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We examine the relation between the dynamics of Lemaître–Tolman–Bondi (LTB) dust models (with
and without Λ) and the dynamics of dust perturbations in two of the more familiar formalisms used in
cosmology: the metric based cosmological perturbation theory (CPT) and the covariant gauge invariant
(GIC) perturbations. For this purpose we recast the evolution of LTB models in terms of a covariant and
gauge invariant formalism of local and nonlocal “exact fluctuations” on a Friedmann–Lemaître–
Robertson–Walker (FLRW) background defined by suitable averages of covariant scalars. We examine
the properties of these fluctuations, which can be defined for a confined comoving domain or for an
asymptotic domain extending to whole time slices. In particular, the nonlocal density fluctuation provides a
covariant and precise definition for the notion of the “density contrast.”We show that in their linear regime
these LTB exact fluctuations (local and nonlocal) are fully equivalent to the conventional cosmological
perturbations in the synchronous-comoving gauge of CPT and to GIC perturbations. As an immediate
consequence, we show the time-invariance of the spatial curvature perturbation in a simple form. The
present work may provide important theoretical connections between the exact and perturbative (linear or
nonlinear) approach to the dynamics of dust sources in general relativity.
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I. INTRODUCTION

Galaxy surveys represent a key probe of the fundamental
properties of our universe. Inhomogeneities in the
distribution of galaxies can be related to the underlying
inhomogeneous distribution of dark matter. Consequently,
by observing fluctuations in the galaxy distribution at
different redshifts, one can both study the growth of dark
matter perturbations and probe the nature of the gravita-
tional action. An essential tool for describing and under-
standing cosmic dynamics on different scales is the study
of perturbations on a Friedmann–Lemaître–Robertson–
Walker (FLRW) background. The most favored approach
to perturbations is the framework generically known
as cosmological perturbation theory (CPT) which relies
on the smallness of quantities that describe fluctuations
from the homogeneous and isotropic FLRW spacetime (see
e.g. [1–3] for pioneering work). This approach is based on
suitably defined gauge invariant quantities whose definition
and evolution equations can be found in the essential
reviews (e.g. [4–6]). While CPT is based on metric
perturbations, there is an alternative and equivalent “gauge

invariant covariant” (GIC) formalism based on covariant
tensorial quantities defined by a 4–velocity field [7–9].
Perturbations based on CPT are adequate (and widely

employed) in the study of cosmic sources during the early
stages of evolution of the Universe, where it is safe to
assume near homogeneous conditions. This approximation
is supported by the nearly isotropic (to within one part in
105) cosmic microwave background radiation, which
together with the Almost Geren and Sachs Theorem [10]
provides a strong motivation for using a spacetime close to
a FLRW model.
At late times, however, relativistic linear perturbations

based on CPT are only adequate for scales comparable to
the Hubble radius λH. On scales much smaller than λH, the
formation of cosmic structure is the dominant gravitational
process. This is highly nonlinear but assumed to take place
in nonrelativistic Newtonian conditions, so it is usually
studied by means a wide range of Newtonian gravity
models ranging from simple toy models (“Top hat” or
“spherical collapse” [11]) to more sophisticated numerical
N-body simulations [5].
The study of gravitational collapse through CPT has

improved by extending the scope to the nonlinear regime
(see e.g. [12–16]). Within the perturbative approach,
however, only the mildly nonlinear regime can be modeled,
a far from complete analysis of the collapse process up to
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the virilarization stage where the density contrast is of
order δ≳ 5.
This leaves an important area unexplored, namely, how

nonlinear relativistic corrections impact on the formation of
large scale structure, see for example [17] for an extensive
review. Indeed, some of these effects have begun to be
taken into account in N-body methods, which make use of
relativistic corrections to the potentials [18,19].
From a nonperturbative perspective, the spherically sym-

metric exact solutions of Einstein’s equations generically
known as Lemaître–Tolman–Bondi (LTB) dust models
provide an idealized, but useful, toy model description of
inhomogeneous configurations of astrophysical and cosmo-
logical interest (see comprehensive reviews of these models
in [20–22]). While a nonzero Λ term can be easily
incorporated into the dynamics of these exact solutions,
these solutions have been widely used to model large scale
CDM density voids to fit observational data without assum-
ing the existence of dark energy or a cosmological constant
(see reviews in [23,24]). Moreover, if we assume that Λ > 0,
LTB models become an inhomogeneous generalization of
the Λ–CDM model describing exact nonperturbative CDM
inhomogeneities in a Λ–CDM background favored by
observations (see [25]). In fact, observational data also fit
LTB models with Λ > 0 and an FLRW background that is
not necessarily the usual Λ–CDM background [26].
Introducing a representation based on covariant scalars

(q–scalars [27]) and their associated “exact fluctuations”
allows for a clear study of important properties of LTB
models: their phase space evolution as a dynamical system
[28,29], their radial asymptotics [30], the nature and evo-
lution of density profiles [31], as well as their use to probe
theoretical formalisms of space-time averaging [32] (see
review in [27]) and gravitational entropy [33]. It is important
to remark that in these references the exact fluctuations were
called “exact perturbations,” which may not be a convenient
name because the term “perturbation” is commonly under-
stood to refer to approximated (not exact) quantities.
It is a well known fact (see extensive work in [34]) that

the q–scalars and their fluctuations, in their local and
nonlocal versions, fully determine the dynamics of LTB
models recast in terms of evolution equations, analogous to
those of linear perturbations on an FLRW background. This
resemblance can be reframed in precise unambiguous terms
by a rigorous correspondence maps that give rise to a
rigorous covariant and gauge invariant perturbation for-
malism. In particular, it can be shown that the density
fluctuation can be expressed in terms of exact covariant
expressions that generalize the density growing and
decaying modes of linear dust perturbations [29]. Also,
the nonlocal density fluctuation provides a precise
covariant characterization of the intuitive notion of the
“density contrast,” a concept loosely, and often incorrectly,
employed in many astrophysical and cosmological appli-
cations of LTB models.

In the present paper we extend the above-mentioned
studies by establishing equivalences between the perturba-
tive CPT and GIC quantities and exact inhomogeneities
defined through the exact fluctuations. Throughout this
paper, we are careful to stress the fact that the evolution
equations for the fluctuations do not describe “small”
deviations from a FLRW background, but the evolution
of exact quantities of an exact solution of GR (LTB
models). Yet we show how, in a suitable linear regime,
these fluctuations reduce to the spherically symmetric
linear perturbations of the GIC and CPT formalisms.
This result is summarized in Table I of Sec. IX. In verifying
this correspondence we consider the comoving gauge of
CPT dust perturbations (as LTB models are defined in a
comoving frame). We argue that the exact fluctuations
represent a generalization of the usual perturbation scalars
to the nonlinear regime, as first suggested in [34] and here
extended to the case Λ > 0. Analyzing such generalizations
is important to determine the fate of small fluctuations
throughout the nonlinear stages of structure formation, a
regime poorly explored in relativistic cosmology. We also
show that the time conservation of the spatial curvature
perturbation of CPT theory can be expressed (up to linear
terms) in terms of time preserved quantities of LTB models.
The paper is organized as follows. In Sec. II we introduce

the LTB models in terms of the q–scalars formed from the
standard fluid flow covariant LTB scalars: the energy
density ρ, the Hubble expansion Θ, and the spatial
curvature K ¼ 3R=6 (where 3R is the three-dimensional
Ricci scalar). In Sec. III we define the fluctuations as exact
deviations between the q–scalars Aq and the standard
covariant scalars A. In Sec. IV we introduce the nonlocal
fluctuations as exact deviations with respect to the “q–
averages,” which are the nonlocal functionals associated
with the q–scalars Aq. Asymptotic nonlocal fluctuations are
discussed in Sec. V. The conditions that define a linear
regime in LTB exact fluctuations are given in Sec. VI. The
comparison between all fluctuations in the linear regime
with the CPT formalism is described in Sec. VII, while the
correspondence with the GIC perturbations is discussed in
Sec. VIII. We summarize and discuss our results in the final
Sec. IX, where we present a useful perturbation-to-
fluctuation dictionary in Table I. The relation between
the LTBmetric variables that we used and the standard ones
is given in Appendix A. We examine in Appendix B the
Darmois matching conditions that are used for the rigorous
definition of an FLRW background for the exact fluctua-
tions, while the form of LTB metric functions in the linear
regime are discussed in Appendix C.

II. LTB DUST MODELS IN THE Q–SCALAR
REPRESENTATION

A convenient parametrization of LTB dust models is
given by the following useful FLRW–like metric (the
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relation with the standard metric variables is given in
Appendix A):

ds2 ¼ −dt2 þ a2
�

Γ2

1 −Kq0r2
dr2 þ r2ðdθ2 þ sin2θdφ2Þ

�
;

ð1Þ

where the scale factors a ¼ aðt; rÞ and Γ ¼ Γðt; rÞ satisfy:

_a2 ¼ 8π

3

ρq0
a

−Kq0 þ
8π

3
Λa2; with _a ¼ ∂a

∂t ; ð2Þ

Γ ¼ 1þ ra0

a
; with a0 ¼ ∂a

∂r ; ð3Þ

while the functions Kq0ðrÞ and ρq0ðrÞ are defined further
ahead [see Eq. (6)]. The subindex 0 will denote henceforth
evaluation at an arbitrary fiducial hypersurface t ¼ t0,
which can be taken as the present cosmic time. Notice
that we have chosen the radial coordinate so
that a0 ¼ Γ0 ¼ 1.
The standard approach to LTB models is based on using

the solutions (whether analytic or numerical) of (2) to
determine the metric functions a and Γ in order to compute
all relevant quantities. We follow here a different approach,
based on a set of useful alternative variables called
“q–scalars,” constructed with the standard covariant scalars
[27,29,34]1

Aq ¼
R
r
0 AR

2R0dr̄R
r
0 R

2R0dr̄
¼ 3

R
r
0 AR

2R0dr̄
R3

; A ¼ ρ;Θ;K;

ð4Þ

where R ¼ ar and ρ is the energy density. The homo-
geneous expansion is Θ ¼ ∇̄aua, with ∇̄ the gradient
projected in the hypersurfaces orthogonal to ua. Also K ¼
3R=6 is the spatial curvature of these hypersurfaces, with
3R the three-Ricci scalar. The scalars A and Aq in Eq. (4)
are related through the following “exact fluctuations”2

δðρÞ ≡ ρ − ρq
ρq

¼ rρ0q=ρq
3Γ

¼ 1

ρqR3

Z
r

0

ρ0R3dr̄; ð5aÞ

DðΘÞ ≡ Θ − Θq ¼
rΘ0

q

3Γ
¼ 1

R3

Z
r

0

Θ0R3dr̄; ð5bÞ

DðKÞ ≡K −Kq ¼
rK0

q

3Γ
¼ 1

R3

Z
r

0

K0R3dr̄: ð5cÞ

The q–scalars and the exact fluctuations δðρÞ;DðΘÞ and DðKÞ
satisfy the following scaling laws derived from the energy
conservation equation and the ij components of the
Einstein equations [27,29,34]:

ρq ¼
ρq0
a3

; Kq ¼
Kq0

a2
;

Θq

3
¼ _a

a
; ð6Þ

1þ δðρÞ ¼ 1þ δðρÞ0

Γ
;

2

3
þ δðKÞ ¼ 2=3þ δðKÞ

0

Γ
: ð7Þ

These are complemented by the algebraic constraints
(analogous to the “Hamiltonian” and spatial curvature
constraints)

�
Θq

3

�
2

¼ 8π

3
ðρq þ ΛÞ −Kq; ð8Þ

3

2
DðKÞ ¼ 4πρqδ

ðρÞ −
1

3
ΘqDðΘÞ; ð9Þ

where the subindex 0 denotes evaluation at an arbitrary
fixed t ¼ t0 and we have introduced, together with δðρÞ, in
(7), the relative exact fluctuation3:

δðKÞ ¼ DðKÞ

Kq
¼ K −Kq

Kq
: ð10Þ

Any LTB model becomes fully determined, either analyti-
cally (if Λ ¼ 0 or in certain cases with Λ > 0 [28]) or
numerically (the general case Λ > 0), and can be uniquely
specified by selecting a value of Λ and, as free parameters or

1The connection between these integral definitions and a
weighted proper volume average is discussed in Sec. IV. See a
comprehensive discussion in [27,32].

2We discuss in detail the notion of an “exact fluctuation” in the
following section. The q–scalars and the exact fluctuations are
directly related to curvature and kinematic scalars [27]. The
domain of integration in the integrals in (4) and (5a)–(5c) is a
spherical comoving domain D½r� parametrized by 0 ≤ r̄ ≤ r,
where r̄ ¼ 0 is a symmetry center. See [27,29,34] for a com-
prehensive discussion on the definition and properties of these
variables.

3The term “perturbation” was used in [27,29,34] only to
denote the dimensionless quotient fluctuations δðρÞ; δðΘÞ; δðKÞ,
while DðΘÞ and DðKÞ in (5b) and (5c) were called “fluctuations.” In
this article the term “exact fluctuations” will denote both the δðAÞ

and the DðAÞ. We consider as basic set of exact fluctuations the
quantities fδðρÞ;DðΘÞ;DðKÞg because they provide a straightfor-
ward link to perturbation formalisms in the literature in which
only the density perturbation is constructed in the dimensionless
quotient form (5a) (inspired on the intuitive notion of the density
contrast). Besides this point, the exact relative fluctuations δðΘÞ

and δðKÞ constructed as in (10)can become ill-defined (they
diverge) if Θq or Kq (which appear in the denominator) vanish,
which can occur in physically interesting scenarios in LTB
models, for example: Θq ¼ 0 occurs at the “bounce” from
expansion to collapse in collapsing models, or Kq ¼ 0 neces-
sarily holds along a comoving “boundary” layer separating
comoving regions in which Kq switches sign.
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initial conditions, any two of the initial value func-
tions fρq0;Kq0;Θq0g.
The analytic forms (6)–(10) are exact solutions of the

evolution equations constructed from the variables ρq;Θq

and δðρÞ;DðΘÞ [29,34],

_ρq ¼ −ρqΘq; ð11aÞ

_Θq ¼ −
Θ2

q

3
− 4πρq þ 8πΛ; ð11bÞ

_δðρÞ ¼ −ð1þ δðρÞÞDðΘÞ; ð11cÞ

_DðΘÞ ¼ −
�
2

3
Θq þ DðΘÞ

�
DðΘÞ − 4πρqδ

ðρÞ; ð11dÞ

subject to the algebraic constraints (8)–(9), which will hold
for all t once we solve them by specifying initial conditions
at arbitrary t ¼ t0. Combining the evolution equa-
tions (11a)–(11b) leads to the second order equation

δ̈ðρÞ −
2½_δðρÞ�2
1þ δðρÞ

þ 2

3
Θq

_δðρÞ − 4πρqδ
ðρÞð1þ δðρÞÞ ¼ 0;

ð12Þ

which is an exact generalization of the well known
evolution equation of linear dust perturbations in the
comoving gauge [35]. The constraints (8)–(9) allow for
the construction of systems equivalent to (11a)–(11d), but
based on alternative set of variables Aq and/or relative
fluctuations δðAÞ (see examples for the case Λ ¼ 0 in
Eqs. (21a)–(21d) of [34]).

III. LOCAL EXACT FLUCTUATIONS

It is intuitively clear that we can identify in the system
(11a)–(11d) the subset of evolution equations (11a)–(11b)
for FLRW–like “background variables” ρq;Θq;Λ, as these
are identical to FLRW evolution equations for their equiv-
alent FLRW scalars (although q-scalars also carry a spatial
dependence). On the other hand the subset (11c)–(11d)
corresponds to the evolution equations of the exact fluc-
tuations defined in (5a)–(5c).

A. The notion of an “exact fluctuation”

The connection between “exact fluctuations” and “per-
turbations” requires further clarification given the common
use of these terms in the literature. Consider for example
the relation ρ ¼ ρqð1þ δðρÞÞ that follows from (5a): this is
an exact relation, and thus it does not require a small
parameter expansion to describe departures of ρ from ρq,
since both ρ and ρq are exact LTB scalars (in other words:
we have not assumed and need not assume a small jδðρÞj).
The same argument goes for the relations between Θ vs Θq

and K vs Kq that follow from (5b) and (5c). Hence, we call
δðρÞ;DðΘÞ;DðKÞ “exact fluctuations” in order to distinguish
them from the common usage of the term “perturbations” in
standard formalisms of cosmological perturbation theory,
namely: quantities defining a “perturbed” spacetime M
that is “almost FLRW,” meaning that it represents a “small
departure” from a suitable known background FLRW
spacetime M̄ through a linearization procedure applied
to characteristic quantities (metric, scalars, vectors, tensors)
of the latter. In our case the “exact fluctuations” relate an
exact LTB model (the spacetime M) to a precise exact
FLRW background M̄ defined by suitable scalars (the Aq)
of the same LTB model once we choose a given comoving
domain D½r�. In other words, the Aq evolve in an identical
way to their FLRWequivalents when evaluated at a specific
coordinate r.

B. Fluctuation-to-perturbation correspondence maps
and gauge invariance

The set of exact fluctuations δðρÞ;DðΘÞ;DðKÞ in (4) and
(5a)–(5c) are covariant local objects, as they provide the
exact deviation between the covariant scalars A ¼ ðρ;Θ;KÞ
and their corresponding q–scalars Aq (which are also
covariant [29,34]) along every concentric 2–sphere labeled
by constant r that marks the boundary B½r� of an integration
domain D½r� (a spherical comoving region). This is
illustrated in Figs. 1 and 2. We remark that the definition
of exact fluctuations can easily be extended to the non-
spherical Szekeres models [36]. Their role as exact fluc-
tuations can be defined rigorously through a covariant and
gauge-invariant formalism (see [34]).
Since any LTB model (M) and any dust FLRW

spacetime (M̄) share the same comoving geodesic 4–
velocity, spherical comoving coordinates and dust source,
the appropriate correspondence mapping that defines the
exact fluctuations is furnished rigorously by associating to
each comoving domain D½r� of the LTB model (M) the
unique FLRW dust spacetime M̄ defined by the continuity
of the 3–metric and extrinsic curvature of the common
“interface” hypersurface B½r� (world-tube generated by
comoving observers at fixed arbitrary r).4 As shown in
Appendix B, this is equivalent to the conditions for a
smooth match of M and M̄ at an arbitrary B½r�, which
implies the continuity of the q–scalars Aq and the FLRW
scalars Ā at B½r� for all t

½ρq�r ¼ ρ̄ðtÞ; ½Θq�r ¼ Θ̄ðtÞ; ½Kq�r ¼ K̄ðtÞ; ð13Þ

4In previous papers, e.g. [34], this mapping was denoted by a
“perturbation” mapping, but we prefer to call it fluctuation–to–
perturbation mapping to avoid the semantic problem emanating
from the fact that the term perturbation is used to describe
approximate quantities.
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where ½�r denotes evaluation at fixed r. fρq;Θq;Kqg are
given by Eq. (6) and an overbar will hereafter denote
FLRW scalars. It is important to remark that this identi-
fication of M and M̄ is strictly a rigorous and precise
procedure to define an FLRW background and q–
perturbations for every D½r� of a generic LTB model: it
does not require that we undertake an actual matching of
the domain D½r� and M̄ in the form of a “Swiss Cheese”
configuration (see Figs. 1 and 2 and Ref. [34] for a
comprehensive discussion).
The gauge invariance (GI) of the exact fluctuations

follows from the Stewart–Walker lemma [37]: a GI
“perturbation” is any nonzero quantity in M that vanishes
in the background M̄ for a given perturbation formalism in
which M and M̄ have been defined and related through
suitable mappings (as for example the map introduced in

[34] summarized above). It is important to bear in mind that
the conditions in Eq. (13) do not involve the continuity of
the usual covariant scalars A, as ½A�r ≠ ½Aq�r and thus
½δðAÞ�r ≠ 0 and ½A�r ≠ ĀðtÞ hold in general for an arbitrary r
[34] (see Fig. 2 and Appendix B). As a consequence, the GI
criterion based on Stewart’s lemma does not require
δðρÞ;DðΘÞ;DðKÞ to vanish at any fixed r, but to vanish in
the FLRW spacetime characterized by the scalars Ā in that
has been mapped through the Darmois conditions (13). In
particular, if we impose as supplementary conditions
besides (13), that ½δðρÞ�r ¼ ½DðΘÞ�r ¼ ½DðKÞ�r ¼ 0 hold for
any given fixed finite r; then we are forcing
½A�r ¼ ½Aq�r ¼ Ā. This leads to “Swiss Cheese” models
of exact fluctuations (see Fig. 2 and Appendix B).

IV. NONLOCAL EXACT FLUCTUATIONS

We can also consider (4) as the correspondence rule of a
linear functional for a single (but arbitrary) domain D½rb�.
This functional is the “q–average,” which assigns to each

ρ
ρq

ρ q ρ

ρ
ρq

ρρ q

b b

δ(ρ)

δ(ρ)
NL

δ(ρ)

δ(ρ)
NL

ρ

b

b

FLRW

ρ

FLRW

b

FLRW b

FLRW

Over densities Density voids

(a) (b)

(c) (d)

FIG. 2. Confined local and nonlocal exact density fluctuations
in a Swiss Cheese model. The panels (a)–(b) describe radial
density profiles (overdensity and density void) of a Swiss Cheese
model made by a smooth matching of a comoving domain D½rb�
in the radial range 0 ≤ r < rb of an LTB model to an FLRW
spacetime. Panels (c) and (d) depict the corresponding local and
nonlocal density fluctuations. Notice that Darmois matching
conditions of Eq. (13) only require continuity of ρq, so that
background density is defined by ρqðrbÞ ¼ hρiq½rb� ¼ ρ̄. De-
manding also continuity of ρ and the vanishing of fluctuations at
the FLRW boundary leads to the “humps” and “troughs” in the
radial profiles.

δ(ρ)
NL

δ(ρ)

b

ρ
  ρ (rb) =  ρq

b

ρq

[rb]

ρ

ρ qρ (rb) =  q

ρ

[rb]

ρq

b

δ(ρ)
NL

δ(ρ)

b

ρ

  ρ (rb) =  ρq

b

ρq

[rb]

Over densities Density voids

(a) (b)

(c) (d)

(e) (f)

ρ qρ (rb) =  q

ρq

[rb]

ρ

b

ρ

FIG. 1. Confined LTB local and nonlocal exact density fluc-
tuations. The panels (a)–(d) describe generic radial density
profiles (overdensities and density voids) while (e) and (f) depict

local and nonlocal density fluctuations, δðρÞ and δðρÞNL, confined to a
comoving domainD½rb�marked by 0 ≤ r < rb. Panels (a) and (b)
illustrate how δðρÞ follows from the local comparison of ρ and ρq

at each r in the domain, whereas panels (c) and (d) show how δðρÞNL
follows from comparing ρ at each r with the q–average hρiq½rb�
that characterizes the whole domain. Notice that the FLRW
“background” density is given for every domain by ρ̄ ¼ ρqðrbÞ ¼
hρiq½rb� and that these fluctuations can be well defined without
assuming a matching with an actual FLRW spacetime.
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scalar A and each arbitrary fixed comoving domain D½rb�
the real number [27,34]5

ðA;D½rb�Þ↦hAiq½rb�ðtÞ ¼
R rb
0 AR2R0dr̄R rb
0 R2R0dr̄

; ð14Þ

where R ¼ ar. It is important to remark that the q–averages
and the q–scalars Aq are different objects: the q–averages
are nonlocal because hAiq½rb� is a single real number
assigned to the whole domain D½rb�, and thus must be
treated as an effective constant for inner concentric
domains D½r� with 0 ≤ r ≤ rb (see Figs. 1c, 1d, 3a and
3d), whereas Aqðt; rÞ is a function of the domain boundary
and thus it smoothly varies for these inner domains (see
Fig. 1). Hence, they only coincide at the domain boundary:

Aqðt; rbÞ ¼ hAiq½rb�ðtÞ of every D½rb� (see also compre-
hensive discussion on this in [27,34]).
Since the average hAiq½rb� is a nonlocal quantity, we can

construct nonlocal exact fluctuations in an analogous way
as the exact fluctuations δðρÞ;DðΘÞ and DðKÞ in (5a)–(5c)
[34] as follows:

δðρÞNL ¼ ρðrÞ − hρiq½rb�
hρiq½rb�

;

DðΘÞ
NL ¼ ΘðrÞ − hΘiq½rb�;

DðKÞ
NL ¼ KðrÞ − hKiq½rb�; ð15Þ

such that

ρ ¼ hρiq½rb�½1þ δðρÞNL�;
Θ ¼ hΘiq½rb� þ DðΘÞ

NL ;

K ¼ hKiq½rb� þ DðKÞ
NL ; ð16Þ

where δðρÞNL;D
ðΘÞ
NL and DðKÞ

NL depend on ðt; r; rbÞ. The relations
involving the gradients of ρ;Θ;K given by (5a)–(5c) for
δðρÞ;DðΘÞ;DðKÞ are only valid for r ¼ rb. The nonlocal
nature of the exact fluctuations (15) follows from the fact
that they compare (for all t) the local values AqðrÞ; 0 ≤
r ≤ rb with a nonlocal quantity hAiq½rb� assigned by
Eq. (14) to the whole domain D½rb� (see Fig. 2).

A. Evolution equations and background variables
as averages

Combining (15) and (16) we obtain the relation between
exact fluctuations and their nonlocal analogues:

δðρÞNL ¼ ρq
hρiq½rb�

½1þ δðρÞ� − 1; ð17aÞ

DðΘÞ
NL ¼ DðΘÞ þ Θq − hΘiq½rb�; ð17bÞ

DðKÞ
NL ¼ DðKÞ þKq − hKiq½rb�; ð17cÞ

which upon substitution in (11a)–(11d) yields an analogous
set of evolution equations:

hρi_q ¼ −hρiqhΘiq; ð18aÞ

hΘi_q ¼ −
1

3
hΘi2q − 4πhρiq þ 8πΛ; ð18bÞ

_δðρÞNL ¼ −½1þ δðρÞNL�DðΘÞ
NL ; ð18cÞ

ρ

= ρas
ρ q

ρq

δ(ρ)

δ(ρ)
as

δ(ρ)

δ(ρ)
as

ρ
ρq

= ρas
ρ q

Over densities Density voids

(a) (b)

(c) (d)

FIG. 3. Asymptotic nonlocal exact density fluctuations. The
panels (a)–(b) describe generic radial density profiles (over-
density and density void) of an LTBmodel that converges radially
to a FLRW spacetime as r → ∞, hence the FLRW “background”
density ρ̄as is given by the average evaluated for a domain
comprising the whole time slice. Panels (c) and (d) depict the
corresponding exact density fluctuations, which follow by
comparing local values of ρ with the global average ρ̄as and is
the density contrast with respect to a global density average.
Notice that the exact fluctuations vanish as r → ∞.

5The q–average hAiq½rb� is the proper volume average of A

with weight factor F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Kq0r2

q
over the comoving domain

D½rb� with 0 ≤ r < rb. A detailed comparison with the standard
proper volume average emerging from Buchert’s formalism is
given in [27,34] (see also [32]).
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_DðΘÞ
NL ¼ −

�
2hΘiq −

4

3
Θq þ DðΘÞ

NL

�
DðΘÞ

NL

−
2

3
ðΘq − hΘiqÞ2 − 4πhρiqδðρÞNL; ð18dÞ

where we omitted the domain indicator in the q–averages to
simplify notation. The system (18a)–(18d) must be sup-
plemented by the evolution equations (11a)–(11b), since
Θq appears explicitly in (18d), and by the algebraic
constraints

hΘi2q
9

¼ 8π

3
ðhρiq þ ΛÞ − hKiq; ð19aÞ

3

2
DðKÞ

NL ¼ 4πhρiqδðρÞNL −
1

3
hΘiqDðΘÞ

NL ; ð19bÞ

which are analogous to (8) and (9). It is straightforward to

derive, from (18a)–(18d), a second order equation for δðρÞNL:

δ̈ðρÞNL −
½_δðρÞNL�2

1þ δðρÞNL

þ
�
2hΘiq −

4

3
Θq

�
_δðρÞNL

− ½4πhρiqδðρÞNL − 2ðΘq − hΘiqÞ2�ð1þ δðρÞNLÞ ¼ 0; ð20Þ

which is analogous to Eq. (12). Notice that (18a)–(18d),
(19a)–(19b) and (20) reduce to (11a)–(11d), (8)–(9) and
(12) at the domain boundary r ¼ rb for which hρiq; hΘiq
and ρq;Θq exactly coincide and thus δ

ðρÞ
NL ¼ δðρÞ and DðΘÞ

NL ¼
DðΘÞ hold for all t. The fact that (18a)–(18b) (which involve
averages) are formally the same evolution equations as
(11a)–(11b) follows from the fact that backreaction van-
ishes for the q–average (see [27]).
As with the evolution equations (11a)–(11d) for local

exact fluctuations, we can also identify in (18a)–(18d) the
subset of FLRW–like evolution equations (18a)–(18b) for
the background variables hρiq; hΘiq and the subset (18c)–
(18d) of evolution equations for the exact (now nonlocal)

fluctuations δðρÞNL;D
ðΘÞ
NL . Hence, these variables also give rise

to a covariant and gauge invariant perturbation formalism
(see [34]) that is analogous to that of the local fluctuations.
Notice that hAiq½rb� ¼ AqðrbÞ holds for every rb (see
Figs. 1 and 2), and hence the Darmois matching conditions
in Eq. (13) now identify an FLRW background spacetime
through the q–average of covariant scalars over
domains D½rb�.

B. The density contrast

It is worth recalling that the nonlocal exact density
fluctuation δðρÞNL defined in (15)–(16) provides a rigorous
and covariant (and GI) definition for the “density contrast”
in a domainD½rb�, as it compares the local density ρ at each
point with the FLRW background density identified by the

q–average of the density hρiq½rb� in this domain (see Figs. 1
and 2). Therefore, Eqs. (18a)–(18d), as well as (20),
provide the evolution of the exact, nonperturbative, density

contrast. Notice, however, that the sign of δðρÞNL is opposite to
that of δðρÞ for a given density profile:

(i) Over–density profile: we have δðρÞNL > 0 (positive
density contrast) and δðρÞ < 0 (negative gradient
of ρq). See Figs. 1a, 1c, 1e, 2a, 2c, 3a and 3c.

(ii) Density void profile: we have δðρÞNL < 0 (negative
density contrast) and δðρÞ > 0 (positive gradient of
ρq). See Figs. 1b, 1d, 1f, 2b, 2d, 3b and 3d.

This sign difference follows from the fact that δðρÞNL
compares ρ with hρiq½rb�, which remains fixed inside

D½rb�, whereas δðρÞ is proportional to the gradient ρ0q [from
(5a)] and compares ρ and ρq, which are both varying at
inner points, these differences are clearly displayed in
Figs. 1, 2 and 3.

V. EXACT FLUCTUATIONS ON AN ASYMPTOTIC
FLRW BACKGROUND

We have considered so far exact fluctuations (local and
nonlocal) that are “confined” in bounded concentric
comoving domains (Figs. 1 and 2). For LTB models
converging in the asymptotic radial direction to FLRW
models, the metric functions and covariant scalars take the
following forms as r → ∞6

a → āas; Γ → 1; ð21aÞ

ðρ;Θ;KÞ → ðρ̄as; Θ̄as; K̄asÞ; ð21bÞ

ðδðρÞ;DðΘÞ;DðKÞÞ → 0; ð21cÞ

ðρq;Θq;KqÞ → ðρ̄as; Θ̄as; K̄asÞ; ð21dÞ

where āas ¼ āasðtÞ; ρ̄as ¼ ρ̄asðtÞ; Θ̄as ¼ Θ̄asðtÞ and K̄as ¼
K̄asðtÞ are the scale factor and covariant scalars of the
asymptotic FLRW model M̄. Evidently, the asymptotic
conditions (21b) and (21c) clearly identify the variables
δðρÞ;DðΘÞ;DðKÞ as GI exact fluctuations (they vanish as

6The conditions for LTB models to be asymptotic to a FLRW
background spacetime in the spacelike radial direction at every
time slice were discussed in [30]. The radial rays in time slices
orthogonal to ua are spacelike geodesics of the LTB metric, hence
for a well defined radial coordinate the proper length along these
curves is a monotonic function of r, and thus the proper radial
asymptotic limit of any scalar is given by r → ∞. Only the case
Λ ¼ 0 was examined in [30], but the results easily extend to the
case Λ > 0. If Λ ¼ 0 LTB models can be radially asymptotic to
FLRW models that are spatially flat (Einstein de Sitter K̄ ¼ 0) or
with negative spatial curvature (open FLRW K̄ < 0), as “closed”
FLRW lack an asymptotic radial range. If Λ > 0 then conver-
gence to a FLRW model with K̄ > 0 is possible (see [28]).
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r → ∞) and ρq;Θq as GI background variables in an
asymptotic FLRW background. The spatial curvature
requires special considerations, since Kq is not GI if the
asymptotic FLRW background is spatially flat (K̄ ¼ 0
holds while Kq is in general nonzero for finite r).

A. Asymptotic nonlocal exact fluctuations

Nonlocal exact fluctuations can also be defined for
asymptotic domains (D½rb� for 0 ≤ r < rb but rb → ∞)
in LTB models admitting radial convergence to FLRW.
These fluctuations are depicted in Fig. 3. We will denote
these nonlocal fluctuations by the subindex label as (which
stands for “asymptotic”), as in this case hAiq becomes the
global asymptotic average of A in the whole time slice7:

lim
rb→∞

hρiq½rb� ¼ ρ̄as; lim
rb→∞

hΘiq½rb� ¼ Θ̄as;

lim
rb→∞

hKiq½rb� ¼ K̄as; ð22Þ

so that the hAiq and the Aq have the same asymptotic limits
given by the asymptotic FLRW scalars Ā, leading to

δðρÞas ≡ lim
rb→∞

δðρÞNL ¼ ρ − ρ̄as
ρ̄as

; ð23aÞ

DðΘÞ
as ≡ lim

rb→∞
DðΘÞ

NL ¼ Θ − Θ̄as; ð23bÞ

DðKÞ
as ≡ lim

rb→∞
DðKÞ

NL ¼ K − K̄as; ð23cÞ

which depend on t and r and are (in general) nonzero for
finite r, though [from the limit (21d)] the fluctuations above
do vanish in the limit r → ∞ (see Fig. 3).
It follows readily from (22) and (23a)–(23c) that the

asymptotic exact fluctuations δðρÞas ;D
ðΘÞ
as ;DðKÞ

as are GI per-
turbations (they vanish in M̄), while the asymptotic q–
averages ρ̄as; Θ̄as are the GI background variables (K̄as is
only a GI variable when the asymptotic FLRWmodel is not
spatially flat).
The evolution of nonlocal q–perturbations for an asymp-

totic FLRW background can be fully determined by
applying (22) and (23a)–(23c) to (18c)–(18d) and to the
spatial curvature perturbation constraint in (19a)–(19b),
leading to:

_δðρÞas ¼ −½1þ δðρÞas �DðΘÞ
as ; ð24aÞ

_DðΘÞ
as ¼ −

�
2Θ̄as −

4

3
Θq þ DðΘÞ

as

�
DðΘÞ

as

−
2

3
ðΘq − Θ̄asÞ2 − 4πρ̄asδ

ðρÞ
as ; ð24bÞ

DðKÞ
as ¼ 8π

3
ρ̄asδ

ðρÞ
as −

2

9
Θ̄asD

ðΘÞ
as ; ð24cÞ

where ρ̄as; Θ̄as and K̄as [which are determined by the
background subsystem (18a)–(18b)] take the following
analytic forms

Θ̄2
as

9
¼ 8π

3
ðρ̄as þΛÞ− K̄as; ρ̄as ¼

ρ̄0as
ā3as

; K̄as ¼
K̄0as

ā2as
;

ð25Þ

with ρ̄0as ¼ ρ̄asðt0Þ; K̄0as ¼ K̄asðt0Þ. As (18c)–(18d), this
system must be supplemented by (11a)–(11b) to determine
Θq. As for the nonlocal fluctuations, we can derive the

following second order equation for δðρÞas :

δ̈ðρÞas −
½_δðρÞas �2

1þ δðρÞas

þ
�
2Θ̄as −

4

3
Θq

�
_δðρÞas

− ½4πρ̄asδðρÞas − 2ðΘq − Θ̄asÞ2�ð1þ δðρÞas Þ ¼ 0; ð26Þ

which is equivalent to (20). In particular, if the asymptotic
FLRW background is spatially flat (K̄as ¼ 0) we can use
explicit analytic expression for the background variables
(25) in (23c)–(24c) and (26).
We remark that the asymptotic nonlocal fluctuation δðρÞas

provides, for LTB models which radially converge to an
asymptotic FLRW background, a covariant and GI descrip-
tion of the density contrast with respect to the asymptotic
FLRW background.

VI. LINEAR REGIME IN LTB MODELS

The exact fluctuations (local and nonlocal) that we have
introduced provide an exact nonlinear measure of the
deviation of LTB dynamics with respect to a domain
dependent FLRW background. In order to compare these
objects with linear perturbations used in the literature we
need to define a linear regime involving specific evolution
times in which this deviation is also linear.
Let ĀðtÞ (for A ¼ ρ;Θ;K) be the covariant scalars

characterizing an FLRW background on a given domain
[bounded through Eq. (13) or asymptotic]. The necessary
and sufficient conditions for a linear regime follow by
assuming that an arbitrarily small positive number ϵ ≪ 1
exists, such that for all 0 ≤ r ≤ rb along a domainD½rb� (all
r for asymptotic domains) in a fiducial time slice (say
t ¼ t0), the following relations hold

jAq0ðrÞ − Ā0j ∼OðϵÞ; jrA0
q0ðrÞj ∼OðϵÞ; ð27Þ

7The q–average of covariant scalars coincides with their
standard average from Buchert’s formalism in the radial asymp-
totic limit of LTB models that converge in this limit to an FLRW
spacetime, as the backreaction term vanishes (see proof in [32]).
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where Ā0 ¼ Āðt0Þ and OðϵÞ ≪ 1 denotes order ϵ (or linear
first order deviations) for suitable expansions (see
Appendix C). Since a0 ¼ Γ0 ¼ 1 (choice of radial coor-
dinate), then (5a)–(5c) and (17a)–(17c) together with
Eq. (27) imply that the following quantities are all
∼OðϵÞ for all r

jδðρÞðt0Þj; jDðΘÞðt0Þj; jDðKÞðt0Þj; ð28aÞ

jδðρÞNLðt0Þ − δðρÞðt0Þj; jDðΘÞ
NL ðt0Þ − DðΘÞðt0Þj;

jDðKÞ
NL ðt0Þ − DðKÞðt0Þj; ð28bÞ

jAq0 − A0j; jhAiq0 − A0j;
jAq0 − hAiq0j; jA0 − Ā0j; jA0

q0 − A0
0j; ð28cÞ

As a consequence of Eq (27), it is also straightforward to
show (see proof in Appendix C) that a time range
containing t0 exists such that the metric variables a and
Γ in (1) satisfy at all r

a − ā ∼OðϵÞ; Γ − 1 ∼OðϵÞ; ð29Þ

and thus, from the scaling laws (6)–(9), the relations
(28a)–(28c) hold for this time range

jδðρÞj ∼OðϵÞ; jDðΘÞj ∼OðϵÞ; jDðKÞj ∼OðϵÞ;
ð30aÞ

δðρÞNL ≈ δðρÞ; DðΘÞ
NL ≈ DðΘÞ; DðKÞ

NL ≈ DðKÞ; ð30bÞ

Aq ≈ hAiq ≈ A ≈ Ā; A0
q ≈ A0: ð30cÞ

which implies that _δðρÞ; _DðΘÞ and _δðρÞNL; _D
ðΘÞ
NL are OðϵÞ

quantities because of the evolution equations (11a)–(11d)
and (18a)–(18d). In fact, we can identify the linear regime
in terms of a linear deviation between LTB and FLRW
metric functions through Eq. (29) and a linear deviation
between Aq; hAi and A from the background scalars Ā
through Eqs. (28c) and (30c). On the other hand, products
of all OðϵÞ quantities in these evolution equations are of (at
least) quadratic order Oðϵ2Þ ≪ OðϵÞ, and thus are negli-
gible in the linear regime.
Considering the characteristic features of the linear

regime, it is important to emphasise the following points:
(i) The general evolution of LTB models is nonlinear.

Hence, the linear regime is only valid for a restricted
evolution time range of an LTB model in which the
fluctuations and relations we presented above re-
main of OðϵÞ (this time range is defined rigorously
in Appendix C). The linear regime is usually defined
with respect to a spatially flat dust FLRW back-
ground (Einstein de Sitter or Λ–CDM) at initial
times after the last scattering surface. However, it

can also be defined with respect to a spatially curved
background.

(ii) Under a linear regime, the nonlinear second order
equations for the density fluctuations (12), (20) and
(26) are reduced to

δ̈ðρÞ þ 2

3
Θq

_δðρÞ − 4πρqδ
ðρÞ ¼ 0; ð31aÞ

δ̈ðρÞNL þ
2

3
hΘiq _δðρÞNL − 4πhρiqδðρÞNL ¼ 0; ð31bÞ

δ̈ðρÞas þ 2

3
Θ̄as

_δðρÞas − 4πρ̄asδ
ðρÞ
as ¼ 0; ð31cÞ

all of which match [at OðϵÞ] the well known linear
evolution equation for dust perturbations in the synchro-
nous-comoving gauge as discussed in the next section. As a
consequence, these density fluctuations in their linear
regime can be expressed as the linear superposition δðρÞ ¼
CþðrÞDþðtÞ þ C−ðrÞD−ðtÞ in terms of the growing ðþÞ
and decaying density modes ð−Þ. The explicit analytic form
of the functions C�; D� are given in [29]. In particular, for
a spatially flat FLRW background at early times (so that the
effect Λ is negligible), we have from Eqs. (27), (36) and
(38) of [29]

δðρÞ ≈ −
2

5

�
δðρÞ0 −

3

2
δðKÞ
0

�
ΩK

q0t
2=3 −

rtbb0

t
; ð32Þ

with ΩK
q0 ≡Kq0=H2

q0. This is a solution of (31a)–
(31c) (notice that the other fluctuations δðρÞNL and δðρÞas

take the same form as δðρÞ at linear order). The
generalization of the linear density modes to the
exact nonlinear regime (for the case Λ ¼ 0) is
discussed extensively in [29].

(iii) It is worthwhile comparing the linear limit of the
fluctuations we have introduced with those obtained
by Zibin [38] for LTB models that are “close” to an
Einstein de Sitter FLRW background (Λ ¼ 0). The
linear limit of δðρÞ in (32) is formally identical to
Zibin’s equation (A1) in the Appendix of [38], and
the linear expansion of the exact growing mode
obtained in [29] [first term in the right-hand side of
(32)] exactly coincides with Zibin’s equation (A3) in
[38]. The direct relation between this growing mode
linear expansion and the small deviations from
spatial flatness expressed in terms of ΩK

q0 ¼
−Kq0=H2

q0 ≈ 0 in (32) is what Zibin calls “curvature
fluctuation” and motivates his comment that “the
curvature perturbation consists of just the growing
mode”. However, this quantity is not the complete
curvature perturbation (see also next section).

In the following sections we will use the properties of the
linear regime to compare the local and nonlocal exact
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fluctuations with perturbations from other formalisms
usually employed in the literature.

VII. CONNECTION TO THE COSMOLOGICAL
PERTURBATION THEORY

The linear regime of the LTB exact fluctuations is the
right framework to link them with quantities of the more
familiar perturbative formalisms. Our focus here is to draw
equivalences between exact fluctuations and the standard
quantities in the metric based cosmological perturbation
theory (CPT) (see e.g. [1–3,39] for pioneering work and [6]
for a review of CPT).

A. Perturbative fluid evolution

CPT studies cosmological models relying on the prin-
ciple of overall homogeneity and isotropy, properties that
define a background FLRW spacetime with averaged time-
dependent elements. Inhomogeneities are described by
perturbations on this background but, because of the gauge
freedom, the relation between these two manifolds is not
unique. This means that a perturbative description of an
inhomogeneous cosmological spacetime requires a com-
plete gauge specification, so that the perturbations find a
physical meaning. To describe the LTB spacetimes of
Eq. (1), where the proper time at every point is the cosmic
time, it is convenient to use the synchronous-comoving
gauge of the CPT formalism. In this gauge the proper time
of every observer is the cosmic time. The congruence
of observers is given by the common four-velocity
ua ¼ ð1; 0; 0; 0Þ, which coincides with the unitary normal
to the hypersurfaces of constant time. Defined in this way,
the four-velocity of observers is comoving and isochronous
with the cosmic fluid, and it remains so in time when matter
is described by a dust source, which is precisely the case of
concern [2,12] (though ua may remain comoving and
isochronous with nonzero pressure if _ua ¼ 0, see [40,41]).
The set of relevant perturbative quantities is given by the

matter density perturbation, the perturbative expansion and
the curvature perturbation, defined from departures with
respect to the homogeneous parameters ρ̄ðtÞ; Θ̄ðtÞ and K̄ðtÞ
of the background, average FLRW spacetime:

δCPT ¼ ρðx; tÞ − ρ̄ðtÞ
ρ̄ðtÞ ; ΘCPT ¼ Θðx; tÞ − Θ̄ðtÞ;

KCPT ¼ Kðx; tÞ − K̄ðtÞ: ð33Þ

The CPT quantities above are closely related to nonlocal
exact fluctuations (15)–(16), as the background scalars
fρ̄; Θ̄; K̄g can be rigorously identified with the averages
fhρi; hΘi; hKig along bounded domains D½rb� (if we
consider a Swiss Cheese configuration) or asymptotic
averages fρ̄as; Θ̄as; K̄asg (if we consider linear perturbations
on global domains that correspond to the whole slice in
which r is finite but rb → ∞). Since the linear regime

conditions (30c) imply that for every domain A ≈ hAiq and
hAiq ≈ Aq, CPT perturbations are equivalent to linearized
(i.e., first order) nonlocal or asymptotic exact fluctuations.
That is

Swiss Cheese∶

δCPT1 ≈ δðρÞNL1; ΘCPT1 ≈ DðΘÞ
NL 1; KCPT1 ≈ DðKÞ

NL 1;

ð34aÞ
Asymptotic FLRW∶

δCPT1 ≈ δðρÞas 1; ΘCPT1 ≈ DðΘÞ
as 1; KCPT1 ≈ DðKÞ

as 1;

ð34bÞ
where the subindex 1 denotes first order expansion around
background values. These first order forms are governed by
precisely the same set of equations following the above
correspondences. Namely,

_δCPT1 ¼ −ΘCPT1; ð35aÞ

_ΘCPT1 ¼ −
2

3
Θ̄ΘCPT1 − 4πρ̄δCPT1; ð35bÞ

1

3
Θ̄ΘCPT1 þ

3

2
KCPT1 ¼ 4πρ̄δCPT1; ð35cÞ

which are the energy conservation equation, the
Raychaudhuri equation and the energy constraint (time-
time component of the Einstein equations) at linear order
(see e.g. [42] for their derivation). These equations corre-
spond to the following linearized form of the evolution
equations (bounded domains) of the exact fluctuations
(18a)–(18d) and to the exact form given in (19a)–(19b):

_δðρÞNL ¼ −DðΘÞ
NL ; ð36aÞ

_DðΘÞ
NL ¼ −

2

3
hΘiqDðΘÞ

NL − 4πhρiqδðρÞNL; ð36bÞ

1

3
hΘiqDðΘÞ

NL þ 3

2
DðKÞ

NL ¼ 4πhρiqδðρÞNL; ð36cÞ

or the linear version of equations (24a)–(24b) and the exact
form (24c) for asymptotic domains,

_δðρÞas ¼ −DðΘÞ
as ; ð37aÞ

_DðΘÞ
as ¼ −

2

3
Θ̄asD

ðΘÞ
as − 4πρ̄asδ

ðρÞ
as ; ð37bÞ

1

3
Θ̄asD

ðΘÞ
as þ 3

2
DðKÞ

as ¼ 4πρ̄asδ
ðρÞ
as ; ð37cÞ

where we omitted the subscript 1 to simplify the notation.
The identification of variables in the sets of equations
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above confirm the equivalences established in Eqs. (34a)
and (34b).
Note that the matter density evolution equation, obtained

from a combination of the equations in the above system,
will thus be equivalent to the nonlinear evolution equa-
tions (20) and (26) of the exact fluctuations formalism
expanded at linear order in (31b)–(31c).

B. Metric elements and the curvature perturbation

Let us now use the simple q-scalars scheme to relate the
metric elements of CPT with the corresponding LTB
quantities. To proceed we can compare term by term the
linearized version of the LTB metric in (1) with the
perturbed FLRW metric in a synchronous and comoving
gauge. Considering exclusively scalar fluctuations we can
write the LTB metric (1) as

ds2 ¼ −dt2 þ a2ðr; tÞ

×

�
δij þ

�
2r

a0

a
þKq0r2

�
∇ir∇jr

�
dxidxj; ð38Þ

while the perturbed FLRW line element is

ds2 ¼ −dt2 þ ā2ðtÞ
× ½ð1 − 2ψðx; tÞÞδij þ 2∇i∇jEðx; tÞ�dxidxj: ð39Þ

where i; j represent the cartesian coordinates covering the
spatial part of both line elements. We can compare these
metric elements considering [from Eq. (29) and the results
of Sec. VI and Appendix C] that a ≈ ā and Γ ≈ 1 hold for
local and nonlocal exact fluctuations in the linear regime
(lowest order in inhomogeneities) and, from Eq. (21a),
asymptotically in all LTB models converging to a spatially
flat FLRW background as r → ∞ [30]. We can thus relate
the scalar potentials E and ψ in (39) (cf. [43]) to LTBmetric
functions at linear order

Eðr; tÞ ¼ 1

2
Gðt; αÞ; and

ψðr; tÞ ¼ ∂
∂αGðαÞ −

�
a − ā
ā

�
; ð40Þ

where we introduced the variable α ¼ r2 and the function

Gðt; αÞ ¼
Z

α

0

d ~α
Z

~α

0

dβ

�
d
dβ

lnðaðt; βÞÞ þKq0ðβÞ
4

�
:

ð41Þ

This function is evaluated at each constant time t at which
the linear regime is valid.
To end this section let us show that the equivalence of

metric elements significantly simplifies the demonstration
that the curvature perturbation of CPT is preserved over

time at linear order (the proof in the CPT formalism can be
found, e.g., in [44]). Considering only perturbations of
scalar nature, we define the comoving curvature perturba-
tion Rc from the spatial curvature scalar as

∇2Rc ≡ 3

2
ā2KCPT1; ð42Þ

where ∇2 ¼ δij∇i∇j. In the asymptotically flat FLRW
model, we use this definition together with Eqs. (6), (7),
(10) and (33) to obtain

∇2Rc ¼
3

2

�
ā
a

�
2

Kq0

��
2

3
þ δðKÞ

0

�
Γ−1 −

2

3

�
; ð43Þ

with δðKÞ
0 ¼ DðKÞ

0 =Kq0. Then the right-hand side at lowest
order is simplified by noting from (33) that Kq0 itself is a
first order quantity. Thus, in the linear regime, Γ ≈ 1 and
aðr; tÞ ≈ āðtÞ as shown in the previous section VI (see a
rigorous proof in C). Considering (5c) and a0 ¼ 1; R0 ¼ r,
we can thus write

∇2Rc ¼
3

2
Kq0ðδðKÞ

0 Þ ¼ 3

2
DðKÞ

0

¼ rK0
q0

2
¼ 3

2r3

Z
r

0

K0r̄3dr̄; ð44Þ

which is constant in time (preserved by the fluid motion).
One can alternatively arrive at this expression by comput-
ing the three-curvature Ricci scalarK ¼ 3R=6 of the metric
in Eq. (39) at first order. This yields the equivalence

3

2
ā2K1 ¼ ∇2Rc ¼ ∇2ψ1; ð45Þ

where the metric perturbations are taken at first order. Then
using the result in Eqs. (40) and (41) we recover equiv-
alence (44) at lowest order in perturbative expansion.
The amplitude of the contrast δðKÞ

0 ¼ DðKÞ
0 =Kq0 of

Eq. (43) is not restricted to be small because it represents
the ratio between a small (near zero) spatial curvature
fluctuation and small (near zero) background curvature,
thus the gradient of the curvature fluctuation can be large
even if the curvature itself is small as Eq. (45) shows. In the
context of CPT, at large scales above the Hubble scale, Rc
coincides with the gauge-invariant curvature perturbation
of uniform density hypersurfaces ζ. The latter is preserved
at nonlinear order throughout the evolution at scales above
the horizon [44–46]. These properties have also been
studied through the gradient expansion of perturbation
theory [16,47]. Our results are consistent with these
findings in the nonlinear regime the curvature perturbation
in spherical symmetry.
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VIII. CONNECTION TO THE 1þ 3 COVARIANT
PERTURBATION FORMALISM

A formalism of gauge invariant covariant perturbations
on an FLRW background (to be denoted by “GIC pertur-
bations”) was introduced by Ellis and Bruni [7,8,48] (see
chapter 10.3 of [42] for a comprehensive discussion), on
the basis of a linearization procedure of the exact evolution
equations for the comoving spatial gradients of the density
and Hubble expansion scalar:

Δa ¼
l ~∇aρ

ρ
; Za ¼ l ~∇aΘ; where ~∇a ¼ hba∇b;

ð46Þ
and where hba ¼ Δb

a þ ubua, and the scale factor l is
defined by the relation _l=l ¼ Θ=3. To compare the GIC
formalism with the perturbations introduced in this paper
we consider its application to irrotational dust sources
(p ¼ qa ¼ _ua ¼ Πab ¼ ωab ¼ 0), leading to:

_Δb ¼ −Za − σbaΔb; ð47aÞ

_Zb ¼ −
2

3
ΘZa − 4πρΔa − σbaZb − l ~∇aðσcdσcdÞ; ð47bÞ

together with the constraints

Za ¼ −
3

2
l ~∇bσ

b
a;

4π

3
ρΔa ¼ −l ~∇bEb

a: ð48Þ

In order to obtain a complete system, these equations must
be supplemented by the evolution equations for the shear
and electric Weyl tensors σab and E

a
b, see e.g. Appendix A in

[42]. Also, applying the operator l ~∇a to the Hamiltonian
constraint

�
Θ
3

�
2

¼ 8π

3
ρ −K − 2σabσ

ab; ð49Þ

yields the spatial curvature gradient

3

2
l ~∇aK ¼ 4πρΔa − ΘZa −

3

2
l ~∇aðσcdσcdÞ: ð50Þ

For LTB models we have ~∇aðfÞ ¼ f0δra for any scalar f,
while σab and Ea

b take the forms

σab ¼ Σeab; with Σ ¼ −
_Γ
3Γ

¼ −
1

3
DðΘÞ; ð51Þ

Eab ¼ Eeab; with E ¼ −
4π

3
ρqδ

ðρÞ; ð52Þ

where eab ¼ hab − 3nanb, with na ¼ ffiffiffiffiffiffi
grr

p
δra the unit

vector normal orthogonal to ua and to the orbits of

SO(3). Hence, (47a)–(47b) and (50) reduce to the following
scalar equations

_Δ ¼ −Z þ 2ΣΔ; ð53aÞ

_Z ¼ −
2

3
ΘZ − 4πρΔþ 2ΣZ − 6lðΣ2Þ0; ð53bÞ

together with the constraints

Z ¼ −3l
�
Σ0 þ 3

r
ΓΣ

�
;

4π

3
ρΔ ¼ −l

�
E0 þ 3

r
ΓE

�
; ð54aÞ

3

2
lK0 ¼ 8πρΔ − ΘZ − 9lðΣ2Þ0; ð54bÞ

where Δ≡ lρ0=ρ and Z ≡ lΘ0 with l ¼ aΓ1=3. This
system must be supplemented by Eqs. (8a)–(8d) of [27].
The connection between the 1þ 3 GIC gradient varia-

blesΔ;Z and lK0 and the q–perturbations follows from the
fact that the latter are also related with radial gradients
through (5a)–(5c). Evidently, Z and lK0 are analogous to
the exact fluctuations DðΘÞ and DðKÞ, while the “fractional”
density gradient Δ is analogous to the fluctuation δðρÞ. This
analogy can be further emphasized by comparing the exact
GIC evolution equations (53a)–(53b) with the exact evo-
lution equations (11c)–(11d): if we identify Δ;Z with
δðρÞ;DðΘÞ then (53a)–(53b) and (11c)–(11d) only differ in
their nonlinear second order terms ΣΔ;ΣZ and ðΣ2Þ0,
which [from (51)] can be associated with the second order
products DðΘÞδðρÞ; ½DðΘÞ�2 and DðΘÞ½DðΘÞ�0. The same rela-
tion holds between the spatial curvature gradient constraint
(53b) and the analogue of the curvature constraint (9).
Hence, the linearized form of the evolution equations,

spatial curvature constraint and second order time evolution
of the density perturbation of the GIC and exact fluctua-
tions are indeed fully equivalent if we restrict ourselves to
linear terms:

_Δ ¼ −Z vs _δðρÞ ¼ −DðΘÞ; ð55aÞ

_Z ¼ −
2

3
ΘZ − 4πρΔ vs

_DðΘÞ ¼ −
2

3
ΘqDðΘÞ − 4πρqδ

ðρÞ; ð55bÞ

3

2
lK0 ¼ 4πρΔ − ΘZ vs

3

2
DðKÞ ¼ 4πρqδ

ðρÞ − ΘqDðΘÞ; ð55cÞ
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Δ̈þ 2

3
Θ _Δ − 4πρΔ ¼ 0 vs

δ̈ðρÞ þ 2

3
Θq

_δðρÞ − 4πρqδ
ðρÞ ¼ 0: ð55dÞ

where now l ≈ ā and we neglected the quadratic terms
ΣΔ;ΣZ and ðΣ2Þ0 in the GIC equations (53a)–(54b) and the
quadratic terms δðρÞDðΘÞ; ½DðΘÞ�2; ½δðρÞ�2 and ½_δðρÞ�2 in (11c)–
(11d) and (12), as required in the linear regime for the exact
fluctuations (see the previous section). In fact, (29) and
(30c) imply that Δ ≈ δðρÞ;Z ≈ DðΘÞ and lK0 ≈ DðKÞ must
hold in a linear regime characterized by negligible spatial
gradients: ρ0 ≈ ρ0q;Θ0 ≈ Θ0

q and K0 ≈K0
q, all of which is

consistent with the common gradient structure of the GIC
perturbations and the exact fluctuations.
The equivalence between the nonlocal (confined and

asymptotic) exact fluctuations and the GIC perturbations in
the linear regime follows as a straightforward corollary
from the results of the previous section, since negligible
spatial gradients implies for all scalars and every domain
D½rb� that AqðrÞ ≈ AqðrbÞ ¼ hAiq must hold for inner
domains 0 ≤ r ≤ rb, hence we must have

ðδðρÞNL;D
ðΘÞ
NL ;D

ðKÞ
NL Þ ≈ ðδðρÞ; δðΘÞ; δðKÞÞ: ð56Þ

This is reflected also in the fact that evolution equa-
tions (18a)–(18d) and (11a)–(11d) only differ in a quadratic
term ðΘq − hΘiqÞ2 and a first order term in the right-hand
side of Eq. (18d). In a linear regime the quadratic term is
negligible and 6hΘiq − 4Θq ≈ 2Θq holds, which makes
both systems formally identical at first order (similar
remarks apply for asymptotic perturbations).

IX. SUMMARY AND CONCLUSIONS

We have discussed in detail how the dynamics of LTB
models (assuming Λ > 0) can be fully determined by
covariant q–scalars and exact fluctuations (local and non-
local) that can be constructed from the dynamical quan-
tities. This description can be characterized by a precise,
covariant and gauge invariant perturbation formalism in
which the q–scalars (or the q–averages) define a FLRW
background for any given spherical comoving domain. In
the asymptotic limit this domain covers whole time slices
and the FLRW background can be identified with global
q–averages of covariant scalars.
We have thoroughly verified the correspondence of exact

fluctuations, local and nonlocal, in the linear regime, to dust
perturbations of the GIC and CPT formalisms. Since LTB
models are an exact solution of GR, the description of their
dynamics in terms of the exact fluctuations should provide
valuable information of the nonlinear effects that are missed
in the perturbative treatment of dust sources. This new
information can be appreciated in our demonstration that the
spatial curvature perturbation of CPT (a time preserved

quantity at all scales) is directly related (up to linear terms) to
a time preserved quantity associated to the spatial curvature
of LTB models. This is an important step toward a better
understanding of the connection between linear perturba-
tions and the exact nonlinear evolution of inhomogeneous
sources evolving initially from small fluctuations. Our work
goes beyond the historical treatment of these correspond-
ences [49,50] in that we consider covariant quantities to
compare with gauge-invariant perturbations. Also note that
our work does not deal with perturbations on top of the
exact LTB solution, an important subject of study in itself
[38,51,52].
The equivalences presented in Sec. VII are gauge-

invariant relations to the familiar variables in cosmological
perturbation theory, which serve to set initial conditions for
spherical collapse of nonlinear configurations starting from
the linear regime. This aspect will be explored in future
work [53]. Another important aspect of the identification of
exact fluctuations with synchronous-comoving quantities
of the cosmological perturbation theory is that one can
construct a direct correspondence between the matter
variables of this description and those of the Newtonian
cosmology (see, e.g. [14,43,54]), and a description of
density profiles of initial inhomogeneities [55]. Our method
thus provides a direct path to compare fully non-linear
Newtonian and relativistic results and the accuracy of the
spherical symmetry assumption throughout the evolution of
inhomogeneities.

TABLE I. Dictionary of perturbations-to-fluctuations express-
ing the cosmological perturbation theory and the gauge invariant-
covariant variables in terms of exact fluctuations. The comparison
is carried in the linear regime of the exact fluctuations discussed
in Sec. VI. The subindex 0 indicates evaluation at an arbitrary
fiducial hypersurface t ¼ t0, which can be taken as present
cosmic time. The resulting correspondences are not one-to-one
because the different definitions of a nonlinear exact fluctuation
coincide at linear order [cf. Eq. (56)].

Perturbations-to-Fluctuations dictionary

CPT

Perturbations Exact fluctuations Eqs. in Sec. VII

δ1 δðρÞNL SWISS CHEESE (34a), (35a) vs (36a)

δðρÞas ASYMPTOTIC (34b), (35a) vs (37a)

Θ1 DðΘÞ
NL SWISS CHEESE (34a), (35b) vs (36b)

DðΘÞ
as ASYMPTOTIC (34b), (35b) vs (37b)

∇2Rc 3
2
DðKÞ

NL 0 SWISS CHEESE (34a), (44)

3
2
DðKÞ

as 0 ASYMPTOTIC (34b), (44)

GIC
Perturbations Exact fluctuations Eqs. in Sec. VIII
Δa ¼ l ~∇aρ=ρ δðρÞ; δðρÞNL

(55a), (55d), (56)

Za ¼ l ~∇aΘ DðΘÞ;DðΘÞ
NL

(55b), (56)

l∇aK DðKÞ;DðKÞ
NL

(55c), (56)
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Finally, while our results are still restricted to the
spherically symmetric LTB dust models on an FLRW
background, they can be extended to more general space-
times, sources and backgrounds. In particular, the formal-
ism of q–scalars and q–perturbations can be readily
extended to the nonspherical dust Szekeres models [36]
(even to the cases that are not quasispherical). In this way it
is possible to construct realistic cosmological models which
are both exact solutions and represent perturbations of
models of lower symmetry.
Other possible extensions are to consider local rotational

symmetry (LRS) spacetimes [56], that include spherically
symmetric geometries with a general fluid source, as well
as nonspherical exact perturbations on an LTB background
[38,57]. This will be addressed in future work and will shed
light on the analysis of the growth of structure on top of
strongly nonlinear backgrounds [53]. For example over-
densities such as clusters, or large voids which are both able
to generate large curvature and shear. Furthermore, the
coupling of density perturbations to vector and tensor
modes will be explored and the corrections induced by
this coupling, correctly quantified. These studies, comple-
mentary to those using higher order perturbation methods,
highlight the importance of including general relativistic
effects in modeling the late universe, which will be crucial
if we are to correctly interpret observational data from
future surveys.
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APPENDIX A: LTB STANDARD METRIC
VARIABLES

The standard metric used in most of the literature
(Eq. (18.16) of [21]) is

ds2 ¼ −dt2 þ R02

1þ 2E
dr2 þ R2ðdθ2 þ sin2θdφ2Þ; ðA1Þ

where R satisfies:

_R2 ¼ 2M
R

þ 2Eþ 8π

3
ΛR2; ðA2Þ

where R ¼ Rðt; rÞ; E ¼ EðrÞ;M ¼ MðrÞ. The metric (1)
and Friedman equation (2) follow from (A1) and (A2) by
identifying

a ¼ R
R0

; Kq0 ¼ −
2E
R2
0

;
4π

3
ρq0 ¼

M
R3
0

;

R0 ¼ r; Γ ¼ rR0

R
: ðA3Þ

The q–scalars ρq;Θq;Kq and the exact fluctuations δðρÞ and
δðKÞ ¼ DðKÞ=Kq are

4π

3
ρq ¼

M
R3

; Kq ¼ −
2E
R2

; Θq ¼
3 _R
R

; ðA4Þ

1þ δðρÞ ¼ M0=M
3R0=R

;
2

3
þ δðKÞ ¼ E0=E

3R0=R
; ðA5Þ

so that the fluctuations DðΘÞ and DðKÞ can be easily
computed from (9). The scalars ρ;K;Θ, follow readily
from (5a)–(5c). All quantities introduced, calculated and
derived in the paper can be thoroughly “translated” to the
variables M;E;R; R0 by substitution of (A3)–(A5) into the
appropriate expressions.

APPENDIX B: DARMOIS MATCHING
CONDITIONS

Let M be a generic LTB model described by the metric
(1) and M̄ an FLRW dust spacetime with metric

ds2 ¼ −dt2 þ ā2ðtÞ
�

dr2

1 − K̄0r2
þ r2ðdθ2 þ sin2θdφ2Þ

�
;

ðB1Þ

characterized by the covariant scalars

Θ̄2

9
¼ _̄a2

ā2
¼ 8π

3
ðρ̄þ ΛÞ − K̄; ρ̄ ¼ ρ̄0

ā3
; K̄ ¼ K̄0

ā2
;

ðB2Þ

where K̄0 ¼ k0=H2
0 with k0 ¼ 0;�1 and H0 is the local

Hubble constant (because ā is dimensionless).
For arbitrary comoving domains D½r�� an FLRW back-

ground M̄ becomes precisely specified by the Darmois
matching conditions along a “matching interface” that is
common toM and M̄: the 3–dimensional timelike surface
B½r�� ¼ B½r��ðt; θ;φÞ generated by comoving observers at
the boundary of each comoving domain D½r��. Fulfillment
of these conditions implies the continuity of the induced
metric γab ¼ gab − n̂an̂b and the extrinsic curvature Kab ¼
−∇bn̂a of B½r��, where n̂a ¼ jgrrj1=2δra is the spacelike unit
one–form normal to B½r�� oriented toward increasing r.
Assuming absence of shell crossings (Γ > 0 holds every-
where in M) and computing γab and Kab at B½r�� from the
LTB (limit r → r� with r < r�) and FLRW (limit r → r�
with r > r�) sides, we have:
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a� ¼ aðt; r�Þ ¼ āðtÞ; Kq0� ¼ Kq0ðr�Þ ¼ K̄0; ðB3Þ

leading right away to the continuity of the q–scalars Aq ¼
ρq;Θq;Kq at B½r��: i.e., conditions (13) [in (13) we dropped
the subindex � because r� is arbitrary and used instead the
symbol ½�r to denote evaluation at arbitrary fixed r].
The fulfillment of Darmois matching conditions does not

require the continuity of the metric function Γ [gradient of a
from (3)] and of the radial gradients A0

q and A0 at B½r��. We
have from (5a)–(5c) at B½r��:

A� ¼ Aq� þ
r�A0

q�
3Γ�

¼ Aq� þ
1

a3�r3�

Z
r�

0

A0a3r̄3dr̄: ðB4Þ

Since the Darmois conditions of Eq. (13) imply Aq� ¼ ĀðtÞ
but not A0

q� ¼ 0 nor Γ� ¼ 1, they can be fulfilled if A� ¼
Āþ ðr�A0

q�Þ=ð3Γ�Þ ≠ ĀðtÞ (and thus δðρÞ� ;DðΘÞ
� ;DðKÞ

� do not
vanish). It is possible, however, to demand (together with
Darmois conditions) the continuity of the scalars A at B½r��
by the extra condition A0

q� ¼ 0, which forces the conditions

δðρÞ� ¼ DðΘÞ
� ¼ DðKÞ

� ¼ 0 and yields the so-called Swiss
Cheese type of models. Notice from the integral in (B4)
that the extra condition A� ¼ Aq� ¼ ĀðtÞ necessarily
implies a change of sign in A0 (for this integral to vanish
over the integration domain 0 ≤ r̄ ≤ r� the integrand must
change sign). This explains the “troughs” and “humps” in
the profiles of ρ in Swiss Cheese vacuoles.

APPENDIX C: LTB METRIC VARIABLES
IN THE LINEAR REGIME

We prove in this Appendix that the relations (29) follow
readily under the linear regime assumptions (27). Using the
quadrature of the Friedman equation (2) we can express the
scale factor a as an implicit function of t with the radial
dependence mediated by the initial value functions

t − tbb ¼ Fða; Aq0Þ ¼
Z

ξ¼a

ξ¼0

ffiffiffi
ξ

p
dξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μq0 −Kq0ξþ λξ3
q ; ðC1Þ

where Aq0 ¼ μq0;Kq0; λ denotes generically the initial
value functions μq0 ≡ ð4π=3Þρq0; λ≡ ð8π=3ÞΛ. Exactly
the same quadrature relates the FLRW scale factor āðtÞ
and the equivalent FLRW initial scalars Ā0 ¼ μ̄0; K̄0; λ
(which are constants):

t − t̄bb ¼ Fðā; Ā0Þ ¼
Z

ξ¼ā

ξ¼0

ffiffiffi
ξ

p
dξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μ̄0 − K̄0ξþ λξ3
p : ðC2Þ

Combining (C1) and (C2) yields

Fða; Aq0Þ − Fðā; Ā0Þ ¼ F0ðAq0Þ − F0ðĀ0Þ; ðC3Þ

where F0ðAq0Þ ¼ Fð1; Aq0Þ; F0ðĀ0Þ ¼ Fð1; Ā0Þ and we
have eliminated tbb and t̄bb from the relations tbb ¼ t0 −
F0ðAq0Þ and t̄bb ¼ t0 − F0ðĀ0Þ that follow from the choice
of radial coordinate so that aðt0; rÞ ¼ 1 and āðt0Þ ¼ 1.
Since F is assumed to be analytic and continuous in the
functional domain a; Aq0 we can always expand (C3)
around ā; Ā0, which is a point in this domain. After some
algebraic manipulation this expansion yields at first order

a − ā ≈ F1ðā; Ā0Þðμq0 − μ̄0Þ þ F2ðā; Ā0ÞðKq0 − K̄0Þ;
ðC4Þ

where

F1 ≡ −ā
Θ̄
3

�∂ðF − F0Þ
∂μq0

�
a¼ā;Aq0¼Ā0

;

F2 ≡ −ā
Θ̄
3

�∂ðF − F0Þ
∂Kq0

�
a¼ā;Aq0¼Ā0

; ðC5Þ

and we used the fact that ½∂F=∂a�a¼ā ¼ ā Θ̄ =3 with
Θ̄=3 ¼ _̄a=ā. Assuming the conditions (27) for a linear
regime and considering that F1 and F2 in (C5) are functions
of t (through ā), the expansion (C4) leads directly to (29) in
the time range satisfying

F1ðā; Ā0Þðμq0 − μ̄0Þ ∼OðϵÞ;
F2ðā; Ā0ÞðKq0 − K̄0Þ ∼OðϵÞ; ðC6Þ

which clearly depends on the forms of F1 and F2. Since
μq0 − μ̄0 and Kq0 − K̄0 are (assumed) of OðϵÞ and
a0 − ā0 ¼ 0, then there is always a range of time suffi-
ciently close to t0 where a − ā ∼OðϵÞ holds. In fact,
a − ā ∼OðϵÞ as long as F1; F2 are up to Oð1Þ.
The linear conditions (29) on Γ follows readily by

applying the definition (3) to (C4):

Γ ¼ 1þ ra0

a
≈ 1þ rμ0q0F1 þ rK0

q0F2

āþ F1ðμq0 − μ̄0Þ þ F2ðKq0 − K̄0Þ
≈ 1þ rμ0q0

F1

ā
þ rK0

q0
F2

ā

≈ 1þ 3μq0δ
ðρÞ
0

F1

ā
þ 3DðKÞ

0

F2

ā
; ðC7Þ

which [since we assume μ0q0 and K0
q0 to be OðϵÞ] has the

form 1þOðϵÞ in roughly the same time range
as a − ā ∼OðϵÞ.
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