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We show that the quadratic inflation can be realized by the phase of a complex field with helicoid
potential. Remarkably, this helicoid potential can be simply realized in minimal supergravity. The global
Uð1Þ symmetry of the Kähler potential introduces a flat direction and evades the η problem automatically.
So such inflation is technically natural. The phase excursion is super-Planckian as required by the Lyth
bound, while the norm of the complex field can be suppressed in the sub-Planckian region. This model
resolves the ultraviolet sensitive problem of the large field inflation; besides, it also provides a new type of
monodromy inflation in supersymmetric field theory with consistent field stabilization.
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I. INTRODUCTION

Inflation [1] as a model of the early Universe plays a
crucial role in modern cosmology. It beautifully solves the
horizon, flatness, and monopole problems, as well as
explains the density fluctuation observed in the cosmic
microwave background. Some details on the inflationary
process are obtained from recent observations of the Planck
[2] and BICEP2 [3] experiments. It shows the inflation
scale is about 1016 GeV, close to the scale for grand unified
theory (GUT). To generate slow-roll inflation, the scalar
field ϕ should have sufficiently flat potential VðϕÞ so that
its mass is hierarchically smaller than the Hubble constant

η≡M2
P
V00

V
≃ m2

ϕ

3H2
≪ 1; ð1Þ

where MP is the reduced Planck scale. At the classical
level, the potential can be set sufficiently flat by hand.
However, the inflaton as a scalar field receives dangerous
quantum corrections and even serious quantum gravity
corrections if there is super-Planckian field excursion. The
crucial challenge for a sensible inflation model is to protect
the flat condition against these dangerous corrections.
At the GUT scale physics is considered to be super-

symmetrical and the quantum corrections on the inflaton
potential are effectively suppressed by supersymmetry [4].
However, the flatness of the potential is significantly
changed in supergravity. The F-term scalar potential is

proportional to a factor eK; K is the Kähler potential and
contains a termΦΦ̄ in minimal supergravity. The factor eΦΦ̄

generates an inflaton mass close to the Hubble scale and
hence breaks the slow-roll condition (1). The η problem is
absent in no-scale supergravity [5], in which the Kähler
potential is initially designed to solve the cosmological
flatness problem [6]. Alternatively, one can introduce a
shift symmetry Φ → Φþ iC [7] in the Kähler potential so
that eK is flat along the shift direction.1

For single field slow-roll inflation, the Lyth bound [9]
indicates a super-Planckian inflaton excursion Δϕ ∼ 10MP
for large tensor modes, which makes the effective theory
description of inflation problematic. In the Wilsonian
sense, there are higher dimensional operators from quan-
tum gravity effects that are suppressed by the Planck mass
MP and irrelevant in the sub-Planckian region. However,
once the inflaton becomes super-Planckian, inflation is
sensitive to the higher dimensional operators and the theory
is not reliable unless it is ultraviolet (UV) completed [10].
Problems from quantum gravity corrections can be

avoided if the super-Planckian field excursion is effec-
tively realized in the sub-Planckian region. Considering
the phase of a complex scalar field, or the pseudo–Nambu-
Goldstone boson (PNGB) in gauge symmetry breaking
scenario [11–14], the phase can have super-Planckian
displacement while the magnitude of complex field
remains sub-Planckian. Besides, the combination of
multi-sub-Planckian fields may lead to effective super-
Planckian excursion [15,16]. Another attractive and
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1The shift symmetry can be slightly broken to get inflationary
models with a broad range of tensor-to-scalar ratio r [8].
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widely studied model is the monodromy inflation [17,18],
in which the inflaton is an axion obtained from string
compactification and evolves periodically while all the
factors except the potential remain the same.
In this article, we present a new inflation model with

helicoid potential. This potential is designed to realize
super-Planckian inflaton excursion with sub-Planckian
fields and the inflation is driven by the phase of a complex
field, so that we can keep away from dangerous quantum
gravity corrections. Remarkably, the helicoid scalar poten-
tial can be simply obtained in minimal supergravity, and the
well-known η problem is automatically solved without
any extra symmetry. The phase inflation also leads to a new
type of monodromy in supersymmetric field theory with
strong field stabilization.

II. HELICOID POTENTIAL

Now we give the supergravity realization of the helicoid
potential in the simplest case. We consider two chiral
superfields Φ and X in minimal supergravity; the Kähler
potential is

K ¼ ΦΦ̄þ XX̄ − gðXX̄Þ2; ð2Þ

where the higher order term gðXX̄Þ2 is introduced to
stabilize the field X at X ¼ 0 [19,20]. Besides, we use
the following superpotential:

W ¼ a
X
Φ
lnΦ: ð3Þ

The superpotential is singular at Φ ¼ 0 with monodromy2

Φ → Φe2πi; W → W þ 2πai
X
Φ
: ð4Þ

In field theory, singularity appears when a massless field is
integrated out. An explicit realization of this monodromy
will be provided based on supersymmetric field theory in
the next section.
It is obvious that the Kähler potential preserves the

global Uð1Þ symmetry for Φ, which is broken by the
superpotential. Thus, our model is technically natural since
there is a global Uð1Þ symmetry in the a ¼ 0 limit [22].
The F-term scalar potential is determined by the Kähler

potential and superpotential as follows:

V ¼ eKðKij̄DiWDj̄W̄ − 3WW̄Þ: ð5Þ

As the field X is stabilized at X ¼ 0, the above potential is
significantly simplified as below,

V ¼ eΦΦ̄WXW̄X̄

¼ a2er
2 1

r2
ððln rÞ2 þ θ2Þ; ð6Þ

where Φ≡ reiθ. The quadratic term θ2 appears in the
potential because of the monodromy (4) with respect to the
origin.
The potential (6) is simple but actually has fancy helicoid

structure, as shown in Fig. 1. The exponential factor er
2

does not depend on the phase θ resulting from the global
Uð1Þ symmetry of Kähler potential (2); consequently there
is no η problem for this phase inflation. The complex field
magnitude jΦj≡ r obtains vacuum expectation value at
hri ¼ 1 as both er

2 1
r2 and ðln rÞ2 reach minimums at r ¼ 1.

The mass along the radial direction is

m2
r ¼

1

2

∂2V
∂r2

�
�
�
�
r¼1

¼
�

2þ 1

θ2

�

VI; ð7Þ

where the factor 1
2
is from the normalization of r, and

VI ¼ ea2θ2 is the potential for inflation. Equation (7)
shows that the mass of r is larger than the Hubble constant;
therefore the radial component is frozen out during infla-
tion, and we realize the quadratic inflation dominated
by VI. The helical inflation path is shown in Fig. 2. The
inflaton θ has physical mass mθ ¼

ffiffiffi
e

p
a at scale 1013 GeV

from observations [2,3]. It predicts the spectral index

FIG. 1 (color online). The helicoid potential with unit 10−8M4
P.

Along radial direction, the minimum of the potential locates at
jΦj≡ r ¼ 1, while the phase θ provides a flat direction along the
helix line, from which it is easy to get super-Planckian field
excursion.

2An interesting proposal based on multivalueness of the
complex function with fractional power is studied in [21].
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ns ≃ 1 − 2
Ne

and the tensor-to-scalar ratio r≃ 8
Ne
, where Ne

is the e-folding number.
In the PNGB inflation, the phase of the Higgs field also

plays the role of the inflaton [11]. However, the potential is
periodic and a super-Planckian decay constant is needed. In
our model, the inflation path is helical; there is no limit on
the field displacement during inflation. Actually this is a
new realization of the monodromy, which is proposed as
stringy axion inflation in a rather different way [17].
The norm can be stabilized in the sub-Planckian scale by

taking the following superpotential:

W ¼ aXΦ−1
n ln

Φ
Λ
: ð8Þ

The scalar potential becomes

V ¼ a2er
2

r−
2
nððln r − lnΛÞ2 þ θ2Þ: ð9Þ

The minimum of the factor er
2

r−
2
n locates at r0 ¼ 1ffiffi

n
p ð¼ ΛÞ.

The mass along the radial direction at r0 is

m2
r ¼

�

2þ n
θ2

�

VI > H2; ð10Þ

where VI ¼ ðenÞ1=na2θ2, providing a strong stabilization
even though r is very small. Giving n ≥ 10 the norm can be
stabilized at r0 ∼Oð10−1ÞðMPÞ.

III. MONODROMY FROM SUPERSYMMETRIC
FIELD THEORY

To realize helical phase inflation, the monodromy (4) of
superpotential (3) is crucial. The monodromy is from the
superpotential

W0¼ σXΨðT−δÞþYðe−αT −βΨÞþZðΨΦ−λÞ; ð11Þ

in which the coupling constants of the last two terms are
absorbed in the chiral superfields Y and Z, and σ ≪ 1 to
provide inflation potential at a scale much lower than that
of the last two terms. The couplings in (11) consist of
renormalizable perturbative terms and Ye−αT , which is
considered to be an effective description of a certain
nonperturbative effect. A reasonable decay constant f is
much smaller than Planck mass, so α ∝ 1

f ≫ 1. In type II
string theory similar nonperturbative terms can be obtained
from the D-brane instanton effect [23].
The supergravity vacuum is given by the vanishing

F-term conditions

Fz ¼ DzW0 ¼ ∂zW0 þ KzW0 ¼ 0; ð12Þ

where z ∈ fX; Y; Z; T;Ψ;Φg. Combing with Minkowski
vacuum condition W0 ¼ 0, the preferred vacuum is given
by ∂zW0 ¼ 0, and it locates at

hXi ¼ hYi ¼ hZi ¼ 0; hTi ¼ δ;

hΨi ¼ 1

β
e−αδ; hΦi ¼ λβeαδ: ð13Þ

Giving hΦi ≫ hΨi, near the vacuum Y; Z; T;Ψ obtain
heavy effective masses from the last two coupling terms
while X, Φ are light. During inflation all the heavy fields
are frozen out and can be integrated out; then we get an
effective field theory at inflation scale. To integrate out the
heavy fields, we need to solve the equations of vanishing F
terms of frozen fields

FY ¼ e−αT − βΨþ KYW0 ¼ 0;

FZ ¼ ΨΦ − λþ KZW0 ¼ 0: ð14Þ

In minimal supergravity, the Kähler potential is K ¼ Σzz̄,3

which gives Kz ¼ z̄. Besides, near the vacuum
Y ¼ Z ≈ 0 ≪ MP, the higher order terms KzW0 in (14)
just give small corrections and we get the approximate
solutions of Eq. (14),

Ψ ¼ λ

Φ
; T ¼ 1

α
ln

Φ
βλ

: ð15Þ

FIG. 2 (color online). Helix trajectory with r ¼ 1. The red part
indicates the phase excursion for quadratic inflation with
Ne ¼ 55.

3Except for T, for the reasons shown below, Kähler potential of
T has to be shift invariant under T → T þ iC.
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Substituting the above solutions for T and Ψ in the original
superpotential W0, we get the effective superpotential (3)
during inflation. The parameters should satisfy

βeαδ ¼ λ−1 ≫ 1; a ¼ σλ

α
∼ 10−5; ð16Þ

which can be easily adjusted to fit with observations.
The singularity of superpotential W at Φ ¼ 0 is clear

from this procedure. When Φ → 0, we have Ψ ≫ Φ con-
strained by (14) and it is illegal to integrate out Ψ, the
model should be studied in another effective field theory.
Fortunately during inflation jΦj is fixed at vacuum expect-
ation value and the phase rotation cannot break the
effectiveness the theory given byW. As to the monodromy,
vanishing conditions of FY and FZ fix four directions of
three complex fields T, Ψ, and Φ, but allow the trans-
formation

Ψ → Ψe−u−iv

Φ → Φeuþiv

T → T þ u=αþ iv=α: ð17Þ

However, because of the supergravity correction on the
scalar potential V ∝ eK , norms of Ψ and Φ are stabilized;
u ¼ 0 in (17). Field stabilization does not fix the phase
rotation,4 and for a whole circular rotation,
W0 → W0 þ 2πσiXΨ=α, which is exactly the monodromy
in (4).
By integrating out the heavy fields, the supergravity

correction eK should be replaced by the solution of Eq. (14)
as well, which just gives norm-dependent terms and
slightly shifts the fixed norm since K is invariant under
phase rotation. Specifically, for T a shift symmetry in K is
needed; otherwise the factor eK contains the phase of Φ and
breaks the inflation. Among these phase factors, the phase
of Φ, after canonical field redefinition, has the lightest
physical mass and evolves as inflaton.
At quantum level, because of the nonrenormalization

theorem for the superpotential, the loop corrections from
integrating out heavy fields appear in Kähler potential only,
and these corrections just sightly affect the field stabiliza-
tion but not the phase inflation which is protected by the
Uð1Þ symmetry in Kähler potential.

IV. UV SENSITIVITY OF LARGE FIELD
INFLATION

The crucial challenge for large field inflation is the
higher dimensional operators from quantum gravity cor-
rections [10]. The higher order terms of the inflaton ϕ,

ΔV ¼ ciV

�
ϕ

MP

�
i
þ � � � ; ð18Þ

are unignorable at the initial stage of inflation when
ϕ ∼Oð10ÞMP. They can modify the predictions signifi-
cantly or even destroy slow-roll conditions. In this model,
the inflaton is just the phase of a complex field like PNGB
and admits no polynomial correction at all; in consequence
quantum gravity corrections like (18) immediately disap-
pear without any constraint from extrasymmetry. So the
helical phase inflation is not sensitive to the quantum
gravity effects.
In the bottom-up approach, one can apply axionic shift

symmetry of the inflaton ϕ → ϕþ c, which is broken
down to discrete symmetry ϕ → ϕþ 2πf by nonpertur-
bative effect. To fit the experimental observations it
requires super-Planckian axion decay constant f,5 which
can be realized by aligned axions [12] (or equally a S2
symmetry between two Kähler moduli [25]) or anomalous
gauged Uð1ÞX with large gauge symmetry [26]. The
inflation path of aligned axions has similar helical struc-
ture in axion space [27,28], and it shows that the align-
ment mechanism is the kind of monodromy inflation
realized by axions that are plentiful in string compacti-
fication. Stringy inflation is expected to solve the UV
sensitivity of large field inflation but needs to address
several difficult problems like moduli stabilization,
Minkowski or de Sitter vacua, etc. Our model provides
another type of monodromy inflation just in supersymmet-
ric field theory, which is more simpler and controllable. The
Uð1Þ symmetry is built in the Kähler potential and there is
no naturalness problem in the top-down perspective. Based
on the supersymmetric field realization of inflation, a
unified description of the inflation and the well-known
GUT is at hand. A direct test on the relationship between
inflation and GUT is the reheating process. In our model, a
simple guess is that the chiral superfield X is a gauge
singlet in a certain grand unification model, like the
scenario in [29]; then the inflaton decays into visible
particles through couplings of X during reheating.

V. CONCLUSION

We have shown in this article that the phase inflation
along a single helix trajectory can be realized in a
surprisingly simple way based on minimal supergravity.
The global Uð1Þ symmetry of minimal Kähler potential
naturally solves the η problem which appears generically
for supergravity inflation. The radial direction is strongly
stabilized during inflation, and the super-Planckian phase
excursion is fulfilled along a helix path.
The helical phase inflation is not sensitive to the

quantum gravity effect as higher order corrections are

4If the Kähler potential of T is minimal, then the supergravity
correction eTT̄ would fix the phase rotation as well.

5Giving a coupling between the inflaton kinetic term and
Einstein tensor, natural inflation with f ≪ Mp still works [24].
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not possible for a PNGB-like particle. The phase infla-
tion also admits an effective description on super-
Planckian field excursion within supersymmetric field
theory, and it naturally leads to field monodromy, which
relates to a global Uð1Þ symmetry explicitly breaking at
inflation scale. It is surprising that the supergravity η
problem, field stabilization, monodromy inflation and the
puzzle of super-Planckian field excursion admit a simple
unified solution within a helicoid structure. As will be
shown in [30], the monodromy in (11) can be easily
generalized to obtain supersymmetric field realization of
aligned axions with consistent field stabilization
[12,27,28], so the helical phase inflation actually pro-
vides a general frame to realize supergravity inflation
with several amazing features. However, because infla-
tion is an extraordinarily unusual and unique event in the

history of our Universe, we are not hesitant in being bold.
It will be phenomenal if nature employed helix structures
to promote evolution from the very early Universe to
present time organisms.

ACKNOWLEDGMENTS

D. V. N. thanks Andriana Paraskevopoulou for inspira-
tion and discussions during the writing of this paper. The
work of D. V. N. was supported in part by the U.S. DOE
Award No. DE-FG03-95-ER-40917. The work of T. L. is
supported in part by the Natural Science Foundation of
China under Grants No. 10821504, No. 11075194,
No. 11135003, No. 11275246, and No. 11475238, and
by the National Basic Research Program of China (973
Program) under Grant No. 2010CB833000.

[1] A. H. Guth, The inflationary universe: A possible solution to
the horizon and flatness problems, Phys. Rev. D 23, 347
(1981); A. D. Linde, A new inflationary universe scenario:
A possible solution of the horizon, flatness, homogeneity,
isotropy and primordial monopole problems, Phys. Lett.
108B, 389 (1982); A. Albrecht and P. J. Steinhardt,
Cosmology for Grand Unified Theories with Radiatively
Induced Symmetry Breaking, Phys. Rev. Lett. 48, 1220
(1982).

[2] P. A. R. Ade et al. (Planck Collaboration), Planck 2013
results. XXII. Constraints on inflation, Astron. Astrophys.
571, A22 (2014).

[3] P. A. R. Ade et al. (BICEP2 Collaboration), Detection of
B-Mode Polarization at Degree Angular Scales by BICEP2,
Phys. Rev. Lett. 112, 241101 (2014).

[4] J. R. Ellis, D. V. Nanopoulos, K. A. Olive, and K. Tamvakis,
Cosmological inflation cries out for supersymmetry, Phys.
Lett. 118B, 335 (1982); Fluctuations in a supersymmetric
inflationary universe, Phys. Lett. 120B, 331 (1983); Primor-
dial supersymmetric inflation, Nucl. Phys. B221, 524 (1983).

[5] J. Ellis, D. V. Nanopoulos, and K. A. Olive, No-Scale
Supergravity Realization of the Starobinsky Model of
Inflation, Phys. Rev. Lett. 111, 111301 (2013); Starobin-
sky-like inflationary models as avatars of no-scale super-
gravity, J. Cosmol. Astropart. Phys. 10 (2013) 009; T. Li, Z.
Li, and D. V. Nanopoulos, No-scale ripple inflation revis-
ited, J. Cosmol. Astropart. Phys. 04 (2014) 018; S. Ferrara
and M. Porrati, Minimal Rþ R2 supergravity models
of inflation coupled to matter, Phys. Lett. B 737, 135 (2014).

[6] E. Cremmer, S. Ferrara, C. Kounnas, and D. V. Nanopoulos,
Naturally vanishing cosmological constant in N ¼ 1 super-
gravity, Phys. Lett. 133B, 61 (1983); J. R. Ellis, C. Kounnas,
and D. V. Nanopoulos, Phenomenological SU(1,1)
supergravity, Nucl. Phys. B241, 406 (1984); A. B. Lahanas
and D. V. Nanopoulos, The road to no-scale supergravity,
Phys. Rep. 145, 1 (1987).

[7] M. Kawasaki, M. Yamaguchi, and T. Yanagida, Natural
Chaotic Inflation in Supergravity, Phys. Rev. Lett. 85, 3572
(2000).

[8] T. Li, Z. Li, and D. V. Nanopoulos, Supergravity inflation
with broken shift symmetry and large tensor-to-scalar ratio,
J. Cosmol. Astropart. Phys. 02 (2014) 028.

[9] D. H. Lyth, What Would We Learn by Detecting a Gravi-
tational Wave Signal in the Cosmic Microwave Background
Anisotropy? Phys. Rev. Lett. 78, 1861 (1997).

[10] D. Baumann and L. McAllister, arXiv:1404.2601
[Cambridge University Press (to be published)].

[11] K. Freese, J. A. Frieman, and A. V. Olinto, Natural Inflation
with Pseudo–Nambu-Goldstone Bosons, Phys. Rev. Lett.
65, 3233 (1990); F. C. Adams, J. R. Bond, K. Freese,
J. A. Frieman, and A. V. Olinto, Natural inflation: Particle
physics models, power law spectra for large scale structure,
and constraints from COBE, Phys. Rev. D 47, 426
(1993).

[12] J. E. Kim, H. P. Nilles, and M. Peloso, Completing natural
inflation, J. Cosmol. Astropart. Phys. 01 (2005) 005.

[13] D. Baumann and D. Green, Inflating with baryons, J. High
Energy Phys. 04 (2011) 071.

[14] J. McDonald, Sub-planckian two-field inflation consistent
with the Lyth bound, J. Cosmol. Astropart. Phys. 09 (2014)
027; A minimal sub-planckian axion inflation model with
large tensor-to-scalar ratio, J. Cosmol. Astropart. Phys. 01
(2015) 018.

[15] A. R. Liddle, A. Mazumdar, and F. E. Schunck, Assisted
inflation, Phys. Rev. D 58, 061301 (1998); S. Dimopoulos,
S. Kachru, J. McGreevy, and J. G. Wacker, N-flation, J.
Cosmol. Astropart. Phys. 08 (2008) 003.

[16] A. Ashoorioon, H. Firouzjahi, and M.M. Sheikh-Jabbari,
M-flation: Inflation from matrix valued scalar fields, J.
Cosmol. Astropart. Phys. 06 (2009) 018; A. Ashoorioon and
M.M. Sheikh-Jabbari, Gauged M-flation after BICEP2,
Phys. Lett. B 739, 391 (2014).

HELICAL PHASE INFLATION PHYSICAL REVIEW D 91, 061303(R) (2015)

061303-5

RAPID COMMUNICATIONS

http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1051/0004-6361/201321569
http://dx.doi.org/10.1051/0004-6361/201321569
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://dx.doi.org/10.1016/0370-2693(82)90198-8
http://dx.doi.org/10.1016/0370-2693(82)90198-8
http://dx.doi.org/10.1016/0370-2693(83)90456-2
http://dx.doi.org/10.1016/0550-3213(83)90592-8
http://dx.doi.org/10.1103/PhysRevLett.111.111301
http://dx.doi.org/10.1088/1475-7516/2013/10/009
http://dx.doi.org/10.1088/1475-7516/2014/04/018
http://dx.doi.org/10.1016/j.physletb.2014.08.050
http://dx.doi.org/10.1016/0370-2693(83)90106-5
http://dx.doi.org/10.1016/0550-3213(84)90054-3
http://dx.doi.org/10.1016/0370-1573(87)90034-2
http://dx.doi.org/10.1103/PhysRevLett.85.3572
http://dx.doi.org/10.1103/PhysRevLett.85.3572
http://dx.doi.org/10.1088/1475-7516/2014/02/028
http://dx.doi.org/10.1103/PhysRevLett.78.1861
http://arXiv.org/abs/1404.2601
http://arXiv.org/abs/1404.2601
http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://dx.doi.org/10.1103/PhysRevD.47.426
http://dx.doi.org/10.1103/PhysRevD.47.426
http://dx.doi.org/10.1088/1475-7516/2005/01/005
http://dx.doi.org/10.1007/JHEP04(2011)071
http://dx.doi.org/10.1007/JHEP04(2011)071
http://dx.doi.org/10.1088/1475-7516/2014/09/027
http://dx.doi.org/10.1088/1475-7516/2014/09/027
http://dx.doi.org/10.1088/1475-7516/2015/01/018
http://dx.doi.org/10.1088/1475-7516/2015/01/018
http://dx.doi.org/10.1103/PhysRevD.58.061301
http://dx.doi.org/10.1088/1475-7516/2008/08/003
http://dx.doi.org/10.1088/1475-7516/2008/08/003
http://dx.doi.org/10.1088/1475-7516/2009/06/018
http://dx.doi.org/10.1088/1475-7516/2009/06/018
http://dx.doi.org/10.1016/j.physletb.2014.11.018


[17] E. Silverstein and A. Westphal, Monodromy in the CMB:
Gravity waves and string inflation, Phys. Rev. D 78, 106003
(2008); L. McAllister, E. Silverstein, and A. Westphal,
Gravity waves and linear inflation from axion monodromy,
Phys. Rev. D 82, 046003 (2010).

[18] N. Kaloper and L. Sorbo, A Natural Framework for
Chaotic Inflation, Phys. Rev. Lett. 102, 121301 (2009);
N. Kaloper, A. Lawrence, and L. Sorbo, An ignoble
approach to large field inflation, J. Cosmol. Astropart.
Phys. 03 (2011) 023.

[19] J. R. Ellis, C. Kounnas, and D. V. Nanopoulos, No-scale
supergravity models with a Planck mass gravitino, Phys.
Lett. 143B, 410 (1984).

[20] R. Kallosh and A. Linde, New models of chaotic inflation
in supergravity, J. Cosmol. Astropart. Phys. 11 (2010)
011; R. Kallosh, A. Linde, and T. Rube, General inflaton
potentials in supergravity, Phys. Rev. D 83, 043507 (2011).

[21] K. Harigaya and M. Ibe, Simple realization of inflaton
potential on a Riemann surface, Phys. Lett. B 738, 301 (2014).

[22] G. t Hooft, in Recent Developments in Gauge Theories,
edited by G. t Hooft et al. (Plenum Press, New York and
London, 1979), p. 135.

[23] R. Blumenhagen, M. Cvetic, S. Kachru, and T. Weigand,
D-brane instantons in type II orientifolds, Annu. Rev. Nucl.
Part. Sci. 59, 269 (2009).

[24] C. Germani and A. Kehagias, UV-Protected Inflation, Phys.
Rev. Lett. 106, 161302 (2011).

[25] T. Li, Z. Li, and D. V. Nanopoulos, Natural inflation with
natural trans-Planckian axion decay constant from anoma-
lous Uð1ÞX, J. High Energy Phys. 11 (2014) 012.

[26] T. Li, Z. Li, and D. V. Nanopoulos, Natural inflation with
natural trans-Planckian axion decay constant from anoma-
lous Uð1ÞX, J. High Energy Phys. 07 (2014) 052.

[27] K. Choi, H. Kim, and S. Yun, Natural inflation with
multiple sub-Planckian axions, Phys. Rev. D 90, 023545
(2014).

[28] S.-H. H. Tye and S. S. C. Wong, Helical inflation and
cosmic strings, arXiv:1404.6988.

[29] K. Harigaya and T. T. Yanagida, Pure gravity mediation
and chaotic inflation in supergravity, Phys. Rev. D 90,
075022 (2014).

[30] T. Li, Z. Li, and D. V. Nanopoulos, Helical Phase
Inflation and Monodromy in Supergravity Theory,
arXiv:1412.5093.

TIANJUN LI, ZHIJIN LI, AND DIMITRI V. NANOPOULOS PHYSICAL REVIEW D 91, 061303(R) (2015)

061303-6

RAPID COMMUNICATIONS

http://dx.doi.org/10.1103/PhysRevD.78.106003
http://dx.doi.org/10.1103/PhysRevD.78.106003
http://dx.doi.org/10.1103/PhysRevD.82.046003
http://dx.doi.org/10.1103/PhysRevLett.102.121301
http://dx.doi.org/10.1088/1475-7516/2011/03/023
http://dx.doi.org/10.1088/1475-7516/2011/03/023
http://dx.doi.org/10.1016/0370-2693(84)91492-8
http://dx.doi.org/10.1016/0370-2693(84)91492-8
http://dx.doi.org/10.1088/1475-7516/2010/11/011
http://dx.doi.org/10.1088/1475-7516/2010/11/011
http://dx.doi.org/10.1103/PhysRevD.83.043507
http://dx.doi.org/10.1016/j.physletb.2014.09.061
http://dx.doi.org/10.1146/annurev.nucl.010909.083113
http://dx.doi.org/10.1146/annurev.nucl.010909.083113
http://dx.doi.org/10.1103/PhysRevLett.106.161302
http://dx.doi.org/10.1103/PhysRevLett.106.161302
http://dx.doi.org/10.1007/JHEP11(2014)012
http://dx.doi.org/10.1007/JHEP07(2014)052
http://dx.doi.org/10.1103/PhysRevD.90.023545
http://dx.doi.org/10.1103/PhysRevD.90.023545
http://arXiv.org/abs/1404.6988
http://dx.doi.org/10.1103/PhysRevD.90.075022
http://dx.doi.org/10.1103/PhysRevD.90.075022
http://arXiv.org/abs/1412.5093

