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We point out three correlated predictions of the axion monodromy inflation model: the large amplitude
of gravitational waves, the suppression of power on horizon scales and on scales relevant for the formation
of dwarf galaxies. While these predictions are likely generic to models with oscillations in the inflaton
potential, the axion monodromy model naturally accommodates the required running spectral index
through Planck-scale corrections to the inflaton potential. Applying this model to a combined data set of
Planck, ACT, SPT, and WMAP low-l polarization cosmic microwave background (CMB) data, we find a
best-fit tensor-to-scalar ratio r0.05 ¼ 0.07þ0.05−0.04 due to gravitational waves, which may have been observed
by the BICEP2 experiment. Despite the contribution of gravitational waves, the total power on large scales
(CMB power spectrum at low multipoles) is lower than the standard ΛCDM cosmology with a power-law
spectrum of initial perturbations and no gravitational waves, thus mitigating some of the tension on large
scales. There is also a reduction in the matter power spectrum of 20–30% at scales corresponding to
k ¼ 10 Mpc−1, which are relevant for dwarf galaxy formation. This will alleviate some of the unsolved
small-scale structure problems in the standard ΛCDM cosmology. The inferred matter power spectrum is
also found to be consistent with recent Lyman-α forest data, which is in tension with the Planck-favored
ΛCDM model with a power-law primordial power spectrum.
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I. INTRODUCTION

The Planck mission has established that the cosmic
microwave background (CMB) anisotropies on small
angular scales are well described by the standard ΛCDM
cosmology with a nearly scale-invariant power-law spec-
trum [1]. At large scales (l < 40), however, there appears
an overall deficit of power compared to what is expected in
the benchmark ΛCDM model [2]. The unusual shape and
amplitude of the power spectrum at low multipoles was first
observed by the WMAP mission [3,4] and remains unex-
plained, although hypotheses include a running spectral
index [5–9], a breakdown of slow-roll inflation or pre-
slow-roll phase [10–14], a contracting preinflation phase
[15], open inflation [16], a non-Bunch-Davies initial
vacuum state [17], or the presence of an extra neutrino
species [18,19].
The tension at low l is exacerbated significantly if there

exists a stochastic gravitational wave background with
tensor-to-scalar ratio r≳ 0.1, since tensor perturbations add
to the expected CMB temperature anisotropies at low
multipoles [20]. Such a large r has been suggested by
the BICEP2 experiment in its detection of B-mode polari-
zation in the sky at degree-angular scales [21]. Under the
assumption that the observed B-mode anisotropies are

sourced by primordial gravitational waves, they infer
r0.05 ¼ 0.2þ0.07−0.05 . By comparison, from the TT spectrum
alone, the authors of Ref. [1] inferred r0.05 < 0.135 at the
95% confidence level, in tension with the BICEP2 result.
At present, the BICEP2 result is highly uncertain due to
the likely presence of contamination by foreground
dust polarization in the observed field of view [22–24].
Nevertheless, large-field inflation models—including the
simplest chaotic models—predict at minimum r≳ 0.01
[25] and thus would increase the apparent tension with
ΛCDM.
The simplest way to accommodate the deficit of power at

low l is to allow for a running spectral index, thus
departing from a power-law spectrum. When a constant
running of the spectral index α ¼ dns=d ln k is allowed, the
authors of Ref. [26] found α ¼ −0.011� 0.008 in the case
r ¼ 0, where the preference for negative running is driven
largely by the temperature likelihood at low multipoles.
More significantly, running also allows for a higher tensor
contribution, leading to r0.05 < 0.275 when both running
and tensors are allowed.
Such a large constant running is difficult to implement in

the underlying inflation model, since it yields an insuffi-
cient number of e-foldings to solve the horizon problem
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[27]. Within the context of single-field slow-roll inflation,
the only way to achieve the 50–60 remaining e-foldings
necessary after the mode k ¼ 0.05 Mpc−1 leaves the
horizon, is if the running diminishes or turns positive at
larger k. Plausible mechanisms exist for the running to
diminish to zero at larger k, for example through radiative
corrections [28,29] or grand unified theory symmetry
breaking [30]; this would, however, imply a special scale
at which the running “turns over” and becomes small, a
scale comparable to or just smaller than scales observable
in the CMB, which would seem a remarkable coincidence.
Another, perhaps more natural possibility is that the power
spectrum oscillates, implying that the inflaton potential
may contain an oscillatory component. Since it would seem
unnatural for only one such oscillation to occur during the
course of inflation, the intriguing possibility arises that the
inflaton potential contains a gentle oscillation which may
occur all the way to the end of inflation. In fact, many large-
field models that include oscillations in a natural way have
been investigated [31–36].
In this article we will test axion monodromy models

against the CMB temperature anisotropy spectrum, but our
results are broadly applicable to inflationary potentials with
gentle oscillations. We will assume that the oscillation
scale (in log k) is “long,” i.e. comparable to the range of
multipoles observed in the CMB, naturally leading to a
running spectral index as described above. We will show
that the best-fit model gives three correlated predictions:
1) a significant gravitational wave amplitude of order
r ∼ 0.1; 2) a reduction of power at large scales (low l)
despite the tensor contribution, thus mitigating the existing
tension at large scales; 3) there is a corresponding signifi-
cant suppression of power at small scales, particularly at
the scales relevant to dwarf galaxy formation, which will
alleviate some of the small-scale structure problems of
ΛCDM. Finally, although axion monodromy allows for
a gravitational wave background, we will find that the
e-folding requirement surprisingly places an upper bound
on the tensor-to-scalar ratio (r≲ 0.2), which is in tension
with the BICEP2 measurement unless a significant portion
of the observed B-mode signal is due to foreground
contamination rather than primordial gravitational waves.
The paper is outlined as follows. In Sec. II we discuss the

theoretical motivation for axion monodromy models and
derive formulas for the power spectra for scalar and tensor
perturbations. In Sec. III we discuss our choice of param-
eters and the priors for each. The resulting constraints are
shown in Sec. IV; the constraints on the oscillation
parameters are discussed in Sec. IVA, the best-fit model
is discussed in Sec. IV B, and the constraint on the tensor-
to-scalar ratio r is discussed in Sec. IV C. In Secs. IV D and
IV E we compare our model to the usual constant-running
model at low and high multipoles, respectively. In Sec. IV F
we discuss whether our model can be amended to allow for
a higher tensor-to-scalar ratio. Section V investigates the

implications of an oscillating power spectrum for the small-
scale problems of ΛCDM: the effect on dwarf galaxy
formation is discussed in Sec. VA, while in Sec. V B our
results are compared to recent Lyman-α forest data and the
prospects for other small-scale probes of the matter power
spectrum are discussed. We conclude with a summary of
our main points in Sec. VI.

II. THEORETICAL BACKGROUND

A. Motivation for large-field inflation models

During slow-roll inflation, it is easily shown that a
relation exists between the tensor-to-scalar ratio r and
the overall shift Δϕ in the scalar field from CMB scales to
the end of inflation:

Δϕ
Mp

¼ Oð1Þ ×
�

r
0.01

�
1=2

ð1Þ

where Mp ¼ ð8πGÞ−1=2 is the reduced Planck mass. The
importance of this relation, known as the Lyth bound [25],
is that a significant gravitational wave contribution r≳
0.01 implies that the scalar field value changes by more
than the Planck energy Mp. These so-called large-field
models imply that any fields coupled to the inflaton with at
least gravitational strength will receive corrections to the
coupling strengths, resulting in an infinite series of Planck-
suppressed terms contributing to the scalar field potential.
Such terms spoil the flatness of the potential, inhibiting
inflation, unless there is an exquisite degree of fine-tuning
in the coefficients. The only way to avoid fine-tuning is if a
symmetry “protects” the potential from large contributions;
in particular, an approximate shift symmetry ϕ → ϕþ a in
the corresponding Lagrangian ensures that the correction to
the potential is at worst periodic, and thus its magnitude can
in principle be controlled.
While many different potentials can approximately

satisfy the above-mentioned shift symmetry, there is no
guarantee that such a potential admits a UV completion in
quantum gravity; indeed, it is far more likely that the
class of potentials which can be derived from a correspond-
ing UV-complete theory obeying the same approximate
shift symmetry is relatively restricted. For this reason,
merely considering generic renormalizable effective field
theories is not sufficient for large-field models. Instead, one
should consider inflation models that can be derived from
quantum gravity, with string theory being the best devel-
oped to date. Although a few alternatives exist [37–40], one
of the best motivated of these models is axion monodromy
[32,34,41,42]. Axion fields a in string theory naturally
obey a discrete symmetry a → aþ 2π. The phenomenon of
monodromy appears when axions are coupled to fluxes in a
compactified higher-dimensional space (in the string theo-
retic description, this occurs in the presence of a wrapped
brane in a Calabi-Yau manifold). The shift symmetry is
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slightly broken, allowing the field potential energy to
change by a large amount as one traverses many cycles
in the compactified space, while all the remaining micro-
physics is periodic in field space; this is analogous to a
spiral staircase where the overall height can change without
bound through many cycles.
The resulting potential for axion monodromy models

consists of a monomial term plus a sinusoidal term:

VðϕÞ ¼ λϕp þ A sin

�
ϕ

f
þ ψ

�
ð2Þ

where we are now working in Planckian units where
Mp ¼ ð8πGÞ−1=2 ¼ 1 for the remainder of this paper.
The parameter f corresponds to the period of oscillation
and is known as the axion decay constant. Although in its
original incarnation the monodromy potential has p ¼ 1,
depending on the flux coupling and brane configuration
one can also achieve other discrete values such as p ¼ 2=3,
p ¼ 2, p ¼ 3 and so on [43]. Since we are interested here
in what p-value(s) are preferred by CMB data, we will vary
p as a free parameter, with the ansatz that p can be any
positive real number.

B. Axion monodromy power spectrum

For fitting purposes, we find it useful to make the
transformation ϕ → ϕmin − ϕ, where ϕmin will be chosen
so that ϕ ¼ 0 corresponds to the CMB pivot scale
k� ¼ 0.05 Mpc−1. With a suitable relabeling of parameters,
we can recast the potential in the following form:

V
V�

¼ ð1 − a sin δÞð1 − ϕ=ϕminÞp þ a sin

�
ϕ

f
þ δ

�
ð3Þ

which is written so that Vðϕ ¼ 0Þ ¼ V�. We choose ϕmin to
be positive so the field rolls in the positive direction, i.e. ϕ
increases as it rolls.
To find the primordial power spectra for scalar and tensor

perturbations, one typically uses the slow-roll approxima-
tion, which assumes the Hubble parameter varies slowly
enough that the quasi–de Sitter solution of the equation
for quantum perturbations can be used [44] (for a review
see Ref. [45]). Careful consideration is required here,
however, because slow roll can break down if oscillations
in the potential are sufficiently rapid, in which case the
relevant equation must be solved directly. This occurs if the
amplitude is sufficiently large, or if the axion decay
constant f is small [41]. Since in this paper we focus only
on long-wavelength oscillations in the power spectrum, the
slow-roll approximation holds very well in the parameter
region of interest. The proof of this is given in Appendix A
for the interested reader.
The power spectrum for curvature perturbations in the

slow-roll approximation is given by Δ2
R ∼ H2

ϵ ∼ V3

V2
;ϕ
.

Normalizing the power spectrum by the scalar amplitude
at the pivot scale As, we find

Δ2
R¼AsN 2

×
½ð1−asinδÞð1−ϕk=ϕminÞpþasinðϕk

f þδÞ�3
½ð1−asinδÞð1−ϕk=ϕminÞp−1−ðϕmin

pf Þacosðϕk
f þδÞ�2 ;

ð4Þ

where ϕk corresponds to the scalar field value at the time
when the mode with wave number k left the horizon (to be
determined shortly), and

N ¼ 1 − a sin δ −
�
ϕmin

nf

�
a cos δ: ð5Þ

Note that at the pivot scale (ϕk ¼ 0), this reduces to
Δ2

R ¼ As as it should.
Meanwhile, the primordial tensor power spectrum

is given by Δ2
t ∼H2 ∼ V, and since it is normalized by

At ¼ rAs where r is the tensor-to-scalar ratio at the pivot
scale k�, we have

Δ2
t ¼ rAs

VðϕkÞ
V�

ð6Þ

where V=V� is given in Eq (3) [46].
Finally, we still need the mapping lnð kk�Þ → ϕk. In the

slow-roll approximation, this is given by

k
k�

¼
ffiffiffiffiffiffi
V
V�

s
exp

�Z
ϕ

0

���� V
V;ϕ

����dϕ
�
: ð7Þ

For a given set of parameter values, this integral can be
calculated and inverted numerically; however, this would
be computationally expensive to perform while the
parameters are being varied during the Markov chain
Monte Carlo (MCMC) procedure described in Sec. III.
Thus, an analytic approximation is desirable here, which
can be obtained as follows. Taking the log of Eq. (7), the
formula is easily integrated and inverted if we first consider
the no-oscillation case where a ¼ 0. This yields

ϕk;0 ≡ p
ϕmin

ln

�
k
k�

�
: ð8Þ

For the case where a ≠ 0, an approximate solution is
found by expanding in a ≪ 1 and keeping terms to first
order in aϕmin

nf . Upon integrating, the formula can be inverted
approximately by substituting Eq. (8) into the sine term,
producing the formula

ϕk ≈ ϕk;0 − aϕmin

p

�
sin

�
ϕk;0

f
þ δ

�
− sin δ

�
: ð9Þ
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Using this approximation in Eqs. (4) and (6), we find the
power spectrum differs from the exact numerical solution
by less than 1% over the range 2 < l < 2500 for all the test
cases considered (using the approximate formula l ≈ kxc
where xc ≈ 14100 Mpc is the comoving angular diameter
distance to last scattering).

III. SAMPLING AND PRIORS

We sample the model parameter space with an MCMC
method using the COSMOMC software package [47], which
has been modified to incorporate the power spectra in
Eqs. (4) and (6) along with the model parameters. For the
sampling we use the Metropolis-Hastings algorithm
extended by a “fast-slow” algorithm for efficiently sam-
pling nuisance parameters [48]. In addition to Planck data
[49], the likelihood includes WMAP 9-year polarization
data [50] as well as small-scale CMB data from the ACT
[51] and SPT surveys [52].

A. Choice of model parameters

To sample the parameter space, at first it would seem
most straightforward to vary the five model parameters in
Eq. (3) (ϕmin; p; f; a, and δ). However, if this is done
then the tensor-to-scalar ratio r cannot be varied freely,
but must be set according to the relation r ¼ 16ϵV , where
ϵV ¼ 1

2
ðV;ϕ

V Þ2 is the first potential slow-roll parameter. Since
r is the more interesting observable, we prefer to vary r
freely while using this constraint to fix the value of ϕmin as a
function of the other parameters. Substituting the potential
from Eq. (3), we find our constraint equation,

p
ϕmin

ð1 − a sin δÞ − a
f
cos δ ¼

ffiffiffi
r
8

r
: ð10Þ

While a gives the amplitude of the oscillation in the
potential, the power spectrum amplitude is more directly
observable in the CMB. By expanding Eq. (4) in the
amplitude a, it can be seen that the scalar power spectrum
amplitude is ≈2 aϕmin

nf (this dominates over a since ϕmin is
typically of order 10 while f will be of order 0.1). Now, if a
is exactly zero, then we see from Eq. (10) that p

ϕmin
¼ ffiffi

r
8

p
. In

practice, we will find that a must be small, so this will still
hold to a reasonably good approximation for realistic
values of a. With this in mind, we will define the
(approximate) power spectrum oscillation amplitude

b≡ 2a
f

ffiffiffi
8

r

r
; ð11Þ

where, again, typically b ≫ a. It should be emphasized that
our analysis will not assume that b ≪ 1. While it is true that
the power spectrum amplitude may differ somewhat from b
unless b ≪ 1, this does not preclude our using it as a

parameter since the amplitude is still proportional to b. In
practice, our inferred b values will satisfy b ≲ 1, but b will
not necessarily be very small.
Our power spectrum parameters to vary, then, are b, f, δ

and p, in addition to r and the scalar amplitude As.
Expressing Eq. (10) in terms of b, we find

p
ϕmin

¼
ffiffiffi
r
8

r �
1þ 1

2
b cos δ

1 − f
2

ffiffi
r
8

p
b sin δ

�
: ð12Þ

From the above formula it is obvious that as b → 0, we
recover p

ϕmin
≈

ffiffi
r
8

p
. Equation (12) will be used to eliminate

ϕmin in the power spectrum formulas [Eqs. (4) and (6)].

B. e-folding prior

The number of e-foldings from the time the mode k�
exits the horizon to the end of inflation is constrained
theoretically to lie within the approximate range 50–60. We
will therefore impose a corresponding prior on the number
of e-foldings, which is given by the integral

N ¼
Z

ϕe

0

���� V
V;ϕ

����; ð13Þ

where ϕe denotes the scalar field value at the end of
inflation determined by the solution to the equation
ϵVðϕÞ ≈ 1. In the case with zero amplitude (a ≈ 0), using
the expression for the potential in Eq. (3) one finds an
expression for the number of e-foldings N0,

ϕ2
min ¼

p
2
ð4N0 þ pÞ: ð14Þ

Even for nonzero amplitude, Eq. (14) holds approximately
true, so long as ϕmin is defined in terms of the amplitude
according to Eq. (12). Combining Eqs. (12) and (14), we
find an expression for the approximate number of e-
foldings N0:

N0 ¼ p

(
4

r

 
1 − f

2

ffiffi
r
8

p
b sin δ

1þ 1
2
b cos δ

!
2

− 1

4

)
: ð15Þ

To determine the exact number of e-foldingsN, the value
for ϕe and the integral in Eq. (13) must be calculated
numerically. In practice, the presence of the oscillations
cause N to differ from that determined by Eq. (14) only by
a small amount (typically N > N0 by less than 3), although
it depends on the oscillation amplitude and period. Since
the integral in Eq. (13) is computationally expensive to
calculate while varying parameters, we will instead use
Eq. (15) for the approximate number of e-foldings to
enforce a prior in N0 during the MCMC routine.
While Eq. (15) typically gives a reasonable approxima-

tion to the number of e-foldings, a catastrophe can occur
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near the end of inflation if the oscillations dominate over
the monomial term in the potential—in this case the
potential may cease to become monotonic and a local
minimum (false vacuum) can occur, rendering the number
of e-foldings effectively infinite [53]. This occurs if either
the amplitude b or the exponent p are too large; in the
latter case, the slope of the monomial term becomes very
shallow before inflation ends, allowing the oscillations
to dominate. To deal with this issue, we will refine the e-
folding prior during post-processing by performing the
numerical integral [Eq. (13)] to find N for each point in
the MCMC chain. This allows us to eliminate regions of
parameter spacewhere the number of e-foldingsN becomes
large or infinite.
We therefore obtain a flat prior in the number of e-

foldings as follows. During the MCMC routine, we sample
the parameter space with a flat prior in the approximate
number of e-foldings N0 over a liberal range from 40 to 70.
During post-processing, the exact number of e-foldings N
for each point in parameter space is calculated by first
finding the field value at the end of inflation ϕe via a grid
search. If a local stationary point is encountered before
inflation ends, then the number of e-foldings is effectively
infinite and thus the point is discarded. For the remaining
points, we compute N by performing the integral in
Eq. (13) numerically; points with N outside the canonical
range from 50 to 60 are then discarded. By this method, we
obtain a flat prior in the number of e-foldings N to good
approximation (this will be verified in Sec. IV).
One last subtlety remains in implementing the e-folding

prior: the parameter N0 is entirely determined by the model
parameters discussed in Sec. III A and thus cannot be
included as a separate parameter. We therefore impose the
N0 prior by making a transformation of variables. In
Sec. IV we will show that δ prefers to be small, and since
f
ffiffi
r
8

p
≪ 1, we can approximate Eq. (15) as

N0 ≈
4p
r

�
1þ 1

2
b

�−2
: ð16Þ

Thus, to a good approximation the number of e-foldings
depends only on the parameters p, r, and b, with very little
dependence on f and δ. Since N0 will not be one of our
primary model parameters, we enforce the e-folding prior
by starting with N0 as a parameter (with a given prior), then
making the transformation from N0 to b. We then derive
our prior in b from the prior in N0 and the resulting
Jacobian j∂N0=∂bj using Eq. (15). As we will see in
Sec. IV, b is fairly well constrained (apart from a small non-
Gaussian tail) and the Jacobian has only a minor effect on
the inferred parameters.

C. Priors in the model parameters

Apart from the amplitude bwhose prior is defined by the
e-folding constraint [Eq. (15)], we choose a flat prior in the

remaining model parameters (p, r, f, δ). Here we discuss
the preferred range of each parameter.
In order to sample the full range of possible phases and

amplitudes, the most straightforward approach would be to
vary δ over the range (−π; π) and allow b to vary from 0 to
some large amplitude bmax. However, the same can be
achieved by varying δ in the range (− π

2
; π
2
) and allowing b

to have a negative amplitude, since the point (b,δ ¼ π) is
equivalent to (−b,δ ¼ 0). We favor the latter approach,
since it avoids having a bimodal posterior distribution in the
phase shift δ. A negative amplitude corresponds to having a
positive running of the spectral index near the pivot scale,
and the posterior will run continuously from positive to
negative b values. We choose a liberal bmax ¼ 2 so our
allowed range in b will therefore be ð−2; 2Þ.
We can get a sense of the desired range in f by considering

the oscillation period in logl ∼ log kþ const. Combining
Eqs. (4) and (8), we find that the axion decay constant f is
related to the period in log k by

f ¼ ln 10
2π

�
p

ϕmin

�
Plog k: ð17Þ

Using Eq. (14), this becomes

f ≈ 0.26Plog k

ffiffiffiffiffiffi
p
N0

r
: ð18Þ

From the largest scales down to the Silk damping tail
probed by ACT/SPT, observable primary anisotropies in
the CMB span a range of l ≈ 2–3500, corresponding to
Δ logl ≈ 3. At higher multipoles, there is no strong
preference for negative running in either the Planck or
ACT data (although SPT does prefer negative running at
high l to some extent—see Ref. [55]). We therefore expect
at worst a mild suppression of power at high l. In order to
have suppression at low l without an equally large
suppression at higher l, the entire range of multipoles
Δ logl ∼ 3 should fit less than roughly three quarters of a
full period; in other words, the period Plogl ¼ Plog k should
be roughly greater than ∼4. For p running from 0.5 to 4 and
50–60 e-foldings, we find from Eq. (18) that f should be
larger than ≈0.1.
On the other hand, a large period of oscillation would

require a large amplitude to achieve the desired suppression
of power at low l, and this would approach the constant
running limit (over CMB scales) that has been considered
before. For f ≈ 1, the oscillation period is at least several
times larger than the relevant l range (unless p ≪ 1) such
that the running is effectively constant in this regime. As we
will see in Sec. IV however, regions of parameter space
with a large period Plog k are forbidden by the e-folding
constraint unless the amplitude b≲ 1, and hence the
running of the spectral index is small (see also
Appendix C). Thus, allowed solutions with f ≳ 1 tend
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to have small running and cannot fit the low-l power
spectrum significantly better than the usual power-law
power spectrum model. In Sec. IV we will show that this
expectation is correct and thus the constraints do not
change significantly when f is extended up to 2 (see
Fig. 4). We therefore choose the fiducial range to
be f ∈ ð0.1; 1Þ.
Given that the period Plog k is more directly observable in

the power spectrum than f is, it might be tempting to use
Plog k as our model parameter instead of f. We choose not to
do this, for two reasons. On the theory side, a super-
Planckian axion decay constant f ≳ 1 is difficult to imple-
ment in the underlying string theory; in fact f ≪ 1 seems
necessary to embed the corresponding model, although it
may be possible for multiple axions to combine to produce
a larger effective axion decay constant [56,57]. Given these
difficulties, we prefer to impose an upper limit f ≤ fmax,
with fmax ¼ 1 being the fiducial value. This does not
translate to a clean upper bound in Plog k, however, since
from Eq. (18) it is possible to have f ≳ 1 even if Plog k is
relatively small provided p is large enough.
The second reason for choosing f as our parameter

instead of Plog k is more subtle. As we will see in Sec. IV,
the posterior distribution is multimodal and there exist
regions of parameter space which fit the high-l likelihood
at the expense of lower l. For example, if p is made small,
by Eq. (18) the period becomes large unless f is also small.
However in the latter case, we find another mode emerges
which has negligible running and only fits the high-l
likelihood (for discussion see Appendix C). Since we are
primarily interested in improving the fit at low as well as
high multipoles, by imposing a lower bound fmin ¼ 0.1
we avoid this spurious mode entirely. Thus, our fiducial
range in f is (0.1,1). In Sec. IV C wewill consider the effect
of varying the prior of f, including the allowed range
(see Fig. 4).

IV. RESULTS

A. Constraints on the oscillation parameters b, δ, f

After sampling the parameter space with the data and
priors discussed in Sec. III, we display marginal posterior
probability distributions in the model parameters in a
“triangle plot” in Fig. 1. Starting with the one-dimensional
posteriors, it is clear that the oscillation amplitude b and
phase shift δ have distributions that are well peaked, albeit
with significant non-Gaussian tails. By contrast, the axion
decay constant f is very poorly constrained, with a mild
preference for f ≈ 0.5 but largely prior dominated.
Before proceeding, it is important to verify that the

constraints on the spectral index ns and running α� at the
pivot scale k� ¼ 0.05 Mpc−1 are consistent with those
obtained from the usual power-law spectrum and constant
running models. To this end, analytic expressions for
ns and α� are derived in Appendix B and given in

Eqs. (B2) and (B4), respectively. Using these formulas
we plot the corresponding derived posteriors in Figs. 2(a)
and 2(b). The probability is peaked around ns ≈ 0.96,
entirely consistent with the base Planck model; likewise,
the allowed running α� lies in the approximate range
ð−0.03; 0Þ, consistent with the usual constant running
model. In Fig. 2(c) we plot a posterior in the number of
e-foldings N [calculated from Eq. (13)], which shows N to
be entirely dominated by the chosen flat prior in the fiducial
range 50–60. Finally, in Fig. 2(d) we plot a posterior in the
oscillation period Plog k [using Eq. (17)], which is well
peaked in contrast to the constraint on f.
Returning to the model parameter constraints, the struc-

ture of the posterior distribution can be better understood
from the joint two-dimensional posteriors in Fig. 1. In the f
vs b plot, one sees a mild correlation in f and b, particularly
for f ≲ 0.6. This can be understood in terms of the running
of the spectral index: if the period (corresponding to f) is
increased, one must also increase the amplitude b to keep
the running α� constant [this can also be seen in the formula
for α� in Eq. (B4)]. The correlation is not very tight,
however, because the required running depends on r: the
greater the tensor contribution at low l, the greater the
(negative) running must be to adequately suppress a
corresponding amount of low-l scalar power.
In Fig. 1, we can see in the b vs δ plot that the distribution

is obviously multimodal, where outside the maximum
probability region there are three separate “wings.” Two
of the wings run off to large or small δ, while the amplitude
b is very small or even negative. The third wing runs off
to high amplitudes b. The multimodal structure is discussed
in further detail in Appendix C; here we will simply note
that in each of these wings, f takes on either very small or
large values (as expected since b and f are correlated). If
one stays within the high-probability region, f is somewhat
better constrained than the f posterior in Fig. 1 would
suggest.

B. Best-fit model

Next, to find the best-fit point by minimizing the
likelihood requires some care, because the exact number
of e-foldings N is computationally too expensive to
perform during the minimization procedure. We therefore
obtain the best-fit point by factoring in a prior in N0 [given
by Eq. (15)], where in this case our prior is chosen to be
strongly peaked (a Gaussian with dispersion σN0

¼ 0.5)
about a particular value N0;i. This procedure is performed
over a grid of 16 valuesN0;i regularly spaced from 45 to 65.
After finding each best-fit point, the exact number of e-
foldings N is calculated for each; the best-fit point with the
highest likelihood value that remains within the range N ∈
½50; 60� is chosen as the global best-fit point.
The resulting best-fit parameter values are given in the

first row of Table I. Errors are given for the inflation
parameters r, p, b and δ, determined by the 16% and 84%
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percentiles of the posterior probability distribution in each
parameter.
In Fig. 3 we plot the CMB angular power spectrum over

the multipole range 2 ≤ l ≤ 2500 for the best-fit axion
monodromy model (dark line) compared to the base
Planck model (red line; defined as the ΛCDM model with

a power-law spectrum, i.e. zero running). Note that for
l≳ 30, the two models are indistinguishable, while at lower
multipoles the axion monodromy power is suppressed by up
to ≈20% compared to the base Planck model. This sup-
pression is a consequence of the running spectral index
coming from the sinusoidal term in the potential [Eq. (3)].

FIG. 1 (color online). Posteriors in the inflation model parameters (p, b, δ, f) discussed in Sec. III A and the tensor-to-scalar ratio r at
the pivot scale k� ¼ 0.05 Mpc−1. Contours enclose 68% and 95% of the total probability in each joint posterior. Note the small
probability for r ¼ 0.2, which lies just outside the 99% confidence region. The correlation between the exponent p and r is a
consequence of the e-folding constraint [Eq. (15)]. In contrast to the amplitude b and phase shift δ which have peaked distributions, the
axion decay constant f is poorly constrained although it exhibits a mild correlation with b. Finally, note that the distributions in r and p
exhibit very little dependence on f, and are thus fairly insensitive to the assumed prior in f.
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C. Constraints on the tensor-to-scalar ratio r
and potential parameter p

Marginal posteriors in p and r are shown in Fig. 1.
Strikingly, the BICEP2 result r ¼ 0.2 lies just outside
the 99% confidence region, while the highest-probability
r value is ≈0.06, similar to the best-fit value r ≈ 0.07
(Table I). Likewise, p > 3 lies outside the 95% confidence
region.
From the e-folding constraint given by Eq. (15) it is

apparent that the exponent p and the tensor-to-scalar ratio
r should be strongly correlated, provided the amplitude b
does not get too large. The joint posterior in p and r
shown in Fig. 1 shows that this is indeed the case; a

high r value is correlated with a large exponent p. The
width of the posterior around this correlation is deter-
mined by the allowed number of e-foldings, and also the
range of b values.
Since the axion decay constant f is poorly constrained, it

is important to check whether these results are sensitive to
the chosen prior on f. From the r vs f and p vs f plot in
Fig. 1, one can anticipate that the inferred probability of r
and p are weakly dependent on f, since essentially no
correlation with f is seen for either parameter. To verify
this, in Fig. 4 we plot posterior distributions in r for four
different assumed priors in f: a flat prior in the fiducial
range f ∈ ð0.1; 1Þ (solid line), a flat prior in the ranges
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FIG. 2. Marginal posterior probability in four derived parameters. (a) The spectral index at the pivot scale k� ¼ 10 Mpc−1. The total
spectral index ns (solid line) is plotted together with the unmodulated spectral index ns;0 (dashed line) which excludes the oscillatory
part. (b) Running of the spectral index α� at the pivot scale. (c) The number of e-foldings N from the time that mode k� left the horizon,
to the end of inflation. (d) Period of oscillation in the power spectrum in terms of log10 k.

TABLE I. Best-fit axion monodromy models.

r p b δ f 109As H0 Ωm Ωb τ N α� ns ns;0

Best fit 0.07þ0.05−0.04 1.55þ0.56−0.92 0.44þ0.24−0.45 0.30þ0.32−0.31 0.53 2.209 67.9 0.307 0.048 0.093 58.5 −0.014 0.959 0.979
r ¼ 0.13 0.13 2.37 0.41 0.20 0.58 2.216 68.2 0.304 0.048 0.094 59.9 −0.020 0.960 0.970
r ¼ 0.19 0.19 3.08 0.31 0.12 0.54 2.210 68.3 0.303 0.048 0.093 51.9 −0.025 0.960 0.961
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f ∈ ð0.05; 0.25Þ (dashed line) and f ∈ ð0.1; 2Þ (dot-dashed
line), and finally a log prior in f over the fiducial range. As
can be seen in the figure, the inferred probability in r (and
likewise p) is quite robust to changes in the assumed f
prior. Since the other model parameters (b,δ) are fairly well
constrained, our result for r is thus quite insensitive to the
priors in the axion model parameters.
Why does the data prefer a small (but nonzero) r value?

Generally, higher r means a larger tensor contribution to
TT anisotropies at low l. This exacerbates the deficit in
power at low l, and thus requires a higher negative running

to make up for it. However, the likelihood at high l shows
no strong preference for negative running [1], and the fit
worsens at high l as the running increases. Thus, the fit
generally worsens as r is increased toward large values.
This is not the whole story however, because r is signifi-
cantly more constrained in the axion monodromy model
compared to the usual constant running model, for which
r < 0.26 at the 95% confidence level [1]. This can be seen
in Fig. 5, where we plot a joint posterior in r vs ns for the
constant running model (red) and the axion monodromy
model (blue). While both models prefer a similar ns, r is
more constrained in axion monodromy: the point r ¼ 0.2,
ns ≈ 0.96 lies outside the 95% C.L. contour for axion
monodromy, while it is well within the same contour for the
constant running model.
Additionally, note from Fig. 5 that r prefers to be zero in

the constant running model, whereas the axion monodromy
model has its peak probability near the best-fit r ≈ 0.07.
The reason why axion monodromy does not prefer r ¼ 0 is
simple: one can see from Eqs. (B2) and (B4) that ns and α�
are dependent on r, whereas in the constant running model,
these parameters can be chosen independently of r. The
best-fit constant running model has a zero tensor contri-
bution (r ¼ 0) and running α ≈ −0.012. This shows that
having a nonzero tensor contribution cannot be entirely
made up for by negative running—even if running is
allowed, the likelihood itself still prefers r ¼ 0. In the
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FIG. 3 (color online). Best-fit TT angular power spectrum for
the base Planck model with zero running (dark line), and axion
monodromy model (red line). Error bars are shown for
2 ≤ l < 50. These best-fit spectra are determined using a
combination of Planckþ lensingþWPþ high-l data.
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FIG. 4 (color online). Posterior distribution in the tensor-to-
scalar ratio r for four different priors in f: three uniform priors
covering different ranges in f (solid, dashed, dot-dashed lines)
and a log prior in f (dotted line). The inferred probability in r
(and likewise p) is quite robust since it is insensitive to the
assumed prior in f, while the other model parameters (b; δ) are
fairly well constrained.

FIG. 5 (color online). Joint posteriors in the spectral index ns
and the tensor-to-scalar ratio r, both evaluated at the pivot scale
k ¼ 0.05 Mpc−1. Constraints (68% and 95%) are shown for the
constant running model (red) and axion monodromy model
(blue). While the constant running model prefers r ¼ 0, in axion
monodromy the highest probability occurs for r ≈ 0.07 because a
nonzero r value is required to fit the running and spectral index
well. Note also the constant running model allows for a higher r,
primarily because it is not subject to the e-folding constraint.
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axion monodromy model however, this solution is impos-
sible, since the running is proportional to r according to
Eq. (B3). Thus, r ≈ 0 would necessarily imply negligible
running, and likewise the spectral index would be a poor fit.
Instead, the best-fit axion monodromy model settles for an
r value (≈0.07) which is high enough to give the necessary
running and spectral index, but low enough that the tensor
contribution does not spoil the fit too much. This com-
promise necessarily results in a slightly worse fit at low l
compared to the constant running model.
We still need to understand why axion monodromy is

more restrictive at the large-r end compared to constant
running. To investigate this, Table II shows the change in χ2

for four models compared to the base Planck model with
zero running (α ¼ 0). The four models are the best-fit axion
monodromy model (for which r ≈ 0.07), the best-fit con-
stant running model (for which r ¼ 0), and the same two
best-fit models when r is fixed to 0.19 rather than varied.
Note that while the total χ2 is decreased by a similar amount
in both best-fit models, χ2 is increased in the r ¼ 0.19
models, with the axion monodromy r ¼ 0.19 giving the
worst fit. To understand why this is the case, we must break
this down into the various likelihoods representing different
multipole ranges.
Starting with the high-l likelihoods, note that while the

fit to the CAMspec likelihood (comprising the majority of
multipoles in the Planck data) is barely affected for the
general best-fit models, the fit is dramatically worsened in
the models for which r ¼ 0.19. This is a consequence of the
aforementioned high running required to fit the low-l
likelihood well for large r. The same is true (though not as
dramatically) for the ACT/SPT likelihoods. For the
Commander likelihood (low l), on the other hand, all
models show an improved fit, but the constant running
model gives a significantly better fit; this disparity is greater
for the r ¼ 0.19 models. In the following section we
investigate the nature of this disparity more closely and
why it worsens with large r.

D. Comparison to constant running model at low
multipoles

In Fig. 6 we plot the best-fit angular TT power spectrum
for 2≲ l≲ 50 for the base Planck model with zero running
(red solid line), axion monodromy (blue dashed line), and

constant running (magenta dotted line) models. The black
error bars give the errors in each individual multipole. Note
that while both models achieve similar reduction in power
at very low l, the axion monodromy model achieves very
little reduction in power for l≳ 25. The deficit in power in
the data (points with error bars) is most noticeable over the
range 20≲ l≲ 30, and in this range the constant running
model is a significantly better fit.
Why does the constant running model fit the low-l

likelihood better? There are a few reasons. As discussed in
the previous section, axion monodromy does not have the
freedom to choose r and α, ns independently. In particular,
r ¼ 0 is disfavored because it produces a negligibly small
running and incorrect spectral index. Unfortunately how-
ever, a nonzero r slightly worsens the fit at low l by
including a tensor contribution.
Even if r is fixed to the same value in both models,

however, the constant running model achieves a better fit at
low l. In Fig. 7 we plot the primordial scalar power
spectrum for axion monodromy models (solid lines) and

TABLE II. Δχ2 compared to best-fit base Planck model (with α ¼ 0).

Best-fit model Best-fit constant α Best fit (r ¼ 0.19) Best-fit constant α (r ¼ 0.19)

Lowlike (WMAP Pol.) −0.5 0.1 −1.1 −1.0
Lensing 0.8 0.9 1.0 1.2
Commander (2 ≤ l < 50) −1.8 −2.5 −0.6 −1.7
CAMspec (50≲ l ≲ 2500) 0.2 0.1 1.5 2.2
ACT/SPT (600≲ l≲ 3500) −0.5 −0.2 0.2 −0.1
Total −1.7 −1.6 1.0 0.6
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FIG. 6 (color online). Best-fit CMB TT angular power spec-
trum at low multipoles for the base Planck model with zero
running (red solid line), the axion monodromy model (blue
dashed line), and the constant running model (magenta dotted
line). Although axion monodromy and the constant running
model exhibit a similar suppression of power at the lowest
multipoles, the latter has a greater suppression of power in the
range 10 < l < 50, partly because there is no tensor contribution
(r ¼ 0) and because it is not subject to the e-folding constraint.

QUINN E. MINOR AND MANOJ KAPLINGHAT PHYSICAL REVIEW D 91, 063504 (2015)

063504-10



constant running models (dashed lines), with r fixed to 0.07
(dark lines) and 0.19 (red lines) in each case. For either r
value, we find that the constant running model achieves
greater suppression of power at low k (and hence, low l).
For the r ¼ 0.19 case we need a much greater suppression
compared to r ¼ 0.07 to make up for the additional tensor
power. However, it is evident that the axion monodromy
r ¼ 0.19 model achieves much less suppression at low k
compared to the corresponding constant running model.
This occurs because the r ¼ 0.19 model has a relatively
high exponent p ≈ 3, as required by the e-folding con-
straint [Eq. (15)]. As a result, the relatively large monomial
term “softens” the magnitude of the running at low k. The
higher the p (and hence, r), the more the running is
mitigated at low k. This is the principle reason why axion
monodromy provides a worse fit compared to constant
running when r is large.
Even for relatively small amplitudes, as r is increased to

ever higher values, p must also be high [Eq. (15)].
However, sufficiently high p solutions lead to a very large
or infinite number of e-foldings due to the appearance of a
local minimum in the potential from the oscillation (unless
the amplitude b is very close to zero), as discussed in
Sec. III. This effect excludes nearly all regions of parameter
space where p > 4, and a large fraction of parameter space
where p > 3. Thus, the direct effect of the oscillations on
the total number of e-foldings N restricts the allowed
parameter space for large r even further.

E. Comparison to constant running model
at high multipoles

As Table II shows, axion monodromy actually improves
the fit for the ACT/SPT likelihood (high l) compared to the
constant running model. We can understand why this is the
case from the analytic expression for ns at the pivot scale
k ¼ k� (derived in Appendix B). The spectral index ns has
two contributions,

ns ≈ ns;0 þ Δns; ð19Þ

where ns;0 is the contribution from the monomial term in
the potential (i.e. the unmodulated spectral index), while
Δns is the contribution from the sinusoidal term. By
comparing to Eq. (B2) and substituting the approximate
e-folding constraint [Eq. (16)], we find that

ns;0 ¼ 1 − r
8

�
1þ 2

p

�
ð20Þ

≈ 1 − r
8
− 1

N0

ð21Þ

while for the oscillating term we have

Δns ≈ − b
f

ffiffiffi
r
8

r
sin δþ r

4

�
1 − 1

p

�
b cos δ: ð22Þ

Generally, the first term in Eq. (22) dominates over the
second term provided that the phase shift δ is not very small
or negative, since b and f are of a similar order. Given
that the data prefers a positive δ, we may therefore expect
Δns < 0, and therefore ns;0 should be at least slightly
higher than ns.
In Fig. 2 we plot derived posteriors in ns and ns;0 using

Eqs. (19), (20), and (22). The constraint in ns (ns ≈ 0.96) is
quite similar to that obtained in the base Planck model [1],
which is expected since it is well constrained by the data.
By contrast, the best-fit value for ns;0 is ≈0.98, which is
strikingly high. This follows from Eq. (21): since the
number of e-foldings is restricted to the approximate range
50–60, the lower the r value (and the corresponding
p-value), the higher ns;0 must be. Since the best-fit model
has r ≈ 0.07, this relatively low r accounts for why ns;0 is
so high.
The question remains: why does the data at high l prefer

such a high ns;0? According to Table I, the best-fit axion
monodromy model shows the greatest improvement in χ2

for the ACT/SPT likelihood. We have seen that at high
multipoles, the data shows no strong preference for a
running spectral index, with ns ≈ 0.96 preferred even at
higher l. This is also largely true when the high-l data from
ACT/SPT is factored in, although it should be noted that
ACT and SPT are in tension here; SPT prefers negative
running while ACT does not [55]. Thus, while negative
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FIG. 7 (color online). Best-fit scalar power spectrum for axion
monodromy (solid lines) vs constant running models (dashed
lines), all normalized to 1 at k ¼ 0.05 Mpc−1 for the sake of
comparison. For r ¼ 0.07 (dark lines), axion monodromy
achieves only slightly less suppression at low k (corresponding
to low l) compared to the constant running model. For r ¼ 0.19
(red lines) however, axion monodromy has milder negative
running at low k and thus cannot achieve enough suppression
to make up for the tensor contribution at low l. This is a
consequence of the e-folding constraint, which enforces a large
exponent p and limits the oscillation amplitude b of the power
spectrum.
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running improves the fit at low l, it worsens the fit at the
high-l end unless the running is relatively small. In the
best-fit axion monodromy model however, the running
diminishes in magnitude as one proceeds to smaller scales
(higher l), and hence the spectral index Δns is slightly
higher at high l. This is why the relatively high value of
ns;0 is preferred, since it allows a smaller running at high l.
A similar conclusion regarding a high ns;0 was reached in

Ref. [58], in which their best-fit solution had ns;0 ≈ 1 for
the case where they incorporated the BICEP2 constraint
r ∼ 0.2. However, in their work the full inflation model was
not used; the spectral index ns;0 was chosen completely
independently of r, and no e-folding constraint was
applied. Equation (21) shows that for r ¼ 0.2, ns;0 cannot
be larger than 0.975, and this upper limit is only possible in
the limit N0 → ∞. From this it can be concluded that while
the high-l data prefers a high ns;0, this is forbidden by the
e-folding constraint unless r is relatively small. Indeed, the
r ¼ 0.19 axion monodromy model in Table I has ns ≈ ns;0
and the fit is actually slightly worsened at the high-l end.

F. Can the number of e-foldings be amended to allow a
higher tensor-to-scalar ratio?

While the e-folding constraint disfavors high r values,
one might question whether our model might be amended
so that the number of e-foldings satisfies the constraints
even for high r. In particular, our model assumes that the
oscillation amplitude of the potential a remains constant all
the way to the end of inflation. For this reason, solutions
with sufficiently large r (and hence p) tend to dramatically
inflate the number of e-foldings near the end of inflation,
excluding these solutions. However, if the oscillation
amplitude were to diminish before the end of inflation,
these high-r solutions could in principle still satisfy the
e-folding constraint.
Furthermore, from the point of view of the underlying

microphysics in the axion monodromy model, there is no
necessary reason to expect the modulation parameters to
remain constant during inflation. On the contrary, these
parameters are determined by the values of dynamical
moduli fields (e.g. related to the size and shape of the
compactified extra-dimensional manifold) which might
well evolve with time as inflation progresses. Of course,
if the oscillation amplitude were to increase with time, the
resulting constraint on r would be even stricter. However it
is reasonable to consider the case where the oscillation
amplitude dies out well before the end of inflation. To
consider this, we note that the approximate e-folding
parameter N0 [Eq. (15)] gives the number of e-foldings
without the direct contribution of the sinusoidal oscillation;
further, by far the largest contribution of the oscillation to
the number of e-foldings N occurs at scales smaller than
that probed by the CMB. This is particularly the case for
solutions with high p (and hence, high r) values. Therefore,
we can use N0 as a conservative estimate of the number of

e-foldings in the case where the oscillations die out at
scales smaller than that of the CMB.
With this in mind, we apply a flat prior in the number of

e-foldingsN0 ∈ ð50; 60Þ to approximate the case where the
amplitude dies out at smaller scales. The resulting con-
straint on r is shown in Fig. 8, plotted next to the fiducial
result which uses a flat prior in N. As can be seen, there is
greater probability for large r, but even in this case r > 0.2
is disfavored at the 95% C.L., for the same reason outlined
in the previous section: the large amplitude (and low p)
required to achieve enough suppression of power at low l is
forbidden by the e-folding constraint [Eq. (15)].
In spite of the above difficulties, certainly there are ways

to decrease the number of e-foldings to allow for higher r.
For example, if the exponent p switches to a lower
value at small scales, inflation would end more quickly
and the number of e-foldings would be decreased. From the
standpoint of single-field inflation this seems highly
unnatural, although such a transition might naturally occur
if multiple fields contribute to the effective inflaton
potential (for an example of this scenario see Ref. [59]).
From the Occam’s razor point of view however, it seems
more likely that the tensor-to-scalar ratio is simply smaller
than the BICEP2 result suggests, particularly given the
concerns about contamination by dust polarization.
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FIG. 8. Posterior in r assuming two different e-folding priors.
The solid line corresponds to a flat prior in N, which gives the
number of e-foldings under the assumption that the oscillation in
the potential continued with undiminished amplitude to the end of
inflation. The dotted line corresponds to a flat prior in N0, which
approximates the number of e-foldings in the scenario that the
oscillation in the potential died out rapidly after the modes
observed in the CMB exited the horizon. The former scenario
gives smaller probability for large r values, since it excludes
regions of parameter space for which oscillations dominate near
the end of inflation, resulting in a large or infinite number of e-
foldings. However, r ¼ 0.2 is located outside the 99% confidence
region for the flat N prior, and outside the 95% confidence region
for the flat N0 prior and thus is disfavored in either scenario.
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V. CAN AXION MONODROMY ALLEVIATE THE
SMALL-SCALE PROBLEMS OF ΛCDM?

A. Implications for dwarf galaxy formation

We have shown that oscillation in the power spectrum
can allow for a significant tensor-to-scalar-ratio, alleviating
the tension with the standard ΛCDMþ power-law spec-
trum model at very large scales, while still satisfying the
e-folding requirement. However, there are also apparent
departures from ΛCDM for small-scale structure which can
be mitigated by the same mechanism. First, there is the
“missing satellites” problem, which refers to the fact that
cosmological dissipationless N-body simulations predict a
much larger number of dwarf satellite galaxies around the
Milky Way than are actually observed [60].
The second problem is that in the centers of baryon-poor

galaxies the measured dark matter density is systematically
lower than predicted by dark matter-only ΛCDM simu-
lations. In many cases, such as in low surface brightness
galaxies and field dwarfs with rotation [61–66], this lower
density is due to the presence of a constant dark matter
density core (the so-called “core-cusp” problem). The
problem seems to extend to the lowest masses, and recent
work with dwarfs in the Local Group [67–69] and further
away [70] show that they are also systematically under-
dense compared to simple expectations from ΛCDM, the
so-called “too-big-to-fail” problem [71].
It is possible that the simple ΛCDM expectations are

incorrect and feedback from supernovae [72], reionization
[73], and other effects of star formation [74] all change these
expectations dramatically. There is no consensus regarding
either of these two problems. Reionization will prevent
small satellites from being bright enough to be observed but
it is unclear whether this by itself explains the luminosity
distribution of the known satellites. There areΛCDM-based
solutions for the second problem but none that alleviate the
problem for all the different types of galaxies.
Here we ask whether the reduced power on small scales

alleviates some of these issues. If the matter power
spectrum is suppressed at the scales k ∼ 10 Mpc−1, then
this would change the formation of dwarf galaxies. Halos
would collapse at lower redshift, resulting in lower central
dark matter densities. This reduced power may also change
the way baryonic feedback operates in low-luminosity
systems. This reduction in power has been considered in
light of the BICEP2 result: if one allows a constant negative
running α ≈ −0.02 in the power spectrum to allow for the
high tensor-to-scalar ratio r ¼ 0.2 reported by BICEP2, the
authors of Ref. [75] found using N-body simulations that
the too-big-to-fail problem is significantly alleviated,
although not eliminated entirely (it should be noted that
baryonic affects are not included in this work). The
reduction in power at dwarf scales in this “BICEP2
cosmology” [76] is approximately 40% compared to vanilla
ΛCDM. However, as mentioned before, a constant running

violates the e-folding constraint. Since the model consid-
ered in this work achieves significant running with the
requisite amount of e-foldings, we consider here the
suppression of power at small scales from our model.
Again, we do not assume the BICEP2 result, but rather
consider three different r values: 0.07, 0.13, and 0.19.
In Fig. 9 we plot the relative power obtained by dividing

the matter power spectrum in our model by the best-fit
Planck power spectrum with zero running. In this plot we
use the fitting functions of Ref. [77] for the transfer
function. For each r value considered, we find the best-
fit solution using the same method outlined in Sec. IV,
except with r fixed to the given value. We plot the best-fit
cases whereN lies in the fiducial range 50–60. Note that for
each case, the difference in power compared to the base
Planck model comes not only from the primordial power
spectrum parameters, but also because of differences in the
transfer function which is sensitive to cosmological param-
eters, particularly Ωm and H0. For r ¼ 0.19 we found that
most of our solutions had p > 3 and thus in many cases, a
local minimum formed in the potential rendering the
number of e-foldings infinite. We did find one solution
in the desired range, which is shown in the figure.
At dwarf scales (k ∼ 10 Mpc−1), we find an 22%

reduction in power for r ¼ 0.07, a 28% reduction for
r ¼ 0.13, and a 33% reduction for r ¼ 0.19. This is not as
drastic a reduction as in the BICEP2 cosmology (≈40%),
and recall in addition that r ¼ 0.19 is disfavored by the
Planck data (Fig. 4). Nevertheless, a reduction in power of
∼20–30% is entirely consistent with the data and e-folding
constraint, and may be expected to alleviate the too-big-to-
fail problem, particularly when considered in combination
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FIG. 9 (color online). The ratio of the matter power spectrum of
axion monodromy compared to that of the base Planck model.
The curves shown correspond to the best-fit model with the
tensor-to-scalar ratio r fixed to 0.07 (dark line), 0.13 (red dashed
line), and 0.19 (blue dotted line). Note there is a reduction in
power of ∼20–35% at k ¼ 10 Mpc−1, roughly the scale relevant
to dwarf galaxy formation.
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with baryonic feedback effects. One can also see from
Fig. 9 that even greater suppression occurs at smaller
scales, and this has a bearing on the missing satellites
problem. In addition, the corresponding suppression of
substructure would substantially reduce the expected dark
matter annihilation signal [75].

B. Comparison to power spectrum constraints
from Lyman-α forest data

Aside from dwarf galaxies, another approach to detect
oscillations in the power spectrum is to observe at high
redshift where the matter power spectrum is close to linear
at small scales. The Lyman-α forest observed in quasar
spectra can reveal structure down to ∼100 kpc scales in the
approximate redshift range z ¼ 2 to z ¼ 4, which is in the
quasilinear regime. Past studies have found constraints on
the running of the spectral index, though not with the
accuracy required for a positive detection of running of
order α ≈ −0.01 [78,79]. However, more recent quasar
observations by the Baryon Oscillation Spectroscopic
Survey (BOSS) Collaboration [80,81] have dramatically
enlarged the available data set of quasars with measured
Lyα forest power spectra. In Fig. 10 we plot inferred
probability contours in the amplitude Δ2

L and slope neff
of the linear matter power spectrum at z ¼ 3 and k ¼
0.009 km=s (corresponding to roughly 1 Mpc scales). The

grey contours are from Ref. [82], while the green contours
are from the more recent data from Ref. [83]. The red and
blue contours are from derived posterior probability dis-
tributions for axion monodromy and the base Planck model
respectively. From this figure it is evident that while the
older data cannot distinguish between the two models, the
new BOSS data favors axion monodromy: the base Planck
model prediction for neff is more than 2-sigma apart from
that of Ref. [83], while the axion monodromy prediction is
consistent to within 1-sigma. More generally, this com-
parison indicates that a negative running in the power
spectrum may now be favored by recent Lyα forest data, at
the level required to accommodate a substantial tensor-to-
scalar ratio.
There are a number of other approaches to probing the

small-scale power spectrum besides Lyman-α forest data.
Down the road, 21-cm observations are a promising
approach to constraining the power spectrum at even
smaller scales [84] since, unlike the Lyman-α forest, much
higher redshifts can be probed where the data is not as
limited at large k by thermal broadening. In the meantime,
resolving the discrepancy between SPT and ACT on
whether negative running is preferred in the CMB at high
l will be an important step. Within the coming decade,
advanced redshift surveys such as WFIRST [85] and LSST
may offer the best window onto the power spectrum at
scales smaller than CMB [58], with the caveat that galaxy
bias must be properly taken into account. In any event, a
nontrivial primordial power spectrum remains an intriguing
possibility for alleviating small-scale problems. This will
be true particularly if alternate forms of dark matter (warm
dark matter, self-interacting) are ruled out as solutions to
the too-big-to-fail and/or missing satellites problems.

VI. CONCLUSIONS

In this paper we have investigated whether inflation
models can allow for a large gravitational wave background
while remaining consistent with the CMB power spectrum
at horizon scales (low l). We have shown that axion
monodromy inflation accomplishes this naturally through
Planck-scale corrections, producing a gentle oscillation in
the inflaton potential [Eq. (2)]. This generates a running
spectral index in the power spectrum while still achieving
enough e-foldings to solve the horizon problem, in stark
contrast to the usual constant running model. We have fit
our model to a combination of Planck, ACT, SPT, and
WMAP low-l polarization CMB data together with a prior
on the number of e-foldings. The best-fit model parameters
are given in Table I, while inferred probability distributions
in the inflation model parameters are shown in Fig. 1.
We find a best-fit tensor-to-scalar ratio r ¼ 0.07þ0.05−0.04 and

thus the predicted imprint of gravitational waves on the
CMB is within reach of B-mode polarization experiments.
It is possible that these primordial B-modes have already
been observed by the BICEP2 experiment; however if one

FIG. 10 (color online). Constraints on the amplitude Δ2
L and

slope neff of the linear matter power spectrum at z ¼ 3 and k ¼
0.009 ðkm=sÞ−1 where k is given in velocity space. Grey contours
are from Lyman-α forest data analyzed in Ref. [82]; green
contours are from Lyman-α forest data from the BOSS survey
[80]; red and blue contours are from the marginalized posterior
probability for the axion monodromy model and the base Planck
model (with zero running), respectively. Note that the more recent
BOSS data are in tension with the base Planck model at greater
than 2-sigma, whereas they are consistent with axion monodromy
to within 1-sigma.
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assumes negligible foreground contamination, the BICEP2
result r ≈ 0.2 is disfavored at the 99% confidence level.
This is primarily a consequence of the e-folding constraint
and the requirement to fit the spectral index at high l in
addition to the low-l power spectrum. Since a running
spectral index is the most straightforward way to reconcile
the BICEP2 result with Planck, it is significant that
attempting to implement running in the underlying inflation
theory disfavors such a large r, as we have shown here.
While it is possible that a dramatic change in the inflaton
potential at small scales (high k) can alter the e-folding
constraint to allow for a higher r, we find it more likely that
the tensor-to-scalar ratio is simply smaller than the best-fit
BICEP2 result suggests, particularly in light of the uncer-
tainties about foreground contamination by dust polariza-
tion in the BICEP2 field.
In addition to the large gravitational wave amplitude, the

(best-fit) axion monodromy model makes two correspond-
ing predictions. First, despite the additional tensor power
on horizon scales, the overall power at low multipoles is
reduced as a consequence of the running spectral index,
providing a better fit to the CMB power spectrum at large
scales. The second prediction is that the matter power
spectrum is suppressed at the scale of dwarf galaxies, and
thus axion monodromy can alleviate some of the small-
scale problems of ΛCDM—in particular, the too-big-to-fail
and missing satellites problems. We find that our best-fit
models reduce the power at scales relevant to dwarf galaxy
formation (k ∼ 10 Mpc−1) by as much as ∼35% depending
on the assumed r value, with the greatest reduction
achieved at large r. However, 20–30% suppression is more
likely, which will alleviate the too-big-to-fail problem and
may solve it entirely when combined with baryonic feed-
back effects, as discussed in Ref. [75]. Additionally, we
find that axion monodromy is preferred by recent Lyα
forest data over the base Planck model without run-
ning (Fig. 10).
If axion monodromy (or a similar oscillating large-field

model) accounts for the reduced power at large and small
scales, then the tensor-to-scalar ratio is likely to lie in the
range r ≈ 0.03–0.12 (68% C.L.) and hence the imprint of
gravitational waves on the CMB will be observable by B-
mode experiments in the future [86]. With this comes the
tantalizing prospect of constraining physics at the Planck
scale through sky surveys, as we have demonstrated here.
Thus, future CMB experiments, in combination with
probes of the power spectrum at small scales, may settle
the issue of whether Planck-scale physics manifest in
inflation can reconcile the standard ΛCDM cosmology
with data at all observable scales of the Universe.

ACKNOWLEDGMENTS

Q.M. would like to thank James Bullock, Shahab
Joudaki, Jose Ceja and Shea Garrison-Kimmel for their
encouragement and feedback at the beginning stages of this

project. We gratefully acknowledge a grant of computer
time from XSEDE allocation TG-AST130007. M. K. was
supported in part by NSF Grant No. PHY-1214648. This
research was also supported, in part, by a grant of computer
time from the City University of New York High
Performance Computing Center under NSF Grants
No. CNS-0855217, CNS-0958379 and ACI-1126113.

APPENDIX A: IS THE SLOW-ROLL
APPROXIMATION VALID IN OUR MODEL?

When there are oscillating features in the power spec-
trum, the slow-roll approximation can be violated, particu-
larly for short-period oscillations. Thus, it is important to
check that the slow-roll approximation we have used here is
valid in the parameter range we are interested in. For the
slow-roll approximation to hold, both the first slow-roll
parameter ϵ ¼ d

dt ð 1HÞ and the second slow-roll parameter

η ¼ 1
H

ϕ̈
_ϕ
must be small, such that ϵ ≪ 1; η ≪ 1. The former

condition is obviously satisfied at CMB scales, as we are
many e-foldings before the end of inflation and thus ϵ ≪ 1.
The second condition is trickier, however, because rapid
oscillation can cause η to become large. To estimate η, we
must solve the classical equation of motion for ϕðtÞ:

ϕ̈þ 3Hϕþ V;ϕ ¼ 0: ðA1Þ

Since ϵ is small, we have H ≈
ffiffiffi
V
3

q
. Let us switch

variables to x ¼ t
ffiffiffiffi
V�
3

q
, where x can be interpreted as the

time in units of the Hubble time when the mode k ¼ k�
leaves the horizon. We then find

d2ϕ
dx2

þ 3

ffiffiffiffiffiffi
V
V�

s
dϕ
dx

þ 3
V;ϕ

V�
≈ 0: ðA2Þ

This equation can be solved numerically, using the
expression for the (scaled) potential and its derivative from
Eq. (3). Here, since we are interested in an analytic
expression for η, we will use a method similar to that of
Ref. [41] and try a solution of the form ϕ ¼ ϕ0 þ aϕ1,
where ϕ0 is the unmodulated scalar field, ϕ1 contains the
oscillation and the amplitude a is assumed to be small (as it
must be). For ϕ0, the slow-roll approximation holds very
well, as usual, so we can ignore ϕ̈0. Substituting this
expression into Eq. (A2) and separating out the zeroth-
order and first-order terms, we find for the zeroth-order
equation

dϕ0

dx
¼ p

ϕmin

�
1 − ϕ0

ϕmin

�p
2
−1
: ðA3Þ

We will not need to solve this equation exactly for the
present discussion, but we note that since we are 50–60
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e-foldings from the end of inflation, we have ϕ0 ≪ ϕmin

and hence, dϕ0

dx ≈ p
ϕmin

.
Proceeding to the first-order equation, we switch to using

ϕ0 as the independent variable, yielding the equation

1

3
ϕ00
1 þ

1

p
ϕminϕ

0
1 − 1

2
ϕ1 ¼ −ϕ2

min

p2f
cos
�
ϕ0

f
þ δ

�
; ðA4Þ

where the prime denotes the derivative ∂=∂ϕ0. To solve this
equation we try a linear combination of sines and cosines,
and arrive at the solution

ϕ1ðxÞ ≈
3fðϕmin

nf Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3

2
f2Þ2 þ ð3ϕminf

p Þ2
q cos

�
ϕ0ðxÞ
f

þ ψ

�
;

ðA5Þ

where ψ is an unimportant phase factor. We can now
estimate the amplitude of the slow-roll parameter

η ¼ 1
H

ϕ̈
_ϕ
≈ a d2ϕ1

dx2 =
dϕ0

dx . Plugging this into Eqs. (A3) and

(A5), we find

ηmax ≈
3a ϕmin

nfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3

2
fÞ2 þ ð3ϕminf

p Þ2
q : ðA6Þ

This is well approximated as

ηmax ≈
3b

2þ b cos δ

�
1þ 18N0

f2

p

�−1=2
; ðA7Þ

where we have made use of Eqs. (11), (12), and (14). Note
that if the amplitude b is kept fixed, η can be made large
(and hence, slow-roll is violated) if f is sufficiently small.

For the best-fit solution in Table I, we have ηmax ≈ 0.04
and thus the slow-roll description holds. On the other hand,
at the extreme ends of the parameter space we have chosen,
η can become large; for example, setting b ¼ 1, f ¼ 0.1
can give ηmax comparable to 1. Fortunately, such regions
where slow roll breaks down are excluded by the data. To
show this robustly, in Fig. 11 we plot a derived posterior in
ηmax using Eq. (A6), with the same priors and data as
discussed in Sec. III. For all the points sampled, we have
ηmax ≲ 0.1, and hence the slow-roll approximation holds
good for all allowed regions of parameter space. This
justifies our use of the slow-roll approximation in deriving
the power spectra in Sec. II B.

APPENDIX B: EXPRESSIONS FOR THE
SPECTRAL INDEX AND RUNNING IN THE

SLOW-ROLL APPROXIMATION

To relate the parameters to observable features, it is
useful to have expressions for the spectral index and
running at the pivot scale. The most useful expressions
we derive will be Eqs. (B2) and (B4), which are given in
terms of the fit parameters in the usual case where a ≪ 1,
and the running is dominated by the sinusoidal term.

1. Spectral index

To derive expressions for the spectral index, we can
use the relation in terms of the slow-roll parameters,
ns ¼ 1 − 6ϵV þ 2ηV . Using the fact that ϵV ¼ r=16 and
ηV ¼ V;ϕϕ=V, we find using Eq. (3),

ns ¼ 1−3r
8
þ2

�
pðp−1Þ
ϕ2
min

ð1−asinδÞ− a
f2

sinδ

	
ðB1Þ

where it is understood that we are evaluating the spectral
index at the pivot scale k ¼ k�. Substituting Eq. (10) and
keeping terms to first order in a, we find [after substituting
Eq. (11)],

ns ≈ 1 − r
8

�
1þ 2

p

�
− b
f

ffiffiffi
r
8

r
sin δþ r

4

�
1 − 1

p

�
b cos δ:

ðB2Þ
Note that the oscillation is dominated by the sine term
(unless δ is very small such that tan δ≲ f

ffiffi
r
8

p
), and thus

the amplitude of the spectral index oscillation is
Δns ≈ 2a

f2 ≈
b
f

ffiffi
r
8

p
. Our constraint in ns is plotted in

Fig. 2(a) and is consistent with the result ns ≈ 0.96 found
by applying the base Planck model.

2. Running of the spectral index

As discussed in Sec. IV, the best-fit parameters are
characterized by a substantial running of the spectral index
which is dominated by the sinusoidal term. To first order,
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FIG. 11. Posterior in the amplitude of the slow-roll parameter η.
Since ηmax ≪ 1 for all allowed regions of parameter space, the
slow-roll expansion holds to good approximation, justifying the
method used to derive the power spectra in Sec. II B.
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the running can be calculated from α1 ≈ −2ζV where

ζV ¼ V;ϕV;ϕϕϕ

V2 ¼ ffiffiffiffiffiffiffiffi
2ϵV

p V;ϕϕϕ

V is the third potential slow-roll
parameter. From this we find (at the pivot scale k�),

α1;� ≈ − rb
8f2

cos δ: ðB3Þ

From this formula it is evident that the running oscillates
in ϕ ∝ ln k with the approximate amplitude αmax ≈ rb

8f2.

Now we derive the more exact expression for the
running using the formula α ¼ −2ζV þ 16ϵVηV − 24ϵ2V .
Expanding this to first order in a and up to second order in
r, we obtain

α� ≈ − rb
8f2

cos δ − 4b
f

�
r
8

�
3=2

sin δþ r2

8

�
1 − 1

p
− 3

4

�
:

ðB4Þ

The last term above is due to the monomial term in the
potential, and is clearly of order 10−3 if r ∼ 0.1; the middle
term is typically of a similar order. For the best fits, we have
α ∼ −10−2, in which case the above formula is accurate for
up to two significant figures. Our constraint in the running
α� is plotted in Fig. 2(b).

APPENDIX C: STRUCTURE OF THE
POSTERIOR DISTRIBUTION

As discussed in Sec. IV, the posterior distribution has a
complicated multimodal structure, with several non-
Gaussian tails running away from the best-fit region. To
understand this structure better, in Fig. 12 we plot three-
dimensional posteriors with the axes for b and δ shown,
color coded by r, α�, and f respectively. Note there are three
separate “wings” in the distribution running away from the
best-fit region, and in all of these wings the tensor-to-scalar
ratio r prefers to be small [Fig. 12(a)]. This is because large r
must be accommodated by a large negative running, and in
Fig. 12(b) one sees that a large negative running only occurs
in the best-fit region, whereas it is quite small in the wings.
Two of the wings have b ≈ 0, which then naturally would
imply a small running; however, the other wing has a large
amplitude b≳ 1. How can the running be small in this case?
The answer can be seen in Fig. 12(c): inmost of this region f
(corresponding to the period) is quite large, and thus the
running is again small. Note that in all the wings f tends to
take on either very small (f ≈ 0.1) or very large values
(f ≈ 1), with intermediate values occurring mostly in the
best-fit region. For this reason, if one stayswithin the best-fit
region, the axion decay constant f is somewhat better
constrained than is suggested by the posterior in Fig. 1
although the errors are still large.
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