
φðNÞ þ 2n

����: ð12Þ

A. The spectral index in bouncing cosmologies

It is well known that when one considers only a scalar
field, general relativity dealing with the flat FLRW geom-
etry forbids bounces from the contracting to the expanding
phase; this is best seen by looking to the Raychaudury
equation, _H ¼ − 1

2
_φ2 < 0: as the Hubble parameter always

decreases, it is absolutely impossible to pass from negative
to positive values. For this reason, when the matter part of
the Lagrangian is given in terms of a single scalar field, one
is led to use cosmologies beyond the realm of general
relativity, e.g., loop quantum cosmology, teleparallel FðTÞ
gravity, or FðRÞ gravities.
Common to all these cases is the Mukhanov-Sasaki [11]

equation for scalar perturbations in Fourier space, which
can be expressed as

v00k þ
�
k2 −

z00

z

�
vk ¼ 0; ð13Þ

where, for very low energy densities and curvatures,
z ¼ a _φ

H ¼ a φ0
H. The explicit expressions for z in the cases

of FðTÞ and FðRÞ gravities have been obtained in [12,13],
respectively.
To derive the expression z00

z in the contracting phase,
during the quasimatter domination happening at very low
energy densities and curvatures, we first calculate

z0

Hz
¼ 1þ δ̄2: ð14Þ

Now, using the same method as in [14] (pp. 54–55), and
the second formula of (6), we obtain

z00

z
¼ Hðδ̄2Þ0 þH0 z

0

Hz
þH2

�
z0

Hz

�
2

≅ −H2ξ̄3 þH0ð1þ δ̄2Þ þH2ð1þ 2δ̄2Þ: ð15Þ

Finally, solving Eq. (3) for ϵ̄ constant (because
dϵ̄
dN ¼ _̄ϵ

H ≅ 2δ̄2 ≪ ϵ̄), i.e., taking H ¼ 2
ηð1þ3ϵ̄Þ ≅

2
η ð1 − 3ϵ̄Þ

and replacing this expression in (16), we get, up to first
order,

z00

z
≅

2

η2
ð1 − 9ϵ̄Þ: ð16Þ

It is clear from this result that the Mukhanov-Sasaki
equation (13) during the quasimatter domination epoch can
be approximated by

v00k þ
�
k2−

1

η2

�
ν2−

1

4

��
vk ¼ 0 where ν ≅

3

2
−6ϵ̄: ð17Þ

Then, in order to obtain the adiabatic Bunch-Davies
vacuum, one has to choose as a solution of (17)

vk ¼
ffiffiffiffiffiffiffiffi
πjηjp
2

eið1þ2νÞπ
4Hð1Þ

ν ðkjηjÞ: ð18Þ

For modes well outside the Hubble radius kjηj ≪ 1,
Eq. (17) becomes

v00k −
1

η2

�
ν2 −

1

4

�
vk ¼ 0; ð19Þ

the solution of which is given by

vk ¼ C1ðkÞjηj12þν þ C2ðkÞjηj12−ν ≅ C2ðkÞjηj12−ν: ð20Þ

On the other hand, if one chooses as a scale factor in the
quasimatter domination period aðtÞ ≅ t2=3 ⇒ a ≅ η2

9
⇒

z ≅ η2

3
ffiffi
3

p , the solution (20) can be written as follows:

vk ≅
1ffiffiffi
3

p C2ðkÞ
�
zðηÞ

Z
η

−∞

dη̄
z2ðη̄Þ

�
jηj32−ν: ð21Þ

For modes well outside of the Hubble radius the solution
(18) should match (21). Using the small-argument approxi-
mation in the Hankel function and the expression (20), for
these modes we get

vk≅−i
ffiffiffi
1

6

r
k−3=2eið1þ2νÞπ

4
ΓðνÞ

Γð3=2Þ
�
zðηÞ

Z
η

−∞

dη̄
z2ðη̄Þ

��
kjηj
2

�3
2
−ν
:

ð22Þ

Such modes will reenter the Hubble radius at late times in
the expanding phase, when the universe is matter domi-
nated. Then, the power spectrum is given by

PSðkÞ¼
1

12π2

�
ΓðνÞ

Γð3=2Þ
�

2
�Z

η

−∞

dη̄
z2ðη̄Þ

�
2
�

k
aH

�
3−2ν

; ð23Þ

where we have used the matter domination condition, i.e.,
the relation aH ¼ 2

η.
Evaluating this quantity at the reentry time (aH ¼ k) and

taking into account that this happens at very late times, we
obtain the final formula for the power spectrum corre-
sponding to scalar perturbations,

PSðkÞ ¼
1

12π2

�Z þ∞

−∞

dη
z2ðηÞ

�
2

k¼aH
; ð24Þ

where the approximationΓðνÞ≅Γð3=2Þhasbeenperformed.
Note that in slow-roll inflation, the power spectrum

could be expressed in terms of the slow-roll parameter ϵ̄sr.
This is due to the fact that in inflationary cosmology, for
modes well outside of the Hubble radius, the dominant

QUASIMATTER DOMINATION PARAMETERS IN BOUNCING … PHYSICAL REVIEW D 91, 063522 (2015)

063522-3



mode is constant being the other one decreasing in the
expanding phase. For this reason, one could write the
power spectrum in terms of ϵ̄sr, because it only depends on
the slow-roll regime. Unfortunately, when one deals with
bouncing cosmologies, in the contracting phase for modes
well outside of the Hubble radius, the dominant mode is not
the constant one, because the other one increases. Then, the
spectrum depends on the whole background evolution and
not only on the quasimatter domination regime.
In our case, the spectral index for scalar perturbations,

ns, is obtained from (23), giving as a result

ns − 1≡ lnPðkÞ
ln k

¼ 3 − 2ν ¼ 12ϵ̄: ð25Þ

We can also calculate the running of the spectral tilt,

αs ≡
�

dns
d ln k

�
k¼aH

¼ n0s
ðln aHÞ0 ¼ −

2n0s
H

≅ −
24ϵ̄0

H
¼ −48δ̄2; ð26Þ

where we have used the formula (3) and the first formula
of (6).
In terms of the pressure and energy density, P and ρ,

respectively, one has

ϵ̄ ¼ P
ρ
; δ̄2 ¼ 1

2H
d
dt

ln

�
1þ P

ρ

�
; ð27Þ

which leads to the equivalent expression for the spectral
index and the running parameter,

ns − 1 ¼ 12
P
ρ
; αs ¼ −

24

H
d
dt

ln

�
1þ P

ρ

�
: ð28Þ

In the same way, for tensor perturbations one obtains the
following power spectrum:

PTðkÞ ¼
2

9π2

�Z þ∞

−∞

dη
z2TðηÞ

�
2

k¼aH
; ð29Þ

where, for very low energy densities and curvatures,
zT ¼ a. The exact expression of zT in holonomy-corrected
loop quantum cosmology was obtained in [15], in tele-
parallel FðTÞ gravity in [12], and in modified FðRÞ gravity
in [16].
The ratio of tensor-to-scalar perturbations is given by

r ¼ 8

3

 Rþ∞
−∞

dη
z2TðηÞRþ∞

−∞
dη

z2ðηÞ

!2

k¼aH

: ð30Þ

Finally, it is instructive to compare these parameters with
the slow-roll ones commonly used in inflation,

ϵ̄sr ¼ −
_H
H2

≅
1

2

�
Vφ

V

�
2

;

η̄sr ¼ 2ϵ̄sr −
_̄ϵsr

2Hϵ̄sr
≅
Vφφ

V
; ð31Þ

which are related to the quasimatter domination parameters
ϵ̄ and δ̄2 via the formulas

ϵ̄sr ¼
3

2
ðϵ̄þ 1Þ; η̄sr ¼ 3ðϵ̄þ 1Þ − 9

4
δ̄2: ð32Þ

In slow-roll inflation, the spectral index and its running
are given by

ns − 1 ¼ 2η̄sr − 6ϵ̄sr;

αs ¼ 16ϵ̄srη̄sr − 24ϵ̄2sr − 2ξ̄2sr; ð33Þ

where ξ̄2sr ≅
VφVφφφ

V2 is a second-order slow-roll parameter .
Moreover, in inflationary cosmology, the scalar/tensor

ratio is related to the slow-roll parameter ϵ̄sr as

r ¼ 16ϵ̄sr; ð34Þ

which does not happen in the MBS, because there the
tensor/scalar ratio depends on the whole background
dynamics, and not solely on those corresponding to
quasimatter domination.

B. Power law expansion

As an example, we will choose the following potential
[17]:

VðφÞ ¼ V0e
−
ffiffiffiffiffiffiffiffiffiffiffi
3ð1þωÞ

p
jφj; ð35Þ

which leads to the power law expansion

a ∝ t
2

3ð1þωÞ: ð36Þ

An easy calculation yields for the MBS

ns − 1 ¼ 12ω: ð37Þ

In contrast, in the case of slow-roll inflation, for the same
potential (35) one gets

ns − 1 ¼ −3ð1þ ωÞ and r ¼ 24ð1þ ωÞ: ð38Þ

For either of these theories—MBS or inflation—to be
viable, they have to match astronomical data that is
more and more accurate. Focusing in particular on
Planck data, the resulting spectral index is given by
ns ¼ 0.9603� 0.0073; specifically, this means that:
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(1) In the MBS, in order for the potential (35) to
match with observations, one needs to choose
ω ¼ −0.0033� 0.0006.

(2) In power law inflation, the potential (35) turns out to
be in agreement with the observational value of the
spectral index provided ω¼−0.9867�0.0024.
Moreover, since the tensor/scalar ratio is given by r ¼
24ð1þ ωÞ, for this potential to fit well with Planck
data one has to impose ω ≤ −0.9954, which is not
compatiblewith the previous number,ω¼−0.9867�
0.0024. On the other hand, to match the ratio of
tensor-to-scalar perturbations with the BICEP2 data,
one has to choose ω∈ ½−0.9937;−09887�; this, to-
gether with the condition ω ¼ −0.9867� 0.0024,
restricts the value of the parameter ω to be
ω ¼ −0.9890þ0.0001

−0.0003 .
This calculation clearly shows that, in order to match with
current observational data, the parameter ω that appears in
both theories must be conveniently tuned.
Finally, the power law expansion given by the potential

(35) has no running, which is in contradiction with the
latest Planck data [3] that provides the experimental value
αs ¼ −0.0134� 0.009. For this reason, other models must
be considered as alternatives.

III. QUASIMATTER DOMINATION POTENTIALS
OBTAINED FROM THE EQUATION OF STATE

We now continue once again with the parametrization of
the scale factor in the contracting phase given by aðNÞ ¼
afeN , where af is the value of the scale factor at the end of
the quasimatter domination period. We will assume, as in
inflation [18], an equation of state (EoS) of the form P

ρ ¼
β

ðNþ1Þα where α > 0 and β < 0 (the fluid has negative

pressure) are both of order 1. This particular dependence
between P

ρ and the number of e-folds will allow us to obtain,
in a simple way, potentials that lead to a quasimatter
domination. Effectively, the conservation equation reads

d ln ρ
dN

¼ −3
�
1þ P

ρ

�
¼ −3 −

3β

ðN þ 1Þα ; ð39Þ

and the solution of this equation is given by

ρðNÞ ¼
(
ρfe−3NðN þ 1Þ−3β; α ¼ 1;

ρ0e−3Ne
3β

ðα−1ÞðNþ1Þα−1 ; α ≠ 1.
ð40Þ

On the other hand, in the contracting phase,

dφ
dN

¼ _φ

H
¼ −

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ P

ρ

s
¼ −

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

ðN þ 1Þα
s

; ð41Þ

where we have used _φ2 ¼ ρþ P. This equation could be
explicitly integrated for α ¼ 1, 2; for example, when α ¼ 1,
one has

φðNÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

�
1þ β

ðN þ 1Þ
�s
ðN þ 1Þ

þ
ffiffiffi
3

p
β

2
ln

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

ðNþ1Þ
q

− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

ðNþ1Þ
q

þ 1

1
CA: ð42Þ

Here, however, we will make the approximationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

ðNþ1Þα
q

¼ 1þ β
2ðNþ1Þα for large values of N. Then,

one obtains

φðNÞ ≅
8<
:

−
ffiffiffi
3

p ðN þ lnðN þ 1Þβ2Þ; α ¼ 1;

−
ffiffiffi
3

p �
N − β

2ðα−1ÞðNþ1Þα−1
�
; α ≠ 1.

ð43Þ

Finally, introducing the approximation of quasimatter
domination, ρðNÞ≅2VðNÞ, we obtain, for N≥1⇔
φ→−∞,

VðφÞ ≅
8<
:

V0e
ffiffi
3

p
φðNðφÞ þ 1Þ−3β

2 ; α ¼ 1

V0e
ffiffi
3

p
φe

3β

2ðα−1ÞðNðφÞþ1Þα−1 ; α ≠ 1;
ð44Þ

where NðφÞ is obtained by solving for N in (43).

A. Viability of the models

The spectral index and the running parameter for the EoS
P
ρ ¼ β

ðNþ1Þα, and, thus, for potentials of the form (44), can be

easily obtained from Eq. (28) by using the relation
d

Hdt ¼ d
dN, which yields

ns − 1 ¼ 12β

ðN þ 1Þα ; αs ≅
24αβ

ðN þ 1Þαþ1
: ð45Þ

Note that in the MBS, the ratio of tensor-to-scalar pertur-
bations is not related to the quasimatter domination
parameters and has to be calculated using Eq. (30). This
calculation can be carried out numerically for the solution
of the conservation equation

φ̈þ 3HðφÞ _φþ Vφ ¼ 0; ð46Þ

corresponding to a universe that takesN e-folds to leave the
quasimatter domination epoch, i.e., for the solution that
satisfies the initial conditions

φi ¼ φðNÞ; _φi ¼ H
dφ
dN

¼
ffiffiffiffiffiffiffiffiffiffi
ρðNÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

ðN þ 1Þα
s

;

ð47Þ

where φðNÞ and ρðNÞ are given by (43) and (40),
respectively.
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However, it is important to realize that the constraint of
the tensor/scalar ratio provided by the Wilkinson
MIcrowave Anisotropy Probe and Planck projects
(r ≤ 0.11) is obtained indirectly, assuming the consistency
slow-roll relation r ¼ 16ϵ̄sr [19], because gravitational
waves are not detected by those projects. This means that
the slow-roll inflationary models must satisfy this con-
straint, but the bouncing models, where there is not any
consistency relation, do not need to satisfy it. This point is
very important because some very complicated mecha-
nisms are sometimes implemented in the MBS in order to
enhance the power spectrum of scalar perturbations to
achieve the observational bound provided by Planck [20].
Moreover, numerical calculations have been performed for
holonomy-corrected and teleparallel loop quantum cosmol-
ogy [21], and those theoretical values of the tensor/scalar
ratio have been compared with the corresponding obser-
vational values provided by the Planck and BICEP2
projects. In fact, in the MBS, to check if the models
provide a viable value of the tensor/scalar ratio, gravita-
tional waves must first be clearly detected in order to
determine the observed value of this ratio. We hope that
more accurate unified Planck-BICEP2 data (the B2P
Collaboration), which will be issued soon, may address
this point. In contrast, the spectral index of scalar pertur-
bations and its running could be calculated independently
of the theory [22]; this means that in order to check
bouncing models in the absence of evidence of gravita-
tional waves, one has to work in the space ðns; αsÞ.

1. Example 1

As a first example, we can compare our results relative
to the MBS with those for chaotic inflation given by the
potential VðφÞ ¼ λφ2n. In this case, one has [23]

ns − 1 ¼ −
2ðnþ 1Þ
2N þ n

; r ¼ 16n
2N þ n

: ð48Þ

We can see that, for the same number of e-folds, one
obtains the same spectral index in both the MBS and
chaotic inflation, after choosing α ¼ 1 and β ¼ − 1

4
in the

MBS and a quartic potential for inflation. That is, one
obtains the same spectral index for these parameters
(α ¼ 1, β ¼ − 1

4
, and n ¼ 2) for modes that leave the

Hubble radius about a number N of e-folds before the
end of the corresponding period (quasimatter domination
in bouncing cosmologies and the slow-roll phase in
inflation).
From (48) we can see that in order to achieve the

observed value of the spectral index one has to choose
N ∈ ½62.829; 91.592�. On the other hand, in slow-roll
inflation one also has the constraint r ¼ 16

Nþ1
, which,

compared with the Planck constraint r ≤ 0.11, implies
N ≥ 144.454. This means, however, that the chaotic quartic
potential is ruled out by Planck data. However, if one

considers the BICEP2 data r ¼ 0.20þ0.07
−0.05 , one obtains

N ∈ ½58.259; 105.666�, which means that the quartic poten-
tial fits well with BICEP2 data for N ∈ ½62.829; 91.592�.
In our bouncing model, with the aim of obtaining the

theoretical value of the tensor/scalar ratio, one has to use
the formula (30). Thus, one needs to calculate this quantity
for the solution of the conservation equation with initial
conditions

φi ¼ φðNÞ; _φi ¼ H
dφ
dN

¼
ffiffiffiffiffiffiffiffiffiffi
ρðNÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

4ðN þ 1Þ

s
;

ð49Þ

where φðNÞ is given by (42), ρðNÞ by (40), and
N ∈ ½62.829; 91.592�.

2. Example 2

As a second example we will deal with R2 gravity,
where [24]

ns − 1 ¼ −
2

N
; r ¼ 12

N2
: ð50Þ

The same spectral index could be obtained from (45)
choosing α ¼ 1, β ¼ − 1

6
and considering N − 1 e-folds

instead of N. In this case the correct power spectrum is
obtained by choosing N ∈ ½42.553; 61.728�.
In inflationary cosmology the model matches correctly

with Planck data, because the constraint r ≤ 0.11 is equiv-
alent to N ≥ 10.44. However, the model is incompatible
with the BICEP2 data, because it implies N ∈ ½6.66; 8.94�.

B. Compatibility between the spectral index
and the running parameter

Here we will compare the compatibility of the spectral
index and the running parameter in both the inflation and
MBSs. In the slow-roll regime, both the spectral index and
the running parameter for a perfect fluid can be easily
calculated from the equations

ns − 1 ¼ −3
�
1þ P

ρ

�
þ d
dN

ln

�
1þ P

ρ

�
;

αs ¼
_ns
H

¼ −
dns
dN

; ð51Þ

and if one considers a fluid satisfying the condition

���� d
dN

lnðρþ PÞ
����≪

����1þ P
ρ

����; ð52Þ

one gets [25]
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ns − 1 ≅ −6
�
1þ P

ρ

�
; αs ≅ −18

�
1þ P

ρ

�
2

: ð53Þ

From these equations one obtains the relation αs ¼
− 1

2
ð1 − nsÞ2. Now, inserting the observed value for the

spectral index,ns¼0.9603�0.0073, this yieldsαs∈ð−5.2×
10−4;−1.1×10−3Þ, which is in clear contradiction with
the observed value, αs ¼ −0.0134� 0.009. As a conse-
quence, inflation corresponding to this kind of perfect
fluid is less favored by the current observational data.
For a fluid with an EoS 1þ P

ρ ¼ β
ðNþ1Þα, with both α and β

positive and of order 1 [18], which does not satisfy the
condition (52), one has

αs ¼

8>><
>>:

− 1
α ðns − 1Þ2 α > 1

− 1
3βþ1

ðns − 1Þ2 α ¼ 1

α
Nþ1

ðns − 1Þ α < 1.

ð54Þ

Then:
(1) For α ≥ 1 one has

jαsj ≤ ðns − 1Þ2 ¼ ð0; 0397� 0.0073Þ2
< j − 0.0134� 0.009j;

ruling out, at 1σ confidence level, this kind of model.
(2) For α < 1, to match the theoretical values with the

experimental ones, the parameters must satisfy

2α ≤ N þ 1 ≤ 11α and

−
3β

ðN þ 1Þα ¼ −0.0397� 0.0073:

However, since α < 1, the number of e-folds
before the end of inflation satisfies N þ 1 < 11,
which is incompatible with the minimum number of
e-folds (for the most general models N ≥ 50 [3]) to
solve both the horizon and flatness problems in
general relativity.

The problem with slow-roll inflation is that, in general,
the spectral index is of order N−1, while the running
parameter is of order N−2 ; consequently, one has
αs ∼ ð1 − nsÞ2, which in most cases is incompatible with
Planck data, because the observed value of the running is
not small enough [26]. Moreover, the constraint of the
tensor/scalar ratio provided by the WMAP and Planck
projects (r ≤ 0.11) is obtained indirectly assuming the
consistency slow-roll relation r ¼ 16ϵ̄sr [19], because
gravitational waves are not detected by those projects.
This means that the slow-roll inflationary models must
satisfy this constraint, but the bouncing ones, where there is
not any consistency relation, do not need to satisfy it. It is
the combination of the three data ðns; αs; rÞ that rules out, at

1σ confidence level for the running, all the standard slow-
roll inflationary models.
For instance, we consider the ΛCDMþ rþ αs model

from Planck combined with WP and BAO data, which
gives the following results: ns ¼ 0.9607� 0.0063, r ≤
0.25 at 95% C.L., and αs ¼ −0.021þ0.012

−0.010 (see Table 5 of
[3]). In slow-roll inflation, a simple calculation leads to the
relation

αs ¼
1

2
ðns − 1Þrþ 3

32
r2 − 2ξ̄2sr: ð55Þ

Thus, considering ns at 2σ confidence level and taking
the conservative bound r ≤ 0.32 (see Fig. 4 of [3]), the
minimum of the function 1

2
ðns − 1Þrþ 3

32
r2 is bigger than

−0.0018, which provides the bound

αs ≥ −0.0018 − 2ξ̄2sr: ð56Þ

This means that potentials such as VðφÞ ¼ V0ð1 − φ2

μ2
þ…Þ

(hilltop), VðφÞ ¼ V0ð1 − φ2

μ2
Þ2 (plateau) [27], or VðφÞ ¼

V0ð1þ cosðφμÞÞ (natural) [28], when one considers values

of the running at 1σ confidence level (αs ¼ −0.021þ0.012
−0.010 ⇔

−0.031 ≤ αs ≤ −0.009), are disfavored by Planck data
because ξ̄2sr ≤ 0 for all of them.
Dealing with the monomial potential VðφÞ ¼ V0φ

p, one
obtains

ns − 1 ¼ −
pðpþ 2Þ

φ2
; αs ¼ −

2p2ðpþ 2Þ
φ4

; ð57Þ

which means that p must be positive in order to have a
spectral index with a red tilt and a negative running. As a
first consequence, inverse power law potentials [29] are
disfavored.
For p ¼ 1, 2 one has ξ̄2sr ¼ 0; thus, one can apply the

bound (56) to disfavor these models. In general, since for
this monomial potential one has ξ̄2sr ¼ p−2

p−1 η̄
2
sr, one can

obtain the following exact formula:

αs ¼
pþ 2

8ðp − 1Þ ðns − 1Þrþ 3ðpþ 2Þ
128ðp − 1Þ r

2

−
p − 2

2ðp − 1Þ ðns − 1Þ2: ð58Þ

For p ≥ 3, using p−2
p−1 ≤ 2 and the fact that pþ2

p−1 increases
as a function of p, one gets the bound

αs ≥
5

16
ðns − 1Þr − ðns − 1Þ2 ≥ −0.0084; ð59Þ

which is incompatible with the running provided by Planck
at 1σ confidence level.
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Finally, for a general hilltop potential VðφÞ ¼
V0ð1 − φp

μp þ…Þ with p ≥ 3 [30], one also has the relation

ξ̄2sr ¼ p−2
p−1 η̄

2
sr; thus, one can apply the same reasoning as in

the previous case for monomial potentials.
One way to solve this problem is to break the slow-

roll approximation for a short while—for example,
by including a quickly oscillating term in the potential.
In this case the theoretical value of the running parameter
gets larger and could match well with experimental
data [31].
On the other hand, in the MBS, when dealing with a

perfect fluid with EoS P
ρ ¼ β

ðNþ1Þα, one obtains from (45) the
following relation:

αs ¼
2α

N þ 1
ðns − 1Þ; ð60Þ

which is perfectly compatible with the experimental data.
In fact, for instance, if one takes α ¼ 2 and N ¼ 12 (note
that in bouncing cosmologies a large number of e-folds is
not required, because the horizon problem does not exist—
at the bounce all parts of the Universe are already in causal
contact—and the flatness problem is also improved [10]),
one obtains, for ns ¼ 0.9603� 0.0073, the value of the
running parameter αs ¼ 0.0122� 0.0022, which is com-
patible with the Planck data. Effectively, for these values of
α and N one gets ns − 1 ¼ 12

132
β ≅ 0.071β, which is indeed

compatible with its observed value, by choosing β ≅ − 1
2
.

IV. CONCLUSIONS

In this paper we have introduced, at early times in the
contracting phase of bouncing cosmologies, a quasimatter
domination regime controlled by some convenient small
parameters that we have defined here. This has allowed us
to obtain theoretical values of the spectral index and the
running parameter, which are in perfect agreement with
the most recent and accurate observational data from the
Planck satellite.
We have shown in detail, and with the help of several

simple examples, the viability of our bouncing models for
isotropic fluids with an equation of state that depends on
the number of e-folds occurring before the end of the
quasimatter domination epoch. We have also demonstrated
that, in contrast to these results, slow-roll inflationary
models are generically less favored by the most recent
Planck observational data; this is due, in particular, to the
rather small value of the running parameter predicted by all
these slow-roll theories.
We expect that more precise unified Planck-BICEP2 data

(the B2P Collaboration), which will be issued soon, may fit
even better the bouncing cosmologies under considera-
tion here.
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