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We revisit alternative mechanisms of gravitational wave production during inflation and argue that they
generically emit a non-negligible amount of scalar fluctuations. We find the scalar power is larger than the
tensor power by a factor of order 1=ϵ2. For an appreciable tensor contribution, the associated scalar
emission completely dominates the zero-point fluctuations of the inflaton, resulting in a tensor-to-scalar
ratio r ∼ ϵ2. A more quantitative result can be obtained if one further assumes that gravitational waves are
emitted by localized subhorizon processes, giving rmax ≃ 0.3ϵ2. However, ϵ is generally time dependent,
and this result for r depends on its instantaneous value during the production of the sources, rather than
just its average value, somewhat relaxing constraints from the tilt ns. We calculate the scalar 3-point
correlation function in the same class of models and show that non-Gaussianity cannot be made arbitrarily
small, i.e. fNL ≳ 1, independently of the value of r. Possible exceptions in multifield scenarios are
discussed.
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I. TENSOR EMISSION DURING INFLATION

Inflation stretches the vacuum fluctuations of the
graviton field to nearly scale-invariant superhorizon
gravitational waves,

hγskγs
0
k0 ivac ¼ ð2πÞ3δð3Þðkþ k0Þδss0 1

2k3
Pt;vac;

Pt;vac ¼
2H2

M2
P1
: ð1Þ

These tensor modes lead to B-type polarization of the
cosmic microwave background [1,2]. If experiments with
sensitivity comparable to those currently taking data were
to make a conclusive detection (see e.g. [3]), Eq. (1) would
imply that the scale of inflation is H ≃ 1014 GeV.
However, it has been suggested in [4–6], that there are
other (secondary) mechanisms of gravity-wave production
during inflation which can dominate the primary effect (1).
This invalidates the above inference of the scale of
inflation. In these examples the gravitons are not zero-
point quantum fluctuations, and therefore a measurement
of primordial B modes would not be direct check of the
quantization of gravity [3]. Given these prospects now
seems to be the right time to reexamine those mechanisms
in more detail.
The basic idea behind these secondary mechanisms is to

assume there is a sector X that constantly absorbs energy
via its coupling to the inflaton field ϕ and emits gravita-
tional waves. This emission can result from localized and
nearly incoherent processes that occur periodically. This
possibility can be motivated in field theory by assuming an
approximate discrete shift symmetry [7]. For instance, the
X sector can be composed of particles (strings) whose mass
(tension) is a function of ϕ, and naturally arises in string

theory motivated models of inflation where the inflaton is a
monodromy-extended direction in field space [8], but in a
regime of parameters where a sector of the spectrum
becomes light each time the field traverses an underlying
circle of sub-Planckian period (as in e.g. [9,10]). As a
concrete field-theory model consider

M2
X ¼ M2sin2

�
ϕ

f

�
; ð2Þ

with _ϕsr=f ≫ H. Each time the mass goes through zero,
there is a burst of particle production. If these massive
particles subsequently decay or scatter each other, they will
emit soft gravitons via Bremsstrahlung [4].
Another possibility is to have a process that acts

coherently over a Hubble distance. The primary example
is a Uð1Þ gauge field with a coupling to the inflaton [5,11],

α

f
ϕF ~F: ð3Þ

This causes a tachyonic instability of one of the two
helicities of the gauge field. If the instability rate is faster
than expansion rate (but not too faster to destabilize the
inflation), a large helical field is generated and sources a
polarized tensor field. We refer to these mechanisms as
“coherent emission by extended configurations.”
The natural question to ask is whether these scenarios

can compete with the zero-point fluctuations (1). Obviously
the energy density ρX of the auxiliary sector must be a small
fraction of total energy density of the Universe 3M2

P1H
2.

The Friedmann equations imply

ρX þ pX þ ρϕ þ pϕ ¼ −2M2
P1

_H; ð4Þ
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where ρX þ pX ∼ ρX is sourced by ρϕ þ pϕ (the kinetic
energy of the inflaton in the slow-roll models). We there-
fore expect

ρX ≲M2
P1H

2ϵ; ð5Þ

where ϵ≡ − _H=H2.
The level of gravitational waves with frequency ω which

can potentially be emitted by ρX is roughly

γω ∼
ρX

M2
P1ω

2
: ð6Þ

Taking ω ∼H and using the upper bound (5) yields

γ ≲ ϵ; ð7Þ

which can still be much larger than H=MP1 of vacuum
fluctuations (1).
Because of the coupling to the inflaton field, which is

the only source of energy during inflation, the X sector
necessarily emits scalar waves as well. The second natural
question, thus, regards the level of scalar emission as
compared to the vacuum fluctuations:

hζkζk0 ivac ¼ ð2πÞ3δð3Þðkþ k0Þ 1

2k3
Ps;vac;

Ps;vac ¼
H2

2M2
P1ϵ

: ð8Þ

Can the scalar emission be kept subdominant to Ps;vac?
Even if not, can an observably large tensor-to-scalar ratio
be explained by these mechanisms?
For the purpose of order of magnitude estimates and

heuristic arguments, it is useful to characterize the primor-
dial scalar and tensor power in terms of the number of
quanta (Ns and Nt) in each logarithmic interval of wave-
length and in a volume of the same wavelength size. In the
absence of emission (or absorption) these numbers remain
conserved during the expansion of the Universe. Since the
fluctuations of vacuum and first excited level in a box are of
the same order, these excitation numbers can be approxi-
mated by comparing the ratio of the actual power to the
zero-point power: Nt ∼ Pt=Pt;vac and Ns ∼ Ps=Ps;vac.
Hence, in the presence of a secondary mechanism the
tensor-to-scalar ratio r ¼ 4Pt=Ps would be modified from
its usual value, r ¼ 16ϵ, to1

r ∼ 16ϵ
Nt

Ns
: ð9Þ

What allows us to make general statements about
Nt=Ns is the nearly exponential expansion of the
Universe:

(i) For any emission process that operates at a physical
frequency ω, there is only a short period of time of
order H−1 during which a given k mode can be
excited.

(ii) Suppose this process transfers a total energy of E per
Hubble volume into gravity waves within a loga-
rithmic interval of frequency around ω. By the time
the waves exit the horizon and freeze, the power
dilutes by a factor of ω−4, a fact that follows from
our definition,

Nt ∼
E
ω

H3

ω3
: ð10Þ

This strongly suppresses waves produced at
ω ≫ H. In Appendix A, we will illustrate this
point in a more concrete example by considering
emission of hard gravitons in strong gravity regime.
But in the main text concentrate on soft emission
at ω ∼H.2

A. INCOHERENT EMISSION
BY LOCALIZED SUBHORIZON

EVENTS

The above observation leads to a dramatic simplification
if the emission process happens deep inside the horizon:
the details of the production mechanism does not matter
anymore. The emission of Hubble wavelength tensor and
scalar modes depends only on a few coarse-grained features
of the process.
The X sector can be thought of as effectively being

composed of particles of mass M, with NX spontaneous
tunneling events per Hubble time per Hubble volume.
At each event a total energy M is transferred from the
time-dependent background field to X sector. We assume
different events are spatially out of phase with respect to
one another, while temporally they can be correlated.
In addition to its invariant mass, each X particle is
characterized by quadrupole and higher moments. The
gravitational emission at Hubble wavelength due to the
time variation of these moments is suppressed by
powers of lH, where l is the characteristic size of the

1The inclusion of scalar sound-speed would lead to ϵ → ϵcs in
all of our constraints and makes them stronger. See comple-
mentary discussions in [12–15] and [12,14,16] on the relation
between r and respectively the scalar and tensor sound-speed, in
the absence of secondary emission.

2Both arguments also apply to the emission of scalar
modes.
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X particle.3 Large tensor emission requires relativistic and
asymmetric processes.
Consider, for instance, the decay of a particle of massM

into two relativistic jets. This process is accompanied by
considerable emission of soft gravitons. In flat space, the
energy radiated per unit solid angle per unit frequency can
be calculated using the standard Bremsstrahlung formula
(e.g. [18])

�
dEt

dΩdω

�
¼ ω2

2π2M2
P

X
N;M

ηNηM
ðPN · kÞðPM · kÞ

×

�
ðPN · PMÞ2 −

1

2
m2

Nm
2
M

�
: ð14Þ

Here the sum is over external particles, fPNg are their
momenta, and η ¼ þ1 for in-going particles and −1
otherwise. The result for the decay process is

dEt

dΩdω
¼ 1

ð2πÞ3
�

M
2MP1

�
2

: ð15Þ

(This formula also serves as an order of magnitude estimate
for soft graviton emission from other relativistic processes
involving particles of massM.) Comparing the flat spectral
index dEt=dω ∝ ω0 to the dilution factor ω−3 of (10)
implies that such a decay process during the inflation
contributes mainly to the power of modes with ω ∼H, as
already anticipated.
Note also that the above formula is valid only asymp-

totically, that is, if the final states traverse distances much

longer than the wavelength of gravitons. If they are caught
by multiple subsequent scatterings, although there is
emission from each scattering, the waves interfere coher-
ently and destructively (Landau-Pomeranchuk effect).
Since we are interested in emission at ω ∼H and since
each mode spends roughly a Hubble time H−1 at Hubble
frequency, the net effect of multiple scattering is to suppress
the power. (Different regimes of Bremsstrahlung from
multiple scattering are reviewed in Appendix C.)
Hence we expect, in order to have the largest gravita-

tional emission, each X particle should participate in a
single relativistic event. The exact amount of emition
depends on details of the process. However among such
events the decay (15) seems to be the most efficient one. As
long as different tunneling events are independent the total
number of gravitons produced is obtained by summing over
individual decays:

Nt ∼
nXðtfÞ
H3

dEt

dω
∼ NX

�
M
MP1

�
2
�
aðtiÞ
aðtfÞ

�
3

: ð16Þ

This implies a suppression factor if the lifetime of X
particles, Δt ¼ tf − ti, is comparable or longer than the
Hubble time. We henceforth assume the opposite regime.
Let us make two final remarks. First, if subgroups of X

particles emit coherently, for instance, by n of them
merging into a bound state which subsequently decays,
(16) gets enhanced by a factor of n. We were unable to find
a realistic model of this kind and leave this as an open
possibility.
Second, one should ask if the tunneling event itself leads

to considerable gravitational emission. As already men-
tioned, if each event results in a localized massive object of
small size (and, hence, small quadrupole moment), the
emission is negligible. In more realistic scenarios particles
are produced in pairs [4]. If these are two nonrelativistic
particles of mass M=2, that conclusion still holds. (In fact
the most efficient emission process would then be for the
two particles annihilating into two relativistic jets, so that
the pair can effectively be treated as a single particle of mass
M all along.) On the other hand, if the pair is relativistic,
there is gravitational emission given exactly by (15).
We postpone the actual calculation of the de Sitter

correlation function resulting from the decay process to
Appendix B.

B. COHERENT EMISSION BY EXTENDED
CONFIGURATIONS

As in the example of the Uð1Þ gauge field, the tensor
emission can happen coherently over horizon-size patches.
Obtaining precise universal results seems impossible in this
case. Nevertheless, an order of magnitude estimation of the
maximum tensor emission, given energy M per Hubble
volume of an extended configuration, is easy. In the weak
gravity regime, we expect

3More explicitly, the emission in this regime is dominated by
the interaction [17]

Z
d4x

Z
dtXγ−1δ4ðxμ − xμXðτÞÞQijðtXÞR0i0jðxÞ

¼
Z

dτQijðtXÞR0i0jðxXÞ ð11Þ

where τ is the proper time of the particle emitting gravity waves,
Rμνρσ is the Riemann tensor, andQij is the intrinsic quadrupole of
the particle. The standard formula of quadrupole emission gives
(see e.g. [18])

dEt

dω
∼
ω6QðωÞ2

M2
P1

∼
ω4QðtÞ2
M2

P1

ð12Þ

where in the last step we have used that QðωÞ ¼R
dteiωtQðtÞ ∼QðtÞ=ω. To relate this to the mass of the object,

We write Q ∼Ml2, where l is the typical size of the object.
Taking ω ∼ v=l, where νð≪ cÞ is the characteristic velocity, we
obtain

dEt

dω
∼

v4

l4 M
2l4

M2
P1

∼ v4
M2

M2
P1

: ð13Þ
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γðω ∼HÞ ∼MH
M2

P1
: ð17Þ

(As before, the main contribution comes from emission
into nearly Hubble frequency modes.) We, therefore, get
Pt ∼M2H2=M4

P1. If there are several extended configura-
tions emitting independently (e.g. N species of Uð1Þ gauge
fields in the example of [6]), their contribution adds up to
give

Nt ∼ N
M2

M2
P1
: ð18Þ

Note that symmetries can highly suppress tensor emission
compared to this naive expectation.

II. SCALAR EMISSION AND ENERGY
CONSERVATION

Since the energy M of each X event is provided by the
coupling of X sector to the time-dependent inflaton back-
ground field, each tunneling event leads to scalar emission.
By the same arguments as for gravitons [see (10)], only soft
scalars of wavelength λ ∼ 1=H need to be considered. This
emission can be calculated in a model-independent way
using the effective field theory of inflation (EFTofI)
[12,19]. However, to build intuition let us first consider
a single-field slow-roll model.
For deeply subhorizon events curvature can be ignored

and energy conservation implies that the energy M must
come from the background inflaton. Therefore, the X
particle production must be accompanied by a scalar wave
δϕðt; xÞ which is responsible for that energy deficit. The
stress-energy tensor of ϕ is

Tμν ¼ ∂μϕ∂νϕ − gμν

�
1

2
ð∂ϕÞ2 − VðϕÞ

�
: ð19Þ

The perturbed energy density is

δT00 ¼ _ϕsrδ _ϕþ V 0δϕþOðδϕ2Þ: ð20Þ

Terms quadratic in δϕ correspond to the energy carried by
the wave of δϕ, and are negligible compared to the linear
terms. Moreover, the scalar profile would be a sharp pulse
with characteristic width determined by the size and
duration of the tunneling event. As such most of the energy
is carried away by frequencies higher than the Hubble rate.
Therefore, the second term of (20) which can be written as
−3H _ϕsrδϕ, is suppressed compared to the first one. By
energy conservation δT00 must integrate to −M, implying

Z
d3xδ _ϕ ¼ −

M
_ϕsr

: ð21Þ

(Note that the integral on the left is the Noether charge
associated to the approximate shift symmetry of δϕ, whose
mass is much less than H; it remains conserved after the
tunneling event.)
Now consider the flat-space expression for the energy

emitted in the wave of δϕ:

Es ¼
Z

d3x
1

2
½δ _ϕ2 þ ð∇δϕÞ2�: ð22Þ

Using (21) and dimensional analysis, we get at small
frequencies

dEs

dω
∼
M2

_ϕ2
sr

ω2: ð23Þ

Because of the dilution effects associated with the expan-
sion the scalar power would be most affected by the lower
end of the spectrum, frequencies of order H. For these
frequencies our flat space analysis is only an order of
magnitude estimate.

A. Generalization

Consider an independent localized tunneling event in
which energyM is transferred to X sector in a period much
shorter than a Hubble time. By translational invariance of
the background the total momentum transfer must be zero.
As argued before for emission of long-wavelength tensor
and scalars the detailed structure of the event is unim-
portant. Therefore we can describe it by the production of a
particle at rest whose mass grows from 0 toM. Choosing a
frame where the constant-time hypersurfaces coincide with
constant-inflaton hypersurfaces, the X particle would be
described by a Dirac-Born-Infeld action with a time-
dependent mass MðtÞ

SX ¼ −
Z

dτMðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _x

μ
X _x

ν
X

q
: ð24Þ

Following the EFTofI [12], we can restore time-
diffeomorphism invariance by shifting t → tþ π and
prescribing the right symmetry transformation to π.
Hence any explicit time-dependence [such as MðtÞ] leads
to a linear coupling π∂tL. Since explicit time-dependence
in the action results in energy nonconservation

∂μT
μ
0 ¼ −∂tL; ð25Þ

on subhorizon scales π couples at leading order to −∂μT
μ
0.

This coupling results in a universal emission of π whenever
energy is transferred from background to X sector, and is a
consequence of the conservation of total energy. Due to
the mixing of π and metric fluctuations hμν the gravitational
stress-energy tensor of π starts linear and is sign indefinite.
Therefore, in any particle production event the total
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stress-energy tensor (X plus π) is conserved well inside the
horizon.
Up to slow-roll corrections the dynamics of scalar

modes during inflation is adequately described by π alone.
Restricting to the leading derivative operators in the
EFTofI, the relevant action for π is therefore

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p
M2

P1
_H½ _π2 − a−2ð∂πÞ2�

þ
Z

d4xMðtþ πÞ
Z

dtXγ−1δ4ðxμ − xμXðτÞÞ; ð26Þ

where γ ¼ p0
X=MX. For each independent event momen-

tum conservation forces γ ¼ 1. The above action results in
a cubic coupling between the canonically normalized field
πc ¼

ffiffiffiffiffi
2ϵ

p
MP1Hπ and X particles with strength4

geff ≡
_Mffiffiffiffiffi

2ϵ
p

MP1H
: ð27Þ

The relative factor of
ffiffiffiffiffiffi−gp

between the first and second line
of (26) is responsible for a dilution effect similar to (16).
In the following we assume Hðtf − tiÞ ≪ 1.
The flat space solution for π in the presence of a single

source X at x ¼ 0 is

πcðt;xÞ ¼
1ffiffiffiffiffi

2ϵ
p

MP1H

Z
d3k
ð2πÞ3 e

ik·x

×

�
ie−ikt

2k

Z
tf

ti

_Meikτdt0 þ c:c:

�
; ð28Þ

which after integration by parts gives

πcðt;xÞ ¼
MðtfÞffiffiffiffiffi
2ϵ

p
MP1H

Z
d3k

ð2πÞ3ke
ik·x sin kðt− tfÞ; ð29Þ

plus terms suppressed by Oðkðtf − tiÞÞ which is negligible
because we are interested in k ∼H. Using the expression
for the energy density of the canonically normalized field in
flat space: ð _π2c þ ð∇πcÞ2Þ=2 we obtain the following result
for the energy emitted per unit frequency per unit solid
angle

dEs

dωdΩ
¼ 1

ð2πÞ3
M2ω2

4ϵM2
P1H

2
: ð30Þ

As before, the total scalar emission is obtained by summing
over independent X events. The maximum ratio Nt=Ns can
therefore be calculated by comparing (15), which appears

to be to the most efficient gravity wave production scenario,
with the above formula at ω ∼H. This yields5

Nt;max

Ns
∼ ϵ: ð31Þ

Evidently, in order for the production mechanism to have
any significance, that is Nt ∼ 1 or larger, the scalar
byproducts would completely dominate the vacuum fluc-
tuations (8). Therefore according to (9), the largest possible
tensor-to-scalar ratio which can be obtained in this scenario
is of order ϵ2. The more careful calculation of scalar and
tensor correlation functions in de Sitter space (Appendix B)
yields

rmax ≃ 0.3ϵ2: ð32Þ

An observable level of B modes, r≳ 10−3, requires ϵ >
0.05 in these scenarios. The Hubble parameter would
therefore drop by about one order of magnitude during
the 60 e-folds of inflation. Nevertheless, the scalar and
tensor tilt can remain sufficiently small as we will estimate
in the next section. From this estimate a value of r≳ 0.1
seems hard to be explained with this class of models,
although that may depend on the extent to which ϵ varies.6

The scalar emission by extended objects can be esti-
mated as follows. The π∂μT

μ
0 coupling and the overall

normalization of π kinetic term in (26) imply

πðω ∼HÞ ∼ MH2

M2
P1

_H
; ð33Þ

for energy M of the configuration in a Hubble volume.
Using ζ ≃ −Hπ gives Ps ∼H2M2=M4

P1ϵ
2. Comparison

with Ps;vac gives

Ns ∼ N
M2

ϵM2
P1

ð34Þ

4The minimal scenario considered above (and in [4]) corre-
sponds to M ¼ gϕ and δϕ ¼ πc.

5We note that the ϵ appearing here is the instantaneous ϵ at the
time of X production. It is natural to expect ϵ to have periodic
variations in the inflationary models with particle production;
however, the relative amplitude of oscillations is small in the
conventional models [7]. Models with significant variations in ϵ
can perhaps be constructed by considering nonmonotonic infla-
tionary potentials. In this case, one of the ϵ factors in the bound
(32) has to be replaced by the instantaneous value of ϵ at scalar
emission.

6In the example of tensor emission by long string pairs
considered in [4], the scalar emission during the process of
energy transfer from background to the X sector was missed. This
led to a much larger estimates for Nt=Ns. In fact, the tensor-to-
scalar ratio is much smaller in this case (r ∼ ϵ2=N loop), because
the initial scalar emission by the long string pair is coherent,
while the subsequent gravitational emission by the decay of the
pair into Nloop pieces is incoherent.
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where we also inserted the number of species N.
Comparing with (18) gives rmax ∼ ϵ2.

B. Multifield inflation

In the context of tensor emission by Uð1Þ gauge field
production, it has been suggested [6] to decouple scalar
emission by introducing another scalar field ψ which is
slow-rolling (say with _ψ sr ≪ _ϕsr):

S ¼
Z ffiffiffiffiffiffi

−g
p �

M2
P1

2
Rþ 1

2
ð∂ϕÞ2 þ 1

2
ð∂ψÞ2 − Vðϕ;ψÞ

−
1

4
F2 −

ψ

4f
F ~F

�
. ð35Þ

By replacing (3) with 1
f ψF ~F the energy source of the

auxiliary sector becomes _ψ2
sr=2. If in addition the scalar

spectrum is exclusively determined by ϕ fluctuations, then
energy conservation doesn’t seem to enforce any correla-
tion between tensor and scalar emission. Note that this idea,
if viable, can be used in other production mechanisms as
well. But is it viable?
Let us first understand this proposal in view of the above

argument for the universal π emission as a consequence of
energy conservation. In the EFTofI the fluctuations of fields
are decomposed into parallel (adiabatic) and perpendicular
(isocurvature) to the background trajectory in field space
[19]. The π field, which we refer to as the inflaton, is the
fluctuations along the background trajectory. As such, it is a
linear combination of the fluctuations of ϕ and ψ , and after
canonical normalization reads

πc ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_ϕ2
sr þ _ψ2

sr

q ð _ϕsrδϕþ _ψ srδψÞ: ð36Þ

In particular it couples to the gauge fields:

LπA ¼ α

4f
πcF ~F; α≃ _ψ sr

_ϕsr

: ð37Þ

There is also a light field σ which characterizes
perpendicular fluctuation in field space, and has a similar
coupling to F ~F but with α ∼ 1.
The copious production of gauge fields excites π and

results in a contribution to the scalar power that is the same
as the single-field version of the model [11]

Ps ¼ Ps;vac

�
1þ 7.5 × 10−5Ps;vac

e4πξ

ξ6

�
; ð38Þ

with ξ ¼ α _ϕsr=2fH. Comparing to the tensor production
[6]

Pt ¼ 16ϵPs;vac

�
1þ 3.4 × 10−5ϵPs;vac

e4πξ

ξ6

�
; ð39Þ

we see the same ϵ2 suppression. As expected π couples to
∂μT

μ
0 and whenever there is particle production (gauge

fields in this case) there is an associated emission of π.7

However, the isocurvature fluctuations (σ) in this model
are also sourced by the gauge fields. The resulting
isocurvature modes can later convert into adiabatic
ones [19]:

ζ ≃ −Hπ þ ζ;σσ: ð40Þ

Therefore, if ζ;σ ≃H _ψ sr= _ϕ
2
sr the net contribution of the

gauge fields to observed scalar spectrum can be made
negligible.
Since this conversion happens at superhorizon scales, it

is indeed easier to work in terms of the background model
formulated in terms of ϕ and ψ , and ask if it is possible to
decouple ζ from δψ , up to possible slow-roll suppressed
corrections. This problem is studied in more detail in
Appendix D. It is argued that choosing the reheating
surface to be determined by ϕ and ϵ ≪ 1=Ne (where Ne ∼
60 is the number of e-folds of inflation), decouples δψ and
corresponds to the above value for ζ;σ.
Another multifield inflationary model that evades our

conclusion because of a fundamentally different reason is
chromonatural inflation [23]. Here there is a non-Abelian
gauge field background which causes the perturbations of
the gauge field mix with the tensor modes. The assumption
that tensor modes couple universally via a cubic coupling
of strength 1=MP1 does not hold in this example since the
gauge field fluctuations can directly oscillate into gravitons.

III. NON-GAUSSIANITY AND TILT

In the last section we argued that for a large class of
models, large gravitational emission implies dominant
scalar emission. The scalar spectrum is naturally expected
to be non-Gaussian. In the case of localized emission, the
non-Gaussianity is calculated in Appendix B, and in terms
of the conventional fNL parameter,

fNLζ ∼
hζ3i

hζ2i3=2 ∼ N−1=2
X ; ð41Þ

where NX ∼ nXH−3, the number of X particles per Hubble
volume, is related to Ns through (30) and the assumption of
incoherent emission, namely,

7We notice in passing that the signal in this model is
exponentially sensitive to the value of ξ, so that it is observa-
tionally relevant only for a very small range of values of ξ. See
[20,21] for a more detailed study of this model, and [22] for a
related work on multi-field scenarios.
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Ns ∼ NX
M2

ϵM2
P1
: ð42Þ

In (41), ζ is a shorthand:

ζ ≡ P1=2
s ¼ N1=2

s P1=2
s;vac ∼ 10−5: ð43Þ

By energy conservation NX cannot be made arbitrarily
large, therefore there is a lower bound on fNL.

8 Let us
rewrite the constraint (5) using the average number density
nX of tunneling events and the final mass M:

ρX ¼ nXM ≲M2
P1H

2ϵ: ð44Þ

Multiplying both sides by a Hubble volume 1=H3 gives

NX
MH
ϵM2

P1
≲ 1: ð45Þ

Using (42) the lhs can be written as N1=2
X N1=2

s H=MP1
ffiffiffi
ϵ

p
,

which together with (41) and (43) results in

fNL ≳ 1: ð46Þ

The large non-Gaussianity can be used to break the
degeneracy between the production scenarios and the
conventional one. In Appendix B we provide the shape
of the induced non-Gaussianity. We find that the cosine
with the standard equilateral [24] and orthogonal [25]
templates is quite large, 0.97, making it rather challenging
to actually distinguish this shape from the standard ones.
We should emphasize that the above degree of non-

Gaussianity (41), which arises from stochasticity of the
emission process, is the minimum level based on very
general assumptions. In any concrete model there may be
other sources of non-Gaussianity, which we do not expect
to cancel the stochastic piece. For instance, if after
tunneling the X particles remain coupled to the inflaton
for a longer period of time, their scalar emission would be
influenced and, hence, correlated with the previously
emitted waves. This is the case in the ‘t‘rapped inflation”
model [9]. The already existing non-Gaussianity bounds
may then lead to more stringent constraints on the maxi-
mum level of gravitational wave emission as argued in [20].
Note, however, that various sources of non-Gaussianity are
expected to be independent.
Tilt: We finally calculate the tilt of scalar and tensor

spectra assuming that the coupling strength g and mass M
are dictated by UV physics and remain approximately
constant during inflation. Since _M is the only relevant

dimensionful parameter at the time of tunneling, the
number density of X events is expected to be nX ∼ _M3=2

or NX ∼ ð _MH2Þ3=2. Using the formulas (27), (43), and (42),
we get

ζ2 ∼ g3=2
M2

M2
P1

�
H
MP1

�
1=2

ϵ−5=4: ð47Þ

The scalar tilt is, therefore,

ns − 1 ¼ −
1

2
ϵ −

5

4
ϵ2; ð48Þ

where ϵ2 ≡ _ϵ=ϵH. A similar calculation gives for the tensor
tilt

nt ¼ −
1

2
ϵþ 3

4
ϵ2: ð49Þ

Thus, even ϵ≃ 0.1 does not require significant fine-tuning.
Here we did not make a distinction between the instanta-
neous and average ϵ, but that only relaxes the constraints
from ns.

IV. CONCLUSIONS

We have analyzed a large class of inflationary models
and found that there is a generic upper bound on the tensor-
to-scalar ratio in secondary mechanisms of tensor produc-
tion. This is because emitting gravitons requires energy,
and transferring energy from time-dependent background
to another sector leads to coupling to the inflaton π and
scalar emission. This emission is expected to be larger than
the tensor emission by a factor of 1=ϵ2. Therefore, unless
there are isocurvature modes which are produced by the
same process and cancel the former contribution to ζ,
tensor-to-scalar ratio will be Oðϵ2Þ. These models are also
associated with large non-Gaussianity, i.e. fNL ≳ 1, inde-
pendently of the value of r. In the event of a detection of r,
non-Gaussianities would provide a way to potentially,
though challengingly, distinguish this scenarios from the
standard one.
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APPENDIX A: HARD GRAVITONS

Only well-localized objects can emit hard gravitons.
Clearly the effect is larger in the strong gravity regime. So
consider the production of nX mass-M black hole pairs per
unit volume which subsequently merge and emit an order-
one fraction of their mass into gravitons of frequency

ω ∼
1

rg
∼
M2

P1

M
: ðA1Þ

The number of tensor modes is of order

Nt ∼
nXM
ω4

∼
nX
ω3

M2

M2
P1
; ðA2Þ

where nX ≪ ω3 but M ≫ MP1, so there is a chance of
having Nt > 1. However, when compared to the associated
soft scalar emission,

Ns ∼
nX
H3

M2

ϵM2
P1
; ðA3Þ

one obtains the much smaller tensor-to-scalar ratio,

r ∼ ϵ2
H3

ω3
: ðA4Þ

APPENDIX B: DE SITTER CORRELATORS

To calculate de Sitter correlation functions of π, one has
to take the expansion of the Universe and periodicity of the
production mechanism into account. Suppose there is a
sequence of random production of X particles with average
proper density n̄X and at moments ηn. Let us at each ηn
divide the space into small cells i, each of comoving
volume δvi, so small that pi ≡ n̄Xa3δvi ≪ 1. To each cell
assign a random variable Xi;n ¼ 1with probability p, and 0
otherwise. As we saw in (29) each event is practically a
delta function source for π. Hence, the field πkðηÞ resulting
from creation events can be written

πkðηÞ ¼
M

2ϵM2
P1H

2

X
n

Gkðη; ηnÞ
X
i

Xi;neik·xi ðB1Þ

where the first sum is over the production times and the
second on the cells. The de Sitter retarded Green’s function
in the limit kη → 0 simplifies to

Gkð0; ηnÞ ¼
H2

k3
ðsin kηn − kηn cos kηnÞ≡H2

k3
gðkηnÞ:

ðB2Þ

The late-time 2-point function of π can be calculated by
noting that

hXi;nXj;mi ¼ n̄2Xa
2
na2mδviδvj þ n̄Xa3nδviδnmδij: ðB3Þ

The first term gives a disconnected contribution propor-
tional to δ3ðk1Þδ3ðk2Þ, but the second term gives

hπk1
πk2

i0 ¼ M2

ð2ϵM2
P1Þ2k3

�
n̄X
H3

X
n

g2ðkηnÞ
−k3η3n

�
: ðB4Þ

Where prime means that ð2πÞ3δ3ðk1 þ k2Þ has been
omitted. The sum gets contribution only from those ηn
for which kηn ¼ Oð1Þ. Thus the expression in brackets is
OðNXÞ. The calculation of 3-point function of π is very
similar and gives

hπk1
πk2

πk3
i0 ¼ M3

ð2ϵM2
P1Þ3k21k22k23

�
n̄X
H3

X
n

Y
i

gðkiηnÞ
−kiηn

�
:

ðB5Þ
The expression in the bracket is OðNXÞ. From (B2) it
follows that in the squeezed limit k1 → 0 the above
expression scales as Oðk01Þ. The self-interactions of π
and slow-roll suppressed higher-order terms in the con-
version between π and ζ will change the squeezed limit
behavior of the 3-point function.
Tensors: The calculation of tensor power is similar. One

first defines the helicity components of the transverse-
traceless part of the spatial metric

γk;ij ¼ γþk ε
þ
ij þ γ−kkε

−
ij; ðB6Þ

where ε�ij are k-dependent polarization tensors:
ε�ij ¼ ε�i ε

�
j =

ffiffiffi
2

p
, with ε� ¼ x̂� iŷ for k ∝ ẑ. The linear

equation of motion for the helicity modes is

γrk
00 −

2

η
γrk

0 þ k2γrk ¼ 16πGa2
1

2
ffiffiffi
2

p εriε
r
jT

ij
k : ðB7Þ

In the decay of a particle of massM into two relativistic jets
the rhs gets contribution only from the stress tensor of the
jets:

Tij ¼ η

ηn
Ep̂ip̂ja−3δð3Þðx − p̂ðη − ηnÞÞθðη − ηnÞ ðB8Þ

where ηn is the decay time and p ¼ Ep̂ the momentum of
the jet. For an event at x ¼ 0 one obtains (after summing
the contribution of the two jets)

γrkðηÞ ¼
Mffiffiffi
2

p
M2

P1

ðε̂r · p̂Þ2 1

Hηn

Z
0

ηn

dη0Gkðη;η0Þ cosðp̂ · kη0Þ:

ðB9Þ
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Hence, to calculate the emission from multiple events one
needs to keep track of p̂ of each event in addition to its
position xi and time ηn. We therefore define the random
variable Xi;p̂;n ¼ 1 with probability pi ¼ nXa3nδvid2p̂=4π,
and 0 otherwise. A similar calculation as in the scalar case
leads to

hγrkγsk0 i0 ¼ δrs

2k3
pt;vac

M2

M2
P1

�
n̄X
H3

X
n

1

−2k3η3n

×
Z

1

0

dμ

�
1 − μ2

ηn

Z
0

ηn

dηgðkηÞ cos μkη
�

2
�
:

ðB10Þ

Comparing to (B4) yields

Pt=Pt;vac

Ps=Ps;vac
¼ ϵ

P
nHðkηnÞP
nGðkηnÞ

ðB11Þ

where G and H represent the summands in (B4)
and (B10).9

To get a more accurate result, we assume uniform
distribution of creation events in physical time, and
approximate the sums in (B11) by the integral

R
dt
Δt ¼R

0
−∞ dηn=ðηnΔtHÞ, with Δt being the time-spacing of the

events, giving Pt=Pt;vac

Ps=Ps;vac
≃ 0.018ϵ or

rmax ≃ 0.3ϵ2: ðB13Þ

APPENDIX C: BREMSSTRAHLUNG EMISSION
FROM MULTIPLE SCATTERINGS

In this appendix we briefly review different regimes of
soft emission in multiple scattering processes following
[26,27]. The original derivation is for radiation by a
relativistic electron moving inside matter. The
Bremssrahlung emission of soft photons now depends
on the rate of scattering Γ and the average scattering angle
per unit length q ¼ hθ2sci=l. Replacing α → M2=M2

P1,
where M is the center of mass energy of the scattering
process, gives a rough estimate of gravitational
Bremsstrahlung. There are three regimes:

(I) Small angle: Consider a single scattering event with
a very small angle θsc ≪ γ−1. The coherence time τ1
over which the electron can influence the emitted
photon is

τ1ð1 − vÞ ∼ λ: ðC1Þ

Using 1 − v ∼ γ−2 we get

τ1 ∼
γ2

ω
≫

1

ω
: ðC2Þ

Since we are interested in gravitational waves of
Hubble wavelength emitted in a Hubble time, we
should consider emission during

T ∼
1

ω
∼

1

H
: ðC3Þ

Since τ1 ≫ T, the whole process can be approximated
by a single event in this regime. Moreover, the energy
emitted per unit frequency receives a small angle
suppression

dE
dω

∼ α
Δp2

m2
∼ αγ2θ2sc ≪ α: ðC4Þ

The above treatment is valid even if there are multiple
scatterings, as long as qτ1 ≪ γ−2.

(II) Landau-Pomeranchuk: Suppose q is increased be-
yond that. The new coherence length τ2 becomes
shorter and will be determined in terms of θsc ¼ffiffiffiffiffiffiffi
qτ2

p
> γ−1 according to

τ2cð1 − cos θscÞ ∼ λ; ðC5Þ

or

τ2 ∼
1

ωθ2sc
≫

1

ω
; ðC6Þ

where we assumed θsc is still much less than unity.
This implies

τ2 ¼
1ffiffiffiffiffiffi
ωq

p and θ2sc ¼
ffiffiffiffi
q
ω

r
: ðC7Þ

The requirement γ−1 ≪ θsc ≪ 1 in one coherence
length τ2 gives

1 ≪
ω

q
≪ γ4: ðC8Þ

The emission rate can be computed as follows. One
first cuts the particle trajectory into coherent pieces of
length τ2. Each segment can be thought of as a particle
moving in a straight line whose charge is turned on at

9For −kηn≫1, G≃ − cos2 kηn=kηn while H≃ðcos2kηn−2Þ=
12k3η3n. Averaging over several periods 1=k ≪ Δη ≪ −ηn we get
for the ratio

hGðkηnÞiΔη
k2η2nhHðkηnÞiΔη

≃ 3; ðB12Þ

which is in rough agreement with the ratio 2 inferred from the flat
space results (15) and (30) (recall that (15) is the energy emitted
in both tensor polarizations).
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some moment and off after τ2. The emission from
different segments add up incoherently. Unlike (C4),
there is no small angle suppression since θscγ ≫ 1;
therefore,

dE
dω

∼
T
τ2
α ¼ Tα

ffiffiffiffiffiffi
qω

p
: ðC9Þ

This is the standard Landau-Pomeranchuk formula.
Note that for T ¼ 1=ω this is a suppression compared
to a single large angle scattering, giving

dE
dω

∼ α

ffiffiffiffi
q
ω

r
≪ α: ðC10Þ

(III) Large angle: Finally, when ω ≪ q there will be a lot
of scatterings of order-one angle in a wavelength.
Now the emission can be obtained by dividing the
electron trajectory into segments of length τ3 ¼ 1=q.
Each segment makes an order-one angle with the
next one and, hence, emits incoherently. However,
now the segment is shorter than the wavelength
which results in a suppression of ωτ3 in the
amplitude. The emission formula becomes

dE
dω

∼ Tqα
ω2

q2
: ðC11Þ

We conclude that the maximum amount of
Bremsstrahlung emission during T ∼ 1=ω is obtained by
a single large angle scattering which results in dE=dω ∼ α.

APPENDIX D: SECONDARY GRAVITATIONAL
EMISSION IN MULTIFIELD INFLATION

Suppose there are two scalar fields ϕ and ψ rolling
during inflation, and the energy for the auxiliary sector
responsible for the gravitational emission is provided by
coupling to ψ . The energy transfer from the background _ψ
to this sector leads to emission of δψ quanta. The
contribution of these fluctuations to adiabatic modes can
be obtained using δN formalism [28], where ζ ¼ δN is
calculated by determining how much the expansion,

N ¼
Z

dtHðtÞ; ðD1Þ

differs in different patches of the Universe with different
values of ψ (and other fields). If eventually the ψ fluctua-
tions source adiabatic modes with proportionality coeffi-
cient

N;ψ ∼
H _ψ sr

_ϕ2
sr

; ðD2Þ

then the r < ϵ2 bound still remains in place. (Comma
denotes partial derivative.) This is because for _ψ sr ≪ _ϕsr,

π ≃ πc
_ϕsr

≃ δϕ
_ϕsr

þ _ψ sr

_ϕ2
sr

δψ ; ðD3Þ

hence, the contribution (D2) of δψ to ζ would be of the
same order of magnitude as if ζ;σ were absent from (40).
Let us see when a contribution of order (D2) should be

expected. The slow-roll condition 3H _ψ sr ≃ −V;ψ implies
that fluctuations in ψ contain energy δρψ ∼H _ψ srδψ.
Therefore, if these fluctuations perturb the kinetic energy
of the inflaton _ϕ2

sr=2, they result in (D2). This will be the
case, for instance, if δψ fluctuations become massive as
function of ϕ and before the end of inflation since as in the
examples studied in the text the available source of energy
during inflation is the kinetic energy of the inflaton.
Immediately after the transition we expect δ _ϕ2 ∼ δρψ .
On the other hand, if the ϕ and ψ sectors are two
completely decoupled slow-rolling sectors, we expect

N;ψ ∼
UðψÞ
VðϕÞ

H
_ψ
: ðD4Þ

This is ϵϕ=ϵψ times (D2), where ϵϕ ¼ _ϕ2
sr=2VðϕÞ and

similarly ϵψ ¼ _ψ2
sr=2UðψÞ. This would lead to rmax ∼ ϵ2ψ .

For ψ to slowly roll ϵψ must be small though perhaps it can
be larger than ϵ.10

Therefore, to avoid (D2) one way is to couple the two
sectors in such a way that the fractional contribution of δψ
to expansion history be given by δρψ=ρtot. This would be
the case if the reheating surface is completely determined
by ϕ independently of the value of ψ . As a toy model
consider a potential

Uðϕ;ψÞ ¼ θðϕ0 − ϕÞVðϕ;ψÞ; ðD5Þ

where Vðϕ;ψÞ satisfies slow-roll condition for both fields.
At ϕ ¼ ϕ0 all of the potential energy abruptly converts into
the kinetic energy of ϕ at ϕ0. The fluctuations of ψ induce
fluctuations in _ϕ but since now _ϕ2=2 contains most of the
energy density of the Universe the fractional variations do
not have the previous 1=ϵ enhancement.
The fluctuations δρψ=ρtot also lead to variations in the

number of e-folds (D1) which can be approximated as

N ≃ 1

M2
P1

Z
ϕ0 V
V;ϕ

dϕ: ðD6Þ

10This scenario has been studied in more detail in [21]. To
compare note that their ΔN would be of the order of our 1=ϵψ. In
particular, ΔN should be long enough for the cosmologically
relevant range of modes to cross the horizon.
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For concreteness suppose V;ϕ;ψ ¼ 0. Then,

N;ψ ∼ Ne
V;ψ

V
∼ Neϵ

H _ψ sr

_ϕ2
sr

; ðD7Þ

where Ne ∼ 60 is the total number of e-folds from the
horizon crossing of δψ fluctuations until the end of
inflation. Hence, if Neϵ ≪ 1 the contribution of δψ
fluctuations to scalar power can be suppressed.
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