
Cosmology constraints from the weak lensing peak counts and the power
spectrum in CFHTLenS data

Jia Liu,1,* Andrea Petri,2,† Zoltán Haiman,1,3,‡ Lam Hui,2,3,§ Jan M. Kratochvil,4,¶ and Morgan May5,**
1Department of Astronomy and Astrophysics, Columbia University, New York, New York 10027, USA

2Department of Physics, Columbia University, New York, New York 10027, USA
3Institute for Strings, Cosmology, and Astroparticle Physics (ISCAP), Columbia University,

New York, New York 10027, USA
4Astrophysics and Cosmology Research Unit, University of KwaZulu-Natal,

Westville, Durban 4000, South Africa
5Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 30 November 2014; published 4 March 2015)

Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-
Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-
point correlation functions. Here we examine constraints on cosmological parameters from weak lensing
peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite
of ray-tracing N-body simulations on a grid of 91 cosmological models covering broad ranges of the three
parameters Ωm, σ8, and w, and replicating the Galaxy sky positions, redshifts, and shape noise in the
CFHTLenS observations. We then build an emulator that interpolates the power spectrum and the peak
counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space
(Ωm, σ8, w) from both observables. We find that constraints from peak counts are comparable to those from
the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither
observable can constrain wwithout external data. When the power spectrum and peak counts are combined,
the area of the error “banana” in the (Ωm, σ8) plane reduces by a factor of ≈2, compared to using the power
spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint
σ8ðΩm=0.27Þ0.63 ¼ 0.85þ0.03−0.03 .
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I. INTRODUCTION

Weak gravitational lensing (WL) is one of the most
promising techniques to probe dark energy (DE) with
improved precision in the future (see recent reviews by
[1–5]). By statistically measuring the distortions in the
shapes of background galaxies, the matter density fluctua-
tions at different redshifts can be mapped, yielding con-
straints on the parameters of the background cosmological
model. Pioneering WL surveys, such as the Cosmic
Evolution Survey (COSMOS [6]) and the Canada-France-
Hawaii Telescope Lensing Survey (CFHTLenS [7,8]), have
recently successfully demonstrated the utility of this tech-
nique, yielding constraints on the matter density Ωm and
fluctuation amplitude σ8 comparable with other existing
methods, even with relatively small sky coverage (∼1 and
154 deg2, respectively).
In this paper, we use the publicly available CFHTLenS

data on ≈4.2 million galaxies, combined with a suite of

ray-tracing simulations in 91 different cosmological mod-
els, to constrain the cosmological parameters, Ωm, σ8, and
the DE equation of state w. Traditionally, WL data are
analyzed using the two-point correlation function (2PCF),
or its Fourier-space counterpart, the power spectrum.
However, these statistics cannot fully characterize the weak
lensing shear field on small (≲arc min) angular scales,
where it is sensitive to matter density fluctuations in the
nonlinear regime, and is strongly non-Gaussian. Various
non-Gaussian statistics (e.g. higher moments [9–14], three-
point functions [15,16], bispectra [17–20], peak counts
[21–25], or Minkowski functionals [26,27]) have been
proposed in the past, and shown to improve cosmological
constraints from WL surveys.
In this work, we focus on peak statistics, which describe

the distribution of local maxima in a convergence map, as
a function of peak height. It is a particularly simple
statistic forecasted to yield a factor of ∼2 improvement
on cosmological parameters when combined with two-
point statistics by several recent studies [28–32], and also
found to be unusually robust to systematic errors from
baryonic effects [32]. Petri et al. [33] examines constraints
from Minkowski functionals and higher moments of the
WL convergence field.
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A handful of works have recently begun to examine non-
Gaussian features in the CFHTLenS data. Three-point
statistics have been measured in both CFHTLenS [34]
and earlier in COSMOS [35] and found to lead to modest
(up to≈10%) improvements on the combination σ8Ωα

m with
α ≈ 0.3–0.5. Reference [36] measured Minkowski func-
tionals in CFHTLenS and showed that they can break
degeneracies among cosmological parameters, improving
constraints onΩm and σ8. Finally, higher moments [37] and
peak counts [38] have both been measured in CFHTLenS,
although cosmological constraints have not yet been
derived from them.
The distinguishing feature of the present work is that

we compute peak count statistics, including their depend-
ence on cosmology and their variance, from simulations
in a large number of cosmological models (91 in total).
Simulating multiple cosmological models is necessary
because analytical predictions of peak counts for non-
Gaussian fields are still in early development (for exam-
ple, Ref. [39]). Furthermore, a large number (≳ hundreds)
of realizations per model is necessary to measure the
covariance of the peak counts, and to compute accurate
confidence limits on cosmological parameters. Because of
computational limitations, most works on non-Gaussian
WL statistics to date have sampled only a few points
in the multidimensional cosmological parameter space,
and assumed a linear dependence on cosmological
parameters to compute observables in other cosmologies
(effectively implementing a numerical version of a
Fisher matrix) or else relied on fitting formulas calibrated
with a handful of simulations. The only exception we are
aware of is Ref. [28], who studied peak counts in
simulations on a two-dimensional Ωm; σ8 grid, and whose
results already indicate that the Ωm and σ8 dependence is
nonlinear, and the Fisher approach is therefore highly
inaccurate.
Recently, a series of papers dubbed “the Coyote

Universe” [40–43] have built an emulator based on a large
number of simulations to address analogous issues for the
matter power spectrum. Using 37 cosmological models,
these studies have shown that the matter power spectrum
can be interpolated and computed to 1% accuracy out to
k ∼ 1 Mpc−1 for models in between the simulated points in
parameter space. We have built an emulator following a
similar approach, but describing WL observables, and
tailored specifically for the CFHTLenS fields. Unlike in
a general–purpose emulator, galaxy properties (e.g. redshift
distribution, position, and noise) are not freely adjustable
parameters, but rather fixed and built into our simulations
from the outset, adapted directly from the CFHTLenS
measurements.
The paper is structured as follows. We first describe

CFHTLenS data processing and convergence map con-
struction in Sec. II, and our ray-tracing simulations and
numerical details in Sec. III. We present the results of

our analysis in Sec. IV, and we offer our conclusions
in Sec. V.

II. CFHTLenS DATA PROCESSING

The 154 deg2 CFHTLenS data cover four individual
patches on the sky, with an area of 64, 23, 44, and 23 deg2

for fields W1, W2, W3, and W4, respectively. The
CFHTLenS data analysis roughly consists of (1) creation
of the galaxy catalog using SEXTRACTOR [44], (2) the
photometric redshift estimation with a Bayesian photo-
metric redshift code [45], (3) galaxy shape measurement
with LENSFIT [46,47], and finally (4) cosmological analysis
with 2PCF [8]. A summary of the data analysis process is
listed in Appendix C of Ref. [44]. We refer the readers to
the CFHTLenS papers mentioned above for more technical
details.
We apply the following cuts to the galaxies: mask ≤ 1

(see Table B2 in Ref. [44] for the meaning of mask values),
redshift 0.2 < z < 1.3, fitclass ¼ 0 (requiring the object to
be a galaxy), and weight W > 0 (with larger W indicating
smaller shear measurement uncertainty). Applying these
cuts leaves us 4.2 million galaxies, 124.7 deg2 sky, and
average number density ngal ≈ 9.3 arcmin−2.

A. Map projection and smoothing

Because the CFHTLenS fields are irregularly shaped,
and because we ray trace to the actual observed galaxy
positions, we first divide them into 13 squares (subfields) to
match the square shape and ≈12 deg2 size of our simulated
maps. Figure 1 shows the convergence maps for the
CFHTLenS fields, as well as the divisions into subfields.
To maximize the data usage, three subfields are each
composed of two physically separated sky patches (the
ones with rectangular shape in the figure).
Galaxies in each subfield are then placed on a

512 × 512 pixel grid using the flat sky (gnomonic) pro-
jection [48],

x ¼ cosϕ sinðλ − λ0Þ
cos η

; ð1Þ

y ¼ cosϕ0 sinϕ − sinϕ0 cosϕ cosðλ − λ0Þ
cos η

; ð2Þ

where ðx; yÞ is the galaxy position in radians on the grid
map, ðλ;ϕÞ the position in (right ascension, declination),
ðλ0;ϕ0Þ the center of the subfield, and η the angular
distance from the center,

cos η ¼ sinϕ0 sinϕþ cosϕ0 cosϕ cosðλ − λ0Þ: ð3Þ

In order to reduce the noise and to perform a Fourier
transform, we use a Gaussian window function to smooth
the grid map,

LIU et al. PHYSICAL REVIEW D 91, 063507 (2015)

063507-2



ēðθ0Þ ¼
R
d2θWðjθ − θ0jÞWðθÞ½eobsðθÞ − cðθÞ�R
d2θWðjθ − θ0jÞWðθÞ½1þmðθÞ� ; ð4Þ

WðθÞ ¼ 1

2πθ2G
exp

�
−

θ2

2θ2G

�
; ð5Þ

where ēðθ0Þ is the smoothed complex ellipticity e ¼ e1 þ
ie2 at the pixel θ0.WðθÞ is the Gaussian smoothing window
with scale θG, which we choose to be 0.5, 1.0, 1.8, 3.5, 5.3,
and 8.9 arc min. W is the LENSFIT weight for each galaxy.
c and m are additive and multiplicative corrections, which
we include following Refs. [46,47],

eobs ¼ ð1þmÞetrue þ c: ð6Þ

The additive correction c is consistent with 0 for e1, and
< 0.05 for e2, and m is a function of signal to noise (νSN)
and galaxy size (r),

mðνSN; rÞ ¼
β

log10ðνSNÞ
expð−αrνSNÞ; ð7Þ

with α ¼ 0.057 and β ¼ −0.37. This multiplicative cor-
rection for each galaxy [denominator of Eq. (4)] is a fit to
the ensemble average over galaxies within the window
function, because the result can be unstable on a galaxy-by-
galaxy basis when ð1þmÞ → 0. We tested the impact of
the m calibration following Sec. 8.5 of Ref. [47]. We
sampled 100 sets of random ðα; βÞ values from their
probability distribution provided in Ref. [47], and com-
puted the variance of the power spectrum and the peak
counts among these 100 samples. Similar to the results of
the analysis in Ref. [47] for the 2PCF, we found that this
calibration impacts the power spectrum and the peak counts
at the ≲10−3 level, negligible comparing to the variance
between random realizations of the underlying lens-
ing maps.

FIG. 1 (color online). Convergence maps for the four CFHTLenS fields. They are divided into 13 subfields of 12 deg2 in size to match
our simulation configuration. Scattered white dots are masks. White lines mark the edges of our simulated maps. Three subfields are
collages of the six rectangular patches in W1;W2;W4. Patches in black and white are not used in our simulation.
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B. Convergence map construction and masking

The convergence (κ) and the complex shear (γ¼γ1þiγ2)
are obtained from derivatives of the lensing potential (ψ).
They are defined as

κðθÞ ¼ 1

2
∇2ψðθÞ; ð8Þ

γ1ðθÞ ¼
1

2
ðψ ;11 −ψ ;22 Þ; ð9Þ

γ2ðθÞ ¼ ψ ;12 ; ð10Þ

where indices separated by a comma denote partial deriv-
atives with respect to two orthogonal components θ1 and θ2
of θ. We can reconstruct the convergence map from shear
measurements [49] using

κ̂ðlÞ ¼
�
l2
1 − l2

2

l2
1 þ l2

2

�
γ̂1ðlÞ þ 2

�
l1l2

l2
1 þ l2

2

�
γ̂2ðlÞ ð11Þ

where κ̂, γ̂ are the convergence and the shear in Fourier
space, and l is the wave vector with components l1;l2.
Note that ellipticity is used as a measure of the shear, using
the weak lensing approximation (hei ¼ γ; see below).
The data contain unusable regions (due to bright stars

and bad pixels). These regions and sky patches with low
galaxy number density can induce large errors and noise
(e.g. [50–52]). Hence we mask them out (shown as the
scattered white dots in Fig. 1). By masking out low density
regions, we assume there is no correlation between the
lensing signal and the galaxy number density, i.e. neglect-
ing the magnification bias. Reference [53] found that the
magnification bias has negligible impact on cosmological
parameters for surveys with < 1000 deg2 coverage. To
generate masks, we first create grid maps of the same size
and resolution as the convergence maps, but with each pixel
containing the number of galaxies (ngal) falling within that
pixel. We then smooth this galaxy surface density map with
the same Gaussian window function as before [Eq. (5)].
Finally, we remove regions where ngal < 5 arcmin−2 (see
Ref. [36]). In order to perform a Fourier transform on the
resulting maps, we set all pixels within the masked regions
to zero. This can introduce noise at small scales, and we
limit our final analysis to scales l < 7; 000. We also apply
the same procedure on the simulated maps.

C. Power spectrum and peak counts

The power spectrum is the Fourier counterpart of the
two-point correlation function. We first Fourier transform
the convergence map (with 0.5 arc min smoothing scale),
and then average over all spherical harmonics (l ¼ jlj) to
obtain the power spectrum, with 40 equally spaced log bins
in the range 370 < l < 25; 000.

Peak counting is done by scanning through the pixels on
the convergence map, and identifying local maxima (pixels
with a higher value of κ than its surrounding eight pixels).
We then record the number of peaks as a function of their
central κ value. In our analysis, we use peaks with −0.04 <
κ < 0.12 and test various smoothing scales.
The final power spectrum is averaged over the 13

subfields weighted by the number of galaxies in each
subfield. The final peak counts is the sum over 13 subfields.

III. THE EMULATOR

The construction of the emulator consists of three steps.
First, we sample 91 points using the latin hypercube
method in the three-dimensional (3D) parameter space
within the broad ranges 0<Ωm<1, −3 < w < 0, and
0.1 < σ8 < 1.5. For each sampled point, we run an N-
body simulation and perform ray tracing to create shear
maps that are directly comparable to the CFHTLenS data.
Second, we create convergence maps, measure the power
spectra and peak counts, and interpolate between the 91
simulated grid points to make predictions for arbitrary
cosmological models within the simulated range. Finally,
we compute the parameter likelihood in the 3D space
(Ωm; w; σ8) to find the best-fit values and marginalized
confidence contours, using the CFHTLenS observations.

A. N-body simulation and ray tracing

We first pick 91 sampling points that are spread out in the
3D space as evenly as possible, but do not overlap when
projected on 2D or 1D space. To do this, we use the latin
hypercube sampling method following Ref. [41]. A list of
parameters residing on a diagonal line is first generated,
and then randomly shuffled on each dimension. For a
random pair of points and a random parameter, we swap
their values. The last step was repeated until we reached
convergence in average distance between the points (105

iterations). The resulting parameter values are listed in
Table I and shown visually in Fig. 2.
We then run one N-body simulation at each sampling

point, using a modified version of the GADGET-2 code.1

Except for the values of the three cosmological parameters,
the parameters and setup of theseN-body simulations are the
same as used in our earlier work [24,26,27,29,32,53,54].We
refer readers to these papers for more detailed information.
The simulations have a box size of 240h−1 comoving Mpc,
containing 5123 dark matter particles. This corresponds to a
mass resolution of 7.4 × 109h−1M⊙. We set the Hubble
constant h ¼ 0.72, baryon density Ωbh2 ¼ 0.0227, and the
spectral index ns ¼ 0.96. We compute the initial (linear)
total matter power spectrum with the Einstein-Boltzmann
code CAMB

2 [55] at z ¼ 0 and scale it back to initial redshift

1http://www.mpa‑garching.mpg.de/gadget/.
2http://camb.info/.
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z ¼ 100. The power spectrum is then fed into N-GENIC, the
initial condition generator associated with GADGET-2.
Snapshot cubes are recorded at redshifts corresponding to
every ∼80 Mpc (comoving).
To create mock shear maps, we next perform ray tracing.

We divide each 3D box into three parallel pieces and
project each slice onto a 2D plane perpendicular to the
observer’s line of sight, using the triangular-shaped cloud
scheme [56]. We then convert the surface density to the
gravitational potential at each plane using Poisson’s equa-
tion. At each position of the 4.2 million observed
CFHTLenS galaxies, we follow a light ray from z ¼ 0,
traveling backward through the projection planes to the
redshift of the galaxy, zgal. For simplicity, we chose zgal to
be the peak of the photometric redshift probability

TABLE I. Cosmological parameters used in our simulations.
The Universe is assumed to be spatially flat (ΩΛ þ Ωm ¼ 1), with
the Hubble constant h ¼ 0.72, baryon density Ωbh2 ¼ 0.0227,
and spectral index ns ¼ 0.96.

Ωm w σ8

1 0.624 −2.757 0.327
2 0.849 −0.183 0.821
3 0.136 −2.484 1.034
4 0.295 −1.878 0.1
5 0.418 −1.758 0.383
6 0.615 −1.668 0.185
7 0.558 −2.577 1.146
8 0.915 −2.544 1.175
9 0.7 −0.273 0.283
10 0.446 −1.212 1.486
11 0.991 −1.908 1.02
12 0.155 −0.393 0.652
13 0.145 −2.211 1.303
14 0.981 −1.242 1.048
15 0.409 −2.94 0.737
16 0.436 −0.06 0.878
17 0.183 −0.909 0.269
18 0.502 −1.152 1.189
19 0.38 −2.424 0.199
20 0.887 −0.363 0.439
21 0.276 −0.849 1.429
22 0.718 −1.728 1.472
23 0.755 −0.456 1.359
24 0.831 −0.759 0.213
25 0.455 −2.637 1.373
26 0.671 −2.364 0.793
27 0.765 −2.091 1.076
28 0.493 −0.243 0.297
29 0.483 −1.515 0.68
30 0.474 −1.302 0.114
31 0.84 −2.274 1.387
32 0.963 −2.151 0.51
33 0.258 −1.395 0.241
34 0.972 −0.666 0.694
35 0.943 −2.394 0.835
36 0.643 −2.454 1.444
37 0.821 −2.88 0.863
38 0.775 −1.122 1.132
39 0.54 −0.03 1.161
40 0.352 −0.576 1.09
41 0.333 −0.213 0.552
42 0.897 −0.999 0.468
43 0.221 −1.485 0.666
44 0.953 −1.545 0.355
45 0.315 −2.241 0.638
46 0.361 −0.606 0.171
47 0.389 −0.939 0.454
48 0.634 −1.575 0.976
49 0.305 −0.879 0.765
50 0.211 −0.333 0.341
51 0.812 −1.788 0.722
52 0.661 −0.486 0.892

(Table continued)

TABLE I. (Continued)

Ωm w σ8

53 0.681 −2.97 0.61
54 0.746 −0.09 1.118
55 0.464 −2.121 0.906
56 0.568 −0.516 1.331
57 0.737 −2.847 1.203
58 0.427 −2.91 0.411
59 0.249 −2.727 0.369
60 0.652 −1.029 1.458
61 0.794 −1.365 0.156
62 0.925 −0.636 1.259
63 0.164 −2.181 0.313
64 0.267 −2.667 1.317
65 0.192 −1.605 1.401
66 0.324 −2.001 1.217
67 0.577 −3.0 0.948
68 0.596 −0.696 0.496
69 0.728 −0.12 0.596
70 0.173 −0.423 1.231
71 0.803 −2.607 0.255
72 0.53 0.0 0.624
73 0.69 −1.332 0.482
74 0.549 −1.818 1.287
75 0.239 −1.848 0.962
76 0.906 −1.698 1.273
77 0.512 −0.819 0.849
78 0.399 −1.938 1.5
79 0.37 −0.303 1.345
80 0.869 −2.031 0.227
81 0.709 −2.061 0.425
82 0.286 −1.272 1.104
83 0.784 −1.062 0.779
84 0.342 −2.817 1.062
85 1.0 −1.425 0.708
86 0.878 −2.697 0.524
87 0.606 −0.789 0.142
88 0.521 −2.334 0.538
89 0.587 −2.304 0.128
90 0.201 −2.787 0.807
91 0.859 −1.182 1.415
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distribution function (PDF). Using the most probable
redshift, instead of the full PDF, can potentially induce
biases as the former does not follow the stacked posterior
probabilities when fainter galaxies are included (see Fig. 10
in Ref. [45]). We test this effect by ray tracing to redshifts
randomly drawn from the PDF of individual galaxies for
one cosmology, and found the deviation of cosmological
parameters to be negligible. Reference [36] also found the
bias caused by using the most probable photometric red-
shift to be small (Δw0 ≈ 0.1), but important for future larger
surveys.
The deflection angle, convergence, and shear are calcu-

lated at each plane for each light ray. Between the planes,
the light rays travel in straight lines. Finally, for each
cosmological model, we create 1,000 realizations (includ-
ing κ and γ for each galaxy) by randomly rotating/shifting
the simulation data cubes.
In total, we created 1,183,000 mock catalogs (91

models × 13 subfields per model × 1,000 realizations
per subfield).

B. Convergence maps

Next, we process the simulation catalogs, mimicking as
closely as possible the procedures applied to the real
CFHTLenS data. The transformation from intrinsic to
observed galaxy ellipticity is [57]

e ¼
8<
:

eintþg
1þg�eint

jgj ≤ 1

1þge�int
e�intþg� jgj > 1

; ð12Þ

g ¼ γ
1 − κ

; ð13Þ

where eint is the galaxy’s intrinsic ellipticity. For each
simulated galaxy, we assign an intrinsic ellipticity by
rotating the observed ellipticity for that galaxy by a random
angle on the sky, while conserving its magnitude jej. g ¼
g1 þ ig2 is the reduced shear, and the asterisk denotes
complex conjugation. To be consistent with the CFHTLenS
analysis, we adopt the weak lensing limit (jγj ≪ 1; κ ≪ 1),
hence g ≈ γ, e ≈ eint þ γ. We estimate the bias on cosmo-
logical parameters to be < 50% of the 1σ error for σ8,
and < 30% for Ωm, using results from Ref. [58] for a
CFHTLenS-like survey (with ngal ¼ 9.3 arcmin−2 and sky
coverage fsky ¼ 0.03). We also add multiplicative noise by

FIG. 2. Visual representation of the cosmological parameters in
the 91 models used in our simulations, and listed in Table I.

FIG. 3 (color online). Examples of the interpolated power
spectrum (upper panel) with 0.5 arc min smoothing and peak
counts (lower panel) with 1.0 arc min smoothing and 25 κ bins,
using the two different interpolation techniques RBF and GP. The
solid curves show the true quantities for the given cosmological
model (no. 49 in Table I), and the dashed and dotted curves show
the interpolations based on the other 90 models.
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replacing γ → γð1þmÞ. As with CFHTLenS data, we
continue with smoothing [Eq. (4)], convergence map
construction [Eq. (11)], masking (Sec. II B), and computing
the power spectrum and peak counts (Sec. II C).

C. Interpolation

We test two methods to interpolate from the 91 measured
power spectra and peak counts to other cosmologicial
models: (1) multidimensional radial basis function
(RBF) and (2) Gaussian process (GP). RBF uses the
average power spectrum or the peak counts (over 1,000
realizations) at each sampled point. The interpolated value
is the weighted average of all sampling points, and the
weight is a function of the distance from the interpolation
point. We choose the function to be “multiquadric”
[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi=ϵÞ2 þ 1

p
, where pi ¼ jpi − p0j is the distance in

parameter space, and ϵ is a constant chosen to be the
average distance between sampling points], as it gives us
the best results among other commonly used functions.3

RBF interpolation is computed using SCIPY.4 The GP
method is a technique to interpolate smooth functions on
an irregular grid, minimizing artifacts due to clustering of
sampled points in parameter space. GP utilizes not only the
mean value at each point, but also the standard deviation

among the simulated realizations. We compute GP inter-
polation using the SCIKIT-LEARN package.5

Though GP uses more information than RBF, we do not
find a significant difference between the two algorithms.We
test the validity of both interpolators as follows. First, we
choose onemodel as the test point, and use the remaining 90
models to construct the interpolator. We then compare the
prediction at the test point to the actual power spectrum and
peak counts. This is repeated 91 times for all models. For
both power spectrum and peak counts, using either RBF or
GP, we are able to predict at ∼1% level for the power
spectrum (with only one case that is over 5%) and at ∼5%
level for peak counts (with few cases that are slightly larger
than 5% for high κ peaks). Most of our predictions are well
within the error bars (i.e. the variance between realizations).
The interpolation performance decreases slightly at the
edges of the model parameter space. Figure 3 shows a
typical example of the interpolated power spectrumandpeak
counts compared against the actual values. In our final
analysis, we use RBF for faster computation.

D. Parameter estimation

With only three free parameters, we can directly compute
the probability distribution on a 3D parameter grid.
According to Bayes’s theorem, the posterior probability
of a set of parameters p ¼ ½Ωm; w; σ8� for given data
d ¼ ½d1; d2;…dn� is

FIG. 4 (color online). Interpolated power for l ¼ 3; 000 (7.2 arc min) as a function of Ωm, w, and σ8 using simulations (upper panel)
and fitting formula from Ref. [60] (lower panel). The third parameter for each plane is at a fixed value (½Ωm; w; σ8� ¼ ½0.26;−1.0; 0.8�).

3For example, “inverse,” 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=ϵÞ2þ1

p
; “Gaussian,”

exp½−ðp=ϵÞ2�; “linear,” p; “cubic,” p3; “quintic,” p5.
4http://www.scipy.org. 5http://scikit‑learn.org.
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PðpjdÞ ¼ PðpÞPðdjpÞ
PðdÞ ; ð14Þ

where PðpÞ is the prior, PðdjpÞ the likelihood function of
measuring d given p, and PðdÞ the normalization. Under
the assumption that the observables are Gaussian distrib-
uted, the likelihood function is

PðdjpÞ ¼ 1

ð2πÞn=2jCj1=2
× exp ½−0.5ðd − μÞC−1ðd − μÞ�; ð15Þ

where μ is the prediction as described in Sec. III C, n is the
number of free parameters (equal to three in this work),
and C the (constant) covariance matrix. We compute C
using a fiducial model ½Ωm;w;σ8�¼½0.305;−0.879;0.765�,
assuming dC=dp is small. The fiducial model is selected

from the 91 models so that its parameters are close to the
WMAP7 values [59]. We use a flat prior for Ωm in [0, 0.8],
w in ½−2.1;−0.3�, and σ8 in [0.1, 1.4]. We obtain the
normalization PðdÞ by setting the sum of the probability of
all grid points to unity. Within the range of our flat priors,
we compute PðpjdÞ for 1003 equally spaced grid points. To
obtain 2D error contours, we marginalize over the third
parameter. The results are presented in Sec. IV below.

IV. RESULTS

A. Power spectrum

We first compare our power spectrum model with
theoretical predictions. Figure 4 shows the interpolated
power for l ¼ 3; 000 (7.2 arc min) as a function of Ωm; w,
and σ8. We only show the change for one particular
l, because the change is similar for all scales within our
model (370 < l < 25; 000). The upper panel of Fig. 4 is
from our simulations, and the lower panel is computed
using fitting formulas from [60] and the code NICAEA.6

The third parameter for each plane is at a fixed value
(½Ωm; w; σ8� ¼ ½0.26;−1.0; 0.8�). Overall, simulations and
theory predictions are in good agreement, with the figure
showing that the power in the upper and lower panels
is similar, and varies as a function of cosmological
parameters similarly. For a more quantitative test of the
power spectrum, see Fig. 1 in Ref. [24]. For cosmological
constraints, we use our simulated power spectra directly,

FIG. 5 (color online). Comparison of the CFHTLenS (top
panel) and simulated (bottom panel) power spectrum measured
using 75% of the fields (solid line) which pass the PSF residual
test and all fields (dashed line). The error is measured from our
simulations.

FIG. 6 (color online). Sixty-eight percent error contours from
the power spectrum measured using only the 75% of the
CFHTLenS fields that pass the PSF residual test (solid curves)
and for all fields (dashed curves). Constraints are shown with
(thick curves) and without (thin curves) imposing an upper limit
l < 7; 000.

6http://www2.iap.fr/users/kilbinge/nicaea/.
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rather than theoretical fitting formulas. The upturn seen at
l > 20; 000 is an artifact introduced by the finite pixel size
on our maps. However, we found no bias from this artifact,
when comparing error contours using bins with l <
20; 000 and all available bins (up to l ¼ 25; 000).
Reference [46] identified 25% of the 172 individual

CFHTLenS pointings, each≈1 deg2 in size, with significant
point spread function (PSF) residuals. Including these fields
can increase the systematic error in the 2PCF, and possibly
impact other statistics.However, because the power spectrum
is a convolution of the signal and themask, it is susceptible to
themaskingpattern (due to bright stars andbadpixels)whose
characteristic scale is significantly larger than the smoothing
scale. As each bad field removes one square degree from the
data, much larger than our ∼arc min smoothing scale,
excluding these areas can also introduce additional noise.

To study the effect due to PSF residuals and masks, we
compute the power spectrum for all fields and for the 75%
“pass” fields shown in the upper panel of Fig. 5. We find
power spectra with or without this PSF screening are
consistent within errors on large scales. On small scales
(l > 7; 000, or 3 arc min), however, we find a significant
difference in power spectra with or without the corrupted
fields. This difference is caused primarily by the particular
masking pattern, rather than field selections. This is dem-
onstrated by performing the same comparison using our
simulated power spectra, with the same corrupted regions
either included or excluded. The result of this comparison is
shown (for the fiducial cosmology) in the lower panel of
Fig. 5, revealing a similarly large discrepancy forl > 7; 000.
Figure 6 shows the 68% confidence level (C.L.) error

contour in the Ωm-σ8 plane (marginalized over w) for the

FIG. 7 (color online). Interpolated number counts for typical low (< 1σκ , top panel), medium (1–3σκ, middle panel), and high (> 3σκ,
bottom panel) peaks, where σκ ¼ 0.03 is the standard deviation of κ measured in our simulations. As in Fig. 4, the third parameter in
each panel is at a fixed value (½Ωm; w; σ8� ¼ ½0.26;−1.0; 0.8�).
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full set and for the pass-only fields, and for all available l
and for l < 7; 000. We found the contours are fairly
consistent among the four cases. To be conservative, we
use the 75% pass fields only for our power spectrum
analysis, and further limit our analysis to l < 7; 000. The
latter restriction eliminates small scales, where baryonic
effects can bias the shear correlation function by more than
5%–10% [61], and lead to a non-negligible bias on the best-
constrained cosmological parameter combination Σ8

(defined below). For all four contours in the figure, we
are unable to exclude the lower right corner in the Ωm-σ8
plane. Given the strong degeneracy between Ωm and σ8, it
is of little meaning to quote a best fit for individual
parameters; rather we will compare the areas of the 2D
contours for various probes, and obtain constraints on a
combination of the two parameters (see below).

B. Peak counts

Interpolated peak counts from simulations as a function
of cosmological parameters are shown in Fig. 7. We present
the effect for three representative κ values, low (<1σκ,
upper panel), medium (1–3σκ, middle panel), and high
(>3σκ, lower panel), where σκ ¼ 0.03 is the standard
deviation in the convergence map for 1 arc min smoothing

FIG. 8 (color online). Comparison of the CFHTLenS (upper
panel) and simulated (lower panel) peak counts measured using
75% of the fields (solid curves) which pass the PSF residual test
and all fields (dashed curves). The error is measured from our
simulations.

FIG. 9 (color online). Sixty-eight percent error contours from
peak counts using smoothing scales of 1.0 (dotted curve), 1.8
(thick dashed curve), 3.5 (thin solid curve), and 5.3 (thin dashed
curve) arc min, as well as from peak counts with 1.0 and 1.8 arc
min smoothing scales in combination (thick solid curve).

FIG. 10 (color online). Constraints on the parameter
Σ8 ¼ σ8ðΩm=0.27Þα, using the power spectrum (dashed line),
peak counts (thin solid line), and their combination (thick solid
line). The power spectrum is computed using the 75% of the
fields that pass the PSF residual test, and restricted to l < 7; 000.
Peak counts are computed using all fields, and include measure-
ments of peaks on two smoothing scales (1.0 and 1.8 arc min).
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(with galaxy noise). As in Fig. 4, the third parameter
for each plane is at a fixed value (½Ωm; w; σ8� ¼
½0.26;−1.0; 0.8�). Low and high peaks behave similarly,
where larger Ωm or σ8 increases the number of peaks.
Medium peaks behave the opposite way. Reference [24]
investigated the origin of peaks, and found typical high
peaks are linked to one single massive halo, while medium
peaks are associated with constellations of four to eight
lower-mass, off-center halos near the line of sight. It is not
surprising to see the effect of Ωm and σ8 on high peaks, as
higher values increase the number of massive halos. The
opposite behavior of medium peaks is somewhat counter-
intuitive, but has been observed and explained in [24].
As peak counts are local, we expect field selections to

have a smaller impact on them, beyond modifying the total
number of peaks and their variance. This is shown to be the
case in Fig. 8, where we compare peak counts from pass-
only fields and from all fields, and found these to be
consistent for all κ within errors (for a fair comparison,
peak counts using all fields are multiplied by the sky ratio
of pass fields to all fields, ≈0.75). Therefore, unlike for the
power spectrum, we choose to include all fields for peak
counts for tighter constraints.
We test the constraints from different smoothing scales.

Large smoothing windows reduce the total number of
peaks, and wash out cosmological information, whereas
small smoothing scales result in very noisy distributions.
We examine six smoothing scales (0.5, 1.0, 1.8, 3.5, 5.3,
and 8.9 arc min). The smallest (0.5 arc min) and the largest
(8.9 arc min) yield significantly larger errors than the other
four. We show the error contours from these four inter-
mediate smoothing scales in Fig. 9. The 1.0 and 1.8 arc min
scales yield tighter contours than the other two larger
scales. A combination of these two best scales (also shown
in the figure) further tighten the errors, and we therefore use
it in our final analysis. Clearly, the above is only a limited
investigation of the benefit of using multiple smoothing
scales. We expect that a more rigorous study in the future,
identifying optimal filter shapes, sizes, and combinations
can help further tighten constraints from peak counts.

C. Cosmological constraints

From the interpolated planes for the power spectrum
(Fig. 4) and peak counts (Fig. 7), we see some similarity
between the two statistics. They both suffer a similarΩm-σ8
degeneracy, and both have a much weaker dependence on
w than on Ωm or σ8. However, peak counts are less
impacted than the power spectrum by field selections
(due to PSF residuals) and masks, two nontrivial system-
atics in CFHTLenS observations.
Figure 11 shows 68% and 95% confidence contours for

the power spectrum, peak counts (1.0þ 1.8 arc min arc
min), and the combination of both statistics. The full
covariance is taken into account when combining the two
statistics. Table II lists the marginalized constraints on

Σ8 ¼ σ8ðΩm=0.27Þα, which is roughly orthogonal to the
Ωm-σ8 degeneracy direction. We find the best fit α ¼ 0.63
and Σ8 ¼ 0.85þ0.03−0.03 (with a fixed α). For comparison, using
the 2PCF, Ref. [8] found this constraint (with best fit
α ¼ 0.59) to be 0.79þ0.07−0.06, comparable to within ≈1σ with
our result (although their values have been marginalized over
additional cosmological parameters). Our probability distri-
bution for Σ8 (Fig. 10) also shows a somewhat asymmetric
shape, with a long tail to low values, when using the power
spectrum, which creates our asymmetric error bars.

FIG. 11 (color online). Sixty-eight percent (dark color) and
95% (light color) error contours from the power spectrum (dashed
curves), peak counts (thin solid curves), and their combination
(thick solid curves). The shaded region in the bottom panel is the
68% error contour for the combination. The power spectrum is
computed using the 75% of the fields that pass the PSF residual
test, and restricted to l < 7; 000. Peak counts are computed using
all fields, and include measurements of peaks on two smoothing
scales (1.0 and 1.8 arc min).
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The relative area covered by each contour is listed in
Table III, normalized by the size of the 68% contour from
the power spectrum. In both 2D parameter planes shown,
the constraints from the peak counts are stronger than
from the power spectrum, and largely determine the size
and shape of the combined contour. The size of this
combined contour is a factor of ≈1.5–2 smaller than from
the power spectrum alone. One may worry that this result is
unfair, as our power spectrum analysis uses only 75% of all
fields and is restricted to l < 7; 000, while peak counts use
all fields and include information from smoothing scales as
small as 1 arc min. We find that using all fields can reduce
the power spectrum error contour by 83%, while using all
available l can reduce the contour by 90%. When both of
these restrictions on the power spectrum are lifted, the area
enclosed by the 68% confidence level contour from the
power spectrum is 62% smaller than that listed in Table III,
making the power-spectrum-alone and the peaks-alone
constraints comparable. However, as argued above, the
power spectrum result in this case may be significantly
biased by systematic errors and baryonic effects (and, as
shown by the blue curve in Fig. 6, the concordance ΛCDM
model is indeed outside the 68% C.L. in this case).
Reference [62] examined the covariance between cluster

counts and weak lensing power spectrum and found that
including the cross-covariance leads to degradation of
cosmological constraints by few percent (also see
Ref. [63]). We test the importance of the covariance
between peak counts and the power spectrum. Figure 12
shows the total covariance of the power spectrum and peak
counts (1.0þ 1.8 arc min smoothing scales). Figure 13
shows the error contours when such cross-covariance is

included in the analysis (as done throughout our paper;
black solid curves) or ignored (dashed red curves). In the
latter case, i.e. when the two statistics are assumed to be
independent, the area of the 68% C.L. contour is reduced
by ≈16%, a somewhat larger change than was found for the
combination of cluster counts and power spectrum
(although for different parameters; see Fig. 12 in Ref. [62]).
Finally, we show in Fig. 14 the best-fit and two other

models, randomly selected from within the 68% error
banana, along with the CFHTLenS power spectrum and
peaks. The reduced χ2 ≈ 2 for the best-fit model to the

TABLE II. Marginalized 68% constraints for Σ8 ¼
σ8ðΩm=0.27Þα, using the power spectrum, peak counts, and their
combination.

Σ8 α

Power spectrum 0.87þ0.05−0.06 0.64

Peak counts 0.84þ0.03−0.04 0.60

Combined 0.85þ0.03−0.03 0.63

TABLE III. The areas of the two-dimensional error contours
computed using the power spectrum, peak counts, and their
combination, in two parameter planes (marginalized over the
third parameter). The areas are normalized to the 68% power
spectrum contour in each case.

w-Ωm Ωm-σ8

68% 95% 68% 95%

Power spectrum 1.00 1.74 1.00 1.99
Peak counts 0.41 1.01 0.59 1.51
Combined 0.42 1.05 0.61 1.46

FIG. 12 (color online). Correlation coefficients of the total
covariance. Bins 1–40 are for the power spectrum, bins 41–65 are
for peak counts with 1.0 arc min smoothing scale, and bins 66–90
are for peak counts with 1.8 arc min smoothing scale.

FIG. 13 (color online). Sixty-eight percent (dark color) and 95%
(light color) power spectrumþ peak counts error contours
with (thin curves) and without (thick curves) the cross-covariance.
The power spectrum is computed using the 75% of the fields that
pass the PSF residual test, and restricted to l < 7; 000. Peak
counts are computed using all fields, and include measurements of
peaks on two smoothing scales (1.0 and 1.8 arc min).
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power spectrum is large, indicating the model does not fully
describe the data, and the discrimination between the best-
fit model and other models located along the ridge of the
degeneracy “banana” is weak. Overall, these results indi-
cate that there may still be significant systematic errors,
even after the problematic fields have been excluded. The
reduced χ2 ≈ 0.8 for the fits to the peak counts is signifi-
cantly lower.

V. CONCLUSIONS

In this paper, we have run 91 cosmological models, built
a CFHTLenS-specific weak lensing emulator for the power
spectrum and peak counts, and obtained constraints on Ωm,
w, and σ8. Peak counts as recently developed non-Gaussian

statistics have previously been proven in theory to have
comparable constraining power as the power spectrum.
This work is the first attempt to test this hypothesis
rigorously on real data.
We have found that combining peak counts with

the power spectrum can reduce the area of the 2D error
contour by a factor of ≈2 compared to using the
power spectrum alone. Combining both statistics, we
obtained σ8ðΩm=0.27Þ0.63 ¼ 0.85þ0.03−0.03 .
To conclude, peak counts can serve as a complementary

probe to the power spectrum in two important ways:
(1) As a calibration tool for systematics. Peaks with

small (∼arc min) smoothing scales suffer less (or are
impacted differently by) systematics than the power
spectrum. For CFHTLenS, we have found that the
PSF residuals have little impact on peak counts, in
contrast with the bias seen with the 2PCF in
Ref. [46]. We found that masking also has little
impact on the peak counts, whereas it changes the
power spectrum at small scales (l > 7; 000). The
change in the power spectrum does not impact
cosmological constraints, as long as the mask is
taken into consideration in the model (e.g. Fig. 6).
Furthermore, in our previous work on theoretical
systematics due to the magnification bias [53], we
also discovered that, while both the power spectrum
and peak counts are affected, the resulting directions
of the biases in the cosmology parameter space are
different. Combining the two probes can mitigate the
impact from these systematics.

(2) By providing tighter constraints on cosmological
parameters. The peak counts by themselves have a
similar or even better constraining power than the
power spectrum. This can be attributed to the fact
that the peaks capture information from non-
Gaussian features of the convergence maps. We
have shown in Fig. 11 and Table III that combining
power spectrum and peak counts improves the
constraints by a factor of ≈2, compared to using
the power spectrum alone.

The potential of the peak counts has not yet been fully
realized. Our work can be improved further by the following:
(1) Examining the effects of additional smoothing

scales, binning of peaks, and the robustness of the
results under masking. We have examined only six
smoothing scales, and demonstrated that using
multiple smoothing scales can reduce the size of
the area of the error contour by a moderate amount.
We also showed that masking can change the power
spectrum. More detailed study on these effects can
be beneficial.

(2) Including the cosmological dependence of the
covariance matrix, especially for peak counts. We
used a constant covariance matrix in this work,
assuming the cosmological dependence is weak, as

FIG. 14 (color online). Fits to the CFHTLenS (thick solid
curves) power spectrum (upper panel) and peak counts (lower
panel). The peak counts on 1.0 and 1.8 arc min scales are
concatenated on the x axis. The best fits (thin solid curves) and
two other models (dash-dotted and dashed curves) randomly
selected from within the 68% error bananas are shown for
reference.

COSMOLOGY CONSTRAINTS FROM THE WEAK LENSING … PHYSICAL REVIEW D 91, 063507 (2015)

063507-13



we expected the covariance to be dominated by the
shape noise. However, as the survey size increases,
cosmological sensitivity should be taken into con-
sideration when constructing the covariance matrix.

(3) Increasing the number of independent simulations
run for each cosmological model. In our current
work, due to computational limitations, we have
only used one independent N-body simulation per
model. Although we randomly rotated and shifted
the lensing planes to create multiple pseudoinde-
pendent realizations, some outliers (such as massive
halos) will inevitably be repeated in several maps.
However, our previous work has shown that the bulk
of the cosmological information from peak counts
resides in low-amplitude peaks, which do not arise
from single massive halos; these peaks should be
less susceptible to repeated structures between
pseudorandom realizations. Nevertheless, to test
possible errors due to not having sufficiently inde-
pendent maps, we ran a separate set of 50 simu-
lations for one cosmology. We found that the
variance in the (noiseless) power spectrum and peak
counts is increased by approximately 10%, when
compared to that using only one simulation. How-
ever, when noise is added, the difference is no longer
systematic, with a 5% fluctuation and is consistent
with 0. We also found a larger-than-Gaussian vari-
ance even at our lowest l ¼ 400, by approximately
10%. This increase in the variance due to non-
Gaussianities is somewhat lower than that found

previously [64]. Further details on tests of the
covariance matrices will be presented in Petri et al.
[33].

Future WL surveys, such as the Dark Energy Survey and
the Large Synoptic Survey Telescope, cover much larger
areas (5,000 and 20; 000 deg2, respectively), and hence are
more sensitive to instrumental and theoretical systematics.
These will need to be addressed carefully in order to realize
the full potential of these larger surveys.
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