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We propose a general method for the numerical evaluation of operator product expansion coefficients in
three dimensional conformal field theories based on the study of the conformal perturbation of two point
functions in the vicinity of the critical point. We test our proposal in the three dimensional Ising model,
looking at the magnetic perturbation of the hσðrÞσð0Þi, hσðrÞϵð0Þi and hϵðrÞϵð0Þi correlators from which
we extract the values of Cσ

σϵ ¼ 1.07ð3Þ and Cϵ
ϵϵ ¼ 1.45ð30Þ. Our estimate for Cσ

σϵ agrees with those recently
obtained using conformal bootstrap methods, while Cϵ

ϵϵ, as far as we know, is new and could be used to
further constrain conformal bootstrap analyses of the 3d Ising universality class.
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I. INTRODUCTION

In the past few years a renewed interest in the conformal
bootstrap approach [1] to three dimensional conformal field
theories (CFT) led to a set of remarkable results [2–19] on the
universality classes of several 3d statistical models. Among
thesemodels a particular attention has beendevoted to the 3d
Ising case, both for its physical relevance and for the fact that
in this case very precise numerical estimates exist for the
scaling dimensions [20], which allowed highly nontrivial
tests of the conformal bootstrap results. It would be
interesting to perform a similar comparison also for the
operator product expansion (OPE) coefficients [21], but for
these constants Monte Carlo estimates with an accuracy
comparable with that of the scaling dimensions are still
lacking.As an attempt to fill this gapwepropose in this paper
a general strategy for the numerical estimate of the structure
constants and, as a proof of concept, we evaluateCσ

σϵ andCϵ
ϵϵ

in the Ising case. Our estimates should be consideredmainly
as an exploratory study on the effectiveness of the procedure
with a limited use of computer power. We plan in a forth-
coming paper to obtain more precise estimates for these and
other OPE coefficients.
It is well known that estimating structure constants is

much more difficult than estimating scaling dimensions.
The most naive approach would be to extract them directly
from three point functions (i.e. the connected correlators of
three operators) at criticality. However it is easy to see that
the subtraction in the connected correlator of the two point
components leads to a mix of contributions with similar
exponents which makes it very difficult to extract the
sought for OPE coefficients. In this paper we propose an
alternative method based on conformal perturbation which
allows to overcome this problem. The main idea is to study
the perturbed two point functions using the OPE to rewrite
them as sums of perturbed one point functions and then use
the known scaling behavior of one point functions and
structure constants to write the perturbed two point function

as an expansion in powers of the scaling variable.
Following [21] it is always possible to write the short
distance behavior of two-point correlators in the vicinity of
a critical point as a short distance expansion:

hOiðrÞOjð0Þih ¼
X
k

Ck
ijðr; hÞhOkð0Þih ð1Þ

where h::ih denotes the expectation values with respect to
the perturbed action, the Oi represent a complete set of
operators of the conformal theory and the Ck

ijðr; hÞ are
the Wilson coefficients. While the one point functions
hOkð0Þih cannot be determined from the knowledge of the
critical correlators and take care of the nonperturbative
physics of the model, the Wilson coefficients can be
obtained from integrals of critical correlators. Moreover
it was shown in [22] that the nth order derivatives of the
Wilson coefficients with respect to the perturbing param-
eter of the theory are always infrared finite. The structure
constants can then be easily extracted from the coefficients
of the short distance expansion (see [22–24] for further
details). In practice one is limited for numerical reasons to
the first few coefficients (typically the first two or three)
which however (combining all the possible two points
functions and relevant perturbations) are enough to obtain
all the structure constants among relevant operators.
As it is easy to see the method is based on very general

features of CFTs and OPEs. It can be applied to any
d-dimensional CFT and in fact it was applied a few years
ago to the 2d Ising model perturbed by a magnetic field
[23,24], to various perturbations of the Tricritical Ising
model [25] and then used to identify the signatures of
subleading irrelevant operators in the perturbed two point
functions [26]. In all these cases the structure constants
were already known from the exact solution of Belavin
Polyakov and Zamolodchikov [27] and the main emphasis
was on comparing the perturbative results with the numeri-
cal simulations.
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The aim of this paper is to apply this strategy to the three
dimensional case. In particular we shall address, as an
example, the magnetic perturbation of the 3d Ising model.

II. ISING MODEL PERTURBED
BY A MAGNETIC FIELD h

The action of the continuum Ising model in 3D perturbed
by a magnetic field is

S ¼ Scft þ h
Z

σðrÞdr; ð2Þ

where Scft is the action of the conformal field theory which
describes the model at the critical point.
At the conformal point there are two quasi-primary

relevant fields σ and ϵ, whose dimensions are given by
Δσ ¼ 0.51814ð5Þ, Δϵ ¼ 1.41275ð25Þ [20].
The VEVs acquire a dependence on h, that can be fixed

using renormalization group arguments:

hσi ¼ Aσh
Δσ
Δh ð3Þ

hϵi ¼ Aϵh
Δϵ
Δh : ð4Þ

In order to simplify notations let us introduce the scaling
variable t ¼ jhjrΔh , and an adimensional version of the
structure constants and their derivatives:

Ck
ij ≡ lim

r−>∞
Ck
ijðr; 0ÞrdimðCk

ijðr;0ÞÞ

∂hCk
ij ≡ lim

r−>∞
∂hCk

ijðr; 0Þrdimð∂hCk
ijðr;0ÞÞ:

With these definitions the short distance expansion of σ and
ϵ correlators becomes:

r2Δσ hσðrÞσð0Þi ¼ C1
σσ þ AϵCϵ

σσt
Δϵ
Δh

þ Aσ∂hCσ
σσt

Δσ
Δh
þ1 þOðt2Þ ð5Þ

rΔσþΔϵhσðrÞϵð0Þi ¼ AσCσ
σϵt

Δσ
Δh þ ∂hC1

σϵt

þ Aϵ∂hCϵ
σϵt

Δϵ
Δh
þ1 þO

�
t
Δσ
Δh
þ2
�

ð6Þ

r2ΔϵhϵðrÞϵð0Þi ¼ C1
ϵϵ þ AϵCϵ

ϵϵt
Δϵ
Δh

þ Aσ∂hCσ
ϵϵt

Δσ
Δh
þ1 þOðt2Þ ð7Þ

where Δh ¼ 3 − Δσ ¼ 2.48186ð5Þ is the dimension of the
magnetic field and with the standard CFT normalizations
we may set C1

ϵϵ ¼ C1
σσ ¼ 1.

A. Conversion from lattice to continuum
normalizations

The partition function of the 3d Ising model is given by:

Z ¼
X
σi¼�1

e
β

�P
hi;jiσiσjþH

P
i
σi

�
ð8Þ

where hi; ji indicates nearest neighbors sites in the lattice
which we assume to be a three-dimensional cubic lattice of
size L. Fixing β at its critical value βc ¼ 0.2216544 [28]
and defining hl ¼ βcH, we have:

Z ¼
X
σi¼�1

eβc
P

hi;jiσiσjþhl
P

i
σi : ð9Þ

It is natural to define the lattice discretization of σ as
σl ≡ 1

L3

P
iσi, so that its mean value coincides with the

magnetization. In a similar way one can define the energy
operator ϵl as ϵl ≡ 1

3L3

P
hi;jiσiσj − ϵcr, where ϵcr is the

energy at the critical point, so that the mean value of ϵl

coincides with the singular part of the internal energy.
It is important to notice that measuring the mean values

(3), (4) and the two point functions (5), (6), (7) on the lattice
we find the lattice versions of the amplitudes A and
structure constants C (which we shall denote in the
following with the index l: Al and Cl). To relate these
constants with the continuum ones we must first fix the
relative normalization of σl; ϵl and hl with respect to σ; ϵ
and h. The simplest way to do this is by comparing the
correlators at the critical point. In fact from

hσiσji ¼
R2
σ

jrijj2Δσ
; ð10Þ

we get (assuming the standard normalization of the two
point function in the continuum) σl ¼ Rσσ. By considering
the ϵl correlator we get similarly ϵl ¼ Rϵϵ. Finally, hl is
fixed by matching the lattice and continuum perturbation
terms: hl ¼ R−1

σ h.
Using Rσ and Rϵ we can easily obtain continuum

amplitudes and OPE constants from the lattice ones. For
example from Eq. (4) we get Al

ϵ ¼ Rσ
Δϵ
ΔhRϵAϵ and from this

and Eqs. (5) and (10) we have the rescaling for the structure
constant: Cϵ

σσ
lRϵ ¼ Cϵ

σσ .

III. MONTE CARLO SIMULATIONS

A. Estimating Rσ and Rϵ

As a first step we extracted the values of Rσ and Rϵ from
a finite size scaling analysis of the two point correlators at
the critical point. Table I summarizes our results. We are not
aware of independent estimates of these quantities except
for ϵcr which was estimated in [29] as ϵcr ¼ 0.3302022ð5Þ
in good agreement with our result. The quoted uncertainties
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combine both statistical and systematic errors. It should be
noticed, in view of possible future improvements of our
analysis, that the main source of error was due to the
infinite volume extrapolation of our results (we used
lattices in the range 120 ≤ L ≤ 200).

B. Perturbed correlators

To extract the structure constants we then estimated the
same correlators in presence of a small magnetic field hl.
The choice of hl is constrained by two main requirements:
hl should be small enough to keep the correlation length ξ
as large as possible, at the same time it should not be too
small to avoid finite size effects. The optimal choice is thus
fixed by the maximal lattice size which we could simulate
with the computer resources at our disposal, which was
fixed to be L ¼ 200. Given this constraint the optimal
range turned out to be 2 × 10−5 < hl < 0.75 × 10−5. In this
range the correlation length spans from about 20 to 40
lattice spacings, allowing us to sample a sufficient number
of different distances of the correlators.
For all values of h we performed our simulations on

lattices of size L ¼ 200 using a state of art Monte Carlo
algorithm with about 107 configurations for each simu-
lation. We fitted the correlators with Eqs. (5), (6), (7),
setting C1

σσ ¼ C1
ϵϵ ¼ 1, using Aσ; Aϵ;Δσ;Δϵ as fixed inputs

and keeping as only free parameters the structure constants.
It turned out that in all correlators the last terms quoted in
Eqs. (5), (7) and the last two terms in Eq. (6) were
negligible within the errors and in all three cases we ended
up with a linear fit with only one free parameter. A major
source of uncertainty in our estimates is the systematic error
due to the uncertainty in the estimates of Rσ and Rϵ. We
quote separately in the following these errors (which we
report in square brackets) from the statistical ones. Due to
the different scaling behavior, the relative size of statistical
and systematic errors is different for the three correlators.
For Cϵ

σσ estimated from hσðrÞσð0Þi the two errors are of
similar magnitude. Cϵ

ϵϵ extracted from hϵðrÞϵð0Þi is domi-
nated by the systematic error while for Cσ

σϵ. extracted from
hσðrÞϵð0Þi the systematic error is negligible (due to the fact
that the critical correlator vanishes in this case).
The tables below report our results for the structure

constants. rmin and rmax denote the range of distances
included in the fit. In all cases we chose rmin ¼ 5. We
verified that in all three cases this was enough to eliminate
lattice artifacts and to neglect short distance subleading
contributions in the correlators.

Looking at Tables II, IV we see that, within our
statistical errors Cϵ

σσ ¼ Cσ
σϵ. Combining the results listed

in Tables II, III, IV we quote as our final estimate for the
two structure constants Cσ

σϵ ¼ 1.07ð3Þ and Cϵ
ϵϵ ¼ 1.45ð30Þ.

The first value is in good agreement with a recent
conformal bootstrap calculation [19]: ðCσ

σϵÞ2¼1.10636ð9Þ
[30]. We are not aware of any estimate for the second
constant Cϵ

ϵϵ. The very fact that it is different from zero is
rather nontrivial. In fact in the two dimensional model
Cϵ
ϵϵ ¼ 0 as a consequence of dual symmetry. Our calcu-

lation shows that indeed this is not a generic property of the
Ising model but is a specific feature of the two dimensional
self-dual case.

IV. CONCLUDING REMARKS

In this paper we proposed a general strategy for the
Monte Carlo estimate of OPE coefficients in d-dimensional
spin models. As a proof of concept of our method we
performed an exploratory study in the 3d Ising case and
found a value of Cσ

σϵ in agreement with the known
conformal bootstrap results and a preliminary estimate
for Cϵ

ϵϵ which could be used as input for further constrain
existing conformal bootstrap calculations. Similarly, the
knowledge of these structure constants could be used to

TABLE I. Rescaling and other useful constants.

Rσ 0.550 (4)
Rϵ 0.237 (3)
Al
σ 1.0125 (5)

Al
ϵ 0.608 (1)

ϵcr 0.330213 (12)

TABLE II. Results for the structure constant Cϵ
σσ obtained from

the spin-spin correlator. We report systematic errors in square
brackets.

hl rmin rmax Cϵ
σσ

2 × 10−5 6 20 1.06 (3) [7]
10−5 5 35 1.04 (2) [7]
0.85 × 10−5 5 35 1.06 (3) [8]
0.75 × 10−5 5 40 1.07 (3) [8]

TABLE III. Results for the structure constant Cϵ
ϵϵ obtained from

the energy-energy correlator. We report systematic errors in
square brackets.

hl rmin rmax Cϵ
ϵϵ

2 × 10−5 5 16 1.47 (10) [30]
10−5 5 18 1.42 (10) [50]
0.85 × 10−5 5 18 1.43 (12) [50]

TABLE IV. Results for the structure constant Cσ
σϵ obtained from

the spin-energy correlator.

hl rmin rmax Cσ
σϵ

2 × 10−5 5 16 1.10 (3)
10−5 5 16 1.07 (4)
0.85 × 10−5 5 14 1.07 (5)
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constrain the linear response dynamics at finite temperature
of conformal quantum critical systems [31].
We see a few possible improvements of our approach:
(i) The systematic uncertainty which is the major

source of error in Cϵ
ϵϵ could be improved, following

the approach proposed in [20], looking at different
realizations of the 3d universality class with im-
proved scaling behavior.

(ii) It would be useful to combine the magnetic pertur-
bation that we studied in this paper with other types
of perturbation.

(iii) It would be interesting to extend the method also to
boundary CFTs [8] and to CFTs containing con-
formal defects [32,33]

We plan to address these issues in a forthcoming
publication.
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