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All species of (nonconformally coupled) particles are produced during inflation so long as their massM
is not too much larger thanH, the expansion rate during inflation. It has been shown that if a particle species
that is normally massive (M ≫ H) couples to the inflaton field in such a way that its mass vanishes, or at
least becomes small (M < H), for a particular value of the inflaton field, then not only are such particles
produced, but an irruption of that particle species can occur during inflation. In this paper we analyze
creation of a massive particle species during inflation in a variety of settings, paying particular attention to
models which realize such an irruptive production mechanism.
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I. INTRODUCTION

The epoch of inflation [1–3] is the highest-energy
physical process to which we are ever likely to have
observational or experimental access. Recent observational
evidence for degree-scale B-mode polarization of the
cosmic microwave background radiation [4]1 suggests
that inflation occurred at or near the grand unified theory
(GUT) scale with an expansion rate during inflation of
H ∼ 1014 GeV, and that the inflaton field traversed a field
space distance much larger than the Planck scale during the
inflationary epoch (e.g., Refs. [7,8]).
For physicists, this situation is fortuitous, because very

high-energy scale inflation provides us with a significant
opportunity to uncover newphysical laws. This is because as
the inflaton traverses a great (super-Planckian) distance in
field space, it is possible to uncover new ultraviolet physical
effects and probe the couplings of the inflaton to other
particles. The inflaton must be coupled to other particle
species since, after inflation ends, the inflaton energy density
must be converted to entropy by reheating or preheating.
Presumably, this is related to the coupling of the inflaton to
“light” particle species.2 However, the inflatonmight also be

coupled to additional “heavy” particle species. If the inflaton
couples to a particle species of mass that is always much
larger than the inflaton mass or the expansion rate of the
Universe, the heavy field can be integrated out to form an
effective field theory describing the inflaton field and its
coupling to light degrees of freedom. In this case, the heavy
field will not be dynamically important during inflation.
In this paperwe investigate the possibility that the inflaton

couples to another particle species in such a way that the
mass of the additional species depends on the value of the
inflaton field. Thus, as the inflaton field evolves, the mass of
the other particle species will change with the value of the
inflaton field. We will consider several toy models in which
the mass of the additional field vanishes (or at least becomes
“light”) for a particular value of the inflaton field. For that
particular value of the inflaton field, and only for that value,
the additional field becomes dynamically important. One
consequence of the fact that for a particular value of the
inflaton field the new particle is dynamically important, is
that while the field is light it can be produced via the usual
mechanism of particle creation during inflation. This may
result in a sudden growth, or irruption, in the population of
the new particle species, which we dub the “irrupton.”
String theory provides a calculable framework for

articulating the general statement that the inflaton might
be coupled to heavy fields, so let us describe some character-
istic examples from the literature of string cosmology. One
of the most successful early models for inflation within
string theory was brane inflation [9], wherein the separation
of two higher-dimensional (mem)branes played the role of
the inflaton. After extensive study of this framework, it was
realized that the string-theoretic context of brane inflation
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foregrounds in connection with these results.
2Unless otherwise specified, “light” and “heavy” particle

species refers to the mass of a species compared to the mass
of the inflaton, which is approximately the expansion rate of the
Universe during inflation in the inflation models we study.
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excluded the possibility of super-Planckian field excursions
and hence observable gravitational waves [10]. Intuitively,
this is because the higher-dimensional Calabi-Yau geom-
etries in which brane inflation was thought to operate cannot
be enlarged well beyond the string (and, hence, four-
dimensional Planck) scales without their constituting ele-
ments generating an overwhelming backreaction. Since this
phenomenon was general (if not universal), the “model
space” for inflation in string theory was generally thought to
involve small volumes and field excursions; see, e.g.,
Burgess et al. [11] for a review.
Nonetheless, the breadth of the string landscape (and

theorists’ capacity for imagination) is also large (super-
Planckian, in fact). A significant breakthrough in this
direction was the model of axion monodromy [12], a
proof-of-principle calculation that geometries could exist
in string theory that permitted super-Planckian field excur-
sions. Although the well-studied models of monodromy are
in some conflict with recent gravitational wave discoveries
(because their gravitational wave production is too small),
they offer hope that string-theoretic constructions can agree
with the cosmological data we have. Moreover, it suggests
that the higher-dimensional geometry necessary to embed
high-energy scale inflation within string theory will have to
be something very different from the simple geometries most
often studied in the past.
Summing up, we are in a remarkable situation: if string

theory is the correct description of quantum gravity, then
the observation of gravitational waves tells us that the
inflationary epoch can in principle affect, and hence
potentially generate, many ultra-UV phenomena previously
thought of chiefly as technological arcana of higher-
dimensional geometries. Put more simply, if inflation is
near the GUT scale and the inflaton field traverses super-
Planckian distances, it can shake and rattle fields (e.g.,
moduli that describe and shape that geometry) as it rolls.
In this context, then, it becomes of intense interest to

understand the full range of observable phenomena that
may result from such an inflationary epoch. A relatively
less well studied possibility in this research space is the
creation of new particles during the inflationary period.
Within the picture we have outlined, following the seminal
work of Kofman et al. [13], this can be thought of as the
physical manifestation of enhanced symmetry points within
the geometrical space of fields that characterize the extra
dimensions (see also Refs. [14] and [15]). In such a setup,
the vanishing of effective masses corresponds to a momen-
tary enhancement of symmetry, which we expect on
general grounds to be a dynamical attractor. By the same
token, it is worth going beyond the relatively simple
effective theory described in Kofman et al. [13], where a
dynamically varying mass was captured by a simple gϕ2χ2

potential (where ϕ is the inflaton and χ the representative
extra modular field), to richer dynamical systems.
To that end, we extend the study of particle creation

beyond the canonical gϕ2χ2 model, which has been a

familiar friend since its introduction in the context of
preheating after inflation [16]. In particular, although we
continue to work in the context of a simple two-scalar-field
model, we will study in detail two models that encapsulate
the phenomenon of a field that is heavy (and thus dynami-
cally unimportant) before, during, and after inflation except
at a particular value of the inflaton field during inflation.
The two models we investigate in detail have different

starting points for coupling a new field to the inflaton. In our
first model, the new field is coupled to the inflaton field
through a potential termwith a simpleYukawa-type coupling
of the new field to the inflaton. We will refer to this as the
“potentially coupled” case. For the second model we study
the coupling of the new field to the inflaton traces to the
kinetic interactions of the inflaton field and the new field.We
will refer to this as the “kinetically coupled” case. We do not
suggest that the two models we investigate span the space of
all possibilities for massive particle species irruption during
inflation; indeed, there aremany other possibilities onemight
consider. We concentrate on the two models we have chosen
in order to understand the issues that we anticipate will be
generic to any model of massive species irruption.
While previous studies have considered potentially

coupled models [17–21], this work will also focus on
kinetic interactions between the two fields. Such inter-
actions are characteristic of the supergravity limit of string
theory (see, e.g., Groot Nibbelink and van Tent [22] and
references therein). Complete formal perturbative analysis
of such systems has been done [23–25], but the resulting
system is complex and can describe a surprising range of
nontrivial phenomena, including reduced speed-of-sound
effective dynamics [26], steplike features in the effective
potential for the inflaton [27], and temporarily nonadiabatic
evolution of the inflaton itself [28–30].
In the original model for super-heavy dark matter

production, the simple fact of the highly energetic (yet
still adiabatic) inflationary background was exploited to
generate a tiny number density of ultra-heavy particles that
could play the role of dark matter. The mechanism we will
describe is a generalization of that approach, where the
existence of nontrivial multifield dynamics will allow the
prospective dark matter particle to become effectively light
(or even temporarily tachyonic) during inflation, thus
allowing it to be produced. Once created, the particle’s
mass then varies strongly with the value of the inflaton,
turning the former into an end-of-inflation very massive
particle, with a mass greater than 1013 GeV.
In the next section we discuss the criteria for species

irruption. We then review a model for creation of massive
particles during creation under the condition that the particle
mass is unaffected by the value of the inflaton field. While
there is no species irruption in this model it serves as a
useful baseline in understanding irruption in models where
the species mass does depend on the inflaton field. We then
discuss the adiabatic conditions that must be violated for
particle creation to occur. Also in Sec. II we describe the
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potentially coupled and kinetically coupled models. Finally,
in this section we discuss the expressions for the number
density of the particles in terms of the Bogoliubov coef-
ficient and the issue of initial conditions.
In Sec. III we review the relationship between the

Bogoliubov coefficient and the present number density,
assuming the produced particle is stable. Section IV dis-
cusses the numerical methods we employ as well as the
limitations of our numerical study. In Sec. V we present the
numerical results in the three models we consider. We
comment on possible implications of irruption of massive
particle species and conclude in Sec. VI. Appendixes A and
B contain longer technical derivations of some results which
we will have occasion to refer to multiple times in the text.

II. IRRUPTION OF PARTICLE SPECIES
DURING INFLATION

In this section we discuss the creation of particles during
inflation. When we refer to a “massive” particle, we mean a
particle species with a mass at the end of inflation larger
than the expansion rate of the Universe during inflation.
The idea of creation of particles during any phase of the

expansion of the Universe traces back to the (largely
forgotten) 1939 paper of Schrödinger, “The proper vibra-
tions of the expanding universe” [31]. Here, we briefly
summarize what we have learned in the 75 years since that
paper about cosmological particle creation:
(1) For a particle species to be created during the

expansion of the Universe, it must participate in the
breaking of conformal invariance. This is usually
accomplished by a mass for the field and/or a non-
conformal coupling of a scalar field to theRicci scalar.

(2) Particle (in this case, the inflaton) creation during
inflation is the origin of the temperature and density
perturbations seen as temperature anisotropies in the
background radiation.

(3) Particle (in this case, the graviton) creation during
inflation is the origin of the gravitational waves
(tensor modes) deduced from the background radi-
ation polarization pattern.

(4) In the inflationary phase the expansion rate of the
Universe H is nearly constant, and with the
assumption of adiabatic initial conditions for each
quantum mode, creation of particles of massm larger
than H is suppressed by a factor of expð−m=HÞ.

(5) Gravitationally created particles of mass comparable
to (or slightly larger than) H, if stable, would be a
candidate for dark matter [32–34].

(6) Particles of mass larger than H can only be created
during inflation if one is willing to accept some sort
of trans-Planckian particle creation [35].

The above considerations assume that the mass, the
couplings, and the kinetic term of the field are constant. The
situation changes if the particle couples to the inflaton,
which evolves during inflation.

In the first proposal studying creation of massive
particles during inflation, Chung et al. [17] assumed the
existence of a fermion field ψ that has a Yukawa coupling
to the inflaton ϕ of the form LY ¼ λϕψ̄ψ and a Lagrangian
mass term of the form LM ¼ −M0ψ̄ψ . For nonzero values
of ϕ, the mass of the ψ would be MðϕÞ ¼ M0 − λϕ, where
M0 is the mass at ϕ ¼ 0. This leads to a critical value of the
inflaton field, ϕ� ¼ M0=λ, where the mass vanishes. Even
ifM0 ≫ H, there will be a resonant production of ψ during
inflation when the inflaton field is around ϕ�. Note that in
large-field models of inflation ϕ is of orderMPl, so one can
have resonant production even if M0 ≫ H. Several papers
extended this work to the analogous situation for a scalar
field χ coupled to the inflaton via a Lagrangian effective
mass term of the form Leff

M ¼ − 1
2
g2ðϕ − ϕ�Þ2χ2 [18–20].

Again, there is a critical value of the inflaton field ϕ ¼ ϕ�
where the mass vanishes and particle creation can occur.

A. A simple nonirruptive model

Before turning to the complicated cases of ϕ-dependent
mass terms, let us consider the simple case of production of
particles of fixed massM in the expanding universe; such a
model has been used in, e.g., the context of inflationary
production of superheavy dark matter (e.g., Refs. [33,34]).
Start with a particle of mass M with action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μχ∂νχ −

1

2
M2χ2 −

1

2
ξRχ2

�
: ð1Þ

Here ξ is a constant in the coupling term of the scalar
field to the Ricci scalar R. In this paper we will assume
a flat Friedmann-Robertson-Walker (FRW) spacetime
with mostly minus signature: ds2 ¼ dt2 − a2ðtÞdx2 ¼
a2ðηÞðdη2 − dx2Þ, where η is conformal time. In the flat
FRW backgroundR ¼ 6a00=a3, where 0 denotes d=dη (dot
will denote d=dt). The equation of motion for χ is

χ̈ þ 3H _χ þ ηij∂i∂jχ

a2ðtÞ þM2χ þ ξRχ ¼ 0: ð2Þ

Now we mode expand χ ¼ P
kâkuk þ â†ku

�
k and make the

plane wave ansatz

ukðx; tÞ ¼
eik·x

ð2πÞ3=2aðtÞ χkðtÞ; ð3Þ

where k is the comoving momentum.3 This gives the
mode equation χk (here and below k≡ jkj, not the four-
momentum)

3The choice of normalization is such that χk · ðχ�kÞ0 − χk
0 · χ�k ¼

i gives modes normalized with respect to the usual inner

product ðuk;uk0 Þ ¼−i
R
Σ dΣ

α½−gΣ�1=2uk∂
↔

αu�k0 ¼ δð3Þðk− k0Þ, etc.
We take the usual creation/annihilation algebra ½âk; â†k0 � ¼
δð3Þðk − k0Þ, etc. (see, e.g., pp. 44–45 of Ref. [36]).
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χ̈k þH _χk þ
�
k2

a2
−
a00

a3
ð1 − 6ξÞ þM2

�
χk ¼ 0; ð4Þ

where we used a−1a00 ¼ aäþ _a2. Passing to conformal
time using a−2χ00k ¼ χ̈k þH _χk, the mode equation takes the
form

χ00k þ ω2
kðηÞχk ¼ 0; ð5Þ

as is indeed expected for a sensible mode expansion. In
Eq. (5), ω2

kðηÞ is given by

ω2
kðηÞ ¼ k2 −

a00

a
ð1 − 6ξÞ þ a2M2

¼ a2H2

��
k
aH

�
2

þH−2½M2 − ð1 − 6ξÞa−3a00�
�
:

ð6Þ

Note that if a−3a00ð1 − 6ξÞ ¼ M2 is a nonzero constant, the
total coupling of the field is conformal, although the mass
term and the Ricci scalar term individually break conformal
symmetry. Since we will eventually encounter sufficient
complexity, we will assume henceforth that ξ ¼ 0,
and make the choice that χ is a “minimally” coupled scalar
field.
In this simple model we can see the underlying cause of

particle creation. For a static case, a is constant (so a00

vanishes) and M is constant as well, so ω2
k is constant in

conformal time. If we choose at some initial time a pure
outgoing wave (positive frequency mode),

χkðηÞ ¼
1ffiffiffiffiffiffiffiffi
2ωk

p e−iωkη; ð7Þ

then it will remain a solution without admixture onto
incoming waves (negative frequency modes). If ωkðηÞ is
not constant (in our simple case due to the a00=a term and
the mass term), the previous statement need not be true.
One might try an adiabatic approximate solution of the
form

χkðηÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðηÞ
p e−i

R
ωkðηÞdη: ð8Þ

This (zeroth-order) adiabatic solution (see, e.g., Ref. [36]
for a discussion of the adiabatic approximation in this
context) is constructed to satisfy the equation of motion
(EOM) Eq. (5) up to terms ofOðjω0

k=ω
2
kj2; jω00

k=ω
3
kjÞ, and so

the conditions for the adiabatic solution to be a good
approximation are that

A≡
����ω0

k

ω2
k

����2 ≪ 1 and B≡
����ω00

k

ω3
k

���� ≪ 1: ð9Þ

If either condition fails, the adiabatic solution is not a good
approximation. When the solution is nonadiabatic the
incoming and outgoing modes (Schrödinger’s “proper
vibrations”) are mixed: particles are created.4 Notice that
in the inflationary universe a00 is positive. This means that it
is possible to have a “tachyonic” mass for χ: i.e., ω2

k < 0.
Using the simple scalar-field model above, let us see

where the evolution is nonadiabatic. The problem is very
simple if we consider the evolution of the scalar field in a de
Sitter background. In de Sitter space, H is constant and
conformal time and the scale factor are related by
a ¼ −1=ηH where η is in the range −∞ ≤ η ≤ 0. With
the definitions x≡ kη (0 < x2 < ∞) and γ ¼ M2=H2 − 2,
where −2 < γ < ∞,

����ω0
k

ω2
k

����2 ¼
���� γ2

ðx2 þ γÞ3
����; ð10Þ

����ω00
k

ω3
k

���� ¼
���� γ2

ðx2 þ γÞ3 þ
3γ

ðx2 þ γÞ2
����: ð11Þ

Note that γ ¼ 0 is a special point where there would not be
particle creation. This happens if M2=H2 ¼ 2. As men-
tioned above, this is where ða00=a3Þð1 − 6ξÞ ¼ M2 (for
ξ ¼ 0, as we consider here). The condition for nonadiabatic
particle creation, violation of Eq. (9), is satisfied when
x2 ≃ −γ, or k2η2 ¼ k2=a2H2 ≃ −γ ¼ 2 −M2=H2. For
M2=H2 ≪ 2 the evolution is nonadiabatic at k=aH ∼ 1,
i.e., when a momentum mode crosses the Hubble radius.
But for M2=H2 ≫ 1, the evolution is always very nearly
adiabatic and particle creation is suppressed. The two
lessons we have learned from this model are
(1) for M ≫ H, one should not expect significant

production of particles
(2) forM ≪ H, particle creation is continuous, since for

any value of conformal time (or, equivalently, the
scale factor) there is a comoving momentum mode k
that satisfies k2η2 ¼ 2.

This simple model assumes that the mass of the χ field
remains constant. However, if the mass varied during
inflation, one might imagine that today the mass of the
species is much larger thanH during inflation, but for some
period during inflation the mass vanished (or at least
became much less than the value of H) due to the species
coupling to the inflaton. If this occurs, there can be an
irruption of the particle species, but only while the mass is
less than OðHÞ. This is exactly what occurs in the models
discussed in the next two subsections.
We remark that for the remainder of this paper, we

employ a simple “chaotic” inflation model rather than this

4Here we are glossing over the fact that one can only really
speak of particles if the evolution is adiabatic.
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fixed de Sitter background. Production of massive states
during inflation has also been considered for hybrid
inflation models as well as natural inflation models [37]
and the results seem to imply that the phenomenon of
massive particle production is generic.

B. Massive particle species irruption
from a potential term

For the first irruption model consider the following
simple two-field model:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ − VðϕÞ

þ 1

2
gμν∂μχ∂νχ −Uðχ;ϕÞ

�
: ð12Þ

The ϕ field will serve as the inflaton. As the purpose of this
paper is to study the sudden increase in the population of
the particle species (the irruption of the particle species) χ,
rather than refer to χ as “the second scalar field,” we will
refer to it as “the irrupton.”
We will assume the simplest inflaton potential and a

simple inflaton-irrupton interaction term that will serve our
purpose (we refer to this as the “potentially coupled”
irrupton):

VðϕÞ ¼ 1

2
m2ϕ2; ð13Þ

Uðχ;ϕÞ ¼ 1

2
g2ðϕ − ϕ�Þ2χ2: ð14Þ

During inflation we will assume ϕ > 0, _ϕ < 0, and
ϕ� > 0. The recent BICEP2 determination of tensor modes
in the background [4] suggests that the inflaton mass and
the expansion rate during inflation are of order 1014 GeV,
and that inflaton field excursions during inflation are super-
Planckian (although, see Refs. [5,6] for critical analysis of
galactic dust foregrounds in connection with this result).
The effective mass of the irrupton is MðϕÞ ¼ gjϕ − ϕ�j;
today, we have ϕ ¼ 0 andMð0Þ ¼ gϕ�. We wish to choose
ϕ� so that Uðχ;ϕÞ vanishes during inflation: since the
inflaton field excursion in this model is super-Planckian, ϕ�
may be chosen to be in excess of MPl, and the mass of the
irrupton today may be of the scale of the Planck mass. We
will discuss possible implications of this observation in the
final section of the paper.
The equation of motion for the (spatially homogeneous)

inflaton field is

ϕ̈þ 3H _ϕþm2ϕ ¼ −g2ðϕ − ϕ�Þχ2 ≈ 0; ð15Þ
where the approximate equality reflects the fact that we will
ignore the backreaction on the classical inflaton field (and,

hence, on the metric) induced by the irrupton.5 For the
chosen potential, inflation ends at ϕ≃ 0.2MPl, and
50 e-folds before the end of inflation corresponds
to ϕ≃ 2.8MPl.
The equation of motion for the irrupton is

χ̈ þ 3H _χ þ ηij∂i∂jχ

a2ðtÞ þ g2ðϕ − ϕ�Þ2χ ¼ 0: ð16Þ

Employing the same mode expansion as before and again
making the plane wave ansatz as in Eq. (3), the mode
equation for χk is

χ̈k þH _χk þ
�
k2

a2
−
a00

a3
þ g2ðϕ − ϕ�Þ2

�
χk ¼ 0: ð17Þ

Passing to conformal time the mode equation again takes
the form

χk
00 þ ω2

kðηÞχk ¼ 0; ð18Þ
but now ω2

kðηÞ is given by

ω2
kðηÞ ¼ k2 −

a00

a
þ a2M2

eff

¼ a2H2

��
k
aH

�
2

þH−2ðM2
eff − a−3a00Þ

�
; ð19Þ

M2
eff ¼ g2ðϕ − ϕ�Þ2 ≡M2

gðν − ν�Þ2; ð20Þ

where Mg ≡ gMPl, and we have defined the variable
ν≡ ϕ=MPl, where MPl is the Planck mass, for future
convenience.
Just as before, species irrupton will occur when one of

the conditions in Eq. (9) is violated. For sure, ω0
k and ω

00
k are

more complicated in this model than the model of Sec. II A,
but if we make use of what we learned in Sec. II A
we expect that irruption will occur when ω2

k passes through
zero. Since ðk=aHÞ2 is positive, for ω2

k to pass through
zero we must have H−2ðM2

eff − a−3a00Þ < 0. A graph of
H−2ðM2

eff − a−3a00Þ as a function of cosmic time (not
conformal time) is given in Fig. 1. Regions in the evolution
where the above quantity is negative are shown by the
dashed part of the curve. Irruption will occur in and around
the dashed regions.
A basic understanding of the results may be obtained if

we make a couple of simple approximations. First, recall
that

5One can, and we will, justify this a posteriori for the present
purposes by showing that the energy density extracted by irrupton
production is a negligible fraction of the inflaton energy density.
See, however, Refs. [17,21] for a discussion of observational
effects in the cosmic microwave background which can arise in
this model, or its fermionic cognate, when the backreaction is not
ignored.
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a00

a3
¼ 4πG

3
ðρ − 3pÞ ¼ 8πG

3

�
2ρ −

3

2
_ϕ2

�
; ð21Þ

where the first equality holds for any FRW model, and the
second equality holds if the energy density is dominated by
the inflaton (regardless of inflaton potential). One could
numerically solve the inflaton field equation for _ϕ, or use
the slow-roll approximation for _ϕ; however, to get a rough
idea of what is expected we can make an even cruder (but
still reasonable) approximation and ignore the _ϕ term in
Eq. (21) altogether with the result a−3a00 ∼ 2H2.
Since for this inflaton model ϕ ∼ 105H during inflation,

unless g is quite small, Meff will be much larger than H
except in a very narrow range near ϕ ¼ ϕ�. So, for irruption
we may write M2

eff ¼ g2δϕ2 where δϕ ¼ ϕ − ϕ�.
Using M2

eff ¼ g2δϕ2 and a−3a00 ¼ 2H2, the square
bracket in Eq. (19) becomes ðk=aHÞ2 − 2þ g2δϕ2=H2.
We expect irruption when ðk=aHÞ2 ∼ 2 − g2δϕ2=
H2 ∼ 2 − g2δϕ2=m2, where we have made the further
approximation that H ∼m, the inflaton mass.

We can draw a couple of expected results from these
crude approximations:
(1) The condition for irruption, ω2

k ∼ 0, obtains for only
for a rather narrow range of jδϕj≲m=g. Since
m ∼ 1013 GeV, MPl ∼ 1019 GeV, and ϕ ∼MPl,
unless g≲ 10−6 irruption occurs for δϕ ≪ ϕ.

(2) The duration of irruption will increase as g
decreases, roughly as jδϕj ∼m=g.

(3) Since g2δϕ2=H2 is positive definite, the largest
k=aH can be during irruption is of order unity.

(4) The spectrum of produced particles is peaked;
potentially strongly peaked at large g. This is
different than the model of the previous section.

(5) Particles with present mass much larger than H can
be created during inflation if the particle species
couples to the inflaton in such a way that its effective
mass vanishes during inflation.

(6) In this model, if g is not much smaller than about 0.1
or so, the present mass of the irrupton can be larger
than the Planck mass. We will speculate on the
implications and complications of this fact in the
concluding section.

FIG. 1 (color online). A graph of H−2ðM2
eff − a−3a00Þ as a function of time in two models for four choices of parameters. The models

are for inflaton-irrupton coupling through either the potential term (discussed in Sec. II B) or through the kinetic term (discussed in
Sec. II C). Where the lines are dashed, H−2ðM2

eff − a−3a00Þ < 0. The dashed vertical lines denoted “tEI” mark the end of the inflationary
phase. Time is in units of m−1, where m is the inflaton mass, and t ¼ 0 corresponds to the time when ϕ ¼ 3MPl. The inflaton field has
the value ϕ ¼ ϕ� ¼ 0.8MPl at t ¼ 13.6, indicated by the dashed vertical lines marked “t�.” Model parameters are chosen such that in
each individual plot the irrupton masses are the same at ϕ≡ 0 and a00 ¼ 0 (i.e., at late time) for the two models.
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(7) We have assumed the irrupton is stable. Again, we
will discuss this in the concluding section.

In the next subsection we will consider an even more
complicated irruption model. It will prove very useful to
understand the results of that model on the basis of the
results of these first two simpler models.

C. Massive particle species irruption from a
noncanonical kinetic term

Now consider the following two-field model where the
inflaton is coupled to the irrupton through the irrupton
kinetic term (we refer to this as the “kinetically coupled”
irrupton),

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ − VðϕÞ

þ 1

2
e2fðϕÞgμν∂μχ∂νχ −Uðχ;ϕÞ

�
; ð22Þ

where ϕ is the inflaton and χ is the irrupton. Here, U and V
are potentials defined such that the U contains only
potential terms depending on χ and χ − ϕ interaction terms,
and V contains all terms depending on ϕ only.
We again take ϕ to be a spatially homogeneous classical

field, governed by the EOM

ϕ̈þ 3H _ϕþ V;ϕ ¼ f;ϕe2fðϕÞð∂χÞ2 −Uðϕ; χÞ;ϕ ≈ 0; ð23Þ

where the approximate equality above reflects the fact that
we will again ignore the backreaction on the classical
inflaton field (and, hence, the metric) induced by the χ field.
In terms of the dimensionless field ν≡ ϕ=MPl, we have

ν̈þ 3H _νþm2ν ¼ 0; ð24Þ

where we have specialized to VðϕÞ ¼ 1
2
m2ϕ2. Ignoring the

backreaction on the metric is equivalent to ignoring the
contribution of the χ field to the total energy density, so
from the Friedmann equation it follows that

HðtÞ≡ _aðtÞ
aðtÞ ¼

ffiffiffiffiffiffi
4π

3

r
ð_ν2 þm2ν2Þ1=2: ð25Þ

For our numerical work in this paper we will solve the
classical field equation for ν, assuming that νðt0 ¼ 0Þ ¼ 3
and that the inflaton field undergoes initial slow-roll
_νðt0 ¼ 0Þ ¼ −1=

ffiffiffiffiffiffiffiffi
12π

p
, yielding roughly 57 e-foldings

of inflation. We also fix the normalization of the scale
parameter to be aðtEIÞ ¼ 1 where tEI ≈ 17.5 is the end of
inflation (defined to be the moment when äðtEIÞ ¼ 0, or
w ¼ −1=3) which gives HðtEIÞ ≈ 0.50.6

The irrupton field χ is governed by the field equation

χ̈ þ 3H _χ þ ηij∂i∂jχ

a2ðtÞ þ 2f;ϕ _ϕ _χþe−2fðϕÞU;χ ¼ 0: ð26Þ

Specializing to Uðχ;ϕÞ≡ 1
2
· UðϕÞ · χ2, passing to the ν

variable and making a field redefinition μ ¼ efðνÞχ to
eliminate the mixed derivative term,7 this becomes

μ̈þ 3H _μþ
"

ηij∂i∂j
a2 − f;νðν̈þ 3H _νÞ

−_ν2ðf;νν þ f2;νÞ þ e−2fðνÞUðνÞ

#
μ ¼ 0: ð27Þ

We again mode expand μ ¼ P
kâkuk þ â†ku

�
k and make

the plane wave ansatz

ukðx; tÞ ¼
eik·x

ð2πÞ3=2aðtÞ μkðtÞ; ð28Þ

where k is the comoving momentum. This gives the mode
equation for μk,

μ̈k þH _μk þ
"

k2

a2 −
a00
a3 þm2νf;ν

−_ν2ðf;νν þ f2;νÞ þ e−2fðνÞUðνÞ

#
μk ¼ 0;

ð29Þ

where we used Eq. (24) to simplify.
In this paper we will specialize to the potential

UðνÞ ¼ M2, and we assume that the function fðϕÞ takes
the form fðϕÞ ¼ −ðϕ − ϕ�Þ2=2ϵ2M2

Pl, which implies
fðνÞ¼−ðν−ν�Þ2=2ϵ2. We then have f;ν ¼ −ðν − ν�Þ=ϵ2
and f;νν ¼ −1=ϵ2, so that the mode equation can be written
in the form

μ̈k þH _μk þ
ω2
kðηÞ
a2

μk ¼ 0 ⇔ μ00k þ ω2
kðηÞμk ¼ 0 ð30Þ

ω2
kðηÞ ¼ k2 −

a00

a
þ a2M2

eff

¼ a2H2

��
k
aH

�
2

þH−2ðM2
eff − a−3a00Þ

�
ð31Þ

M2
eff ¼ M2 exp

�ðν − ν�Þ2
ϵ2

�
−
m2

ϵ2
νðν − ν�Þ

þ _ν2

ϵ2

�
1 −

1

ϵ2
ðν − ν�Þ2

�
; ð32Þ

which implies that the late-time ðν; _ν ≈ 0Þ effective mass of
the μ field is given byM∞

eff ¼ Meν
2�=2ϵ2, which may be much

larger than M if ϵ ≪ ν�. In all our numerical work, we will

6We denote all parameters at the end of inflation by the
subscript “EI.”

7At the level of the action, this redefinition canonically
normalizes the μ kinetic term: S ⊃

R
d4x

ffiffiffiffiffiffi−gp 1
2
_μ2.
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take ν� ¼ 0.8; the solution of the mode equation becomes
increasingly numerically intractable as ν� is increased or ϵ
is decreased.
Note that as ϵ → ∞, Meff → M ¼ constant. Thus in the

limit of large ϵ, the kinetically coupled irrupton model
approaches the simple model of Sec. II A, albeit in a
different inflationary background, as we already noted.
Before we discuss the numerical calculation of species

irruption in this model, we can observe similarities
and differences between this model and potentially
coupled irruption model. In Fig. 1 we show the function
H−2ðM2

eff − a−3a00Þ for a variety of parameter choices.
There are some general observations we can draw:
(1) One very general result is that the kinetically

coupled irrupton mass is very large at early time.
(2) For some model parameters the function can appear

similar to that for the potentially coupled irrupton
model (see, e.g., the upper-right plot).

(3) For some model parameters the function never
becomes negative (see, e.g., the lower plots).

(4) The region where the function is negative is not
centered on the time when ϕ ¼ ϕ�.

D. Irrupton number density and irrupton
initial conditions

Now let us turn to the numerical calculation of irrupton
irruption. As noted, the form of the mode equation for μk on
the right in Eq. (30) is an “harmonic oscillator” equation
with η-dependent frequency in conformal time; however,
we find it more convenient8 for our numerical work to use
the form on the left of Eq. (30) in terms of cosmic time t.9

We also emphasize that if ω2
k anywhere runs negative

(as it may do owing to the presence of the −a00=a term,
which would be absent if the irrupton were coupled
conformally to the metric, rather than minimally), the
mode becomes “tachyonic” and the mode function diverges
exponentially.10

During the nonadiabatic phase, the notion of particle
number is ambiguous [36], but in both the early-time and
late-time regimes, where the expansion is adiabatic with
respect to any given mode, the notion of a particle number
regains physical validity. In order to extract the number of

particles produced in mode k, we make use of the method
of Bogoliubov coefficients. We specify some initial con-
ditions (equivalent to the in-vacuum choice; see below)
then numerically integrate the mode equation for μk to
some late time after inflation has ceased (ä < 0), and use
this solution to extract the Bogoliubov coefficient βk giving
the overlap of the exact solution to the mode equation
subject to the early-time-vacuum initial conditions with the
exact solution which is pure negative frequency at late time.
This gives the differential comoving number density of
particles present in mode k in the asymptotic late-time
regime as

ð2πÞ3 dn
d3k

≡ jβkj2 ¼
ωk

2
½jμkj2 þ ω−2

k jμ0kj2� −
1

2

¼ ωk

2

�
jμkj2 þ

a2

ω2
k

j _μkj2
�
−
1

2
: ð33Þ

Clearly the identification of the rhs of Eq. (33) as the
absolute value squared of a complex quantity is only
sensible if the rhs is real and positive. If ω2

k < 0

(the tachyonic regime), the rhs is imaginary and cannot
be identified as jβkj2. While the identification of the rhs as
jβkj2 is sensible if ω2

k > 0, it can only be interpreted as a
particle density in the adiabatic regime,A ¼ jω0

k=ω
2
kj2 ≪ 1

and B ¼ jω00
k=ω

3
kj ≪ 1. We will frequently have recourse to

refer to the differential comoving number density nck
of particles per logarithmic interval of k≡ jkj which is
given by

nck ≡ dn
d ln k

≡ k3

2π2
jβkj2; ð34Þ

as well as the total physical number density np of particles,
which is given by

np ¼ 1

a3

Z
d3k
ð2πÞ3 jβkj

2 ¼ 1

a3

Z
∞

−∞
nckd ln k: ð35Þ

If ω2
k does run negative anywhere, the resulting tachyonic

evolution of the mode function will show up as an
exponential enhancement in the particle production since
μk and _μk will be exponentially larger at late time.11 On the
other hand, if ω2

k ≫ 0 is everywhere too large (say, we
choose k much larger than other parameters), then there is
never appreciable particle creation as the mode will
suffer neither tachyonic evolution nor a strongly non-
adiabatic background space-time expansion with respect
to that mode.
The question of which initial conditions to specify for the

mode function μk is subtle since their choice defines which

8The relation dt ¼ adη implies that for exponentially small a,
as occurs in the early inflationary epoch, a very large range of η
must be covered to cover even a small range of t. Since the 57 e-
folds of inflation in our computation last Δt ≈ 18 in the units in
which we perform the computation, whereas að0Þ ∼ 10−25, this
would be a significant problem.

9Here, and throughout the remainder of the paper, we use μk
generically to mean “the mode function.”Whenever the constant-
M or potentially coupled models are under discussion, μk should
of course be read instead as χk: cf. Eq. (30) and Eqs. (5) and/or
(18).

10Despite this exponential growth, the evolution does always
exactly preserve the norms defined in footnote 3.

11While this statement is true, the issue is a bit more subtle than
it appears. It will be discussed in more detail in Sec. V.
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basis of solutions are used for the mode expansion, making
the question equivalent to the deep issue of the choice of
vacuum in a nonstatic spacetime [36]. For practical reasons
of numerical stability, we choose initial conditions such
that we start in an instantaneous Minkowski vacuum,12

μkðtk0Þ ¼
eiπ=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðtk0Þ

q ; and _μkðtk0Þ ¼ −i
ωkðtk0Þ
aðtk0Þ

μkðtk0Þ;

ð36Þ

for mode k at a time t ¼ tk0 chosen such that, for the mode in
question, ωkðtk0Þ=aðtk0Þ is equal to a very large threshold
value (at least 5 × 103m). That is, we pick the vacuum state
j0i such that âkðtk0Þj0i ¼ 0, which implies that nckðtk0Þ ¼ 0.
We immediately note that this choice of initial conditions
does indeed specify a different (zeroth-order adiabatic)
vacuum for every mode as tk0 is mode dependent; however,
since up to and including this time the adiabaticity
parameters jω0

k=ω
2
kj2 ≪ 1 and jω00

k=ω
3
kj ≪ 1 are very small,

and the bases of mode functions specified by the imposition
of the initial conditions at tk0 or tk0

0 differ from each other
only by terms of adiabatic order greater than zero, the
family of vacua are all approximately equivalent. Indeed,
we have explicitly verified that by increasing the threshold
value of ωkðtk0Þ=aðtk0Þ, the amount of particle production we
find does not change. There is one subtlety involved here,
mainly relevant for the kinetically coupled case: if Meff is
very large at early time (and/or k is very small), ω2

k=a
2

may cross the large threshold value while dominated
by the M2

eff term, which could possibly lead to a situation
where tk0 comes after the mode in question crosses out-
side the Hubble radius at tHC (see Figs. 7 and 8). This
would be potentially problematic on conceptual grounds,
and we thus choose to present results only for modes which
satisfy tk0 < tHC.

III. PRESENT-DAY ABUNDANCE
FOR STABLE IRRUPTONS

Before we turn to a more detailed discussion of our
numerical work, we specify how the comoving number
density of irruptons produced in the final e-foldings of
inflation is translated into a physical present-day relic
abundance assuming the irrupton is stable. We follow
the discussion of Ref. [33].
The irruptons are produced mainly during the final stages

of inflation, which we assume to be followed by a brief
matter-dominated phase characterized by coherent inflaton

oscillations about the potential minimum ϕ ¼ 0. At the
onset of oscillations, the Universe is in a low-entropy
frozen state owing to the inflationary expansion; however,
after some number of inflaton oscillations, during which
time the overwhelming majority of the energy density of
the Universe is contained in the inflaton field, the inflaton
energy density is converted to radiation, heating the
Universe to some high temperature TRH following which,
in the standard thermal history of the Universe, there is no
significant further entropy production and the Universe in
the large simply undergoes adiabatic expansion to the
present time.
We consider first the epoch after the inflaton energy

density has been converted to radiation. The inflaton is
nonrelativistic (NR) so that the irrupton energy density,
ρI ¼ M∞

effn
p with np given by Eq. (35) and where M∞

eff is
the late-time effective irrupton mass (see Eq. (42) below).
Under adiabatic expansion the comoving entropy density is
constant, so it follows that the ratio

ρI
ρR

geff
heff

T ð37Þ

is constant, where ρR is the radiation energy density, and
geff (heff ) is the effective number of relativistic degrees of
freedom relevant for the computation of ρR (entropy
density s). The present-day relic abundance of the heavy
irrupton species is thus

ΩIh2j0 ¼ ΩRh2j0
�
TRH

T0

��
heff
geff

�
0

�
ρI
ρR

�
RH

; ð38Þ

where “RH” denotes quantities evaluated at the moment of
matter-radiation equality at the completion of (p)reheating,
T0 ¼ 2.7255 K [38], ΩRh2 ¼ 4.149 × 10−5, geff;0 ¼ 3.38
and heff;0 ¼ 3.91 [39], and we have taken geff ¼ heff at the
completion of (p)reheating.
It remains to determine ðρI=ρRÞRH. To do this, we note

that during the matter-dominated inflaton-oscillation
epoch, the overwhelming majority of the energy density
is in the NR inflaton coherent oscillations, so the
Friedmann equation yields ρϕ ≈ ρtot ¼ 3M2

PlH
2=8π. The

irruptons carry a subdominant component of the energy
density (see Sec. VI) and are already NR at this epoch, so
we still have ρI ¼ M∞

effn
p with np given by Eq. (35)

(the mass of the irrupton is fairly well approximated by
its asymptotic large-time value M∞

eff after a few inflaton
oscillations). The ratio ðρI=ρϕÞosc ∼H−2a−3 ∼ t−2w is thus
constant for a pure-matter era (w ¼ 0). This means that we
may extract ρI at any point during the matter-dominated era
once ρI has stabilized. In order to relate ðρI=ρϕÞosc. to
ðρI=ρRÞRH, we must now make two assumptions:
(1) the entire energy density of the inflaton coherent

oscillations ends up in radiation after the inflaton
oscillations decay

12These initial conditions would obtain by requiring the exact
solution match onto the zeroth-order adiabatic approximate
solution at t ¼ tk0, correct up to terms of zeroth adiabatic order.
That is, these initial conditions specify a “zeroth-order adiabatic
vacuum.” See, e.g., Sec. 3.5 of Ref. [36].
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(2) the transition between the matter-dominated oscil-
lation epoch and the radiation-dominated epoch
happens fairly quickly so that (a) the Universe does
not expand significantly during the transition which
would cause the ratio ρI=ρtotal ¼ ρI=ðρR þ ρϕÞ to
change nontrivially, and (b) there is no significant
further entropy production once in the radiation-
dominated era.

Under these assumptions, it is a good approximation to set
ðρI=ρϕÞosc ≈ ðρI=ρRÞRH and to apply Eq. (38). Putting this
all together, we have

ΩIh2j0 ≈ ΩRh2j0
�
TRH

T0

��
heff
geff

�
0

×

�
3M2

Pl

8π
H2ð~tÞ

�−1

×

�
M∞

eff

a3ð~tÞ
Z

∞

−∞
nckð~tÞd ln k

�
; ð39Þ

where ~t is some reference time during the matter-dominated
inflaton oscillation era at which we choose to extract the
particle spectrum from our numerical solutions (see
Sec. IV). In order to make contact with our numerical
simulations in which we work in units for k,H, and t which
are based on m ¼ 1, we can rewrite the above result as

ΩIh2j0 ≈
8π

3
ðΩRh2Þ0

�
TRH

109 GeV

��
109 GeV

T0

�

×

�
heff
geff

�
0

�
m

1013 GeV

�
2
�
1013 GeV

MPl

�
2

×
M∞

eff
0

H02ð~tÞa3ð~tÞ
Z

∞

−∞
nck0 ð~tÞd ln k0 ð40Þ

or

ΩIh2j0 ×
�

TRH

109 GeV

�
−1

×
�

m
1013 GeV

�
−2

≈ 1.1 × 106 ×

�
M∞

eff
0

H02ð~tÞa3ð~tÞ ×
Z

∞

−∞
nck0 ð~tÞd ln k0

�
; ð41Þ

where the values of H0,M∞
eff

0, and nk0 are all extracted from
the numerical solution of the ν EOM and the mode equation
for μk in the units where m ¼ 1. For the three models we
have discussed in this paper, M∞

eff is given by

M∞
eff

0 ¼

8><
>:

M=m constant M

ðMg=mÞν� ¼ 0.8Mg potentially coupled

ðM=mÞ expðν2�=2ϵ2Þ kinetically coupled

ð42Þ

Also, in the matter-dominated era after inflation,
H02ð~tÞa3ð~tÞ≃ 0.18.
We shall, henceforth, drop the primes with the under-

standing that all of these quantities are measured in units
of m.

IV. NUMERICAL METHODS AND ISSUES

In order to calculate the final value of the Bogoliubov
coefficient, βk, and hence the number density of the
irrupton, in principle we require the late-time values of
jμkj2 and j _μkj2 [see Eq. (33)]. The straightforward pro-
cedure is to integrate the seven-dimensional system of first-
order coupled ordinary differential equations (odes) for the
scale factor a, the inflaton field value ν and its derivative _ν,
and the real and imaginary components of the irrupton
mode function and its first derivatives

F½t�≡ fa; ν; _ν;Re½μk�; Im½μk�;Re½ _μk�; Im½ _μk�g: ð43Þ

In some cases we will consider, this straightforward
procedure is impractical. One issue is for large irrupton
mass the irrupton oscillation frequency may be much, much
larger than the inflaton oscillation frequency. We will also
see that for some parameters we require integration of
the system very deep into the matter-dominated era
after inflation. Integrating the seven-dimensional system
is occasionally unwieldy and computationally limited.
Therefore, we will have occasion to employ a different
computational strategy that can be used in the regimes
where there is no tachyonic phase.

A. Integration of the full seven-dimensional system

For the numerical integration of the seven-dimensional
system of odes we utilized the Runge-Kutta Dormand-
Prince 8(53) algorithm DOP853 natively implemented in the
SCIPY V0.13 module for PYTHON V2.7, and have cross-
checked our results against at least one other solver (SCIPY’s
native LSODA algorithm) for a large subset of parameter
values, finding agreement for most input parameter choices
and noting that it is fairly obviously the LSODA algorithm
which fails when the two numerical solutions disagree.
In implementing these algorithms it was necessary to

impose very strict error tolerances and small maximum step
sizes δt as a variety of egregious numerical issues arise in
solving the system of equations owing to the magnitude
of some terms which enter. For example, an incomplete
cancellation at early times between the positive and
negative terms in Eq. (33) arising from tolerances which
are too loose can cause jβkj2 to jump nonphysically to a
value many orders of magnitude larger than it should be in
the first few time steps, and this erroneously large value
places a floor on how small a value of jβkj2 can be probed in
our simulations at late times, which causes complications in
tracking certain features in the particle spectra.
Furthermore, the cosmic-time oscillation frequency

ωk=a can become very large in both the early and late
evolution of the inflationary epoch making it computation-
ally unfeasible (given the number of solutions required to
scan over parameter space) to perform sufficiently small δt
time steps when the oscillation frequency ωk=a of the mode
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function is larger than about Oð104Þ.13 This necessitated a
subdivision of the computation. As we are ignoring the
backreaction due to the irrupton on the space-time metric,
as a first step we solved the restricted three-dimensional
problem for ~F½t� ¼ fa; ν; _νg specifying initial conditions
~F½0� ¼ f1.60928 × 10−25; 3;−1=

ffiffiffiffiffiffiffiffi
12π

p g where the value
of að0Þ was set by the requirement that aðtEIÞ ¼ 1. We
used this solution to find the time tk0 (or more precisely,
the nearest sampled time-step earlier than this) where
ωk=a ∼ 5 × 103 and is decreasing. As discussed above,
this is the point at which we specify the mode function
μk to match the zeroth-order approximate adiabatic solution
(i.e., specify the in-vacuum). Having identified this point,
we then switched to integrating the full seven-dimensional
system14 F½t� starting with initial conditions

F½tk0� ¼

8><
>: ~aðtk0Þ; ~νðtk0Þ; _~νðtk0Þ;

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkðtk0Þ

q ;

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkðtk0Þ

q ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkðtk0Þ

q
2~aðtk0Þ

;−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkðtk0Þ

q
2~aðtk0Þ

9>=
>;; ð44Þ

where the quantities with a tilde are obtained from the
integration of the restricted three-dimensional problem, and

the μk initial conditions are precisely those defined in
Eq. (36). We obtain jβkj2 from this full solution via
Eq. (33); an example plot demonstrating the time evolution
of jβkj2, thus extracted, is shown in Fig. 2.
We extract the final particle spectrum using the “asymp-

totic” value of jβkj2 deep in the matter-dominated inflaton
oscillation era. When jβkj2 has stabilized to a damped
oscillation about a constant central value at large time, we
extract the asymptotic value by averaging over the last few
oscillations at some late time. However, for certain param-
eter choices, jβkj2 does not stabilize to oscillations about a
constant central value even by t ¼ 500, but rather is still
executing oscillation about a downward-drifting central
value. Although for such modes a stable asymptotic value
for jβkj2 is achieved if the mode equation is integrated for
sufficiently long (see Appendix A), this is not computa-
tionally feasible via straightforward solution of the seven-
dimensional system, and below we describe the method we
use to obtain the asymptotic value of jβkj2 at very late time
in such cases.

B. The iterative solution approach

Now we describe another approach to the calculation of
jβkj2 that can be used only in the absence of a tachyonic
phase. This approach is amenable to a very useful and
computationally much less demanding iterative solution
approach when jβkj remains small. It also is the formalism
we use to extract the late-time asymptotic value of jβkj2 for
model parameters where it has not stabilized to its
asymptotic value by t of a few hundred, which generically
only occurs for modes without a tachyonic phase.
If ωk is real (no tachyonic behavior), the solution to the

mode equation may be written as (see, e.g., Ref. [40])

FIG. 2. The time evolution of j ωk
2
½jμkj2 þ a2

ω2
k
j _μkj2� − 1

2
j for two representative cases for the kinetically coupled irrupton as extracted

from the numerical solution for the choices of parameters M ¼ 2.5, ϵ ¼ 0.6 and k ¼ 2.3 × 10−15 (left plot) and M ¼ 4.0, ϵ ¼ 0.6 and
k ¼ 4.3 × 10−5 (right plot). If ω2

k > 0, ωk
2
½jμkj2 þ a2

ω2
k
j _μkj2� − 1

2
is real and equal to jβkj2. The evolution during the tachyonic phase is

presented for demonstrative purposes to indicate the rapid increase during this period; we caution, however, that there is no fashion in
which it can be interpreted as a particle number during the tachyonic phase. At both early- and late-times, the background space-time
evolution is sufficiently adiabatic with respect to this mode that jβkj2 can indeed be interpreted as the occupation number for mode
k ¼ kk̂; note that the late-time behavior (i.e., after the end of inflation) shows that jβkj2 undergoes damped oscillation about a constant
nonzero value, indicating particle production has occurred. The times tk0, tHC, t� and tEI indicate, respectively, the times when the initial
conditions Eq. (44) were imposed, when the mode crosses the Hubble radius (k ¼ aH), when ν ¼ ν�, and when inflation ends (ä < 0).

13As was alluded to above (see footnote 8), the opposite side of
the same coin is that by going to conformal time, the domain of
the η integration becomes unfeasibly long to step forward any
reasonable amount of cosmic time.

14For reasons of numerical accuracy, we prefer this approach to
interpolating the already-known solution for the restricted three-
dimensional problem and solving just the four-dimensional
system for μk.
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μk ¼
αkðtÞffiffiffiffiffiffiffiffi
2ωk

p e−iΦðtÞ þ βkðtÞffiffiffiffiffiffiffiffi
2ωk

p eþiΦðtÞ ð45Þ

where the accumulated phase ΦðtÞ is given by [obviously
Φ0 ≡ Φðtk0Þ]

ΦðtÞ≡
Z

t

tk
0

ωkðt0Þ
aðt0Þ dt0 þ Φ0: ð46Þ

Equation (45) is a solution to the mode equation (30) if αðtÞ
and βðtÞ satisfy the coupled equations of motion

_αk ¼
_ωk

2ωk
βke2iΦ

_βk ¼
_ωk

2ωk
αke−2iΦ; ð47Þ

which also implies that

_μk ¼ −i
ωk

a

�
αkðtÞffiffiffiffiffiffiffiffi
2ωk

p e−iΦðtÞ −
βkðtÞffiffiffiffiffiffiffiffi
2ωk

p eþiΦðtÞ
�
: ð48Þ

In line with our previous discussion, we take initial
conditions

μkðtk0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðtk0Þ
q eiπ=4

_μkðtk0Þ ¼ −i
ωkðtk0Þ
aðtk0Þ

μkðtk0Þ; ð49Þ

where the threshold value of ωk=a which dictates the value
of tk0 can be taken to be much larger than ωkðtk0Þ=aðtk0Þ ¼
5 × 103 in this method provided we have a sufficiently
accurate background solution for fa; ν; _νg; we utilize a
threshold value of ωkðtk0Þ=aðtk0Þ ¼ 107, and have checked
explicitly (for a subset of parameter values) that the results
are insensitive to this parameter provided it remains large.
These initial conditions imply that (Φ0 is of course
arbitrary; we simply take the value consistent with our
previous discussion)

αkðtk0Þ ¼ 1; βkðtk0Þ ¼ 0; and Φ0 ¼ −
π

4
: ð50Þ

The occupancy number for the mode k ¼ kk̂ is given by

nk ¼
1

2
½jαkj2 þ jβkj2 − 1� ¼ jβkj2 ¼ jαkj2 − 1; ð51Þ

where we have used the Wronskian condition jαkj2 −
jβkj2 ¼ 1 at the last two steps; this condition follows from
demanding correctly normalized modes per footnote 3.
This approach is amenable to an iterative solution when

jβkj is small and the evolution is nearly adiabatic (we will

quantify this statement shortly). To develop the iterative
solution, we introduce a formal small parameter ϵ by
rescaling _ωk=ωk,

_ωk

ωk
→ ϵ

_ωk

ωk
; ð52Þ

and expanding the solutions in powers of ϵ,

αkðtÞ≡
X∞
n¼0

ϵ2nαð2nÞk ðtÞ

βkðtÞ≡
X∞
n¼0

ϵ2nþ1βð2nþ1Þ
k ðtÞ; ð53Þ

in terms of which we impose the initial conditions on the

αðnÞk ðtÞ and βðnÞk ðtÞ as

αð0Þk ðtÞ≡ 1; Φ0 ¼ −
π

4
ð54Þ

αð2nÞk ðtk0Þ ¼ βð2n−1Þk ðtk0Þ ¼ 0 for n ≥ 1: ð55Þ

Substitution into the equations of motion for αk and βk,
followed by equating coefficients of ϵn to zero for all n,
then sending ϵ → 1 at the end of the process, yields the

equations of motion for αðnÞk and βðnÞk ,

_αð0Þk ¼ 0

_βð2nþ1Þ
k ¼ _ωk

2ωk
αð2nÞk e−2iΦ for n ≥ 0

_αð2nþ2Þ
k ¼ _ωk

2ωk
βð2nþ1Þ
k eþ2iΦ for n ≥ 0; ð56Þ

which has the following solutions consistent with the initial
conditions:

αð0Þk ðtÞ≡ 1; Φ0 ¼ −
π

4

βð2nþ1Þ
k ðtÞ ¼

Z
t

tk
0

_ωkðt0Þ
2ωkðt0Þ

αð2nÞk ðt0Þe−2iΦðt0Þdt0

αð2nþ2Þ
k ðtÞ ¼

Z
t

tk
0

_ωkðt0Þ
2ωkðt0Þ

βð2nþ1Þ
k ðt0Þeþ2iΦðt0Þdt0; ð57Þ

where the last two lines hold for n ≥ 0. From these
expressions, the iterative solution method is obvious.
Convergence is generally obtained after only a few iter-
ations; we always truncate the series for jβkj2 at the tenth
iterate and use this value in Eq. (51) to obtain nk.
Note, however, that to utilize this method, we still need a

very accurate solution for the background ~F½t� ¼ fa; ν; _νg
out to whatever time we choose to run the solution,
which must be obtained by solving the (restricted
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three-dimensional set of) odes for these fields per the
methods discussed in the previous subsection. Although
dramatically less computationally intensive than solving
the full seven-dimensional set of odes, this is still time-
consuming if we wish to have the solutions out to very late
time to track jβkj2 all the way to its asymptotic value. In the
next subsection we describe how in our actual numerical
implementation of this iterated method, we have made a
modification to the procedure just outlined which allows
this problem also to be avoided.
In order to understand the conditions for the iterative

solution to be a good approximation, consider the first-
order solution βð1Þk , which yields the lowest-order approxi-
mation for the occupancy number nk:

nð1Þk ¼ jβð1Þk j2 ¼
����
Z

t

tk
0

_ωkðt0Þ
2ωkðt0Þ

e−2iΦðt0Þdt0
����2: ð58Þ

Since in the absence of a tachyonic phase ωkðtÞ is every-
where positive and real, _ΦðtÞ ¼ ωðtÞ=aðtÞ > 0, and the
accumulated phase is a strictly increasing function of time.
Thus, we can recast the first-order approximation using the
accumulated phase as the integration variable:

nð1Þk ¼ jβð1Þk j2 ¼ 1

4

����
Z

ΦðtÞ

Φ0

ω0
kðt0Þ

ω2
kðt0Þ

����
t0¼t0ðΦÞ

e−2iΦdΦ

����2: ð59Þ

In the asymptotic late-time regime t → ∞, we have
ΦðtÞ → ∞, so that

nð1Þk ðt → ∞Þ ¼ 1

4

����
Z

∞

Φ0

ω0
k

ω2
k

e−2iΦdΦ

����2

≤
Z

∞

Φ0

����ω0
k

ω2
k

����2dΦ ¼
Z

∞

Φ0

AdΦ; ð60Þ

where we used the Cauchy-Schwarz inequality andA is the
adiabaticity parameter defined in Eq. (9). The appearance
in the integral of the “square root” (with phase) of the
adiabaticity parameterA refines our previous argument that
the size of the adiabaticity parameters limits the amount of
particle production. It is in fact the total time-integrated
magnitude of the adiabaticity parameter which provides a
hard upper limit to the amount of particle production. Note
of course that modifications to the adiabaticity parameter
near its maximum clearly impact the upper bound more
strongly.
It is important to note that the simple expression in

Eq. (60) is only an extremely crude upper bound to

nð1Þk ðt → ∞Þ; we do not expect this bound to be saturated
as it represents the integral of the envelope of the highly
oscillatory integrand, rather than the integrand itself. Phase
cancellations are important.

C. Late-time solution in the matter-dominated era

Well after inflation ends, the dynamics of the expansion
of the Universe is that of a matter-dominated (MD) model
with the energy density from the oscillating inflaton field
(of course, the energy in the inflaton field eventually must
be converted to radiation, so this MD phase is not of infinite
duration; absent postulating a specific model for this
process, we cannot assess its impact on our results).
Where necessary, we exploit this fact to extend our solution
for jβkj2 very deep into the MD era to extract its asymptotic
late-time value without having to solve a set of odes.
For a MD phase the scale factor evolves as aðtÞ ∝ t2=3.

We will choose a reference time tref following inflation
deep into the MD era (in our computations, we use
tref ∼ 103). Then the scale factor and expansion rate may
be written as

aðtÞ ¼ aref

�
t − τ

tref − τ

�
2=3

and H ¼ 2

3

1

t − τ
; ð61Þ

where τ is the effective bang time assuming a MD universe
all the way back to the singularity; τ has no physical
significance. The inflaton field and its time derivative are
given by

νðtÞ ¼ A
sinðt − τÞ
t − τ

þ B
cosðt − τÞ

t − τ
;

_νðtÞ ¼ A
cosðt − τÞ

t − τ
− A

sinðt − τÞ
ðt − τÞ2

− B
sinðt − τÞ
t − τ

− B
cosðt − τÞ
ðt − τÞ2 ; ð62Þ

where A and B are given by

A≡ ð_νrefðtref − τÞ þ νrefÞ cosðtref − τÞ
þ νrefðtref − τÞ sinðtref − τÞ;

B≡ −ð_νrefðtref − τÞ þ νrefÞ sinðtref − τÞ
þ νrefðtref − τÞ cosðtref − τÞ: ð63Þ

For the late-time MD evolution we require _ωk=ωk. There
are three terms in the expression for ω2

kðtÞ: k2, a00=a, and
a2M2

eff . At late-time in the MD era the three terms scale as
t0, t−2=3, and t4=3, respectively, so at late time we will use
ω2
kðtÞ≃ a2ðtÞM2

eff . This leads to _ωk=ωk ¼ H þ _Meff=Meff .
At late time

Meff ¼ M ðconstant MÞ
Meff ¼ Mgðν� − νÞ ðpotentially coupledÞ
Meff ≃M exp ½ðν − ν�Þ2=2ϵ2� ðkinetically coupledÞ:

ð64Þ
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For all cases we can write for the late-time MD era,

_ωk

2ωk
¼ 1

2
H − δ_ν; ð65Þ

where HðtÞ is given by Eq. (61), _ν is given in Eq. (62), and
for ν ≪ ν�, δ ¼ 0, δ ¼ 1=2ν� and δ≃ ν�=2ϵ2 for the
constant-M, potentially coupled, and kinetically coupled
models, respectively.
We are now positioned to find the expressions for αðtÞ

and βðtÞ in the MD era. First consider the accumulated
phase ΦðtÞ,

ΦðtÞ≡ Φ0 þ
Z

t

tk
0

ωkðt0Þ
aðt0Þ dt0

≈ Φ0 þ
Z

tref

tk
0

ωkðt0Þ
aðt0Þ dt0 þM∞ðt − trefÞ

≡ Φref þM∞ðt − trefÞ; ð66Þ
whereΦ0 is the accumulated phase at tk0,Φref is evaluated in
the full numerical evolution, and M∞ ¼ Mgν� in the

potentially coupledmodel andM∞ ¼ Meν
2�=2ϵ2 in the kineti-

cally coupled model. We have assumed here that jνj ≪ ν�.
Supposing that we have obtained αðnÞk;ref ¼ αðnÞk ðtrefÞ and

βðnÞk;ref ¼ βðnÞk ðtrefÞ (e.g., by the methods of the previous
subsection), we may now use our MD-era expressions to
extend these to later times t > tref by iterating (for n ≥ 0)

βð2nþ1Þ
k ðtÞ

¼ βð2nþ1Þ
k;ref þ 1

2
e−2iΦref

×
Z

t

tref

½Hðt1Þ − 2δ_νðt1Þ�αð2nÞk ðt1Þe−2iM∞ðt1−trefÞdt1

ð67Þ
αð2nþ2Þ
k ðtÞ

¼ αð2nþ2Þ
k;ref þ 1

2
eþ2iΦref

×
Z

t

tref

½Hðt1Þ − 2δ_νðt1Þ�βð2nþ1Þ
k ðt1Þeþ2iM∞ðt1−trefÞdt1:

ð68Þ
In our actual numerical implementation for the alternative
solution method based on α and β, we utilize the iterated
method implicit in Eq. (57) without change for t ≤ tref, but

for t > tref we obtain α
ðnÞ
k and βðnÞk with the iterated method

implicit in Eqs. (67) and (68).
One could of course also use a hybrid method in which

the full seven-dimensional system of odes is integrated
through any tachyonic regions, and the iterative solution
method is used to evolve the solution forward to very late
time starting from some time after the tachyonic phase
ends. We never find this necessary.

We develop an analytical understanding of the late-time
asymptotic behavior of jβkj2 in Appendix A.

D. Parameters scanned and breakdown
of methods employed

For the kinetically coupled case, we have completed a
scan over the parameters ðM; ϵÞ at fixed ν� ¼ 0.8 in the
ranges M ∈ ½0.2; 7�, ϵ > 0.2–0.25 (the smallest computa-
tionally feasible lower cutoff here is somewhat dependent
on the choice of M) with the largest ϵ investigated being
effectively infinite (specifically, 1030) to allow us to
compare our numerical investigations to the simple model
of Sec. II A in the context of the chaotic inflation back-
ground, which has been previously investigated in
Ref. [34]. Additionally, we investigated the M dependence
of the spectra up to M ¼ 9 at fixed ϵ ¼ 0.6. For the
potentially coupled case, we have completed a scan over
Mg in the range Mg ∈ ½1.2; 3.7 × 104�. In Table I, we
summarize explicitly which numerical method was used
in obtaining the various spectra we present in the next
section; the general rule-of-thumb is that we use the
iterative solution method wherever possible, but directly
solve the full seven-dimensional set of coupled odes
whenever a tachyonic phase is present.
Where we choose to present results for Ωh2, the particle

spectrum extracted as detailed above is integrated over k
per Eq. (41) in the maximal numerically sampled range
k ∈ ½10−20; 20�15 to obtain a relic abundance Ωh2, provided
that the numerical results we have extracted indicate that
this integral converges in the infrared (M < 1 results at
large ϵ in the kinetically coupled case are problematic in
this regard) and subject to modification in the upper limit of
the integral to avoid obvious numerical artifacts which
enter at large k (i.e., very small jβkj2).

V. RESULTS

In this section we present the numerical results for
particle species irruption either in the model of inflaton-
irrupton coupling through the potential term (the model
discussed in Sec. II B) or in the model of inflaton-irrupton
coupling through the kinetic term (the model discussed in
Sec. II C). The most general models of these types have
either two or three free functions: an inflaton potential
VðϕÞ, an inflaton-irrupton potential Uðχ;ϕÞ, and for the
kinetically coupled case only, a function fðϕÞ that
describes the coupling of the inflaton to the kinetic term
of the irrupton. For VðϕÞ we choose the simple inflaton
potential VðϕÞ ¼ 1

2
m2ϕ2. In the potentially coupled case,

for Uðχ;ϕÞ we choose the same potential as in Sec. II B:

15We occasionally work outside this range if necessary to
capture a relevant feature: for example, at M ¼ 0.2 and ϵ ¼ 0.8
for the kinetically coupled case, nck peaks around k ∼ 10−19, and
we wish to capture this behavior fully to get an accurate particle
number, so we extend the range of integration down to k ¼ 10−22.
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Uðχ;ϕÞ ¼ 1
2
g2ðϕ − ϕ�Þ2χ2 ≡ 1

2
M2

gðν − ν�Þ2χ2; for the
kinetically coupled case, for Uðχ;ϕÞ we choose the same
potential as in Sec. II C: Uðχ;ϕÞ ¼ 1

2
M2χ2. Finally,

for fðϕÞ in the kinetically coupled case, we choose
fðϕÞ ¼ −ðϕ − ϕ�Þ2=2ϵ2M2

Pl ≡ −ðν − ν�Þ2=2ϵ2. Thus, the
two or three free functions are described, respectively, in
terms of either three parameters: fm;Mg; ν�g, or four
parameters: fm;M; ν�; ϵg. From background radiation
measurements m ∼ 1013 GeV. We will express M and
Mg in units of m and t in units of m−1. For the chaotic
inflation model we consider, ranges of ϕ in the observable
region of the background radiation are 0.2≲ ϕ=MPl ≡ ν≲
3. So we will make the choice ϕ�=MPl ≡ ν� ¼ 0.8 for all
numerical results presented. With these choices for m and
ν�, the one parameter we will vary for the potentially
coupled irrupton is fMgg (in units of m), and the two
parameters we will vary for the kinetically coupled case are
fM; ϵg (again, M in units of m and ϵ dimensionless).
We note that the ϵ → ∞ limit of the kinetically coupled

irrupton is a minimally coupled scalar field of mass M in a
background chaotic-inflation model. This model was
described in Sec. II A (but for de Sitter space with constant
H, not in chaotic inflation with a slowly evolving H, as for
the numerical results of this section). Our result for the
comoving number density of produced particles as a
function of M in this limit is shown in Fig. 3. This case
has been previously considered in the literature, e.g.,
Ref. [34], for the same inflationary regime we utilize,
and where available we reproduce their results well (the
blue circles in the figure are sample points taken from

Ref. [34]). The qualitative behavior of the curves in Fig. 3
are different for different M. For M < 1 there is a slow
growth of nck in the infrared corresponding to jβkj2 ∼ k−3−x

for some x > 0 leading to an infrared (IR) divergence in the
number of particles produced.16 For M > 1 the spectra
decrease in the far infrared corresponding to jβkj2 ∼ k−3þx

for some x > 0. ForM ¼ 1, the spectrum of nck is consistent
with being exactly flat in the IR. There is a sharp drop in the
spectra for k≳ 1 for M > 1; the drop is more gradual for
small M, and a small bump is even evident in the spectrum
for M ¼ 0.2 around k ∼ 0.5. These features will be
explained below.
Representative particle spectra for the potentially

coupled irrupton as a function of Mg are given in Fig. 4,
while those for the kinetically coupled irrupton as a
function of M are given for fixed ϵ ¼ 0.6 in Fig. 5, and
as a function of ϵ for two fixed values of M (M ¼ 2 and
M ¼ 4) in Fig. 6. These figures capture all the important
features we have observed in our numerical work. Indeed,
for the specific potential and kinetic couplings we have
considered for the irrupton, many interesting features are
present. Before explaining the causes of these features in
the spectra, we qualitatively describe the scalings of the
spectra with k and Mg for the potentially coupled irrupton,
or with k, M, and ϵ for the kinetically coupled irrupton.
Consider first the potentially coupled irruption spectra

shown in Fig. 4. In all these cases with Mg ≳ 5, in the

TABLE I. A summary of which numerical method has been used to obtain the late-time asymptotic value of jβkj2, organized by figure
number. The end-time tf used in these solutions varies and is taken to be ‘late enough’ in the sense thatwe can reliably extract the asymptotic
value of jβkj2. This can be as short as tf ¼ 100 for cases which quickly go to their late-time asymptotic value (e.g.,M ¼ 2 at small ϵ), or as
long as tf ∼ 4.5 × 105 for particularly stubborn caseswhich take a very long time to ‘ring down’ (e.g.,M > 4 at very large or very small k); a
full listing of the values of tf used would not be enlightening. In this table “7D” refers to the straightforward solution of the full seven-
dimensional system of equations for the background fields and themode equation as described in Sec. IVA, and “Iter.” refers to the iterated
solution method for α and β described in Sec. IV B, taken where necessary with the late-timeMD-era modification described in Sec. IV C.

Figure number and description Parameter range or identifier Method employed

Fig. 3 (ϵ → ∞) k ≳ 0.5 and M ≥ 1.5; or M ≥ 5.0 Iter.
k ≲ 0.5 and / or M < 1.5 7D

Fig. 4 (potentially coupled) — 7D
Fig. 5 (left plot, ϵ ¼ 0.6) k ≳ 0.1 and M ≥ 0.6 Iter.

All others 7D
Fig. 5 (right plot, ϵ ¼ 0.6, large M) All, solid lines Iter.

Selected, open circles 7D
Fig. 6, M ¼ 2.0 (upper plot) k ≳ 0.6 and ϵ ≥ 0.4 Iter.

k ≲ 0.6 and ϵ ≥ 0.4 7D
k ≳ 0.4 and ϵ ¼ 0.3 Iter.
k ≲ 0.4 and ϵ ¼ 0.3 7D
k ≳ 6 × 10−2 and ϵ ¼ 0.2 Iter.
k ≲ 6 × 10−2 and ϵ ¼ 0.2 7D

Fig. 6, M ¼ 4.0 (both lower plots) All, solid lines Iter.
Selected, open circles 7D

16Presumably, this IR divergence is cut off if inflation has a
finite duration.
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infrared region the spectra scale as nck ∼ k3, which implies
jβkj2 ∼ k0. Provided also that Mg ≲ 10, this behavior is
valid until a threshold value k ¼ k�, beyond which the
spectra increase more slowly than k3, but have no simple
power-law scaling. The spectra then peak, more sharply for
largerMg, before showing a steep dropoff in the UV region;
for larger Mg, the spectra instead roll off exponentially fast
directly from the nck ∼ k3 regime. For smaller Mg the IR
behavior does not enter an approximate k3 scaling regime (at
least for the numerically sampled range of k≳ 10−16) and
based on arguments we present below we do not necessarily
expect that such a regime would exist for smaller k when
Mg ≲ 3. We note that for Mg ≲ 60 in the results we have
presented there is a strict ordering in the size of nck: at fixed k,
nck is smaller the larger Mg becomes. This behavior is
modified at very large Mg ≳ 200, where the IR spectrum
stops decreasing with increasingMg and instead approaches
from above the limit nck ¼ k3=2π2 (which implies jβkj2 ¼ 1);
on the other hand, the spectrum near the peak begins to
increase againwith increasingMg approaching the same limit
from below, while the peak itself shifts further to the UV.
For the kinetically coupled irrupton, first consider the

case of fixed ϵ and fairly smallM in the left plot of Fig. 5. In

the infrared region the spectra scale as nck ∼ k3, which
implies jβkj2 ∼ k0. This scaling behavior is valid up until an
“elbow” in the spectra at a value of k that depends on M
(and ϵ). After the elbow, for increasing k there is a slow
decrease in nck with k forM ≲ 1, or a slow increase in nck for
M ≳ 1. ForM ≲ 2.5, the spectra scale as a power law in k in
this intermediate-k regime, with an M-dependent power
which is less than 3. This behavior continues until
k ∼ 10−1, and thereafter there is a steep decrease in nck.
There is, however, a pronounced bump in the nck spectra at
small M (M ¼ 0.2) and k ∼ 1; this does not occur for
M ≳ 0.2. Just as in the model of a minimally coupled scalar
field with constantM, there is a general trend of decreasing
particle production with increasing M.
Consider now the impact of varying ϵ when M is fairly

small, starting with the case of M ¼ 2 shown in the upper
plot in Fig. 6. First of all, we note the good agreement of the
ϵ → ∞ limit of our results with those from Ref. [34] as
shown by the blue circles. The next feature to note is that,
just as in Fig. 5, in the infrared nck ∝ k3 for finite ϵ. Again, at
some value of k there is an elbow after which the spectrum
grows (for ϵ≳ 0.4, as a power law) more slowly than k3,
and there is again a steep drop in nck for large k. As ϵ

FIG. 3 (color online). Comoving particle density spectra nck as a
function of comoving k (in units of m) for a minimally coupled
scalar field with constant mass M (as annotated; also in units of
m) as discussed in Sec. II A, but using the chaotic inflation model
to describe the evolution of the background (i.e., the ϵ → ∞ limit
of the kinetically coupled irrupton of Sec. II C). Different curves
are for various heavy particle massesM. For comparison, the thin
(red) dashed line indicates the scaling of nck with k if the scaling
were k3 (constant jβkj2). The (blue) circles on the lines for
M ¼ 0.2, 1, and 2 are sampled from spectra in Ref. [34]. The
vertical dashed line denotes k ¼ aEIHEI. See Table I for a
summary of which numerical methods were applied to obtain
these results.

FIG. 4 (color online). Comoving particle density spectra nck for
the potentially coupled irrupton as a function of comoving k (in
units of m) for various parameter choices Mg ≡ gMPl ¼ 1.22 ×
106g (as annotated; in units of m). The choice of Mg is indicated
either by the black numbers annotating the lines, or by the
numbers in the legend labeling the differently-styled (colored)
lines. These latter cases are plotted differently to aid the reader
visually, and also because these large-Mg spectra show qualita-
tively different behavior, which is discussed in the text. The thin
(red) dashed lines illustrate an nck scaling proportional to k3

(constant jβkj2). The vertical dashed lines denote k ¼ a�H� and
k ¼ aEIHEI, where � denotes the values at the instant where
ϕ ¼ ϕ�. See Table I for a summary of which numerical methods
were applied to obtain these results.
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decreases the spectra become more peaked, and decrease in
magnitude.
Finally consider the large-M cases: M ¼ 4 in the lower

plots of Fig. 6, and largeM at fixed ϵ ¼ 0.6 in the right plot of
Fig. 5. For these values ofM the nck spectra scale as k

3 in the
deep infrared (constant jβkj2), show oscillations (provided
that ϵ is not too small) when transitioning from this behavior
to a scaling steeper than k3 in an intermediate region of k
(corresponding to a bump in jβkj2), then peak at k ∼ 10−1 and
finally decrease rapidly at larger k. Particularly in the vicinity
of the peak in the nck spectra in Fig. 6 (see the inset plot), there
is only a weak dependence on ϵ.
Now that we have described the spectra, we turn to an

explanation for their behavior. The presence or absence of the
tachyonic phase, along with its duration, is crucial for under-
standing the spectra. For modes which can run tachyonic, the
behavior of ω2

k clearly dictates the duration of the tachyonic
phase and hence the amount of particle production that can
occur as the exponential increase in themode functions during
this phase is the dominant effect. For modes which never run
tachyonic, we will show that a good understanding of the
behavior of the adiabaticity parameters leads to a good
understanding of the characteristics of the spectrum.
We begin with a discussion of the IR behavior of the

spectra. In the case where M is constant (i.e., the ϵ → ∞
limit for the kinetically coupled irrupton) and not much
larger than H (Fig. 3), a mode of comoving momentum k
enters the period of tachyonicity almost immediately
after crossing outside the comoving Hubble radius

Rc
HðtÞ ¼ ½aðtÞHðtÞ�−1 since at this time, the sum M2 þ

k2=a2 becomes comparable to the −a00=a3 term in Eq. (6)
for ω2

k=a
2. (Note that k2=a2 is a rapidly falling function of t

since a is growing exponentially; at the equality point, all
three terms are of roughly the same size in our parameter
region of interest. After equality, k=a rapidly becomes
completely negligible for all subsequent evolution. See
Figs. 7 and 8.) This means that the Hubble-crossing time is
a reliable indicator of the onset of the tachyonic phase, and
that the exit time from the tachyonic phase is independent
of the value of k; modes of smaller k thus spend much
longer in such a tachyonic phase than modes of larger k,
which implies that jβkj2 grows without bound at small k,
explaining the absence of a nck ∼ k3 scaling regime in the
infrared region for the constant-M case.
However, in the case of the potentially or kinetically

coupled irruptons with a running Meff , the situation is
different. We discuss first the scaling with k for the
kinetically coupled case. In Fig. 7 we plot ω2

k=a
2 as given

in Eq. (31) along with the magnitude of the three terms
contributing to it: k2=a2, ja00=a3j, and M2

eff . The heavy
dashed curve is where the given momentum mode is
tachyonic, which requires k2=a2 þM2

eff to be less than
the magnitude of a00=a3 (recall that during inflation
a00 > 0). In the far IR (illustrated by k ¼ 10−14) k is
sufficiently small that k2=a2 drops below M2

eff early in
the evolution and the onset of tachyonicity is determined by
when M2

eff drops below ja00=a3j, implying that the onset of
tachyonicity no longer closely tracks Hubble-crossing (see

FIG. 5 (color online). Comoving particle density spectra nck (left plot) and the late-time Bogoliubov coefficient (i.e., mode-k
occupancy number) jβkj2 (right plot) for the kinetically coupled irrupton for as a function of comoving k (in units of m) for various
heavy-particle massesM (as annotated; also in units of m) with fixed ϵ ¼ 0.6. We choose to present jβkj2 rather than nck in the right plot
for greater clarity in these very-large-M cases. In the left plot, the thin (red) dashed lines illustrate a scaling proportional to k3 (constant
jβkj2). The vertical dashed lines denote k ¼ a�H� and k ¼ aEIHEI, where � denotes the values at the instant where ϕ ¼ ϕ�. See Table I
for a summary of which numerical methods were applied to obtain these results, and the meaning of the open circles and solid lines in the
right plot.
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also the left plot of Fig. 2). As k increases, eventually it, and
not Meff , will determine the onset of the tachyonic phase.
Let us call the crossover point k�. The value of k� will be
the value of k for which ω2

k=a
2 ≈ k2�=a2 ≈M2

eff ≈ ja00=a3j.17

From Fig. 7 we see that occurs at k ¼ 2.5 × 10−7 for
M ¼ 2, ϵ ¼ 0.6, which agrees well with the crossover point
(i.e., the “elbow”) in the spectrum shown in the Fig. 5. For
larger k > k� (illustrated by k ¼ 10−2) the duration of the
tachyonic phase is shorter.
To understand the resultant scaling with k, we make the

crude approximation (reasonable for ϵ≳ 0.4) that ω2
k=a

2

is approximately constant during the tachyonic phase:
ω2
k=a

2 ≈ −Ω2 where Ω2 > 0 is a k-independent constant

FIG. 6 (color online). Comoving particle density spectra nck as a function of comoving k (in units of m) for the kinetically coupled
irrupton, for various choices of ϵ with fixed M ¼ 2 (upper plot) and M ¼ 4 (lower-left plot). The thin (red) dashed lines illustrate a
scaling proportional to k3 (constant jβkj2). The (blue) circles on the line for ϵ → ∞ in the upper plot are sampled from a spectrum in
Ref. [34]. The inset in the lower-left plot shows detail near the peak in the spectra. Also shown for the case of M ¼ 4 are the values of
jβkj2 (lower-right plot). The vertical dashed lines denote k ¼ a�H� and k ¼ aEIHEI, where � denotes the values at the instant where
ϕ ¼ ϕ�. See Table I for a summary of which numerical methods were applied to obtain these results, and the meaning of the open circles
and solid lines in the lower plots.

17The value of k� is exponentially sensitive to the value of ϵ
since the flatness of M2

eff , which is clearly (see Fig. 7) the most
important factor for deciding where M2

eff and k2=a2 become of
roughly the same size, is directly set by this parameter.
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(see Fig. 7). As ω2
k is negative (iωk ∈ R), the expression for

jβkj2 in Eq. (33) is inapplicable during the tachyonic phase
itself; but the expression can be used immediately before
and after the tachyonic phase when ω2

k > 0. Since the value
of ω2

k=a
2 passes through zero, it will be equal to the same

small positive value at times both immediately before, and
immediately after, the tachyonic phase (see Fig. 7).
Consider then the ratio of the values of jβkj2 at those
times, which we denote “before” and “after,”

jβkj2after
jβkj2before

∼
ðωkÞafter
ðωkÞbefore

jμkj2after
jμkj2before

¼ aafter
abefore

jμkj2after
jμkj2before

; ð69Þ

where we have used that j _μkj2 ¼ ja−1μ0kj2 ∝ jμkj2 (which
will be obvious from the form of the solution shown below)

and have neglected the constant term in Eq. (33). We must
now estimate jμkjafter=jμkjbefore. The mode function satisfies
μ00k þ ω2

kμk ¼ 0, which under our assumption of constant
negative ω2

k=a
2 ¼ −Ω2 becomes μ00k − a2Ω2μk ¼ 0.

SinceH does not change very much over the short duration
of the tachyonic phase, we will use the de Sitter
result η ¼ −1=aH, so the mode equation becomes
η2μ00k − ðΩ2=H2Þμk ¼ 0, whose growing mode solution

is μk ¼ ð−ηÞð1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω2=H2

p
Þ=2 ¼ ðaHÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω2=H2

p
−1Þ=2. We

thus estimate that

jβkj2after
jβkj2before

∼
�
aafter
abefore

�
ζ

where ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ω2=H2

q
> 0: ð70Þ

Now in the deep IR (k < k�), we have already noted that
the values of a when entering and leaving the tachyonic

FIG. 7 (color online). The oscillation frequency ω2
k=a

2 and its three contributions for the kinetically coupled irrupton [see Eq. (31)]
plotted as a function of cosmic time. The open circle in each plot indicates the point where two of the contributions to ω2

k=a
2, namely

M2
eff and ja00=a3j, are approximately equal. The point where k2=a2 andM2

eff first intersect is denoted by the open square. The value of k at
the “elbow” break-point, k�, is the value of k for which k2�=a2 ≈ ja00=a3j ≈M2

eff ; i.e., the open circle and the square coincide. From the
figure we see that this occurs for k ¼ k� ¼ 2.5 × 10−7. For k ≪ k� (illustrated by the case k ¼ 10−14) the onset of the tachyonic phase is
determined byM2

eff and independent of k. Since the duration of the tachyonic phase is independent of k, jβkj2 should be independent of
k, and nck ∝ k3. For k ≫ k� (illustrated by the case k ¼ 10−2) the onset of the tachyonic phase is determined by k2=a2 and the duration of
the tachyonic phase is reduced, which implies jβkj2 will decrease with k and nck will grow more slowly than k3. It is clear that for even
larger k, there may be no tachyonic phase at all, which exponentially suppresses the particle number produced. Note that larger values of
ϵ flatten M2

eff , giving a longer maximum duration of the tachyonic phase, while larger values of the M move the minimum of M2
eff

upward, which suppresses particle production by reducing the duration of the tachyonic phase (which argument holds until such a phase
ceases to exist; see Fig. 8 for further consideration of this case).
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phase are independent of k, so we expect jβkj2after=jβkj2before
to be independent of k. Since nck ∼ k3jβkj2, nck will be
proportional to k3.
But for k > k�, the onset of the tachyonic phase is

determined by k2=a2 ¼ ja00=a3j ∼ 2H2. So now abefore ∼ k
whereas aafter is still k independent, so that
jβkj2after=jβkj2before ∼ k−ζ which implies nck ∼ k3−ζ. This cor-
rectly captures the observed behavior of power-law scaling
of nck with a power less than 3 above the elbow for the cases
M ≲ 2.5 (i.e., those with a tachyonic phase) in Fig. 5.18

Note, however, that this conclusion is predicated on a
period of approximate constancy of ω2

k=a
2, which is not a

very good approximation when ϵ is small; therefore, we
would not expect a power-law intermediate regime for nck at
small ϵ, but rather a spectrum with a more constantly
evolving slope, as is becoming evident in the ϵ ¼ 0.2, 0.3
spectra at M ¼ 2 in the upper plot of Fig. 6.
Eventually as k increases the tachyonic phase disappears

altogether and the evolution becomes more adiabatic,
suppressing particle production even further.
The deep-IR scaling nck ∼ k3 for the potentially coupled

irrupton arises for the exact same reason as for the kineti-
cally coupled irrupton provided Mg is not too large: the
onset of tachonicity is governed by the k-independent
condition M2

eff ≈ a00=a3 for small enough k, provided that
Mg is sufficiently large. Since k ¼ 10−12 is the smallest
comoving momentum value shown in Fig. 4, we would
only expect such a regime to be manifest in the results
presented if Mg ≳ 4.6 (obtained from solving M2

eff ≈
k2=a2 ≈ a00=a3 for Mg at k ¼ 10−12). For smaller Mg,
one would need to probe smaller k to enter the nck ∼ k3

regime; however, once Mg ≲ 3 it is always the case that
M2

eff < a00=a3 for all ν > 0.8 (even if ν is allowed to run
much larger than 3; i.e., more e-foldings of inflation are
allowed) and so M2

eff cannot come to dominate in setting
the onset of tachyonicity for any value of k and we would
thus not necessarily expect an nck ∼ k3 scaling regime to
exist in such cases (i.e., we do not expect an irruption of

FIG. 8 (color online). As for Fig. 7, except this series of plots of the various contributions to ω2
k=a

2 for varying k is shown for a case
where no tachyonic phase is present. Nevertheless, the minimum value of ω2

k=a
2 still becomes k independent at small k, which leads to a

nck ∼ k3 infrared behavior in the particle spectrum. As k becomes very large (lower plot), the minimum value of ω2
k=a

2 is clearly shifted
upward, which leads to the large-k suppression in the spectra.

18A quantitative estimate of the scaling power ð3 − ζÞ requires
an estimate forΩ2=H2. Awell-motivated approximation is to take
it equal to the largest value of jðω2

k=a
2Þ=H2j attained during the

tachyonic phase. There is no simple closed-form expression for
this value, but it can be easily (and accurately) estimated
assuming that a, ν and _ν take their slow-roll values. With such
an estimate, we find scaling powers offset systematically high by
about 0.15 compared to the values extracted from linear fits to the
power-law section of the spectra above the elbow in Fig. 5 for all
values ofM from 0.2 to 2.5 (ϵ ¼ 0.6). The offset notwithstanding,
we capture theM dependence very well. There is also some weak
ϵ dependence in the power law above the elbow (see Fig. 6, upper
plot) which arises from the curvature of ω2

k=a
2 during the

tachyonic phase; our approach here is manifestly inadequate to
capture this.
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limited duration; the production duration and character-
istics are more similar to the constant-M case). The
intermediate scaling where nck increases more slowly
than k3, if present, once again occurs once the onset of
tachyonicity becomes governed by when k2=a2 ≈ a00=a3.
Although in the kinetically coupled case this regime gave
rise to a simple intermediate power-law scaling, such a
regime does not manifest itself for the potentially
coupled case.
On the other hand, at very large Mg, the duration of

any possible tachyonic phase becomes too small to result
in an exponentially large increase in the size of the
mode function.19 Instead, it begins to looks more like an
impulsive ‘kick’ to themode function localized very sharply
around t ¼ t� as ω2

k=a
2 very rapidly falls from a very large

value to some small negative value before rapidly increasing
again. This results in jβkj2 jumping from essentially zero to
its late-time value almost instantaneously; we develop this
argument further into a quantitative analytical prediction for
the shape of the spectrum in Appendix B. However, since
this process is still k independent when k is sufficiently
small to not significantly modify ω2

k=a
2 at t ¼ t�, it also

results in a nck ∼ k3 scaling in the IR. This is quantitatively
confirmed by Eq. (B10) which shows that in the large-Mg

limit, nck → k3=2π2 (jβkj2 → 1) for small k.
Even if no tachyonic phase or impulsive kick is present

owing to the relative sizes of the contributions to ω2
k=a

2, the
nck ∼ k3 infrared scaling can still obtain for the kinetically
coupled irrupton; for instance, the cases with M > 3 in
Fig. 5 or the M ¼ 4 cases in Fig. 6. Although the
explanation of this particular behavior does not require
the full machinery we are about to develop, we will
nevertheless have recourse to the same ideas to explain
other features in the nontachyonic cases, so we pause to
carefully develop the arguments here. Firstly, we note that
can obtain a good qualitative understanding of the behavior
of the spectra for nontachyonic cases by examining the
lowest-order solution βk

ð1Þ in the iterated-solution method,
particularly in the form as given in Eq. (59): we see that the
size of the (square root of) the adiabaticity parameter
jω0

k=ω
2
kj2 defines the envelope bounding the rapidly

oscillating phase factor e2iΦ. Provided that this envelope
varies only slowly as the phase advances by π, neighboring
excursions in the positive and negative directions, of both
the real and imaginary parts of the integrand, cancel nearly
completely when integrated over. On the other hand, if the
envelope varies rapidly as the phase advances by π,
neighboring excursions cancel incompletely. Although in
either case it is possible to obtain transient values of jβkð1Þj2
which are large, a nonzero late-time asymptotic value of
jβkð1Þj2 occurs as a result of the accumulated incomplete
cancellations between neighboring excursions over the full
evolution out to Φ → ∞ (see Fig. 9). To illustrate the point
explicitly, consider a toy model in which ω0

k=ω
2
k were an

exact Gaussian with standard deviation σ ¼ πn; we then
find the late-time asymptotic value of jβkð1Þj2 ∝ e−4π

2n2 .
Clearly, the wider the Gaussian (i.e., the slower the
envelope varies), the smaller the late-time asymptotic value
of jβkð1Þj2. Although these arguments can be formalized,
our goal here is simply to build qualitative intuition for the
behavior of the spectrum.
In order to apply this intuition to understand thenck ∼ k3 IR

scaling of the spectra, we note firstly that the adiabaticity
parameters are larger and evolving rapidlywith increasingΦ
whenω2

k=a
2 is near itsminimum; for sufficiently smallk they

are generally smaller and (provided that t≳ tHC) evolving
more slowly with increasing Φ when ω2

k=a
2 is large; for

t≲ tHC the adiabaticity parameters evolve fairly rapidly but
are damped to very small values exponentially quickly as the
phase Φ is decreased since ω2

k=a
2 generally increases much

more rapidly with decreasing phase Φ when dominated by
k2=a2 than byM2

eff (see Fig. 8). Therefore, for small values of
k and viewed as a function of increasing phaseΦ (see Fig. 9),
the envelope modulating the rapid phase oscillation starts
exponentially small, fairly rapidly rises to some small value
around the time of Hubble-radius crossing, evolves fairly
slowly for somedurationof increasingphaseΦ, grows in size
and evolves more rapidly as ω2

k=a
2 goes through its mini-

mum, then decreases in size again asω2
k=a

2 increases in size
and finally executes small amplitude oscillations with the
same period at which ω2

k=a
2 oscillates around a constant in

the MD era. Crucially, however, most of that evolution is
completely k independent, and if k is further decreased, the
only modification to the envelope is to add in an additional
duration of fairly slow evolution of the envelope at early time
by shifting to earlier times the point around tHC where
the envelope rises from its initial very small value (compare
the upper plots of Fig. 9). As such, for sufficiently small k,
we do not expect that significant additional incomplete
cancellation between neighboring excursions in the addi-
tional oscillations can occur as k is further decreased. As a
result, we expect qualitatively that jβkj2 should become k
independent at sufficient small k, leading to nck ∼ k3.
Furthermore, by virtue of the fact that neighboring

oscillations near the maximum of the envelope become

19In the IR, we expect this regime to be entered roughly when
the duration of the tachyonic phase is short enough that the mode
function cannot increase in size by much more than an e-fold
during this phase. We assume for the sake of this argument that
ω2
k=a

2 ≈ −a00=a3 ≈ − 8π
3
ν2� ≈ constant during the tachyonic phase

and take the duration of the tachyonic phase, Δt, to be limited
both before and after t ¼ t� by where M2

eff ¼ a00=a3 giving
M2

g _ν
2�ðΔt=2Þ2 ≈ 8π

3
ν2� which implies Δt ¼ 4

ffiffiffiffiffiffiffiffiffiffi
2π=3

p jν�=_ν�jM−1
g .

Then requiring no more than n e-folds of increase for μk during
the tachyonic phase demands we set jωk=ajΔt ≤ n leading to
Mg ≥ ð16π=3Þν2�=j_ν�jn ≈ 67n. Taking n ≈ 1–2 gives good quali-
tative agreement with the value of Mg for which there is a
quantitative behavior change in the IR in Fig. 4.
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more rapidly incommensurate in size if the envelope
decreases more rapidly from its maximum with changing
phase, such as occurs for cases of smaller ϵ, we expect that
the plateau value of jβkj2 should be larger, as observed (at
least for ϵ ≤ 0.6) in Fig. 6. We can mock up the plateau
behavior in the same toy model discussed above by
supposing that the Gaussian envelope is simply cut off
sharply to zero at a point ζ standard deviations before its
maximum, which leads to a late-time asymptotic value of
jβkð1Þj2 ∝ e−4π

2n2 j1 − Erfð− ffiffiffi
2

p ðζ − iπnÞÞj2, which for ζ >
πn ¼ σ is essentially independent of ζ, and is larger if n is
smaller. Translating back to the language of our actual
model we see that this captures all the salient features: for k
sufficiently small that tHC occurs a number of phase
oscillations before ω2

k=a
2 goes through its minimum, the

spectrum would be tHC- and thus k independent, and this
plateau would be at a higher value if ϵ were smaller.
In almost all cases of either constant or running effective

masses, as the effective mass term increases in size,20 fewer

particles are produced both at fixed k and overall.
Qualitatively, the reason is clear: heavier modes experience
changes in the background spacetime “more adiabatically.”
We mean one of two things here: either (a) the duration of
any possible tachyonic phase is shortened as the effective
mass grows (see, e.g., Fig. 7) or (b) in the more extreme
case where the effective mass is so large that no tachyonic
phase at all is present (i.e., M2

eff > ja00=a3j at all times
during inflation; see, e.g., Fig. 8), the minimum value of
ω2
k=a

2 reached during inflation increases in size as the
effective mass increases, which generally correlates with a
decrease in the maximum size of the adiabaticity param-
eters. This not only collapses the envelope modulating the
phase factor e2iΦ in Eq. (59) (see the lower-right plot of
Fig. 9) but also results in the envelope evolving more
slowly with phase since larger ωk=a results in a smaller Δt
to get the same ΔΦ ≈ ðωk=aÞΔt. Therefore, by arguments
similar to those just advanced, production is suppressed in
the latter case.
The obvious exception in our results to this general rule

of decreasing nck with increasing mass parameters occurs in
the large-Mg results for the potentially coupled case in
Fig. 4. For k < kth ≈ 4 × 10−2, as Mg increases, the
spectrum goes to a limiting value of jβkj2 ¼ 1 from above,
while for larger (fixed) k > kth, the spectrum goes to the

FIG. 9 (color online). The envelope �ð1=2Þjω0
k=ω

2
kj (grey) bounding the real part of the rapidly oscillating integrand

ð1=2Þðω0
k=ω

2
kÞe−2iΦ in Eq. (59) (black) for the first iterate βk

ð1Þ, for a variety of values of k for the case M ¼ 4 and ϵ ¼ 0.6 for
the kinetically coupled irrupton, plotted as a function of the phase deviation ΔΦ from when ω2

k=a
2 is minimized. The imaginary part of

the integrand shows similar behavior; we omit it for clarity. We also show jβkð1ÞðΦÞj2 per Eq. (59) (right-scale on each axis; red dotted
line) for illustrative purposes to indicate the impact of the shape of the envelope on the evolution of jβkj2. HC denotes Hubble-radius
crossing; the mode with k ¼ 1 is always sub-Hubble-radius sized. The relevant comparisons we intend the reader to make from this
series of plots are between plots A and B and between plot C and plots A or D; in particular, we caution the reader that the approximate
order-of-magnitude equality of the value of jβkj2 at large positive ΔΦ of jβkj2 in plot D (large k), and the values of the same quantity in
plot A and B (small k), is a coincidental consequence of the values of k we have chosen to display (see right plot of Fig. 5), so no deep
significance should be attached to that approximate equality.

20To be concrete: for the minimally coupled (constant mass)
case of Sec. II A (in the chaotic inflation background), we mean
increasing M; for the potentially coupled of Sec. II B, we mean
increasing Mg; and for the kinetically coupled case of Sec. II C,
we mean increasing M and/or decreasing ϵ.
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same limit from below. The comoving momentum kpeak
where the nck spectrum peaks shifts over to the UV roughly
as kpeak ∝ ðMgÞ0.500ð5Þ (from fits to the largest-Mg numeri-
cal results we have). We already argued in footnote 19 that
once Mg ≳ 70, the duration-of-tachyonicity argument for
understanding the results breaks down and we enter the
regime in which the analytical expressions we develop in
Appendix B apply. Indeed, examining Eq. (B10) immedi-
ately explains many of the observed “anomalous” features
at large-Mg: at fixed k, as Mg gets larger the exponent in
Eq. (B10) goes to zero, and jβkj2 → 1. Since the exponent
is, for the parameter values we give in Appendix B, positive
for k≲ 4 × 10−2, and negative for larger k, it is also clear
that the limit should indeed be approached from above
for k < kth and from below for larger k. Finally, once
k ≫ H2�; _H�, the exponent scales proportional to
ð−k2=MgÞ, and so for equal exponential falloffs from
jβkj2 ¼ 1, k has to increase as

ffiffiffiffiffiffiffi
Mg

p
consistent with the

peak shift to the UV seen in the numerical results.
The remaining point we wish to clarify in connection

with this discussion is how this specific analytical under-
standing of the scaling of the spectra at large Mg is
consistent, in the regime where no tachyonic phase exists,
with the more general picture outlined just above; i.e., that
the amount of production in this regime is limited by the
maximum size of the adiabaticity parameters. If we were
discussing the kinetically coupled case, it is obvious that
increasing M necessarily monotonically increases the mini-
mum value of Meff and, hence, could only increase the
minimum value ofω2

k=a
2, suppressing production. However,

for the potentially coupled case, Meff always goes to zero at
ν ¼ ν�, and the resulting Mg dependence of the minimum
value of ω2

k=a
2 (and hence the maximum value of the

adiabaticity parameters) is not immediately clear. In particu-
lar, if our general arguments are to hold, the behavior of the
adiabaticity parameters with increasingMg must necessarily
be nonmonotonic because we observe the spectrum to first
decrease and then increase again at large k asMg is increased.
We begin by making the important observation that

the threshold value kth is additionally the boundary, in
the limit of large Mg, between the cases where a
(brief, impulsive) tachyonic phase exists (k < kth), and
when one does not exist (k > kth): to see this, note
that in the Mg → ∞ limit, the minimization of ω2

k=a
2

occurs at ν ¼ ν�, so in this limit kth is simply estimated by
requiring that ω2

kth
=a2jν¼ν� ¼ 0, which implies that

kth ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πa2�=3 × ð2ν2� − 1=12πÞ

p
≈ 3.7 × 10−2 where we

have used a00=a3 ¼ 4π=3ð2ν2 − _ν2Þ, the slow-roll value
_ν ≈ −1=

ffiffiffiffiffiffiffiffi
12π

p
, and have taken a�≡aðν¼ν�Þ¼1.6×10−2

from our full numerical solutions.
Therefore, for k > kth, no tachyonic phase exists for the

large Mg cases and the amount of particle production
should indeed be governed by the size of the adiabaticity

parameters jω0
k=ω

2
kj2 and jω00

k=ω
3
kj (as well as phase

cancellations as we have previously argued) and so it
is necessary to demonstrate nonmonotonic behavior of
those parameters with increasing Mg for all k > kth if
our arguments are to be consistent. In Fig. 10 we plot the
maximum value of the adiabaticity parameter jω00

k=ω
3
kj

(maxfjω0
k=ω

2
kj2g behaves similarly) as a function Mg

at fixed k as evaluated in our numerical work. It is
clear that the requisite nonmonotonic behavior is indeed
present.
It is instructive to understand the origin of this non-

monotonic Mg dependence of maxfjω00
k=ω

3
kjg. We observe

that it is usually true that the maximum value of jω00
k=ω

3
kj is

reached very near to the point where ω2
k=a

2 reaches a
minimum. As we have already noted, for largeMg the latter
function is minimized at ν ≈ ν�; imposing this condition
kills allMg dependence in jω00

k=ω
3
kj except for a term which

scales as M2
g in the numerator [i.e., the surviving term

arising from twice differentiatingM2
eff as given in Eq. (20)],

which gives rise to the M2
g scaling.

On the other hand, once Mg gets small enough, the
minimum of ω2

k=a
2 (and hence the maximum of jω00

k=ω
3
kj) is

no longer reached at ν ≈ ν�. Assuming for the sake of this
argument that k is sufficiently large that, even thoughMg is
small, the −a00=a3 term in ω2

k=a
2 always remains negli-

gible, the minimum is reached at a later time when ν ≈ ~ν
(~ν < ν�), where ~ν is defined to be the point where the
decreasing function k2=a2 is equal to the increasing
(on ν < ν�) function M2

eff , yielding ω2
kðν ¼ ~νÞ ≈ 2k2.

This requires ν� − ~ν ¼ k=ð ~aMgÞ > 0; taking the slow-roll
expression ~a≡ aðν ¼ ~νÞ ≈ a� exp ½−2πð~ν2 − ν2�Þ� as a
good approximation results in a transcendental equation

FIG. 10 (color online). The maximum values attained during
inflation of the adiabaticity parameter jω00

k=ω
3
kj (the behavior of

the other adiabaticity parameter jω0
k=ω

2
kj2 is similar) in the

potentially coupled irrupton model at representative fixed
k (see legend) as a function of Mg (in units of m). The
black circles indicate the relevant values Mg ¼ f17; 60; 2.1×
102; 7.2 × 102; 1.2 × 103; 3.7 × 103; 1.2 × 104g (see Fig. 4).
The divergences evident at small Mg for some of the smaller-k
curves indicate that these modes allow for a tachyonic phase. The
minimum of each curve is indicated by a grey diamond.
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for ~ν, which we solve numerically. If in evaluating the
adiabaticity parameters jω00

k=ω
3
kj and jω0

k=ω
2
kj2 we addition-

ally take _ν≡ −1=
ffiffiffiffiffiffiffiffi
12π

p
and drop all ν̈ terms (consistent

with the slow-roll approximation for a), we find the
adiabaticity parameters scale approximately as

fjω00
k=ω

3
kj; jω0

k=ω
2
kj2g ∝

1

M2
g

~ν2

ðν� − ~νÞ2
�
1þ 1

2πνðν� − νÞ
�
:

ð71Þ

Using the numerically obtained values of ~ν, we find that the
factor multiplying M−2

g scales roughly proportional to Mg

for large enough k, leading to an approximate scaling of
fjω00

k=ω
3
kj; jω0

k=ω
2
kj2g ∝ M−1

g in the regime of large k and
small Mg. This compares favorably with the large-k results
in Fig. 10. The behavior for smaller k at smallMg would be
obtained from a similar argument, in which one did not
neglect the −a00=a3 term, but still assumed that k and Mg

were sufficiently large to prevent a tachyonic phase.21

The question then naturally arises as to where the
crossover point between the two regimes occurs as this
should give a good estimate of when maxfjω00

k=ω
3
kjg goes

through its turning point which indicates at what value of
Mg one would expect the spectrum, at a fixed value of k, to
stop decreasing and instead enter the regime where it
increases again back to the limiting value of unity as we
discussed above. Since we expect the g2 scaling to obtain
whenever ω2

k=a
2 is minimized around ν ≈ ν�, we can

estimate that once ν� − ~ν≳ 0.1ν�, this scaling may begin
to break down. Again throwing away the −a00=a term in
ω2
k=a

2, and solving for the value of Mmin
g required to

achieve such a deviation assuming a ≈ a�, we find that
Mmin

g ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πk2=0.1a2�

p
≈ 7 × 102k; this compares fairly

well with the values of Mg for which max fjω00
k=ω

3
kjg

reaches its minimum in Fig. 10. Of course, the fairly good
numerical agreement here is sensitive to the exact value of
a and the assumed small deviation from ν� which is used in
this argument; however, the fact that Mmin

g ∝ k is a fairly
robust prediction, and is consistent with the scaling with k
of the minima of the curves shown in Fig. 10 for
sufficiently large k.

We now turn attention to the far-ultraviolet (UV)
behavior of the spectra. To understand the rapid dropoff
in the particle spectra once k≳ 10−1 (see Figs. 3–6) one
must consider three qualitatively distinct cases: (a) for
small enough k there exists a broad region of tachyonic
behavior of the mode function (e.g., forM ≲ 3 and ϵ ¼ 0.6
for the kinetically coupled irrupton, and the potentially
coupled irrupton results forMg ≲ 60 in Fig. 4), (b) for small
enough k there is a very narrow tachyonic region which
looks more like the impulsive kick we discussed above
(e.g., for the Mg ≳ 200 results in Fig. 4), and (c) there is
never any tachyonic behavior of the mode functions for any
value of k (e.g., for M ≳ 3 for the kinetically coupled
irrupton).
We begin with case (a) by noting again that a temporary

but fairly broad tachyonic instability in the mode function,
such as occurs in this case at smaller k, leads naturally to
exponentially more particle production than in a case where
no such instability exists. The important observation is that
once k2 > max fa00=ag, it is impossible for the mode
function to become tachyonic at any point during its
evolution, regardless of the value of M2

eff . Therefore, for
large enough k, we naturally expect the spectrum (or more
exactly, jβkj2) to show a rapid falloff compared to the values
it obtains at smaller k. A simple-minded estimate for when
this criterion is satisfied, obtained by assuming that the
slow-roll regime is always valid, yields k≳ 0.4, which is of
the same order of magnitude of the point beyond which the
nck spectra are observed to drop off exponentially fast in
Fig. 5 and at small Mg in Fig. 4.22

Case (b) is handled by our analytical treatment in
Appendix B: once the value of k is large enough so that
the k2=a2 term in ω2

k=a
2 is significant, the spectrum rolls

off exponential quickly as exp ½−ðπ=Mgj_ν�ja2�Þk2� from
jβkj2 ≈ 1. We have already noted above that the quantitative
prediction arising from Eq. (B10) for the location of the
peak in the nck spectra, which coincides with the dropoff of
jβkj2, does indeed match well with the numerical results
shown in Fig. 4.
Case (c) requires a little more care, since the evolution

can never be tachyonic for any value of k; however, by
increasing k beyond the point where Hubble-crossing is
occurring around ν ¼ ν�, the minimum value of ω2

k=a
2

achieved during inflation becomes a monotonically increas-
ing function of k (see, e.g., Fig. 8). We have already argued
that the minimum value of ω2

k=a
2 anti-correlates with the

maximum value of the adiabaticity parameters, so as this
minimum value increases the particle production is

21Indeed, the divergences evident in Fig. 10 for small k andMg
are precisely due to these cases allowing for a tachyonic phase.
For smallMg, since ω2

k=a
2 is not minimized at ν ¼ ν�, our earlier

argument that kth ¼ 4 × 10−2 is the threshold value beyond
which no tachyonic phase is present is not applicable. Instead,
the threshold value kth should be obtained from the full condition
minνfω2

kth
g ¼ 0, and this typically requires a larger threshold

value than kth ¼ 4 × 10−2 if ω2
k=a

2 is minimized at ν < ν�. The
appearance of divergences in Fig. 10 related to the existence of a
tachyonic phase is thus not in contradiction with our earlier
statements.

22This estimate is about 30% too large compared to the same
criterion evaluated in our full numerical solution. Also, adding a
(positive) effective mass term only helps to make ω2

k=a
2 more

positive, so the estimate shown is really an upper bound which we
do not expect to be saturated.
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suppressed as the envelope bounding the phase factor e2iΦ

in Eq. (59) collapses. The simple-minded estimate here for
when the spectrum starts to drop is thus obtained from
setting k ¼ aH at ν ¼ ν�; assuming that slow-roll is valid,
this gives k≳ 0.1, which is again in good agreement with
the observed behavior in Figs. 5 and 6.
The foregoing comments about the UV spectra do have a

clear exception in the slower dropoff/small bump around
k ∼ 5 in the constant-M spectra for M ≲ 1 (Fig. 3) and the
pronounced bump around k ∼ 5 in the kinetically coupled
irrupton spectrum for small M (M ¼ 0.2) and ϵ ¼ 0.6
(Fig. 5). This bump clearly has a different physical origin to
the rest of the spectrum; an examination of the time
evolution of jβkj2 and the behavior of ω2

k=a
2 indicates that

it arises from modes which become light during the first
few coherent inflaton oscillations immediately after the end
of inflation, leading to their excitation either in the usual
matter-dominated Friedmann expansion phase, or in the
transition out of the inflationary phase. Again, once k is
sufficiently large, even this effect is suppressed.
We now discuss the some features the large-M kineti-

cally coupled irrupton spectra (Fig. 6) to which we drew
attention above: the bump in jβkj2 at intermediate k
(corresponding to nck ∼ k3þx for some x > 0) and the nearly
universal behavior of the spectra near the peak.
Consider first the bump in jβkj2 at intermediate k, which

occurs provided that ϵ is not too small; see Fig. 6. The
reason for this feature can be traced back to the behavior of
(the square root of) the adiabatic parameter jω0

k=ω
2
kj2 per

our earlier argument about the shape of the envelope of the
rapid oscillations in the integrand in Eq. (59). For such
intermediate k cases, ω2

k=a
2 is dominated by k2=a2 until it

is very near its minimum, and from our general observation
of an anticorrelation in the sizes of ω2

k=a
2 and the

adiabaticity parameters, it follows that this envelope is
very small until very close to its maximum, making it
highly asymmetric near that maximum (see the lower-left
plot in Fig. 9); this leads to a significantly larger accumu-
lated incomplete cancellation between neighboring oscil-
lations when viewed in the late-time regime. The
appearance of oscillations in the spectra in the transition
from the IR k3 scaling to this “bump” regime can also be
qualitatively understood as the effect of first the positive,
and then the negative, excursions just before the maximum
being alternately larger as the envelope opens up on the
low-phase Φ side as k is decreased from, e.g., the situation
pictured in the lower-left plot of Fig. 9. Furthermore, the
fact (which we noted above) that neighboring excursions
become more rapidly incommensurate in size as the
envelope decreases more rapidly in size from its maximum
with changing phase, such as happens in the cases of
smaller ϵ, makes this argument more marginal in such
cases, explaining why the oscillations in smaller-ϵ cases are
less pronounced (see Fig. 6). Again, our toy model captures

the essential elements of this behavior: jβkð1Þj2 ∝
e−4π

2n2 j1 − Erfð− ffiffiffi
2

p ðζ − iπnÞÞj2 increases rapidly from
its plateau value as soon as ζ < nπ (i.e., as tHC approaches
the time at which ω2

k=a
2 is minimized), and also demon-

strates some dips and wiggles, more pronounced for larger
n (i.e., for larger ϵ) provided it is not too large, in the
transition from the plateau to this regime of growth.
The second feature of interest is the fairly universal

behavior (i.e., approximately independent of changing ϵ)
for k≳ 10−2 for M ¼ 4 in Fig. 6. Since the nck spectra are
strongly peaked near k ∼ 10−1, it follows that to a fairly
good approximation the total number of particles produced,
np, thus also becomes independent of ϵ. This is clearly an
important qualitative feature of this result, and can be
explained by appealing to arguments similar to those
already advanced about the maximum size of, and behavior
near the maximum of, the adiabaticity parameters in this
regime via their role of defining the envelope of oscillations
in Eq. (59). Briefly, since at large k, ω2

k=a
2 is dominated by

k2=a2 until quite late during inflation, ω2
k=a

2 has no ϵ
dependence until very late during inflation. This implies
that the evolution of the adiabaticity parameters is nearly
identical for different values of ϵ until the k2=a2 term red-
shifts away sufficiently to expose the ϵ dependence inMeff ,
and hence in the adiabaticity parameters. However, the
resulting ϵ-dependence of the maximum value of the
adiabaticity parameters, and their behavior near that maxi-
mum, in the k≳ 10−2 regime is very mild for all the values
of ϵ we have examined, which implies that as a gross
approximation, the amount of particle production should be
approximately the same for each ϵ value, roughly as
observed in Fig. 6. Going beyond this gross approximation,
we note that the small excess in the production at ϵ ¼ 0.25
versus that at ϵ ¼ 0.8 in the regime between k ∼ 10−2 and
k ∼ 5 × 10−1 (see the inset in the lower-left plot in Fig. 6) is
borne out in the slightly larger maximum value of the
adiabaticity parameter attained for the former case com-
pared to the latter.

VI. DISCUSSION AND APPLICATIONS

While inflation is a phenomenological success, the
particle-physics foundations upon which a complete theory
of inflation can be built are yet to be set. Even assuming
that the dynamics of inflation may be described in terms of
a scalar field (the inflaton), we do not know whether the
inflaton is a “fundamental” scalar field describable in terms
of an ultraviolet-complete theory, or whether it should be
considered within the framework of an effective field
theory. We do not yet understand how inflation began
(e.g., whether inflation is eternal), or how inflation ended
(preheating, reheating, etc.). We also do not know how the
inflaton couples to other fields.
If theUniverse did undergo an early phase of inflation, then

one probe of the dynamics results from particle production
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during inflation. One relic of particle production during
inflation is the “scalar” curvature fluctuations resulting from
creation of inflaton quanta during inflation. A second relic is
the “tensor” perturbations (gravitational waves) resulting
from creation of the transverse, traceless component of the
gravitational field (viz., gravitons). Measurements of the
scalar and (especially) the tensor perturbation spectra and
possible non-Gaussian signatures will go a long way toward
untangling the foundations of inflation.
In addition to the inflaton and the graviton, other fields

will be produced during inflation if conformal symmetry is
broken through either a mass term or a nonconformal
coupling to gravity. We considered such a model in
Sec. II A. This model has been considered before (e.g.,
Refs. [33,34]); here, we extend the range of numerical
results to larger mass and larger comoving wavenumber
and develop a clearer physical understanding of the
expected results in ranges of parameters not accessible
to numerical techniques.
Another avenue of exploration is the possibility that the

inflaton may couple to massive particles, where again
“massive” is with respect to the expansion rate during
inflation. Of particular interest is the possibility that the
additional field may become massless (or at least light
compared toH) during inflation as a result of its coupling to
the inflaton. In this case there may be a “resonant”
production of the particle species at a particular value of
the inflaton field. This is what we call an irruption of the
massive particle species, and why we refer to the additional
scalar field as the irrupton.
We study two such models. While it is impossible to

imagine all possible inflaton–irrupton couplings, the two
models we consider exhibit a range of final spectra that
should encompass a wide range of possibilities.
The first model is a potentially coupled irrupton in which

the field couples through a term in the potential that couples
the inflaton and the irrupton. This possibility was first
proposed in a similar model by Chung et al. [17], and
explored in Refs. [18–21]. Here, we develop numerical and
analytic techniques to allow us to extend the numerical
range of study and to understand the behavior of
the resulting spectra with parameters where a numerical
calculation is problematic.
We also consider a new model for irrupton-inflaton

coupling: specifically, a noncanonical kinetic-term cou-
pling between a heavy scalar field with a canonical mass
parameter and the scalar (inflaton) field which drives
inflation. By canonically normalizing the heavy scalar
kinetic term, for our choice of coupling, we find a time-
dependent exponential enhancement of the effective mass
of the canonically-normalized heavy scalar which allows it
to briefly become as light (or lighter than) H, but otherwise
to be much heavier at both early and late times. By using
the method of Bogoliubov coefficients, and numerically
solving the equations of motion for the inflaton field, the

scale factor, and the mode equations for the heavy scalar
field, we determine the number of these heavy scalar
particles produced gravitationally by the nonadiabatic
expansion of the background space-time during inflation
acting on quantum fluctuations of the heavy scalar field.
From this we extract the final irrupton particle spectra.
The particle spectra in the two models are found to

exhibit a variety of complex behaviors attributable to the
time dependence of the effective mass, with the most
generic feature being an infrared cutoff in the spectra
compared to the minimally coupled WIMPzilla which has
been previously extensively studied studied in the liter-
ature, in addition to the well-known usual UV falloff. These
spectra become increasingly peaked toward scales which
cross the comoving Hubble radius near the end of inflation
as the mass parameter M or Mg increases. For the second
model, they additionally become more peaked as the
noncanonical kinetic term increasingly singles out a spe-
cific inflaton field value as important (i.e., the parameter ϵ
decreases in size).
One important result of our work is the relic density of

these heavy particles, assuming they are stable, as a
function of the heavy particle effective mass (Fig. 11).23

From these results, we conclude that the effect of singling
out in the noncanonical kinetic coupling a single inflaton
field value as more important (i.e., decreasing ϵ) at fixed
sufficiently large M is to increase both the late-time
effective mass of the heavy particle and the relic abun-
dance. (For smaller M, the effect of decreasing ϵ is first to
decrease the relic abundance while increasing the late-time
effective mass of the heavy particle, but this behavior is
short-lived and as ϵ gets smaller, the mass and relic
abundance increase together again.) As a result, we find
explicitly that we can produce heavy particles with late-
time effective masses more than three orders of magnitude
larger than the inflation mass (m ∼ 2HðtEIÞ) yet with
sufficient relic abundance to saturate the Planck result
for ΩDMh2, which is in marked contrast to the usual
minimally coupled WIMPzilla whose mass must be around
3.3m to achieve the same result (see our “ϵ → ∞” results,
which agree well with those of Ref. [34]). We expect that
the mechanism should remain operative for even higher
effective masses, possibly even up to the Planck mass scale,
for suitable parameter choices.

23Note that in integrating nck over k to extract the total particle
number np via Eq. (35), a problem arose in some cases (i.e., the
kinetically coupled irrupton at M ≤ 1 as ϵ → ∞), indicated in
Fig. 11 by (green) squares, due to the nonconvergence of the
integral owing to IR-divergent behavior in nck. We simply cut off
the integration in the IR at k ¼ 10−20, as this was the smallest
value we sampled; this corresponds to modes that crossed the
Hubble radius roughly 48 e-folds before the end of inflation. The
marked results may very well underestimate the total particle
number produced, and they should thus be interpreted with
caution. These results are also larger than those from Ref. [34] as
we have probed smaller values of k.
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We note that to obtain the ratio of the irrupton mass
density to the inflaton mass density during the inflaton
oscillation phase, one should multiply the quantity plotted
in Fig. 11, ðΩh2Þ × ðΩDMh2Þ−1Planck × ðTRH=109 GeVÞ−1×
ðm=1013 GeVÞ−2, by 5.8 × 10−19 × ðm=1013 GeVÞ2.
This implies that the irrupton mass density is a very
small fraction of the total since the maximum value of
the plotted quantity is around 109 for all cases we have

considered, and justifies ignoring it in the dynamics of
expansion.
We will now recapitulate some of the important results

we have obtained for the various models investigated in this
paper and make some additional comments. Consider first
the constant-M model:
(1) The only parameter in the model is M (always ex-

pressed in units of the inflaton mass,m≃ 1013 GeV).

FIG. 11 (color online). The present-day relic mass-density of stable irruptons for the kinetically coupled model (upper plot) and the
potentially coupled model (lower plot) in units of ðΩDMh2ÞPlanck × ðTRH=109 GeVÞ × ðm=1013 GeVÞ2 where ðΩDMh2ÞPlanck ¼ 0.1186
[41], as a function of the late-time effective mass M∞

eff . Crosses (black) represent points we have explicitly sampled in our numerical
computations. In the upper plot, solid (grey) lines join points at constantM=m (from top to bottomM ¼ 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0,
2.5, 3.0, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 6.0, 7.0), and dashed (grey) lines join points at constant ϵ (from left to right ϵ ¼ ∞, 1.0, 0.8,
0.6, 0.5, 0.4, 0.35, 0.3, 0.27, 0.25), where interpolation between sampled points has been performed. The (green) square points in the
upper plot are models where it was necessary to cut the spectrum off in the infrared to obtain a finite value; while the dash-dot (red) line
is the constant-M result taken from Kuzmin and Tkachev [34], which our ϵ → ∞ results recover well except at small M; see
footnote (23). In the lower plot, the solid (grey) line is a (log-log) cubic spline interpolant between the sampled points while the dashed
(red) line is the result of our analytical expression, Eq. (B10). We show the ratio of the analytical to numerical result in the inset,
including also numerically sampled points up to the massM∞

eff=m ¼ 2.9 × 104 which are not shown on the main axes as they lie exactly
on the Ωh2 ∝ M5=2

g extrapolation line.
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(2) The spectra are slightly red for M < 1, slightly blue
for 1 < M ≲ 2, and increasingly peaked around
10−2 ≲ k≲ 1 for 2≲M. There is a sharp drop in
the spectra for k > 1.

(3) The spectra of produced particles decreases very
rapidly withM forM ≳ 1; the decrease in the spectra
with M for wave numbers in the range 10−2 ≲ k≲
100 is still substantial, but less pronounced than in
the infrared.

(4) If the produced particle is stable, Ωh2 ¼ 0.12 is
obtained for M ≃ 3.3, provided TRH ¼ 109 GeV.
(This can be inferred from the ϵ → ∞ results
in Fig. 11.)

For the potentially coupled irrupton model, some of our

important results are as follows:
(1) There are two parameters in this model,Mg ¼ gMPl,

and ν�. The late-time value of the irrupton mass is
M∞

eff ¼ Mgν�. Our numerical investigation fixed
ν� ¼ 0.8 which corresponds to four e-folds before
the end of inflation.

(2) For Mg < 3 the spectrum is similar in shape to the
constant-M model, owing to the existence in both
cases of a broad tachyonic phase whose duration
depends on k. That is, at small Mg this model has
continuous particle production over extended dura-
tions rather than a localized irruption.

(3) The spectrum for the potentially coupled case is
much larger than the corresponding spectrum for the
constant-mass model with Mg ¼ M.

(4) For still largerMg, sayMg ≳ 5 or so (see Fig. 4), the
spectrum becomes increasingly peaked around
10−2 ≲ k≲ 1.

(5) The irruption production mechanism is too efficient
at producing particles to allow for their interpretation
as a possible super-heavy DM candidate unless the
reheat temperature is fairly low: the total number
of particles produced over-saturates the Planck
result for Ωh2 [41] by a factor of at least 104 ×
ðTRH=109 GeVÞ × ðm=1013 GeVÞ2 for all choices
of Mg which we have studied (see Fig. 11). This
conclusion is, however, rather sensitive to the value
of ν�: since Ωh2 ∼ ν�a3� [see Eq. (B14)], had we
taken ν� ≳ 1.1 (greater than eight e-folds before the
end of inflation), the minimum value of ðΩh2Þ×
ðΩDMh2Þ−1Planck×ðTRH=109GeVÞ−1×ðm=1013GeVÞ−2
would drop below 1, and it would be possible
to attain the right relic abundance even for
TRH ∼ 109 GeV.

(6) For fixedMg, our understanding of how the behavior
of Meff impacts the spectra leads us to conclude on
general grounds that as ν� is increased, the nck
spectrum will have the same general shape but will
(a) shift to the infrared because smaller values of k
are needed to allow for strongly nonadiabatic/

tachyonic behavior ifMeff has its zero earlier during
inflation when a� is smaller, (b) broaden on the low-
k side due to an extension of the tachyonic phase to
earlier times, and (c) decrease in amplitude owing to
the greater dilution of an NR species if it is created
earlier during inflation. The dilution effect is always
dominant, leading to a exponential suppression of
the abundance of particles as measured by Ωh2 after
the end of inflation, as ν� is increased linearly. These
points are all explicitly borne out by our large-Mg

analytical expressions Eqs. (B12) and (B14), as
discussed further in Appendix B.

(7) Our analytical expressions in Appendix B also
indicate that at large Mg, this model produces
more particles with increasing Mg: np ∝ M3=2

g and

Ωh2 ∝ M5=2
g ; our numerical results agree with these

scalings.
Finally, we turn to some additional final comments on

the kinetically coupled irrupton model:
(1) There are three parameters in this model: M, ϵ, and

ν�. The late-time value of the irrupton mass is
M∞

eff ¼ Meν
2�=2ϵ2 . For ϵ → ∞ the constant-M model

is recovered. M∞
eff is exponentially sensitive to ν�=ϵ.

(2) The simple large-M scaling behavior with changing
ϵ evident in Fig. 11 traces its origin to the insensi-
tivity of the spectra, in the regions where they
contribute dominantly to the particle number integral
in Eq. (35), to changing values of ϵ (at fixed M)
which we also noted with regards to our discussion
of Fig. 6 in Sec. V: for example, np increases by a
factor of only about 2 between ϵ ¼ 0.80 and ϵ ¼
0.25 for M ¼ 4, yet ΩDMh2 increases by a factor 2
orders of magnitude larger than that. That is, the
clean scaling behavior ofΩh2 with varying ϵ at fixed
M seen in Fig. 11 at large M arises predominantly
through the parametric dependence on ϵ of the
horizontally and vertically plotted quantities [both
proportional to eν

2�=2ϵ2 ; see Eqs. (41) and (42)] rather
than through the impact on the particle spectra of
varying ϵ per se.

(3) The simple large-M scaling with increasingM arises
jointly from parametric dependence causing M∞

eff to
increase linearly, while the spectra themselves
undergo an exponentially fast decrease, fairly uni-
form over a fairly wide range ofM, in normalization
causing the relic abundance (proportional to npÞ to
drop, notwithstanding its parametric scaling propor-
tional to M. The integrated spectrum itself can be
very well fit over the range from M ¼ 4 to 8 by a
function of the form np ∼ e−aMþbM2

where a and b
are some positive real numbers and b ≪ a.

(4) The more complex behavior at smaller M is due to
the more nontrivial dependence of the particle
spectra in the vicinity of their maxima (e.g., Fig. 6)
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on M and ϵ, in addition to the parametric depend-
ence just discussed. As an example, consider the
case of varying ϵ at small M. Two effects compete
against one another: with decreasing ϵ the normali-
zation of the particle spectrum drops at fixed small
M (e.g., the upper plot of Fig. 6), but the late-
time effective mass rises proportional to eν

2�=2ϵ2 .
Since Ωh2 is proportional to M∞

effn
p, this gives rise

to the turning-point behavior around ϵ ¼ 0.4 seen in,
e.g., the M ¼ 1 results because at small ϵ, the
latter effect wins whereas at larger ϵ, the former
effect does.

(5) Our general understanding of the behavior of Meff
leads us to conclude that if a tachyonic phase is
already present, further increasing ν� will increase
the duration of that phase, and will shift it to slightly
earlier times. While the former effect would argue
for an increase in the nck spectra, the latter effect
leads to a greater dilution of the NR species as it is
produced earlier. Simulations indicate that the latter
effect wins, causing the amplitude of the nck spectra
to decrease with increasing ν�. The extension of the
tachyonic phase to earlier times causes the spectrum
to broaden on the low-k side, while its truncation at
later times causes the UV dropoff to happen for
slightly smaller k. In other words, with increasing ν�,
the nck spectrum gets smaller at fixed k, and broadens
as a function of k, and moves to the IR.

(6) In contrast, if no tachyonic phase exists (e.g., at large
M), increasing ν� can cause more complex changes
to the spectrum. This is perhaps easiest discussed by
way of an example; for instance, consider the case of
M ¼ 4. As ν� is increased from 0.4 to 0.8, the
nck spectrum increases in amplitude, broadens and
the peak moves to the IR due to the fact that
min fω2

k=a
2g decreases and is attained at slightly

earlier times (the increase in the production from the
former effect swamps the dilution implied by the
latter effect). As ν� is increased further from 0.8 to
1.2, the spectrum continues to move to the IR, but its
amplitude drops as the dilution effect becomes
the dominant. Eventually for large enough ν�, a
tachyonic phase develops, and point (5) begins
to apply.

All the models we consider are capable of producing
massive particles during inflation. For the constant mass
model the efficacy of particle creation drops precipitously
forM ≳H. Also, for constant mass models with mass light
enough for appreciable particle production, the spectrum of
produced particles tends to be flat. We considered two
models with varying mass: a potentially coupled model and
a kinetically coupled model. Both of these models are
capable of producing an irruption of a particle species as the
effective mass of the species vanishes or becomes small
compared to H. Both of these models are able to produce

particles with mass (after inflation) much larger than H.
They are also capable of producing highly peaked spectra.
While the models we considered do not exhaust the

space of models with varying particle mass due to the
coupling of the particle to the inflaton, they do encompass a
remarkable range of phenomena and results.
While a complete study of the applications of massive

particle production is outside of the scope of this work, we
conclude by remarking on some possible implications and
applications.
(1) Backreaction on the inflaton field: The original

motivation for studying irrupton of massive particles
during inflation was the backreaction of particle
production on the inflaton field, which can lead to
features in the scalar density spectrum [17]. It was
later demonstrated that there are additional effects on
the density spectrum due to the scattering of the
produced particles with the inflaton field [20,21].
All of these studies assumed a potentially coupled
irrupton.
Both of the aforementioned effects are sensitive to

the magnitude and the duration of particle irruption.
As we have shown, a wide range of possibilities for
magnitude and duration are possible just in the two
irrupton models we have considered. We have
shown that for a same mass (M∞

eff ) particle species,
the spectrum and amplitude of produced particles
may differ greatly between the potentially coupled
and the kinetically coupled models. This will have
a large effect on the calculation of the effect of
the backreaction on the inflaton field as well as
irrupton-inflaton scattering after production.

(2) Superheavy dark matter (“WIMPzilla”) production:
The concept of dark matter produced by particle
creation during inflation was proposed within the
framework of the constant-mass model [33,34]. The
idea is that the particle coupling to the inflaton is
stable and is produced gravitationally during infla-
tion in the correct abundance to be the relic dark
matter. As we can see from Fig. 11, the correct relic
mass density in this model is obtained if M ≃ 3.3m.
This is in broad agreement with previous analyses.
We can now extend this idea to models with species

irruption. The results for a potentially coupled irrupton
model is also shown inFig. 11. The interesting result is
that for fairly small values of ν� there is no value of the
model parameters that do not overproduce the particle,
provided the reheat temperature is not quite low. For
this model, Ωh2 actually has a minimum around
M∞

eff ≈ 30 as a result of the fact that np does not
continue to monotonically decrease with increasing
Mg when the latter is large (Fig. 4): once
∂np=∂Mg ∼M−1

g , the relic density (proportional to
Mgnp) will go through a minimum. Once ν� ≳ 1.1,
however, the correct relic abundance can be obtained
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(even for TRH ≈ 109 GeV) due to the additional
dilution of the NR species owing to it being produced
earlier during inflation.
For a kinetically coupled irrupton, M∞

eff can be
(many) orders of magnitude larger than 3.3m and still
give rise to the right abundance of particles (see
Fig. 11); in fact, it could naïvely be as large as the
Planck mass (i.e., it can be a Planckon). We will
remark briefly on the possibility of super-Planckian
particle production below.

(3) Isocurvature modes: Isocurvature modes are pro-
duced in the WIMPzilla scenario [42,43] because
the dark matter is produced by the dynamics of the
coupled irrupton-inflaton system and the curvature
perturbations are produced by the inflaton dynamics
alone.
Again, the calculation of amplitude and spectrumof

the isocurvature component will differ in the constant-
mass case and either of the kinetically or potentially
coupled irrupton models. This is particularly impor-
tant as the limits to the isocurvature model become
more stringent [44].

(4) Non-Gaussian features: Non-Gaussian features in
the scalar perturbation spectrum will occur in all of
the models we study. Isocurvature perturbations
were considered in the WIMPzilla scenario in
Ref. [43] assuming a constant-M model. If there
is an irruption of massive particles during inflation
there is another source of non-Gaussianity called
infrared cascading in Barnaby et al. [20] (see
Ref. [21] for a review). The model used in that
study is the potentially coupled model of this paper.
The calculations for both of these effects (WIMP-
zilla and infrared cascading) will be modified in the
kinetically coupled scenario.

(5) Planck-mass particle production: As we noted
above, the efficacy of the either the potentially or
kinetically coupled irrupton production mechanism
with regard to large-mass particles is expected to
extend beyond the regime we have explicitly inves-
tigated numerically. This raises the prospect that by
dialing the parameters M; ϵ and ν� (kinetically
coupled case) or Mg and ν� (potentially coupled
case), we could naïvely raise the late-time (as well
as early-time) effective mass of the irruptons to
M∞

eff ≳MPl while still maintaining a non-negligible
abundance.
This raises the possibility that inflation could be

sensitive to particles24 with mass larger than the
Planck mass. In this scenario except for an extremely
narrow region near ϕ ¼ ϕ� the Planckian state can
be integrated out of the effective field theory

describing inflation. But it is exactly near ϕ ¼ ϕ�
that the particles will be produced, and when they
are produced they are light. Only after the inflaton
continues to evolve past ϕ ¼ ϕ� will the particle
regain its proper Planckian mass. Presumably, then
the “particle” becomes a classical black hole, and
description of its dynamics in terms of single-
particle excitations of a fundamental scalar field is
then inappropriate. Furthermore, with Planck-mass
particles present, the local space-time will be subject
to significant backreaction, and if a black hole forms,
it would look locally like Schwarzschild, rather than
homogeneous quasi–de Sitter, so it is clear that our
results in this regime are on shaky footing. At some
point our simple model must break down and it is
therefore unclear whether it does actually allow for
the production of trans/super-Planckian particles.
This is an interesting open question.
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APPENDIX A: LATE-TIME ASYMPTOTICS

It is instructive to develop a further analytical under-
standing of the late-time behavior of jβkj2, building from
our discussion in Sec. IV C. We examine here the expres-

sion for the first-order iteration, βð1Þk ðtÞ, for t ≫ tref. Starting

with Eq. (67) for n ¼ 1, and using αð0Þk ðtÞ ¼ 1, we have

βð1Þk ðtÞ ¼ βð1Þk;ref þ
1

2
e−2iΦref

×
Z

t

tref

½Hðt1Þ − 2δ_νðt1Þ�e−2iM∞ðt1−trefÞdt1: ðA1Þ

Applying Eq. (62), the integral in Eq. (A1) can be written in
terms of exponential integral functions EiðyÞ. Two standard
integrals will enter:

I1ðy; ~y; ξÞ≡
Z

y

0

e−iξðy1þ~yÞ

y1 þ ~y
dy1

¼ Eið−iξðyþ ~yÞÞ − Eið−iξ~yÞ; ðA2Þ
24Dvali and Gomez [45] argue that these states are not properly

quantum particles, but black holes.
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I2ðy; ~y; ξÞ≡
Z

y

0

e−iξðy1þ~yÞ

ðy1 þ ~yÞ2 dy1 ¼ e−iξ~y
�
1

~y
−

e−iξy

yþ ~y

�
− iξ½Eið−iξðyþ ~yÞÞ − Eið−iξ~yÞ�: ðA3Þ

Here, we will have either ξ ¼ 2M∞ or ξ ¼ 2M∞ � 1, and y≡ t − tref , ~y≡ tref − τ, and yþ ~y ¼ t − τ (all are positive,
provided M∞ > 1=2). Finally, we can write the desired late-time expression for βkðtÞ:

βð1Þk ðtÞ ≈ βð1Þref þ
1

2
e−2iðΦref−M∞ ~yÞ

�
2

3
I1ðy; ~y; 2M∞Þ

− δ½ðAþ iBÞI1ðy; ~y; 2M∞ − 1Þ þ ðA − iBÞI1ðy; ~y; 2M∞ þ 1Þ�

− iδ½ðAþ iBÞI2ðy; ~y; 2M∞ − 1Þ − ðA − iBÞI2ðy; ~y; 2M∞ þ 1Þ�
	
: ðA4Þ

We are interested in the late-time asymptotic limit of Eq. (A4). Since the exponential integral function has a branch cut
one must be careful when making asymptotic expansions:

Eið�iaÞ → �iπ þ e�ia

�
∓ i
a
−

1

a2
þ � � �

�
as a → þ∞ða ∈ RÞ: ðA5Þ

Thus, the late-time asymptotic expansions for the two standard integrals are

I1ðy → ∞; ~y; ξÞ ∼ −½iπ þ Eið−iξ~yÞ� þ e−iξðyþ~yÞ
�
i
ξy

−
1þ iξ~y
ξ2y2

þ � � �
�

ðA6Þ

I2ðy → ∞; ~y; ξÞ ∼ e−iξ~y

~y
þ iξ½iπ þ Eið−iξ~yÞ� þ e−iξðyþ~yÞ

y

�
i
ξy

− 2
1þ iξ~y
ξ2y2

þ � � �
�
: ðA7Þ

Finally we may expand this late-time asymptotic solution in the large-mass limit (ξ → ∞), yielding

I1ðy → ∞; ~y; ξ → ∞Þ ∼ −
i
ξ

�
e−iξ~y

1

~y
− e−iξðyþ~yÞ

�
1

y
−

~y
y2

�
þ � � �

�
þ 1

ξ2

�
e−iξ~y

1

~y2
− e−iξðyþ~yÞ 1

y2
þ � � �

�
þ � � � ðA8Þ

I2ðy → ∞; ~y; ξ → ∞Þ ∼ −
i
ξ

�
e−iξ~y

1

~y2
− e−iξðyþ~yÞ

�
1

y2
−
2~y
y3

�
þ � � �

�
þ 2

ξ2

�
e−iξ~y

1

~y3
− e−iξðyþ~yÞ 1

y3
þ � � �

�
þ � � � ðA9Þ

After a bit of manipulation, the late-time, large-mass asymptotic value of βð1Þk can be written as

βð1Þk ðt → ∞Þ ≈ βð1Þk;ref − i
e−2iΦref

6M∞

�
1

tref − t0
½1 − 3δðtref − t0Þ_νref �

þ e−2iM∞ðt−trefÞ

t − tref

�
1 − 3δ

�
ðνref þ ðtref − t0Þ_νrefÞ cosðt − trefÞ − νrefðtref − t0Þ sinðt − trefÞ

��	
: ðA10Þ

Armed with this expression, we can immediately see the qualitative features of the late-time, large-mass solution:
(1) A nonzero (in general) late-time value of

jβð1Þk ðt → ∞Þj2 ¼
����βð1Þk;ref − i

e−2iΦref

6M∞

1

tref − t0
½1 − 3δðtref − t0Þ_νref �

����2 ðA11Þ

arising from the constant term squared.
(2) A fast oscillation at frequency 2M∞, whose amplitude is modulated at frequency m, which damps out as 1=t. This

arises from the cross term between the constant term and the damped term. Schematically, this contribution takes the

form 1
t cosð2M∞tþ ϕÞ½1þ ζ cosðmtþ ϕ0Þ�. Although we have not displayed it here, if we expanded βð1Þk itself up to

1=t2, there would also be a similar term damped at 1=t2, but this will be subdominant.

IRRUPTION OF MASSIVE PARTICLE SPECIES DURING … PHYSICAL REVIEW D 91, 063505 (2015)

063505-31



(3) A slow oscillation at frequency m on top of a
constant 1=t2 contribution. This arises from the
damped term squared. Schematically, this contribu-
tion takes the form 1

t2 ½1þ ζ0 cosðmtþ ϕ00Þ�2.
We see all these behaviors in the numerical solutions; in
particular, we have performed Fourier analysis on selected
late-time numerical solutions and found strong peaks in the
Fourier power spectrum at all the expected frequencies
(including sidebands generated by the modulations).

APPENDIX B: ANALYTICS FOR THE
POTENTIALLY COUPLED CASE

This Appendix is based on ideas and methods to be
found in Sec. VII B of Kofman et al. [40].
We consider the potentially coupled case at large Mg

(larger than any other scale in the problem, except possibly
k). In this case, the duration of production is extremely
short around t ¼ t�, and we need only consider the solution
of the mode equation in this short interval, taking jβkj2 ¼ 0
identically at some short time just before t ¼ t�, and
extracting the asymptotic value of jβkj2 shortly after
t ¼ t� (‘short’ will be made precise below). As a result
of this observation, we may Taylor expand aðtÞ, HðtÞ, etc.
in the mode equation around the point t ¼ t� and will keep
only terms up to t2.
Rather than solve the mode equation Eq. (17) for χk, we

solve the equation for fkðtÞ≡ a1=2χkðtÞ [21]:

f̈k þ
�
M2

gðν − ν�Þ2 þ
k2

a2
−
9

4
H2 −

3

2
_H

�
fk ¼ 0; ðB1Þ

where we used the fact that a00=a3 ¼ 2H2 þ _H.
We may now Taylor expand the relevant functions

to second-order in powers of t, for the present purposes
re-zeroing t at ν ¼ ν�:

M2
gðν − ν�Þ2 ¼ M2

g _ν
2�t2 ≡ k4⋆t2

k2

a2
¼ k2

a2�
½1 − 2H�tþ ð2H2� − _H�Þt2�

H2 ¼ H2� þ 2H� _H� þ ð _H2
� þH�Ḧ�Þt2

_H ¼ _H� þ Ḧ�tþ
1

2

d3H
dt3

����
�
t2; ðB2Þ

where we defined k⋆ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mgj_ν�j

p
. To evaluate the higher

derivatives here in terms of ν and _ν, one can exploit
Eq. (25), _H ¼ −4π _ν2 and ν̈ ¼ −3H _ν − ν, all of which are
exact relations when the backreaction is ignored and the
irrupton energy density is assumed to be a very small
fraction of the inflaton energy density. We thus have

f̈k þ ½pt2 þ qtþ r�fk ¼ 0; ðB3Þ

where we have defined

p ¼ k4⋆ þ
k2

a2�
½2H� − _H�� −

9

4
ð _H2

� þH�Ḧ�Þ −
3

2

d3H
dt3

����
�

q ¼ −2H�
k2

a2�
−
9

2
H� _H� −

3

2
Ḧ�

r ¼ k2

a2�
−
9

4
H2� −

3

2
_H�: ðB4Þ

Defining

z≡ ffiffiffi
2

p
p1=4

�
tþ q

2p

�

c≡ 1

2
ffiffiffiffi
p

p
�
q2

4p
− r

�
; ðB5Þ

the equation for fk can be written as

d2fk
dz2

þ
�
1

4
z2 − c

�
fk ¼ 0: ðB6Þ

The solutions to this equation can be written in terms of
confluent hypergeometric functions 1F1 (see § 9.2 of
Ref. [46] or Ref. [47]):

fk ¼ e−iz
2=4

�
A1F1

�
1

4
−
i
2
c;
1

2
;
i
2
z2
�

þ Beiπ=4z1F1

�
3

4
−
i
2
c;
3

2
;
i
2
z2
��

; ðB7Þ

where A and B are integration constants to be chosen to
specify the adiabatic in-vacuum.
Recall that fk ¼ a1=2χk and the in-vacuum solution for

χk must reduce to χk → ð1=2ωkÞ1=2 exp ð−i
R
t dt0ωk=aÞ

as t → −∞. Therefore, we must have fk →
ða=2ωkÞ1=2 exp ð−i

R
t dt0ωk=aÞ as t → −∞. We now

Taylor expand ω2
k and look sufficiently far from t ¼ 0:

jtj ≫ k−1� . Assuming that the mass term is the largest
contribution to ω2

k=a
2, the latter is dominated by the t2

term, and up to small corrections like _H�=k4⋆, etc., we then
have that ωk=a ≈ ffiffiffiffi

p
p

t ≈ p1=4z=
ffiffiffi
2

p
. Therefore, the in-vac-

uum asymptotic early-time form of fk must be fk →
expðþiz2=4Þ=ð21=4p1=8 ffiffiffiffiffiffi

−z
p Þ as z → −∞, where we have

ignored the presence of a possible irrelevant overall phase
and have dropped small terms. Note the opposite sign to the
naïve expectation appears in the exponent since the t < 0
form of ωk must be used.
By demanding this early-time asymptotic form, we

recover the values of A and B for the correctly normalized
modes which give an in-vacuum; although these expres-
sions are not particularly enlightening, we present them
here for completeness:
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A ¼ −
ð−1Þ7=82ic=2

4πp1=8 e−3πc=4ð1þ e2πcÞ

× Γ
�
ic
2
þ 1

4

�
Γ
�
1

2
− ic

�
; ðB8Þ

B ¼ −
ð−1Þ3=82ic=2
23=2πp1=8 e−3πc=4ð1þ e2πcÞ

× Γ
�
ic
2
þ 3

4

�
Γ
�
1

2
− ic

�
: ðB9Þ

To extract αk and βk we simply look at the late-time
behavior of fðzÞ as z → ∞: αk is the coefficient of the term
expð−iz2=4Þ=ð21=4p1=8 ffiffiffi

z
p Þ and βk is the coefficient of the

term expðþiz2=4Þ=ð21=4p1=8 ffiffiffi
z

p Þ. The results are

jαkj2 ¼ 1þ e2πc

jβkj2 ¼ e2πc ¼ exp

�
πffiffiffiffi
p

p
�
q2

4p
− r

��
; ðB10Þ

which clearly satisfy the Wronskian condi-
tion jαkj2 − jβkj2 ¼ 1.
The (red) dashed line in the lower plot of Fig. 11 is

obtained via numerical integration of Eq. (B10)
using Eq. (41): Ωh2 × ðΩh2Þ−1Planck × ðTRH=109 GeVÞ−1×
ðm=1013 GeVÞ−2 ≈ ð2.7043× 106Þ×Mgν� ×

R
∞
0 k2jβkj2dk.

The relevant parameters in terms of which p, q, and r can
be evaluated must be taken from our numerical background
solutions: when ν ¼ ν� ¼ 0.8, we have H� ¼ 1.6697,
_ν� ¼ −0.1599 and a� ¼ 0.0160.
At very large Mg further simplifications are possible,

p ≈ k4⋆ ¼ M2
g _ν

2�

c ≈ −
r

2
ffiffiffiffi
p

p ≈
1

2Mgj_ν�j
�
9

4
H2� þ

3

2
_H� −

k2

a2�

�
; ðB11Þ

so that using _H� ¼ −4π _ν2�,

jβkj2 ≈ exp

�
π

Mgj_ν�j
�
9

4
H2� þ

3

2
_H� − k2

a2�

��

≈ exp

�
π

Mgj_ν�j
�
9

4
H2� − 6π _ν2� − k2

a2�

��
: ðB12Þ

Expressing H2 in terms of VðϕÞ and _ϕ, and using
_H ¼ −ð4π=M2

PlÞ _ϕ2, we have

9

4
H2� þ

3

2
_H� ¼

9

4
H2�

�
Vðϕ�Þ − 1

2
_ϕ2
�

Vðϕ�Þ þ 1
2
_ϕ2
�

�
¼ −

9

4
H2�w�; ðB13Þ

which is always positive during inflation (the equation of
state at any point ν ¼ ν� during inflation satisfies
w� < −1=3). Therefore, it is clear that jβkj2 is flat for
small k and approaches unity from above for large Mg. It
also drops rapidly once the k2 term drives the exponent
negative, but at fixed large k approaches unity from below
as Mg is further increased. Granted, this expression is
invalid when k dominates ωk, but since the rapid dropoff
sets in by this point for large enough Mg, we can simply
neglect this regime.
Furthermore, if we confine ourselves to consideration of

values of ν� such that slow-roll inflation is still a very good
approximation around t ¼ t�, it follows that _ν� is very
nearly independent of ν�, so H2� as given by Eq. (25) is
proportional to ν2�. We also have a� ∝ e−2πν

2� . Therefore, the
deep-IR value jβk¼0j2 ∝ exp ð3π2ν2�=Mgj_ν�jÞ increases
exponentially quickly as ν� is increased linearly.
However, the value k ¼ k1 required to cause a 1–e-fold
dropoff in jβkj2 from this IR value decreases exponentially
quickly roughly as k1 ∝ a�H� ∝ ν�e−2πν

2� . The net result is
that as ν� is increased linearly, the nck spectrum broadens on
the low-k side (since jβk¼0j2 is larger), yet peaks at a much
smaller value of k and as a result has a much smaller
maximum value.
Integrating the approximate very-large-Mg spectrum

(B12) over all k yields

1

2π2

Z
∞

0

k2jβkj2dk ¼ 1

2π2

Z
∞

−∞
k3jβkj2d ln k

¼ a3�
8π3

ðMgj_ν�jÞ3=2 exp
�
3π

4

3H2� − 8π _ν2�
Mgj_ν�j

�

≈
�
a�

ffiffiffiffiffiffiffij_ν�j
p
2π

�3

M3=2
g : ðB14Þ

This shows us that in the largeMg limit, the total number of

produced particles goes like np ∝ M3=2
g , and Ωh2 ∝ M5=2

g ,
both of which increase with increasing Mg. Also, as ν�
increases, both np and Ωh2 (measured at the same fixed
time t in the MD era following the end of inflation) drop
exponentially quickly as aþ3� , as expected for the dilution of
an NR species being produced earlier during inflation.
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