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The Gaussian kinematic formula (GKF) [R. J. Adler and J. E. Taylor, Random Fields and Geometry
(Springer, New York, 2007).] is an extremely powerful tool allowing for explicit analytic predictions of
expected values of Minkowski functionals under realistic experimental conditions for cosmological data
collections. In this paper, we implement Minkowski functionals on multipoles and needlet components of
CMB fields, thus allowing a better control of cosmic variance and extraction of information on both
harmonic and real domains; we then exploit the GKF to provide their expected values on spherical maps, in
the presence of arbitrary sky masks, and under non-Gaussian circumstances. All our results are validated by
numerical experiments, which show a perfect agreement between theoretical predictions and Monte Carlo
simulations.
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I. INTRODUCTION

A general trend in modern cosmological research is the
implementation of more and more sophisticated statistical
tools to perform data analysis. Indeed, well-known cos-
mological data have reached over the last decade an
unprecedented accuracy, so that it has become customary
to speak about a golden era for cosmology, featuring a data
deluge from many satellite- and ground-based experiments.
As the data grow in size and precision, more and more
detailed questions can be addressed, and exploiting tech-
niques at the frontier of statistical and mathematical
research becomes mandatory to warrant a full exploration
of the available evidence.
Among these techniques, stochastic geometry tools have

now become very well established, especially in the field of
cosmic microwave background radiation experiments. In
this area, one of the most popular geometric tools for data
analysis is certainly the so-called Minkowski functionals
(MFs), which have been extensively exploited as tools
to search for non-Gaussianities, anisotropies, asymmetries
and other features of CMB data. The use of MFs in
cosmology goes back at least to [1,2]; a complete bibli-
ography would certainly include hundreds of entries, so we
refer only to the earlier works by [3–11] and to the more
recent ones by [12–17].
As is well known, on the plane there are three

Minkowski functionals M0, M1, M2 which can be taken
to represent, respectively, the area, the boundary length and
the Euler-Poincaré characteristic (number of connected
components minus holes) of any given region. To

characterize the behavior of data from a random field
[TðxÞ, say] it has then become customary to consider flat-
sky approximations and to focus on the excursion sets

AuðTÞ ≔ fx∶TðxÞ ≥ ug; ð1Þ

e.g. the regions of the plane where the value of T exceeds the
threshold u; the corresponding functionals MiðAuðTÞÞ,
i ¼ 0; 1; 2, can then be computed for real data with a
number of accurate and numerically efficient packages.
The expected values of the Minkowski functionals in the
planar case and under Gaussianity is analytically known to
the literature since thework of Adler in the early 1980s ([18],
see also [1]), and these predictions can be compared to
values on observed data to implement a number of statistical
tests (see for instance [17] and the references therein).
In the last decade, major progress has occurred in the

mathematical understanding of the geometry of random
fields, namely the discovery of the Gaussian kinematic
formula (GKF) by Taylor and Adler (see [19–23]).
As we shall discuss in the next section, the GKF allows a

simple computation of the expected values for Lipschitz-
Killing curvatures (equivalent to Minkowski functionals;
see below) under an impressive variety of extremely
different circumstances, covering arbitrary manifolds with
and without masked regions and a broad class of non-
Gaussian models. These expected values take extremely
neat and intuitive forms, and can be immediately compared
to simulations and observed data. One of our purposes in
this paper is to exploit these recent results to develop a
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number of analytic predictions on functionals tailored to
test non-Gaussianities and asymmetries on CMB data.
More precisely, in this paper we aim at the implementa-

tion of Minkowski functionals/Lipschitz-Killing curvatures
on the multipole and needlet components of observed data.
To be more explicit, we start from the decomposition of an
observed spherical (e.g., CMB) map into harmonics as

TðxÞ ¼
XLmax

l¼1

Xl
m¼−l

almYlmðxÞ ¼
XLmax

l¼1

TlðxÞ: ð2Þ

It is well known that the decomposition (2) is only feasible
for unmasked (full-sky) data, a condition which is usually
considered very difficult to meet for CMB experiments
(see, however, the recent full-sky maps produced by [24]).
To handle masked regions, it has hence become very
popular to introduce various forms of spherical wavelets,
which enjoy much better localization properties than
spherical harmonics in the real domain, and are therefore
much less affected by sky cuts. In this paper, we shall focus
in particular on the needlet system, which is defined by
the filter

ψ jkðxÞ ¼
X
l;m

b

�
l
Bj

�
ȲlmðξjkÞYlmðxÞ; ð3Þ

where fξjkg denotes a grid of points on the sphere (such as
HealPix centers at a given resolution; see [25]), B > 1 is
some fixed bandwidth parameter and the weight function
bðl

2j
Þ satisfies three conditions, namely (a) it is compactly

supported in the interval ðB−1; BÞ; (b) it is smooth; (c) the
partition of unity property holds, e.g.

P
jb

2ð lBjÞ ¼ 1 for all
l. Needlets have been shown to enjoy very good locali-
zation properties in the real domain; needlet coefficients are
given by the projection

βjk ¼
Z
S2
TðxÞψ jkðxÞdx ¼

XBjþ1

l¼Bj−1

X
m

b

�
l
Bj

�
almYlmðξjkÞ;

ð4Þ

and they allow for the reconstruction formula

TðxÞ ¼
XJmax

j¼1

X
k

βjkψ jkðxÞ ¼
XJmax

j¼1

βjðxÞ; ð5Þ

βjðxÞ ¼
X
k

βjkψ jkðxÞ ¼
XBjþ1

l¼Bj−1

X
m

b2
�
l
Bj

�
almYlmðxÞ;

ð6Þ

see [26], [27], [28], [29] for further discussions and
applications to some CMB data analysis issues.

Our aim is to apply Minkowski functionals on both the
field components fTlðxÞ; βjðxÞg rather than on the original
map. This form of harmonic/needlet space geometric analy-
sis has a number of advantages that it is immediate to see
(see also [30] for some mathematical results in this area). For
instance, any deviation from the analytic predictions can be
exactly localized on the real and harmonic space, thus
allowing for a much neater interpretation; indeed, a scale-
by-scale probe of asymmetries and relevant features
becomes feasible. Also, while the behavior of MFs on
standard CMB maps is unavoidably affected by cosmic
variance, the effect is much smaller for MFs evaluated on the
highest needlet scales: it becomes possible to discriminate
quite clearly cosmic variance effects from effective devia-
tions. Indeed, the variances of these Minkowski functionals
converge to zero as the frequency increases, so that fluctua-
tions around expected values become negligible on small
scales, assuming the null assumptions hold. This allows for a
very precise investigation of asymmetries and anisotropies;
in a future work we shall provide some exact computations
on the variances of these functionals and corresponding
aggregated statistics.
The plan of the paper is as follows: in Sec. II, we illustrate

some background material on the GKF and we present its
application to needlet and multipole components under the
simplest conditions, e.g., full-sky Gaussian maps. In Sec. III
we present analytic results for some non-Gaussian fields
arising when testing for asymmetries and directional varia-
tions in non-Gaussianity, while Sec. IV is devoted to the
formulas for the exact expected values in the presence of
masked regions. In Sec. V we present our detailed numerical
studies, and we illustrate our software which allows for
numerical corrections of expected values in the presence of
masked regions of any form. Section VI draws some
conclusions and presents directions for future work.

II. THE GAUSSIAN KINEMATIC FORMULA

A. The general case

For cosmological applications, it would seem sufficient
to restrict our attention to random fields or observational
data on the unit sphere S2; however we shall show below
that presenting results in a more general setting does yield
some practical advantages, especially when dealing with
masked data. Indeed, the GKF holds in much greater
generality, and it can certainly be exploited for other
experimental setups, for instance three-dimensional obser-
vations (viewed as data on the three-dimensional ball—this
and other cases will be the object of future works).
On the sphere, the excursion sets AuðfÞ of a given

(possibly random) function f are defined as

AuðfÞ ≔ fx ∈ S2∶fðxÞ ≥ ug: ð7Þ
Of course, in the limit where we take u ¼ −∞, we have
that AuðfÞ ¼ S2.
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The Lipschitz-Killing curvatures (LKCs) of these excur-
sion sets, written

L0ðAuðfÞÞ;L1ðAuðfÞÞ;L2ðAuðfÞÞ ð8Þ
are defined as

(i) L0ðAuðfÞÞ is the Euler-Poincaré characteristic, e.g.
in two dimensions the number of connected regions
minus the number of holes, and in three dimensions
the number of connected components minus the
number of “handles" plus the number of holes; see
[22] for more discussion. This corresponds (up to a
constant factor; see Appendix) to the third Minkow-
ski functional, or two minus the genus; we recall that
the Euler-Poincaré characteristic of the full sphere is
equal to 2.

(ii) L1ðAuðfÞÞ is half the boundary length of the
excursion regions, e.g. the second Minkowski func-
tional up to a factor 2. For the full sphere, the
boundary length is clearly zero.

(iii) L2ðAuðfÞÞ is the area of the excursion regions, e.g.
the first Minkowski functional. For the full sphere,
one obviously gets 4π.

For more general manifolds, the definitions are given in
the Appendix. We shall focus on random fields that have
zero mean, unit variance and are isotropic. These assump-
tions can be easily abandoned, entailing just a more
complex notation; of course, zero mean and unit variance
can be enforced by normalization (incidentally, it is well
known that needlet and multipole component random fields
always have zero mean under isotropy). Let us now
introduce some more notation; consider the family of
functions ρlðuÞ given by

ρlðuÞ ¼ ð2πÞ−ðlþ1Þ=2Hl−1ðuÞe−u2=2; ð9Þ
where HkðuÞ denotes standard Hermite polynomials, e.g.,

H0ðuÞ ¼ 1; H1ðuÞ ¼ u; H2ðuÞ ¼ u2 − 1; ð10Þ
we adopt the standard convention that

H−1ðuÞ ¼
ffiffiffiffiffiffi
2π

p
ð1 − ΦðuÞÞeu2=2; ð11Þ

where ΦðuÞ is the standard Gaussian cumulative distribu-
tion function, so that

ρ0ðuÞ ¼ ð2πÞ−1=2
ffiffiffiffiffiffi
2π

p
ð1 − ΦðuÞÞeu2=2e−u2=2 ¼ ð1 − ΦðuÞÞ

ð12Þ

ρ1ðuÞ ¼
1

2π
e−u

2=2; ρ2ðuÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p ue−u
2=2: ð13Þ

It is interesting to note that 1ffiffiffiffi
2π

p HkðuÞe−u2=2 gives ð−1Þk
times the kth derivative of a standard Gaussian density,

k ≥ 0. In the mathematical literature this component is
written as Mlð½u;∞ÞÞ ¼ 1ffiffiffiffi

2π
p HkðuÞe−u2=2 and labeled a

Gaussian Minkowski functional. Up to a constant factor,
ρi’s are known in the cosmological community as the
normalized Minkowski functionals, and are commonly
denoted as vk.
The next ingredient we shall need are the so-called “flag”

coefficients, which are given by

�
iþ l

l

�
¼

�
iþ l

l

�
ωiþl

ωiωl
; for ωi ¼

πi=2

Γði
2
þ 1Þ ; ð14Þ

so that ωi represents the area of the i-dimensional unit ball,
ω1 ¼ 2, ω2 ¼ π, ω3 ¼ 4

3
π. Finally, we shall introduce a

parameter λ, which represents the variance of any gradient
component at the origin; equivalently λ is simply given by
the second derivative of the covariance function at the origin.
Under these circumstances, for random fields defined on

general manifolds D the GKF is given by the following,
extremely elegant expression (see for instance Theorem
13.2.1 [23]):

λi=2ELiðAuðTðxÞ; DÞÞ

¼
XdimðDÞ−i

l¼0

�
iþ l

l

�
λðiþlÞ=2ρlðuÞLiþlðDÞ: ð15Þ

This expression may seem unnecessarily complicated,
given that in this paper we shall focus only on spherical
random fields; however this generality will indeed be
required below, when we shall consider masked data
(which we will see as data sampled from a different
manifold, i.e. the sphere with sky cuts). Before we proceed,
however, it is important to stress some crucial features of
the result given in (15). Indeed, it must be noted that the
expression on the right-hand side of (15) allows for a full
decoupling of the expected value on the left-hand side into
components which are completely independent: the LKCs
of the original manifold LkðDÞ, which depend on
the manifold D but not on the threshold value u nor on
the covariance structure of the field we investigate; and the
functions ρlðuÞ, which depend only on the chosen threshold
level u, and are independent from the structure of the field
and from the properties of the manifold D. This will allow
for enormous computational advantages in the sections to
follow: for instance, covering the presence of sky cuts will
entail a new computation for the values of LiþlðDÞ this
computation can be done only once for a given mask, and is
independent of the threshold levels or the correlation
structure of the field. Likewise, moving to non-Gaussian
circumstances will entail a corresponding replacement of
the functions ρlðuÞ, but no new computations will be
required on correlation structure or to handle gaps. A
particularly neat interpretation can be provided, by simply
grouping together the terms λk=2 and LkðDÞ, to obtain
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LT
k ðDÞ ¼ λk=2LkðDÞ; ð16Þ

in mathematical terms, LT
k ðDÞ is usually described as a

LKC computed with a metric induced by the random field
T, e.g. a manifold which has been rescaled by multiplica-
tion times

ffiffiffi
λ

p
, the square root of the second derivative of its

covariance function at the origin. All these notions may
seem somewhat abstract, but they yield very simple
analytic expressions in the case of spherical random fields
D ¼ S2, to which we now turn our attention.

B. The spherical case

An example of excursion regions of the CMB for
different threshold levels is given by Fig. 1.
The application of the previous general results to the

sphere (without masks) basically provides expressions
which are already known to the CMB literature, up to
some correction terms. Indeed, in the case of a single
multipole TlðxÞ ¼

P
malmYlmðxÞ, normalized to have

variance 1 (e.g., divided by
ffiffiffiffiffi
Γl

p
, where Γl ¼ 2lþ1

4π ClÞ,
λ is easily seen to be (see [30])

λl ¼ lðlþ 1Þ
2

; ð17Þ

while for the needlet field βjðxÞ, again normalizing the
variance [which is given by

P
lb

4ðl
2j
ÞCl

2lþ1
4π ] we have

P
lb

4ðl
2j
ÞCl

2lþ1
4π

lðlþ1Þ
2P

lb
4ðl

2j
ÞCl

2lþ1
4π

¼
P

lb
4ðl

2j
ÞΓlλlP

lb
4ðl

2j
ÞΓl

; ð18Þ

note that the numerator is just the variance of the derivative
map before normalization.
Finally, as mentioned earlier the Lipschitz-Killing cur-

vatures take an extremely simple form on the full sphere: it

is indeed well known that the Euler-Poincaré characteristic
is identically equal to 2, the boundary length is of course
zero (the sphere has no boundary), and the area is simply
4π, i.e.

L0ðS2Þ ¼ 2; L1ðS2Þ ¼ 0; L2ðS2Þ ¼ 4π: ð19Þ

Also in this setting

�
1

0

�
¼

�
1

1

�
¼

�
2

0

�
¼

�
2

2

�
¼ 1;

�
2

1

�
¼ π

2
: ð20Þ

After making all these replacements in (15), we thus
obtain general expressions for expected values in the case
of multipole and needlet components which are given in the
following two subsections.

C. Multipole fields

In the case of a single multipole TlðxÞ, normalized to
have variance 1, the GKF yields immediately (compare
[30], Corollary 5)

EL0ðAuðTlð:Þ; S2ÞÞ ¼ 2f1 − ΦðuÞg þ λl
ue−u

2=2ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p 4π;

ð21Þ

EL1ðAuðTlð:Þ; S2ÞÞ ¼
π

2
λ1=2l

e−u
2=2

2π
4π ¼ πλ1=2l e−u

2=2;

ð22Þ

and

EL2ðAuðTlð:Þ; S2ÞÞ ¼ 4π × f1 − ΦðuÞg: ð23Þ
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FIG. 1 (color online). Illustration of excursion fields on a CMB map. The original map is smoothed by a 5° beam. The subtitles below
the color bar indicate the threshold levels.
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D. Needlet fields

The expected value of the Euler-Poincaré characteristic
is given by (see [30], Lemma 3)

EL0ðAuðβjðxÞ; S2ÞÞ ¼ 2f1 − ΦðuÞg

þ
P

lb
4ðl

2j
ÞΓlλlP

lb
4ðl

2j
ÞΓl

ue−u
2=2ffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ3
p 4π; ð24Þ

the second Lipschitz-Killing curvature (e.g., half the
boundary length) has expected value

EL1ðAuðβjðxÞ; S2ÞÞ ¼ π ×

�P
lb

4ðl
2j
ÞΓlλlP

lb
4ðl

2j
ÞΓl

�1=2

e−u
2=2:

ð25Þ

Finally, the third Lipschitz-Killing curvature (e.g., the area
of the excursion region) has the following expected value,
which is the simplest to check:

EL2ðAuðβjðxÞ; S2ÞÞ ¼ 4π × f1 − ΦðuÞg: ð26Þ

The expressions (22), (23), (25), (26) match those that
would be obtained by replacing the angular power spec-
trum of a needlet field/multipole component in the standard
expressions for expected values of Minkowski functionals,
as given for instance in [17], pp. 10–11. On the other hand,
on the right-hand side of (21), (24) there is an extra term
that fully takes into account the spherical geometry: this
term is missing when the result is derived by resorting to a
flat-sky approximation. All these results are perfectly
matched by the simulations presented below; we can hence
move to consider non-Gaussian fields and masked regions,
as done in the following sections.

III. NON-GAUSSIAN EXPECTED VALUES

Before we go ahead to discuss the analytic results, it is
important to motivate the class of non-Gaussian fields we
wish to consider.
A major thread of last decade’s research in the field of

CMB has been related to the investigation of possible
asymmetries and directional variations in the observed data.
Seminal papers in this area were provided by the authors of
[31–39] working on the early WMAP data release, but the
field is still now very active and hotly debated; see [17] and
the references therein. In this framework, it is well known
that needlet coefficients or fields can provide unbiased
estimates for smoothed versions of the angular power
spectrum, the bispectrum or any higher-order statistics;
these estimates are spatially localized, so they can be
immediately used to test for instance power asymmetries,
an idea first developed in [40], [41].
More explicitly, consider the squared field β2jðxÞ; from

the localization properties of the needlet frame; it is obvious
that the value of βjðxÞ is only determined by CMB radiation
in a small neighborhood around x, while we have moreover

Eβ2jðxÞ ¼ E

( XBjþ1

l¼Bj−1

b2
�
l
Bj

�
TlðxÞ

)
2

¼
XBjþ1

l¼Bj−1

b4
�
l
Bj

�
Γl;

ð27Þ

e.g., the squared coefficients provide natural unbiased
estimates for a binned angular power spectrum. Along
the same lines, the cube of these coefficients provides an
unbiased, local estimator of the binned bispectrum, which
is a natural candidate to search for directional variations in
non-Gaussianity:

Eβ3jðxÞ ¼ E

� XBjþ1

l¼Bj−1

b2
�
l
Bj

�
TlðxÞ

�
3

¼
XBjþ1

l1;l2;l3¼Bj−1

b2
�
l1

Bj

�
b2
�
l2

Bj

�
b2
�
l3

Bj

�
EfTl1ðxÞTl2ðxÞTl3ðxÞg

¼
XBjþ1

l1;l2;l3¼Bj−1

b2
�
l1

Bj

�
b2
�
l2

Bj

�
b2
�
l3

Bj

��
l1 l2 l3

0 0 0

�
2

bl1l2l3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r
;

where bl1l2l3 denotes as usual the reduced bispectrum
and the Wigner’s 3j symbols have appeared in the last
equation; see [42], [29] for more references and details. In
the remaining part of this section we shall provide the
analytic expectation also for the Minkowski functionals/
Lipschitz-Killing curvatures of these cubic statistics. These
results can be rigorously derived by an application of a

more general form of the GKF, which is given in the
Appendix. However, from a more heuristic point of view
their derivation can be provided from a very simple
argument. Indeed, consider for instance a quadratic trans-
formed field W ¼ T2: the excursion region of the field W
over a level u is easily seen to be given by the region where
T >

ffiffiffi
u

p
, plus the region where T < −

ffiffiffi
u

p
. In view of the
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decoupling we reported below, the expected values of the
LKCs for the quadratic case turn out to be just the sum of
the corresponding Gaussian results over these two regions.
Likewise, for the cubic case W ¼ T3 the excursion region
will be obtained by simply considering the excursion sets of
T over the level

ffiffiffi
u3

p
. This simple heuristic would not work

in more complicated circumstances where the GKF still
provides exact solutions, but it is enough to justify the
results we report below.

A. The quadratic case

We start from the case where we square the needlet field,
as if we were interested in local estimates of the power
spectrum. As usual, we normalize the starting Gaussian
field to have unit variance, and we are hence focusing on
the square field defined by

βj;2ðxÞ ¼
β2jðxÞ

VarðβjðxÞÞ
¼ β2jðxÞP

lb
4ð lBjÞΓl

: ð28Þ

As motivated by the previous heuristic, or as derived
more rigorously by the general GKF (see Appendix),

we have the following analytic predictions ([30],
pp. 13–14):

(i) For the expected value of the Euler characteristic

EL0ðAuÞ ¼ 4ð1 − Φð ffiffiffi
u

p ÞÞ

þ 4

P
lb

4ð lBjÞΓlλlP
lb

4ð lBjÞΓl

e−u=2ffiffiffiffiffiffi
2π

p ffiffiffi
u

p
; ð29Þ

(ii) For the second Lipschitz-Killing curvature (i.e., half
of the boundary length)

EL1ðAuÞ ¼ 2π

(P
lb

4ð lBjÞΓlλlP
lb

4ð lBjÞΓl

)
1=2

e−u=2; ð30Þ

(iii) Finally for the area of excursion regions

EL2ðAuÞ ¼ 4π × 2ð1 − Φð ffiffiffi
u

p ÞÞ: ð31Þ

The results for the square of normalized multipole
components [T2

l=EðT2
lÞ] are entirely analogous, and indeed

even simpler to state:
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FIG. 2 (color online). Multipole space Gaussian case: analytical (red) vs simulations (black and grey). The legend shows the
multipoles at which the LKCs are evaluated. Grey shades are 68%, 95% and 99% percentiles estimated from 100 simulations. The red
analytical curve is not visible in the print version but it is within the 68% confidence bound.
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(i) For the expected value of the Euler characteristic

EL0ðAuÞ ¼ 4ð1 − Φð ffiffiffi
u

p ÞÞ þ 4λl
e−u=2ffiffiffiffiffiffi
2π

p ffiffiffi
u

p
; ð32Þ

(ii) For the second Lipschitz-Killing curvature (i.e., half
of the boundary length)

EL1ðAuÞ ¼ 2πfλlg1=2e−u=2; ð33Þ

(iii) Finally for the area of excursion regions

EL2ðAuÞ ¼ 4π × 2ð1 − Φð ffiffiffi
u

p ÞÞ: ð34Þ

B. The cubic case β3j ðxÞ
Cubic transformations are the natural candidates to

search for anisotropies in the bispectrum we simply take
the cube of the needlet fields. The analytic predictions are
then as follows (see also [30], p. 14 and the Appendix for
details):

(i) The expected value of the Euler characteristic is
given by

EL0ðAuðβ3jðxÞ; S2ÞÞ
¼ 2ð1 − Φð ffiffiffi

u3
p ÞÞ

þ 2

P
lb

4ð lBjÞΓlλlP
lb

4ð lBjÞΓl

e−ð
ffiffi
u3

p Þ2=2ffiffiffiffiffiffi
2π

p ffiffiffi
u3

p
; ð35Þ

(ii) The expected value for half the boundary length is

EL1ðAuðβ3jðxÞ; S2ÞÞ

¼ π

�P
lb

4ð lBjÞΓlλlP
lb

4ð lBjÞΓl

�1=2

e−ð
ffiffi
u3

p Þ2=2; ð36Þ

(iii) Finally, the expected value of the area of excursion
regions is

EL2ðAuðβ3jðxÞ; S2ÞÞ ¼ 4πð1 − Φð ffiffiffi
u3

p ÞÞ: ð37Þ
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FIG. 3 (color online). Needlet space Gaussian case: analytical (red) vs simulations (black and grey). The needlet parameters are
B ¼ 1.5 j ¼ 10; 12; 14. The central multipoles of the corresponding needlet filter are given in the legend. Grey shades are 68%, 95% and
99% percentiles estimated from 100 simulations. The red analytical curve is not visible in the print version but it is within the 68%
confidence bound.
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The corresponding values for the cube of normalized
multipole components are given by

(i) The expected value of the Euler characteristic is
given by

EL0ðAuðβ3jðxÞ; S2ÞÞ ¼ 2ð1 − Φð ffiffiffi
u3

p ÞÞ

þ 2λl
e−ð

ffiffi
u3

p Þ2=2ffiffiffiffiffiffi
2π

p ffiffiffi
u3

p
; ð38Þ

(ii) The expected value for half the boundary length is

EL1ðAuðβ3jðxÞ; S2ÞÞ ¼ πfλlg1=2e−ð
ffiffi
u3

p Þ2=2; ð39Þ

(iii) Finally, the expected value of the area of excursion
regions is

EL2ðAuðβ3jðxÞ; S2ÞÞ ¼ 4πð1 − Φð ffiffiffi
u3

p ÞÞ: ð40Þ

It should be noted that the area measure is completely
insensitive to the behavior of the correlation structure, and
therefore takes the same values in the needlet and multi-
pole cases.

We recall that in [30] further non-Gaussian cases have
been considered, e.g. the situation where the polynomial
transforms of these coefficients are further averaged by
moving disks centered at varying pixels on the sphere.
Analytical results have been provided even for these
circumstances; however for brevity’s sake we delay their
investigation to future research.

IV. MASKED REGIONS

In the analysis of data collected from experiments with
masked regions, as it is basically always the case in
cosmology, the full power of the GKF emerges most
clearly. Let us denote by M ¼ S2nG the sphere to which
the masked regions (for instance, the galactic cut) have
been subtracted; it is then sufficient to replace the LKCs
LiþlðMÞ to LiþlðS2Þ in (15), (19) to obtain the desired
result. At first sight, however, this may appear as a very
difficult task: how can we replace the simple values
provided in (19) with the LKC for a masked region,
possibly with a highly complicated structure including
many removed point sources and other foreground regions
with complex shapes? For the area measure L2ðS2nGÞ the
computation could be trivial (by simply adjusting the sky
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FIG. 4 (color online). Multipole space non-Gaussian quadratic case: analytical (red) vs simulations (black and grey). The legend
shows the multipoles at which the LKCs are evaluated. Grey shades are 68%, 95% and 99% percentiles estimated from 100 simulations.
The red analytical curve is not visible in the print version but it is within the 68% confidence bound.
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fraction), but for the boundary length L1ðS2nGÞ and the
Euler-Poincaré characteristic L0ðS2nGÞ this problem may
seem quite hard, especially when a huge number of
removed point sources is given.
A very simple solution can however be provided by

exploiting one more time the GKF, following an idea
discussed in [22], Chapter 5.4. In fact, for any given mask
one can choose a simple isotropic random field with known
angular power spectrum, and from this one may evaluate by
Monte Carlo simulations the realized values of LKC of
excursion sets at some fixed levels of threshold values u.
These realized values can then be compared with the
analytic predictions; for a given input angular power
spectrum, these are fully known, up to some fixed param-
eters representing the LKCs LiðS2nGÞ. These parameters
can then be estimated once for all by simple least square
regression, and used as an input to derive analytic pre-
dictions for a given mask. These predictions would hold for
arbitrary threshold values u and irrespective of the covari-
ance structure, the frequency or scales j;l considered, the
Gaussian or non-Gaussian circumstances.
In summary, the following multistep procedure is

advocated:

(1) Fix a simple power spectrum Cl, for instance with
lmax ¼ 10, and generate Gaussian maps out of it

(2) Fix a limited number of threshold values u and
perform a Monte Carlo evaluation of the LKCs
evaluated on the excursion set of the fields generated
according to 1

(3) Use least square regression to estimate LiðS2nGÞ,
i ¼ 0; 1; 2 in Eq. (15)

(4) Use the estimates obtained in point 3 as an input for
Eq. (15) for any arbitrary power spectrum (for
instance, multipole or needlet components on real-
izations of a ΛCDM model, under Gaussian and
non-Gaussian circumstances)

We believe that this routine illustrates very vividly the
advantages of the decoupling between domain manifold,
covariance structure and threshold value achieved by the
GKF (15). The resulting predictions are indeed extremely
accurate, as illustrated in the following section.

V. NUMERICAL RESULTS

In this section we describe the comparison of the
analytical results outlined in the previous sections to the
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FIG. 5 (color online). Needlet space non-Gaussian quadratic case: analytical (red) vs simulations (black and grey). The needlet
parameters are B ¼ 1.5 j ¼ 10; 12; 14. The central multipoles of the corresponding needlet filter are given in the legend. Grey shades are
68%, 95% and 99% percentiles estimated from 100 simulations. The red analytical curve is not visible in the print version but it is within
the 68% confidence bound.
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corresponding results from simulations. In all cases we
generated 100 map realizations of an input power spectrum
using the HEALpix [25] package. We estimated LKCs
from each simulation and compared their mean with the
analytical results. We found an excellent agreement in all
the cases that we investigated; more precisely, not only are
the estimated curves always well within the 68% con-
fidence interval (C.L.), but actually as shown below they
are for practical purposes basically indistinguishable from
the theoretical predictions even with a relatively low
number of Monte Carlo simulations.

A. Simulations and algorithm

We used HEALpix synfast to simulate a map from a
given power spectrum; the choice of this power spectrum
has no influence on the results we shall provide. The
procedures to obtain the single multipole or needlet maps
are standard and can be described as follows: first we
harmonic transform the simulated maps using anafast;
then to obtain TlðxÞ or βjðxÞ maps, we simply take
the appropriate inverse transform across the relevant
multipoles, in the case of needlets inserting also the
squared needlet filter b2ð:Þ. The multipole/needlet maps

are then normalized by their root mean square, which is
computed analytically using the input power spectrum;
see below.
From these normalized multipole/needlet maps we then

computed the three Minkowski functionals, which as
argued earlier are equivalent to the LKCs up to constant
factors. This implementation is achieved by exploiting the
algorithms described in [43]. In short, these algorithms
can be described as follows: the area, i.e. the first MF, is
computed by evaluating the number of pixels above a
certain threshold. The length, the second MF, is computed
by tracing isocontour lines in pixel space. For a sufficiently
high-resolution map, pixels around isocontour lines have
different signs relative to the contour line, after normalizing
the lines to zero. To measure the length of these lines, sets
of four pixels are compared; when at least two of them have
different signs, the locations where the contour line enters
and exits these sets of pixels are determined and the length
is iteratively calculated by standard dot product. The Euler-
Poincaré, the third MF, is computed by means of its
characterizations through Morse theory; more explicitly,
critical points are determined as the pixels where the
gradient vanishes. The Hessian matrices around these
critical points are computed, and their so-called indexes
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FIG. 6 (color online). Multipole space non-Gaussian cubic case: analytical (red) vs simulations (black and grey). The legend shows the
multipoles at which the LKCs are evaluated. Grey shades are 68%, 95% and 99% percentiles estimated from 100 simulations. The red
analytical curve is not visible in the print version but it is within the 68% confidence bound.
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(i.e., the sign of their determinant, or the product of their
eigenvalues) are evaluated. Positive indexes correspond to
extrema (minima plus maxima), negative indexes to sad-
dles; in two dimensions, the Euler-Poincaré characteristic is

simply obtained as the difference between the number of
extrema and the number of saddles.
Our detailed investigation using different algorithms to

compute the Euler-Poincareé characteristic showed that for
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FIG. 7 (color online). Needlet space non-Gaussian cubic case: analytical (red) vs simulations (black and grey). The needlet parameters
are B ¼ 1.5 j ¼ 10; 12; 14. The central multipoles of the corresponding needlet filter are given in the legend. Grey shades are 68%, 95%
and 99% percentiles estimated from 100 simulations. The red analytical curve is not visible in the print version but it is within the 68%
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a map defined at a given Nside, the maximum multipole for
which a percent numerical accuracy can be obtained is
lmax ∼ Nside=3. Moreover, since a polynomial transforma-
tion of a band limited map increases the bandwidth
accordingly, in the following we show only results for
multipoles l < 500. While it would be possible to cover
larger values, we do not believe this is essential for our
purpose in this paper.

B. On normalization issues

As mentioned, all the maps we used to estimate the
LKCs are normalized to have unit variance; hence the
threshold levels −2;−1; 0; 1; 2;… are given in terms of
the standard deviation. It should be noted that at low
multipoles, the sample variance need not be close to the
population value, due to cosmic variance effect. As a result
of this, normalizing maps by their respective sample root
mean square would lead to incorrect estimates of the mean
and variance of LKCs. We also stress that population
variances can trivially be derived from any given power
spectrum; for instance, as recalled earlier the variance of a
needlet map at frequency j is given by

σ2ðβjÞ ¼
XBj−1

l¼Bj−1

b4
�
l
Bj

� ð2lþ 1ÞCl

4π
: ð41Þ

In the case where the input spectra are not known, one
should use the best-fit power spectra from the map to
compute the normalization factor.

C. Code validation

To understand the accuracy of our code in estimating the
MFs, in particular in measuring the length of isocontour
lines, we used some test functions for which the relevant
quantities are analytically known. For instance one such
function we used is

fðθ;ϕÞ ¼ sinðnθÞ; ð42Þ
for which the length of isocontour lines at level zero is
given by 2π

P
n−1
k¼1 sinðkn πÞ; the results from our code are

consistent with these theoretical values to better than
0.001%. Of course, the accuracy may degrade for highly
oscillatory functions, but we believe this test provides a
good validation to the entire pipeline and shows that the
algorithms we employed are very reliable.
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FIG. 9 (color online). Multipole space Gaussian masked case: analytical (red—full sky; blue—mask corrected) vs simulations (black
and grey). The legend shows the multipoles at which the LKCs are evaluated. Grey shades are 68%, 95% and 99% percentiles estimated
from 100 simulations. The red analytical curve is not visible in the print version but it is within the 68% confidence bound.
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D. Results: Gaussian fields

In Fig. 2 we compare the multipole space analytical
results (red curve) given in Sec. II B with those of the
simulations (black curve—mean of the simulations). The
68%, 95% and 99% C.L.’s are shown from dark to light
grey bounds. From the left to right panels, the plots show
the results corresponding to multipoles l ¼ 5; 50; 105. We
stress that our fit is extremely accurate, even at very low
multipole values where the flat-sky approximation which is
usually adopted cannot be expected to hold. We also note
the improved concentration around the expected values at
higher multipoles; indeed, the same behavior of these
variances can be predicted analytically, but we delay these
results for future work.
Likewise, Fig. 3 shows analogous results in needlet

space; the colors for different curves have the same
meaning as described above. The displayed results cover
the frequencies j ¼ 10; 12; 14 which for B ¼ 1.5 corre-
spond to multipoles in the order of 60,130,200. These
results are even more accurate than in the multipole case; in
particular the decay of cosmic variance is faster.

E. Results: Non-Gaussian fields

As described before, our non-Gaussian maps are con-
structed by taking a power transform of a Gaussian input.
We also argued earlier in Sec. III that the quadratic power
transform seems useful to investigate power spectrum
asymmetries, while the cubic transform provides a natural
probe of possible directional variations in non-Gaussianity.
In Figs. 4 and 5 we compare the analytical results for the

quadratic case in multipole and needlet space with those
from the simulations, respectively. As described above the
red curves are for analytical predictions, while the black
and grey ones are for simulations.
Similarly, in Figs. 6 and 7 we show analytical vs

simulation results for the cubic non-Gaussian case in
multipole and needlet space, respectively. The fit between
predicted values and simulations is again extremely good.

F. Results: Masked sky case

Probably the main contribution in this paper relates to
the possibility of using the GKF to handle analytically the
effect of sky cuts on Minkowski functionals; see the

-4 -2 0 2 4
-600

-400

-200

0

200

400

600

Threshold level in

ge
nu

s

-4 -2 0 2 4

-2000

0

2000

Threshold level in

ge
nu

s

-4 -2 0 2 4

-1E4

0

1E4

Threshold level in

ge
nu

s

-4 -2 0 2 4

50

100

150

200

Threshold level in

le
ng

th

-4 -2 0 2 4

100

200

300

400

Threshold level in

le
ng

th

-4 -2 0 2 4

200

400

600

800

1000

Threshold level in

le
ng

th

-4 -2 0 2 4

0.2

0.4

0.6

0.8

1.0

Threshold level in

ar
ea

-4 -2 0 2 4

0.2

0.4

0.6

0.8

1.0

Threshold level in

ar
ea

-4 -2 0 2 4

0.2

0.4

0.6

0.8

1.0

Threshold level in

ar
ea

FIG. 10 (color online). Needlet space non-Gaussian masked case: analytical (red—full sky; blue—mask corrected) vs simulations
(black and grey). The needlet parameters are B ¼ 1.5 j ¼ 10; 12; 14. The central multipoles of the corresponding needlet filter are given
in the legend. Grey shades are 68%, 95% and 99% percentiles estimated from 100 simulations. The red analytical curve is not visible in
the print version but it is within the 68% confidence bound.
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discussion in Sec. IV. As a numerical validation of the
analytical results for the expected values of LKCs in the
presence of a sky mask, here we use the realistic Planck
official sky mask, which is formed as a union of different
foreground separation method confidence masks together
with point source masks. The cut regions are shown in
Fig. 8, leaving on observed area of fsky ¼ 73%. As
explained earlier, the key step is the evaluation of LKCs
for the masked sphere, which can then be used as input
values to predict the LKCs of excursion sets under arbitrary
covariance structures. In particular, the input LKCs for the
masked sphere have been derived by simulation from a
masked single multipole field at l ¼ 15, map; this ensures
that the estimation procedure can be implemented with
remarkable computational efficiency. The resulting values
are then inserted to obtain the analytic predictions at any
frequency or multipole.
In Figs. 9 and 10 we compare the masked Gaussian field

analytical result with the corresponding simulations in
multipole and needlet space, respectively. Of course, here
as for the other cases the most relevant results in practice
are those for needlets, because single multipoles cannot be
extracted from masked data; nevertheless, it is reassuring
that the fit works in both circumstances. Moreover, the
analysis of multipole components can be exploited to verify
the statistical properties of full-sky maps, as those obtained
for instance by means of inpainting techniques. These
issues are left as topics for further research.

VI. SUMMARY AND CONCLUSION

In this paper, we illustrated a number of applications for
cosmological data analysis of the GKF (see [19–23]). The
GKF allows us to evaluate exact expected values for
Lipschitz-Killing curvatures (Minkowski functionals) in
a number of circumstances of applied interest, covering in
particular full-sky experiments (accounting for the geom-
etry of the sphere), nonlinear statistics and masked data.
We used the GKF on random fields derived by harmonic

and needlet transforms, allowing for the further advantage
of better control of cosmic variance effects and localization.
In particular we provided the analytic expressions for the
Minkowski functionals for needlets and single multipole
fields, covering Gaussian and non-Gaussian circumstances,
with and without masks. All the results reported are
validated by an extensive Monte Carlo study, which
demonstrates an extremely good agreement between pre-
dictions and simulations.
Many issues in this paper are left open for future

research. In particular, while the results we presented
provide a rather complete characterization of expected
values under a variety of different circumstances, an
equally rigorous analysis of error bars is still lacking, even
in the mathematical literature (see [44] for some very recent
preliminary results). Likewise, we remark that we analyzed
here statistics resulting from nonlinear transforms of

Gaussian fields, as those arising by tests on power
asymmetries and directional variations of the bispectrum
in CMB data analysis; other forms of non-Gaussianities are
currently beyond the scope of the GKF. We also stress that
applications of GKF to settings other than CMB are
possible; in particular, it is certainly of interest to extend
the techniques discussed here to three-dimensional data sets
emerging from large scale structure surveys or to spin
random fields from polarization or weak gravitational
lensing experiments [45]. Research in this area is currently
ongoing and will be reported in future works.
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APPENDIX MATHEMATICAL APPENDIX

On a general, high-dimensional manifold, the LKCs for
the region A are defined as the coefficients of a Taylor
expansion of a tube of radius r around A. Formally, a tube is
simply the set A plus a halo, i.e.

TubeðA; rÞ ¼ fx∶dðx; AÞ ≤ rg: ðA1Þ
Assuming that A had dimension dimðAÞ ¼ n, the LKCs are
implicitly defined by the formula

Vol½TubeðA; rÞ� ¼
Xn
k¼0

Ln−kðAÞωkrk: ðA2Þ

For instance, let A be the unit square on the plane; by
elementary geometry, the volume of the Tube is then given
by

L2ðAÞ þ 2L1ðAÞrþ L0ðAÞπr2 ¼ 1þ 2 · 2 · rþ πr2;

ðA3Þ
whence it is seen that in the two-dimensional case the LKCs
correspond to the Euler-Poincaré characteristic, half the
boundary length and area, respectively; the general relation-
ship with standard Minkowski functionals is given by

LjðAÞ ¼
1

ðN − jÞ!ωN−j
MN−jðAÞ ðA4Þ

where here N ¼ dimðAÞ. All these definitions extend to
arbitrary manifolds and dimensions, and make it possible to
express the GKF in much greater generality. Similarly, one
can introduce the Gaussian Minkowski functionalsMG

kðUÞ
as the Taylor coefficients in the expansion of the Tube
probabilities, e.g.
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Pr fZ ∈ TubeðU; rÞg ¼
X
k

MkðUÞ r
k

k!
: ðA5Þ

The left-hand side simply represents the probability that
a zero-mean standard Gaussian variable belongs to
TubeðU; rÞ; for instance, for U ¼ ½u;∞Þ it can be checked
that the Gaussian Minkowski functionals yield the k-order
derivatives of Gaussian densities that we recalled above.
More general forms of U are necessary, however, when one
considers non-Gaussian processes, as we shall do below.

We shall now discuss the GKF for the case of nonlinear
transforms of Gaussian and isotropic random fields; i.e., we
shall consider fields of the form

yðxÞ ¼ gðTðxÞÞ; ðA6Þ
where TðxÞ is zero mean, unit variance, Gaussian and
isotropic, and the function gð:Þ is such that also yð:Þ has
finite variance; for our purposes, the examples we shall
consider are simply quadratic and cubic polynomials, i.e.
gðTÞ ¼ T2 and gðTÞ ¼ T3. Under these circumstances, the
GKF takes the form

λi=2ELiðAuðgðTÞ;MÞÞ ¼
XdimðMÞ−i

k¼0

λðiþkÞ=2LiþkðMÞMkðg−1½u;∞ÞÞ; ðA7Þ

the expression obviously becomes identical to (15), in the Gaussian case gðTðxÞÞ ¼ TðxÞ. For more general transforms, the
role of the Gaussian Minkowski functionals becomes crucial: these are rather simple to evaluate for quadratic and cubic
cases, as we shall show below.

A. The quadratic case

Here we are interested in the analysis of quadratic functionals such as

gðβjðxÞÞ ¼
β2jðxÞ
Eβ2jðxÞ

: ðA8Þ

By the general GKF and simple computations we have

EL0ðAuðgðβjðxÞÞ; S2Þ ¼
X2
k¼0

ð2πÞ−k=2λk=2j LkðS2ÞMkðð−∞;−
ffiffiffi
u

p Þ∪ð ffiffiffi
u

p
;∞ÞÞ

¼
X2
k¼0

ð2πÞ−k=2λk=2j LkðS2Þ2Mkðð
ffiffiffi
u

p
;∞ÞÞ

¼ 2 · 2 · ð1 − Φð ffiffiffi
u

p ÞÞ þ 0þ 1

2π
L
βj
2 ðS2Þ

e−u=2ffiffiffiffiffiffi
2π

p 2
ffiffiffi
u

p ðA9Þ

¼ 2 · 2 · ð1 − Φð ffiffiffi
u

p ÞÞ þ 1

2π

P
lb

2ð lBjÞ 2lþ1
4π Cl

lðlþ1Þ
2P

lb
2ð lBjÞ 2lþ1

4π Cl
L2ðS2Þ

e−u=2ffiffiffiffiffiffi
2π

p 2
ffiffiffi
u

p
: ðA10Þ

Also

λ1=2j EL1ððAuðgðβjðxÞÞ; S2ÞÞ ¼
X1
k¼0

ð2πÞ−k=2
�
kþ 1

k

�
λðkþ1Þ=2
j Lkþ1ðS2ÞMkðg−1½u;∞ÞÞ

¼ λ1=2j L1ðS2ÞM0ðð−∞;−
ffiffiffi
u

p Þ∪ð ffiffiffi
u

p
;∞ÞÞ

þ ð2πÞ−1=2 π
2
λjL2ðS2ÞM1ðð−∞;−

ffiffiffi
u

p Þ∪ð ffiffiffi
u

p
;∞ÞÞ

¼ ð2πÞ−1=2 π
2

�
4π

P
lb

2ð lBjÞ 2lþ1
4π Cl

lðlþ1Þ
2P

lb
2ð lBjÞ 2lþ1

4π Cl

�
2
e−u=2ffiffiffiffiffiffi
2π

p

¼ 2π

�P
lb

2ð lBjÞ 2lþ1
4π Cl

lðlþ1Þ
2P

lb
2ð lBjÞ 2lþ1

4π Cl

�
e−u=2;
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which implies

EL1ððAuðgðβjðxÞÞ; S2ÞÞ

¼ 2π

�P
lb

2ð lBjÞ 2lþ1
4π Cl

lðlþ1Þ
2P

lb
2ð lBjÞ 2lþ1

4π Cl

�1=2

e−u=2 ðA11Þ

entailing a length of the boundary of excursion sets given
by

2π

�P
lb

2ð lBjÞ 2lþ1
4π Cl

lðlþ1Þ
2P

lb
2ð lBjÞ 2lþ1

4π Cl

�1=2

e−u=2: ðA12Þ

Finally

λjEL2ððAuðgðβjðxÞÞ; S2ÞÞ
¼ λjL2ðS2ÞM0ðg−1ðu;∞ÞÞ

¼ 4π

�P
lb

2ð lBjÞ 2lþ1
4π Cl

lðlþ1Þ
2P

lb
2ð lBjÞ 2lþ1

4π Cl

�
2ð1 − Φð ffiffiffi

u
p ÞÞ

implying that

EL2ððAuðgðβjðxÞÞ; S2ÞÞ ¼ 4π × 2ð1 − Φð ffiffiffi
u

p ÞÞ: ðA13Þ

B. The cubic case gðxÞ ¼ x3

Again by applying (A7), we obtain for needlet
components

EL0ðAuðβ3jðxÞ; S2ÞÞ ¼
X2
k¼0

ð2πÞ−k=2LkðS2ÞMkðð
ffiffiffi
u3

p
;∞ÞÞ

¼ 2ð1 − Φð ffiffiffi
u3

p ÞÞ þ 2

P
lb

2ð lBjÞ 2lþ1
4π Cl

lðlþ1Þ
2P

lb
2ð lBjÞ 2lþ1

4π Cl

e−ð
ffiffi
u3

p Þ2=2ffiffiffiffiffiffi
2π

p ffiffiffi
u3

p
;

and likewise

EL1ðAuðβ3jðxÞ; S2ÞÞ ¼ 2π

�P
lb

2ð lBjÞ 2lþ1
4π Cl

lðlþ1Þ
2P

lb
2ð lBjÞ 2lþ1

4π Cl

�1=2

e−ð
ffiffi
u3

p Þ2=2: ðA14Þ

Finally

EL2ðAuðβ3jðxÞ; S2ÞÞ ¼ 4πð1 − Φð ffiffiffi
u3

p ÞÞ: ðA15Þ
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