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In an attempt to uncover any underlying physics in the standard model (SM), we suggest a μ–τ power
law in the lepton sector, such that relatively large 13 mixing angle with bilarge ones can be derived. On
the basis of this, we propose a neat and economical model for both the fermion mass hierarchy problem
of the SM and a solution to the strong charge parity (CP) problem, in a way that no domain wall problem
occurs, based on A4 ×Uð1ÞX symmetry in a supersymmetric framework. Here we refer to the global
Uð1ÞX symmetry that can explain the above problems as “flavored Peccei-Quinn symmetry.” In the
model, a direct coupling of the SM gauge singlet flavon fields responsible for spontaneous symmetry
breaking to ordinary quarks and leptons, both of which are charged under Uð1ÞX, comes to pass through
Yukawa interactions, and all vacuum expectation values breaking the symmetries are connected to each
other. So the scale of Peccei-Quinn symmetry breaking is shown to be roughly located around the
1012 GeV section through its connection to the fermion masses. The model predictions are shown to lie
on the testable regions in the very near future through on-going experiments for neutrino oscillation,
neutrinoless double beta decay, and the axion. We examine the model predictions, arisen from the
μ–τ power law, on leptonic CP violation, neutrinoless double beta decay, and atmospheric mixing
angle, and show that the fermion mass and mixing hierarchies are in good agreement with the present
data. Interestingly, we show the model predictions on the axion mass ma ≃ 2.53 × 10−5 eV and the
axion coupling to photon gaγγ ≃ 1.33 × 10−15 GeV−1. And subsequently the square of the ratio between
them is shown to be one or two orders of magnitude lower than that of the conventional axion
model.
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I. INTRODUCTION

The standard model (SM) of particle physics has been
successful in describing phenomena until now, but it suffers
from some problems that have not been solved yet, among
which are the following: the fine-tuning of the cosmological
constant, the gauge hierarchy problem, the candidate for
dark matter, the baryon asymmetry of the Universe, and the
flavor puzzle associated with the fermion mass matrices and
the strong charge parity (CP) problem. Surely the most
pressing among them are the first and second problem. The
gauge hierarchy problem is solved if we introduce the
supersymmetry (SUSY) which is the symmetry with
respect to the replacement of bosons with fermions. All
of the latter three may be solved economically by imple-
menting the seesaw mechanism [1] for neutrino masses and
Froggatt and Nielsen mechanism [2] for quark mixing
angles and masses. Various solutions to these problems
have been proposed, inevitably leading to physics beyond
the SM1. The most elegant solution for the strong CP
problem was proposed by Peccei and Quinn (PQ) [4].
When the PQ symmetry is broken spontaneously, a pseudo–
Nambu-Goldstone boson appears, which is called an axion
[4,5]. The PQ mechanism has been invented to account for

the small value of the QCD vacuum angle that is required to
explain the observed bounds on the neutron electric dipole
moment [6]. And its resulting axion is a strongly motivated
particle candidate as dark matter.
In the absence of a fundamental theory, one has to adopt

a model independent approach and search for symmetries
that may explain the mixing pattern which in turn can shed
light on the nature of fundamental theory for quarks and
leptons. Flavor symmetry provides a promising framework
for generating viable quark and lepton masses and mixings.
Indeed implementing the seesaw mechanism with non-
Abelian discrete symmetries [7,8] has been shown to lead
quite naturally to “near tribimaximal” neutrino mixing [9],
while the Froggatt and Nielsen mechanism has been
suggested for a hierarchical structure.2 This fact has
motivated an interest in non-Abelian finite groups with
an Abelian flavor Uð1Þ symmetry as a means to depict the
flavor structure of leptons and quarks. Since such discrete
or continuous global symmetry is protected against viola-
tions by quantum gravity effects [11], one can assume that
this symmetry originates in a continuous gauge symmetry
that is spontaneously broken.

*yhahn@kias.re.kr
1There is a recent summary on flavor puzzles in Ref. [3]

2In Ref. [10] the authors described acceptable quark and lepton
mass matrices based on anomalous Uð1Þ symmetry in a super-
symmetric standard model.
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In this work, we speculate on the possible origin of the
quark and lepton spectra that masses of successive particles
increase by large factors by the introduction of global
Uð1ÞX symmetry with non-Abelian discrete A4 symmetry.3

Moreover, we wish to discuss an automatic theory for
strong CP invariance by the Uð1ÞX symmetry that is
anomalous in the Lagrangian, like the PQ symmetry. So
we refer to this Uð1ÞX symmetry as flavored PQ symmetry.
We stress that the flavored PQ symmetry Uð1ÞX is better
embedded in the non-Abelian A4 finite group. First, the
Uð1ÞX symmetry is natural in that it is a part of a flavor
symmetry, which explains the mass hierarchy of quarks and
leptons. So the choice of X-quantum numbers could be in
some sense unique. Second, the scale of PQ symmetry
breaking can be coincident with that of A4 symmetry
breaking. Third, the Uð1ÞX symmetry provides a neat
and economical solution to the strong CP problem and
its resulting axion. Fourth, the Uð1ÞX symmetry introduced
can remove the axionic domain wall problem if it is
composed of two anomalous Uð1Þ symmetries [14].
Thus we have a good motivation for considering the
flavor-axion model in the framework of SUSY.
The goal of this work is to construct a minimalistic

supersymmetric model based on A4 ×Uð1ÞX symmetry
with the following features:

(i) All the hat Yukawa couplings appearing in super-
potential are complex numbers and of order unity.
The right-hand Majorana neutrino and the top quark
terms are only renormalizable, while nonrenorma-
lizable terms appear with successive powers of the
flavon fields FA ¼ Φ;Θ;Ψ according to appropriate
A4 ×Uð1ÞX symmetry. Here, the Uð1ÞX symmetry
(simultaneously, A4 symmetry as well) is broken
spontaneously by SM gauge singlet flavon field FA,
which acquires a vacuum expectation value (VEV)
below a cutoff scale Λ that corresponds to a mass
of messenger field. By integrating out all heavy
messenger fields, all effective Yukawa couplings
become hierarchical, and the Uð1ÞX charge assign-
ments make them correspond to the measured
fermion mass hierarchies.

(ii) The Uð1ÞX symmetry, which is responsible for both
the fermion mass hierarchy of the SM and vacuum
configuration, is composed of two anomalous
Uð1ÞX ≡ Uð1ÞX1

×Uð1ÞX2
symmetries that are gen-

erated by the charges X1 and X2. When flavon fields
FA acquire VEVs, both lepton number Uð1ÞL and
Uð1ÞPQ appear to be broken. Actually, there are
linear combinations of the two Uð1ÞXi

symmetries,
which areUð1Þ ~X×Uð1Þf. Here, theUð1Þ ~X symmetry
has anomaly, while the Uð1Þf, which corresponds to

lepton number is anomaly free. Then the right-hand
neutrinos acquire Majorana masses when Uð1Þf
symmetry is broken with its breaking scale.

(iii) Even though the flavon fields FA are the SM gauge
singlets, a direct coupling of FA to the quarks and
leptons is possible through Yukawa couplings. So
the Uð1ÞX symmetry plays a role in the solution to
the strong CP problem leading to the existence of a
light axion. The mass scale of the Uð1ÞX breaking is
equivalent to the one of A4 symmetry breaking.
Thus, hFAi ≠ 0 leads to Uð1ÞX violation. All VEVs
breaking the symmetries are connected each other.
After the X symmetry is broken spontaneously,
axion A appears as a pseudo–Nambu-Goldstone
boson of the X symmetry. Accordingly, the mass
of the axion is given by mA ≃mπfπ=hFAi with its
decay constant hFAi ∼ 1012 GeV. Interestingly, the
axion decay constant is constrained by its connec-
tion to the fermion masses; see Eqs. (41)–(43) and
Eqs. (103)–(105).

(iv) The flavored PQ symmetry Uð1ÞX is spontaneously
broken at a scale much higher than the electroweak
scale. And the explicit breaking of the Uð1Þ ~X by the
chiral anomaly effect further breaks it down to ZN
discrete symmetry, where N is the color anomaly
number. At the QCD phase transition, the ZN
symmetry is spontaneous broken, which gives rise
to a domain wall problem [15]. Such a domain wall
problem can be overcome by the two anomalous
axial Uð1Þ symmetries, Uð1ÞX1

×Uð1ÞX2
, when N1

and N2 are relative prime [14].
The rest of this paper is organized as follows. In Sec. II we
address a special pattern of lepton sector in a model
independent way that follows a μ–τ power law under
which certain elements associated with the muon and tau
flavors in mass matrices are distinguished. And, further-
more, we consider a renormalizable ultraviolet (UV)
complete theory above a new physics scale where among
the fermion operators only the heavy neutrino and top
quark operators are renormalizable. We argue that this is a
plausible way to depict leptonic mixing pattern. In Sec. III,
according to the μ–τ power law and the UV completion
textures, we construct a minimalistic SUSY model for
quarks and leptons based on A4 ×Uð1ÞX symmetry. Here,
we show that the observed hierarchy in the masses and
mixings of quarks and leptons, which is one of the most
puzzling features of nature, can be obtained in a natural
way. Especially, we show explicitly symmetry breaking
scales, explore what values of the low energy CP phases
can predict a value for the neutrino mass hierarchy, and
investigate the observables that can be tested in the current
and the next generation of experiments. Since an observa-
tion of neutrinoless double beta (0νββ) decay and a
sufficiently accurate measurement of its half-life can
provide information on lepton number violation, the

3E. Ma and G. Rajasekaran [12] have introduced for the first
time the A4 symmetry to avoid the mass degeneracy of μ and τ
under a μ–τ symmetry [13].
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Majorana vs Dirac nature of neutrinos, and the neutrino
mass scale and hierarchy, we show that our model is
experimentally testable in the near future. In Sec. IV, we
study the higher order corrections in our framework and
show that a direct extension to the lepton and quark sectors
can lead, apart from negligible terms, to would-be non-
trivial next leading contributions for Majorana neutrino and
down-type quark mass matrices, both of which could be
well controlled, so that both a light neutrino mass matrix
can remain a leading order term and the Cabibbo-
Kobayashi-Maskawa (CKM) matrix is reproduced.
Section V is dedicated to the study of the strong CP
invariance and its resulting axion. We demonstrate how the
domain wall problem can be overcome and show model
predictions on the axion mass and axion-photon coupling.
We give our conclusions in Sec. V.

II. HINT FOR A FUNDAMENTAL THEORY

Let us address a special pattern of lepton sector as a hint
for a fundamental theory. In the weak eigenstate basis, the
Yukawa interactions in both neutrino and charged lepton
sectors and the charged gauge interaction can be written as

−L ¼ 1

2
νLMνðνLÞc þ lLMllR þ gffiffiffi

2
p W−

μlLγ
μνL þ H:c:

ð1Þ

In the charged lepton mass basis, i.e. Ml ¼ diagðme;mμ;
mτÞ, the neutrino mass matrix has the form

Mν ≡
0B@mee meμ meτ

meμ mμμ mμτ

meτ mμτ mττ

1CA ¼ UνMd
νUT

ν ; ð2Þ

where Md
ν ¼ diagðmν1 ; mν2 ; mν3Þ. Then in this mass

eigenstates basis the Pontecorvo-Maki-Nakagawa
(PMNS) leptonic mixing matrix [16] at low energies is
visualized in the charged weak interaction terms :
UPMNS ¼ Uν. And in the standard parametrization of the
leptonic mixing matrix UPMNS, it is expressed in terms of
three mixing angles, θ12; θ13; θ23, and three CP-odd phases
(one δCP for the Dirac neutrino and two φ1;2 for the
Majorana neutrino) as

UPMNS ¼

0BB@ c13c12 c13s12 s13e−iδCP

−c23s12 − s23c12s13eiδCP c23c12 − s23s12s13eiδCP s23c13
s23s12 − c23c12s13eiδCP −s23c12 − c23s12s13eiδCP c23c13

1CCAPν; ð3Þ

where sij ≡ sin θij, cij ≡ cos θij, and Pν is the phase
matrix in which particles are Majorana ones. The large
values of the solar (θ12) and atmospheric (θ23) mixings as
well as the nonzero but relatively large reactor mixing angle
(θ13) are consequences of a nontrivial structure of the
neutrino mass matrix Mν in the charged lepton basis, as
indicated in Table I. The very different structure of leptonic
mixings compared to the quark ones for all possible
neutrino mass orderings indicates an unexpected texture
of the mass matrix and may provide important clues to our
understanding of the physics of fundamental constituents of
matter. Even though nothing is known on the physics
related to the leptonic CP violation, the measurements of

nonvanishing 13 mixing, θ13, open up the possibilities for
searching for CP violation in neutrino oscillation experi-
ments. It needs a new paradigm to explain the peculiar
structure of lepton sector compared to the quark one.
After the relatively large reactor angle θ13 measured in

Daya Bay [18] and RENO [19] including Double Chooz,
T2K, and MINOS experiments [20], the recent analysis
based on global fits [17,21,22] of the neutrino oscillations
enters into a new phase of precise determination of mixing
angles and mass squared differences, indicating that the
tribimaximal mixing (TBM) [23] for three flavors should
be corrected in the lepton sector: especially, in the most
recent analysis [17] their allowed ranges at 1σ best fit ð3σÞ

TABLE I. The global fit of three-flavor oscillation parameters at the best-fit (BF) and 3σ level [17]. NO ¼ normal neutrino mass
ordering; IO ¼ inverted mass ordering.

θ13½°� δCP½°� θ12½°� θ23½°� Δm2
Sol½10−5 eV2� Δm2

Atm½10−3 eV2�
BF NO 8.80 241.2 34.63 48.85 (43.11)a 7.60 2.48

IO 8.91 266.4 49.20 2.38
3σ NO 7.65 → 9.87 0 → 360 31.82 → 37.76 38.76 → 53.31 7.11 → 8.18 2.30 → 2.65

IO 7.77 → 9.92 39.41 → 53.13 2.20 → 2.54
aA local minimum in the first octant of θ23.
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from global fits are given by Table I, where Δm2
Sol ≡

m2
ν2 −m2

ν1 , Δm
2
Atm ≡ m2

ν3 −m2
ν1 for the NO, and Δm2

Atm ≡
m2

ν1 −m2
ν3 for the IO.

In the limit of reactor mixing angle θ13 → 0 and
atmospheric mixing angle θ23 → 45°, the neutrino mass
matrix reflects the μ–τ symmetric form: meμ ¼ meτ and
mμμ ¼ mττ in Eq. (2). In a basis where charged leptons are
mass eigenstates, a simple way to address the μ–τ sym-
metry [13] (interchange symmetry of the second and third
generation of the leptonic fields;meμ ¼ meτ andmμμ ¼ mττ

in neutrino sector and mμ ¼ mτ in charged lepton sector) is
to postulate that both the charged leptons and the neutrinos
follow a μ–τ symmetry:

Ml ¼

0B@Al 0 0

0 Cl 0

0 0 Cl

1CA; Mν ¼

0B@Aν Bν Bν

Bν Cν Dν

Bν Dν Cν

1CA:

ð4Þ

Surely the muon and tau lepton masses are so different
[16], as well as the 13 mixing angle having nonzero value
[18–20], that such a symmetry could therefore not be
realized in nature.
In this work, we consider two Ansatze in order to

describe the present and future lepton and quark sector.
First, we consider that the elements of the neutrino and
charged lepton mass matrices, in a basis where the charged
lepton mass matrix is diagonal, follow a power law.
According to this law, certain elements associated with
the flavors μ and τ in both Mν and Ml are distinguished.
Wewill call this the μ–τ power on lepton masses. Assigning
the distinctions to each μ and τ flavor, the charged lepton
and neutrino mass matrices are written as

Ml ¼

0B@Al 0 0

0 Clx22 0

0 0 Clx23

1CA;

Mν ¼

0B@ Aν Bνy2 Bνy3
Bνy2 Cνy22 Dνy3y2
Bνy3 Dνy3y2 Cνy23

1CA; ð5Þ

which presents that the μ–τ symmetry is explicitly broken.
It is clear from the above discussion in the limit of y2;3 → 1

and x2;3 → 1 that exact μ–τ symmetry is recovered. The
mass ratio between mμ and mτ can be expressed in terms of
the Cabbibo parameter λ ≡ sin θC,

mμ

mτ
¼ ðMlÞ22

ðMlÞ33
¼

�
x2
x3

�
2 ≡ λ2: ð6Þ

And in terms of the neutrino mass matrix elements, ratios
associated with μ and τ flavors are written as

meμ

meτ
¼ y2

y3
;

mμμ

mμτ
¼ Cνy2

Dνy3
;

mμτ

mττ
¼ Dνy2

Cνy3
;

mμμ

mττ
¼

�
y2
y3

�
2

: ð7Þ

Both Eqs. (6) and (7) indicate that the μ–τ power has a
relationship between two quantities associated with μ and τ
flavors and the matrix elements vary as a power of some
attribute of those flavors, where the distinctions y2 and y3
are taken as real and positive parameters [which will be
shown below Eq. (12)].
As a second Ansatz, we consider the renormalizable UV

complete theory above a new physics scale. For neutrinos,
it leads to a number of independentOð1Þ parameters, which
is of the form [24,25]

M0
ν ¼ Aν

0B@Oð1Þ Oð1Þ Oð1Þ
Oð1Þ Oð1Þ Oð1Þ
Oð1Þ Oð1Þ Oð1Þ

1CA: ð8Þ

The above matrix seems to suggest that the masses and
mixing angles of neutrinos are expected to be of order
Oð1Þ. On the other hand, above the new physics scale
among charged fermion operators only the top quark
operator seems to be dominated by the (3, 3) matrix
element, which is of the form [25]

M0
Q ¼ At

0B@ 0 0 0

0 0 0

0 0 1

1CA: ð9Þ

This may provide a hint of why the mass of the top quark is
uniquely big compared with those of other fermions.
Now, as a good example, considering flavored structure

ΔMν to the democratic matrix M0
ν, leading to TBM

pattern, the mass matrix is given by

M1
ν ¼ Aν

0B@ 1þ 2aν 1 − aν 1 − aν
1 − aν 1þ aν

2
þ 3

2
bν 1þ aν

2
− 3

2
bν

1 − aν 1þ aν
2
− 3

2
bν 1þ aν

2
þ 3

2
bν

1CA
¼ U0

0B@ 3Aνaν 0 0

0 3Aν 0

0 0 3Aνbν

1CAUT
0 : ð10Þ

Here, the diagonalizing matrix, the so-called TBM mixing
matrix [23], U0 is given by

U0 ¼

0BBB@
ffiffi
2
3

q
1ffiffi
3

p 0

− 1ffiffi
6

p 1ffiffi
3

p − 1ffiffi
2

p

− 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

1CCCA: ð11Þ
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While the matrix in Eq. (9) may give a hint for the
hierarchical pattern of charged fermion masses, the above
neutrino mass matrix in Eq. (10) would provide a clue of
the mildness of neutrino masses due to the matrix having a

democratic form given by Eq. (8). According to the μ–τ
power law, the above matrix in Eq. (10) is modified in a
way that muon and tau flavors are distinguished, leading to
naturally nonzero θ13, to

Mν ¼ Aν

0BBB@
1þ 2aν ð1 − aνÞy2 ð1 − aνÞy3

ð1 − aνÞy2
�
1þ aν

2
þ 3

2
bν
�
y22

�
1þ aν

2
− 3

2
bν
�
y2y3

ð1 − aνÞy3
�
1þ aν

2
− 3

2
bν
�
y2y3

�
1þ aν

2
þ 3

2
bν
�
y23

1CCCA: ð12Þ

As expected, in the limit y2;3 → 1 the neutrino mass matrix
recovers the TBM mixing pattern. And small deviations of
y2;3 from unity guarantee the small but relatively large
value of θ13.
Now one can count the physical parameters in the μ–τ

power mass matrix in Eq. (5) or (12). A general 3 × 3
mixing matrix contains three moduli and six phases and can
be written as U ¼ eiΩP ~UQ where Q ≡ diagð1; eiξ2 ; eiξ3Þ
and P ≡ diagð1; e−iζ2 ; e−iζ3Þ are diagonal phase matrices,
and ~U is a unitary “CKM-like” matrix containing one
phase and three mixing angles, with an overall phase Ω.
Then the leptonic PMNSmixing matrix can be expressed as
UPMNS ¼ Vl†

L Uν ¼ ~Vl†
L P�

lPν
~UνQν, which contains six

mixing angles and eight phases, while it should have
physical three mixing angles and one Dirac and two
Majorana phases as indicated in Eq. (3). This can be
achieved by choosing Pl ¼ Pν in a basis where the charged
lepton mass matrix is diagonal. Letting argðy2Þ ¼ ζ2 and
argðy3Þ ¼ ζ3, the parameters y2; y3 appearing in the μ–τ
power mass matrix can always be chosen to be real and
positive. Therefore, the μ–τ power mass matrix contains
nine physical parameters Aν; jBνj; jCνj; jDνj, argðBνÞ,
argðCνÞ, argðDνÞ, y2, and y3 in Eq. (5) for nine observables
θ23; θ13; θ12, δCP;φ1;φ2 (mixing parameters), and
mν1 ; mν2 ; mν3 (mass eigenvalues). By considering the μ–τ
power flavored symmetry as in Eq. (12), one can reduce
physical degree of freedoms more: there are seven physical
parameters Aν; jaνj; jbνj, argðaνÞ; argðbνÞ, y2, and y3, which
in turn can lead to any light neutrino mass pattern, i.e.
normal, inverted, or quasidegenerate mass hierarchy
(remember that there are five neutrino oscillation observ-
ables θ12; θ13; θ23;Δm2

Atm;Δm2
Sol). Note that the μ–τ power

mass matrix leads naturally to a nonzero θ13. Moreover, as

will be seen later, by embedding a specific flavor model to
the Lagrangian the μ–τ power mass matrix can contain only
five physical parameters [see Eqs. (36)–(37)] and lead to a
TBM-like one, which would not provide all possible
neutrino mass patterns unlike Eq. (12), because it has a
neutrino mass sum rule 1=mν1 − 1=mν3 ¼ 2=mν2 in the
limit y2;3 → 1 (which is guaranteed by the small value
of θ13).
We believe that this approach is very important to take a

step forward in understanding the mixing patterns for large
leptonic and small quark mixings as well as the origin of the
fermion mass hierarchies (mildness of neutrino masses and
the strongly hierarchical charged fermion masses).

III. FLAVOR A4 × Uð1ÞX SYMMETRY

Unless flavor symmetries are assumed, particle masses
and mixings are generally undetermined in the SM gauge
theory. To understand the present fermion mass hierarchy
with the large leptonic mixing and small quark mixing data,
we introduce the non-Abelian discrete A4 flavor symmetry
that is mainly responsible for the peculiar mixing patterns
with an additional continuous global symmetry Uð1ÞX that
is mainly for vacuum configuration as well as for describ-
ing mass hierarchies of leptons and quarks. Moreover, the
spontaneous breaking ofUð1ÞX realizes the existence of the
Nambu-Goldstone (NG) mode (called axion) and provides
an elegant solution of the strong CP problem. Therefore,
we refer to this global Uð1Þ symmetry as flavored PQ
symmetry. Then the symmetry group for matter fields
(leptons and quarks), flavon fields, and driving fields is
A4 ×Uð1ÞX, whose quantum numbers are assigned in
Tables II–III. In addition, there is a continuous Uð1ÞR
symmetry, containing the usual R-parity as a subgroup, that

TABLE II. Representations of the driving, flavon, and Higgs fields under A4 × Uð1ÞX with Uð1ÞR.
Field ΦT

0 ΦS
0

Θ0 Ψ0 ΦS ΦT Θ ~Θ Ψ ~Ψ Hd Hu

A4 3 3 1 1 3 3 1 1 1 1 1 1
Uð1ÞX 0 4p 4p 0 −2p 0 −2p −2p −q q 0 0
Uð1ÞR 2 2 2 2 0 0 0 0 0 0 0 0
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is classified as three sectors: driving fieldsþ2, flavon fields
and Higgs fields 0, and matter fields þ1. And the other
superpotential term καLαHu and the terms violating the
lepton and baryon number symmetries are not allowed by
this Uð1ÞR symmetry.4

To impose the A4 flavor symmetry on our model
properly, apart from the usual two Higgs doublets Hu;d

responsible for electroweak symmetry breaking, which are
invariant under A4 (i.e. flavor singlets 1 with no T-flavor),
the scalar sector is extended by introducing two types of
new scalar multiplets, flavon fields5 ΦT;ΦS;Θ; ~Θ;Ψ; ~Ψ that
are SUð2Þ singlets and driving fields ΦT

0 ;Φ
S
0;Θ0;Ψ0 that

are associated to a nontrivial scalar potential in the
symmetry breaking sector: we take the flavon fields
ΦT;ΦS to be A4 triplets, and Θ; ~Θ;Ψ; ~Ψ to be A4 singlets
with no T-flavor (1 representation), respectively, that are
SUð2Þ singlets, and driving fields ΦT

0 ;Φ
S
0 to be A4 triplets

and Θ0;Ψ0 to be an A4 singlet. Moreover, due to the
assignment of quantum numbers under A4 ×Uð1ÞX ×
Uð1ÞR the usual superpotential term μHuHd is not allowed,
while the leading order operator is allowed,

gT
Λ
ðΦT

0ΦTÞ1HuHd; ð13Þ

which promotes the μ-term μeff ≡ gThΦT
0 ivT=Λ of the order

ofmSvT=Λ (hΦT
0 i: the VEVof the scalar components of the

driving field; mS: soft SUSY breaking mass). Here, the
supersymmetry of the model is assumed to be broken by all
possible holomorpic soft terms that are invariant under
A4 ×Uð1ÞX ×Uð1ÞR symmetry, where the soft breaking
terms are already present at the scale relevant to flavor
dynamics.
In the lepton sector the A4 model giving nonzero θ13 as

well as bilarge mixings, θ23; θ12, works as follows.
According to both the μ–τ power law in Eqs. (6)–(7)
and the UV completion textures in Eqs. (8)–(9), one can
assign charged leptons to the three inequivalent singlet
representations of A4: we assign the left-handed charged
leptons denoted as Le; Lμ; Lτ, the electron flavor to the 1
(T-flavor 0), the muon flavor to the 10 (T-flavor þ1), and

the tau flavor to the 100 (T-flavor −1), while the right-
handed charged leptons denoted as ec; μc; τc, the electron
flavor to the 1 (T-flavor 0), the muon flavor to the 100 (T-
flavor −1), and the tau flavor to the 10 (T-flavorþ1). On the
other hand, for the quark flavors we assign the left-hand
quark SUð2ÞL doublets denoted asQ1,Q2, andQ3 to the 1,
100, and 10, respectively, while the right-hand up-type quarks
are assigned as uc, cc, and tc to the 1, 10, and 100 under A4,
respectively, and the right-hand down-type quark SM
gauge singlet Dc ¼ fdc; sc; bcg to the 3 under A4.
Finally, the additional symmetry Uð1ÞX is imposed,

which is a continuous global symmetry under which matter
fields, flavon fields, and driving fields carry their own X
charges. The Uð1ÞX invariance forbids renormalizable
Yukawa couplings for the light families, but would allow
them through effective nonrenormalizable couplings sup-
pressed by ðF=ΛÞn with n being positive integers. Then the
gauge singlet flavon field F is activated to dimension-4 (3)
operators with different orders [26],

c0OP4ðF Þ0 þ c01OP3ðF Þ1 þ c1OP4

�
F
Λ

�
1

þ c2OP4

�
F
Λ

�
2

þ c3OP4

�
F
Λ

�
3

þ � � � ; ð14Þ

where OP4ð3Þ is a dimension-4 (3) operator, and all the
coefficients ci and c0i are complex numbers with absolute
value of order unity. Even with all couplings being of order
unity, hierarchical masses for different flavors can be
naturally realized. The flavon field F is a scalar field that
acquires a VEV and breaks spontaneously the flavored PQ
symmetry Uð1ÞX. Here, Λ, above which there exists
unknown physics, is the scale of flavor dynamics, and is
associated with heavy states that are integrated out. The
effective theory below Λ is rather simple, while the full
theory will have many heavy states. So, in our framework,
the hierarchy hHu;di ¼ vu;d ≪ Λ is maintained, and below
the scale Λ the higher-dimensional operators express the
effects from the unknown physics. Since the Yukawa
couplings are eventually responsible for the fermion
masses, they must be related in a very simple way at a
large scale in order for intermediate scale physics to
produce all the interesting structure in the fermion mass
matrices.
Here, we recall that A4 is the symmetry group of the

tetrahedron and the finite groups of the even permutation of
four objects having four irreducible representations: its

TABLE III. Representations of the matter fields under A4 × Uð1ÞX with Uð1ÞR.
Field Q1; Q2; Q3 Dc uc; cc; tc Le; Lμ; Lτ ec; μc; τc Nc

A4 1, 100, 10 3 1, 10, 100 1, 10, 100 1, 100, 10 3
Uð1ÞX ð3q − r; 2q − r;−rÞ rþ 2p ðrþ 5q; rþ 2q; rÞ −p ð8qþ p; 4qþ p; 2qþ pÞ p
Uð1ÞR 1 1 1 1 1 1

4In addition, higher-dimensional supersymmetric operators
like QiQjQkLl (i; j; k must not all be the same) are not allowed
either, and stabilizing proton.

5These flavon fields are responsible for the spontaneous
breaking of the flavor symmetry.
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irreducible representations are 3; 1; 10; 100 with 3 ⊗ 3 ¼
3s⊕3a⊕1⊕10⊕100, and 10 ⊗ 10 ¼ 100. The details of the
A4 group are shown in Appendix A. Let ða1; a2; a3Þ and
ðb1; b2; b3Þ denote the basis vectors for two 3s. Thenwe have

ða ⊗ bÞ3s ¼
1ffiffiffi
3

p ð2a1b1 − a2b3 − a3b2; 2a3b3

− a2b1 − a1b2; 2a2b2 − a3b1 − a1b3Þ;
ða ⊗ bcÞ3a ¼ iða3b2 − a2b3; a2b1 − a1b2; a1b3 − a3b1Þ;
ða ⊗ bÞ1 ¼ a1b1 þ a2b3 þ a3b2;

ða ⊗ bÞ10 ¼ a1b2 þ a2b1 þ a3b3;

ða ⊗ bÞ100 ¼ a1b3 þ a2b2 þ a3b1: ð15Þ

Under A4 ×Uð1ÞX ×Uð1ÞR, the driving, flavon, and Higgs
fields are assigned as in Table II.

A. Vacuum configuration

Now let us first investigate the vacuum configuration.
Indeed, the VEV pattern of the flavons is determined
dynamically, in which the vacuum alignment problem
can be solved by the supersymmetric driving field method
[27].6 In order to make a nontrivial scalar potential in
the SUSY breaking sector, we introduce driving fields
ΦT

0 ;Φ
S
0;Θ0;Ψ0, which have the representation of A4 ×

Uð1ÞX as in Table II. The leading order superpotential
dependent on the driving fields, which is invariant under the
flavor symmetry A4 ×Uð1ÞX, is given by

Wv ¼ ΦT
0 ð~μΦT þ ~gΦTΦTÞ þ ΦS

0ðg1ΦSΦS þ g2 ~ΘΦSÞ
þ Θ0ðg3ΦSΦS þ g4ΘΘþ g5Θ ~Θþ g6 ~Θ ~ΘÞ
þΨ0ðg7Ψ ~Ψþ μ2ΨÞ; ð16Þ

where the fields Ψ and ~Ψ charged by −q; q, respectively,
are ensured by the Uð1ÞX symmetry extended to a complex
Uð1Þ due to the holomorphy of the supepotential. Note
here that the model implicitly has two Uð1ÞX ≡ Uð1ÞX1

×
Uð1ÞX2

symmetries that are generated by the charges
X1 ¼ −2p and X2 ¼ −q, which will be discussed more
in Sec. V.7 Since there is no fundamental distinction

between the singlets Θ and ~Θ as indicated in Table II,
we are free to define ~Θ as the combination that couples
to ΦS

0ΦS in the superpotential Wv [27]. At the leading
order there are no terms involving the Higgs fields Hu;d,
while at the next leading order the effective μ-term arises
ΦT

0ΦTHuHd=Λ in Eq. (13). And it is evident that at the
leading order the scalar supersymmetric WðΦTΦSÞ terms
are absent due to a differentUð1ÞX quantum number, which
is crucial for relevant vacuum alignments in the model to
produce the present lepton and quark mixings. It is
interesting that at the leading order the electroweak scale
does not mix with the potentially large scales vS; vT; vΘ,
and vΨ.
In the SUSY limit, the vacuum configuration is obtained

by the F terms of all fields being required to vanish. The
vacuum alignment of the flavon ΦT is determined by

∂Wv

∂ΦT
01

¼ ~μΦT1 þ
2~gffiffiffi
3

p ðΦ2
T1 − ΦT2ΦT3Þ ¼ 0;

∂Wv

∂ΦT
02

¼ ~μΦT3 þ
2~gffiffiffi
3

p ðΦ2
T2 − ΦT1ΦT3Þ ¼ 0;

∂Wv

∂ΦT
03

¼ ~μΦT2 þ
2~gffiffiffi
3

p ðΦ2
T3 − ΦT1ΦT2Þ ¼ 0: ð17Þ

From this set of three equations, we can obtain the
supersymmetric vacuum for ΦT,

hΦTi ¼
�
vTffiffiffi
2

p ; 0; 0

�
; with vT ¼ −

ffiffiffi
3

2

r
~μ

~g
; ð18Þ

where ~g is a dimensionless coupling. The minimization
equations for the vacuum configuration of ΦS and ðΘ; ~ΘÞ
are given by

∂Wv

∂ΦS
01

¼ 2g1ffiffiffi
3

p ðΦS1ΦS1 − ΦS2ΦS3Þ þ g2ΦS1
~Θ ¼ 0;

∂Wv

∂ΦS
02

¼ 2g1ffiffiffi
3

p ðΦS2ΦS2 − ΦS1ΦS3Þ þ g2ΦS3
~Θ ¼ 0;

∂Wv

∂ΦS
03

¼ 2g1ffiffiffi
3

p ðΦS3ΦS3 − Φ1ΦS2Þ þ g2ΦS2
~Θ ¼ 0;

∂Wv

∂Θ0

¼ g3ðΦS1ΦS1 þ 2ΦS2ΦS3Þ þ g4Θ2 þ g5Θ ~Θþ g6 ~Θ2

¼ 0: ð19Þ

And from Eq. (19), we can get the supersymmetric vacua
for the fields ΦS;Θ; ~Θ,

hΦSi ¼
1ffiffiffi
2

p ðvS; vS; vSÞ; hΘi ¼ vΘffiffiffi
2

p ;

h ~Θi ¼ 0; with vΘ ¼ vS

ffiffiffiffiffiffiffiffiffiffiffi
−3

g3
g4

r
; ð20Þ

6There is another generic way to solve the vacuum alignment
problem by extending the model with a spacial extra dimen-
sion [28].

7In the model there are three Uð1Þ symmetries, Uð1ÞL (lepton
number) [or Uð1ÞB−L), Uð1ÞPQ, and Uð1ÞY except for Uð1ÞR and
Uð1ÞB (baryon number)]. All of these three are finally broken.
When flavon fields acquire VEVs, both Uð1ÞL and Uð1ÞPQ
appear to be broken. Actually, there are linear combinations of the
two Uð1ÞXi

symmetries, which are Uð1Þ ~X × Uð1Þf . Here, the
Uð1Þ ~X symmetry has anomaly, while the Uð1Þf , which corre-
sponds to lepton number, is anomaly free. See the superpotential
(24) and (51)–(52).
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where vΘ is undetermined. As can be seen in Eq. (20), the
VEVs vΘ and vS are naturally of the same order of
magnitude (here, the dimensionless parameters g3 and g4
are the same order of magnitude).
Finally, the minimization equation for the vacuum

configuration of Ψ is given by

∂Wv

∂Ψ0

¼ g7Ψ ~Ψþ μ2Ψ ¼ 0; ð21Þ

where μΨ is the Uð1ÞX breaking scale and g7 is a
dimensionless coupling. And from Eq. (21), we can get
the supersymmetric vacua for the fields Ψ; ~Ψ,

hΨi ¼ h ~Ψi ¼ vΨffiffiffi
2

p ; with vΨ ¼ μΨ

ffiffiffiffiffiffi
−2
g7

s
: ð22Þ

We see that the global minima of the potential are located at
Eqs. (18), (20), and (22). The vacuum configuration of the
driving fields in the SUSY limit is given in Appendix B 1.
As can be seen in Eqs. (20) and (22), in the SUSY limit
there exist flat directions along which the scalar fields
ΦS;Θ and Ψ; ~Ψ do not feel the potential. The SUSY
breaking effect lifts up the flat directions and corrects the
VEVof the driving fieldΨ0, leading to soft SUSY breaking
mass terms (we do not specify a SUSY breaking mecha-
nism in this work). The full scalar potential is given by

V total ¼
X
i

���� ∂W∂φi

����2 þ Vsoft þ VD; ð23Þ

where φi ¼ fΦT
0 ;Φ

S
0;Θ0;Ψ0;ΦT;ΦS;Θ; ~Θ;Ψ; ~Ψg stand

for all the scalar fields; Vsoft and VD represent soft- and
D-terms for the fields charged under the gauge group. Since
all the soft SUSY breaking parameters in Vsoft are expected
to be of order mS, which is much smaller than the mass
scales involved in Wv, it makes sense to minimize V total in
the SUSY limit and to explain soft breaking effects
subsequently.
By including generic soft SUSY breaking terms, which

originate from another sector of the theory, neutral under
the action of gauge group and under A4 ×Uð1ÞX, one can
introduce a set of generic soft SUSY breaking terms by
promoting the coupling constant of the theory to constant
superfields with nonvanishing auxiliary components [29].
Since all soft SUSY breaking parameters are of order mS,
all the VEVs appearing in Eq. (B4) can be of order mS.
And, by adding a soft SUSY breaking mass term to the
scalar potential one can execute h ~Θi ¼ 0 for the scalar field
~Θ with m2

~Θ
> 0. Since there are flat directions in the SUSY

limit, by taking m2
ΦS
; m2

Θ; m
2
Ψ; m

2
~Ψ
< 0, vΘ and vΨ roll

down toward its true minimum from a large scale, which
we assume to be stabilized far away from the origin by

one-loop radiative corrections in the SUSY broken phase.
Then the vacuum alignment is taken as the absolute
minimum.
Under A4 × Uð1ÞX ×Uð1ÞR, the matter fields are

assigned as in Table III. In the following superpotential,
the matter fields interact with X fields and have some X
charges.

B. Lepton sector

The superpotential for Yukawa interactions in the lepton
sector, which is invariant under SUð2ÞL × Uð1ÞY × A4×
Uð1ÞX ×Uð1ÞR, is given at leading order by

Wlν ¼ ŷν1LeðNcΦTÞ1
Hu

Λ

þ ŷν2LμðNcΦTÞ100
Hu

Λ
þ ŷν3LτðNcΦTÞ10

Hu

Λ

þ 1

2
ðŷΘΘþ ŷ ~Θ

~ΘÞðNcNcÞ1 þ
ŷR
2
ðNcNcÞ3sΦS

þ yeLeecHd þ yμLμμ
cHd þ yτLττ

cHd: ð24Þ

Because of the chiral structure of weak interactions, bare
fermion masses are not allowed in the SM. Fermion masses
arise through Yukawa interactions.8 Since the Uð1ÞX
quantum numbers are assigned appropriately to the matter
field content as in Table III, the Yukawa couplings of
charged leptons appearing in the superpotential Wlν are a
function of flavon field Ψ, i.e., ye;μ;τ ¼ ye;μ;τðΨÞ:

ye ¼ ŷe

�
Ψ
Λ

�
8

; yμ ¼ ŷμ

�
Ψ
Λ

�
4

; yτ ¼ ŷτ

�
Ψ
Λ

�
2

:

ð25Þ

Here, the couplings ŷe;μ;τ are complex numbers and of order

unity, i.e. 1=
ffiffiffiffiffi
10

p ≲ jŷe;μ;τj≲
ffiffiffiffiffi
10

p
, while the neutrino

Yukawa couplings are given as

ŷν1 ≈ ŷν2 ≈ ŷν3 ≈Oð1Þ; ŷΘ ≈ ŷ ~Θ ≈ ŷR ≈Oð1Þ: ð26Þ

Since the fields associated with the superpotential (24) are
charged under Uð1ÞX, it is expected that all the hat neutrino
Yukawa couplings appearing in the superpotential (24) are
of order unity and complex numbers.
In the above leptonic Yukawa superpotential, the right-

hand Majorana neutrino terms are associated with an A4

singlet Θ and an A4 triplet ΦS flavon field, both of which

8Since the right-hand neutrinos having a mass scale much
above the weak interaction scale are complete singlets of the SM
gauge symmetry, they can possess bare SM invariant mass terms.
However, the flavored PQ symmetry Uð1ÞX guarantees the
absence of a bare mass term MNcNc.
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are the SM gauge singlets. So, below the cutoff scale Λ, the
Majorana neutrino mass terms comprise an exact TBM
pattern, which will be shown later. We note that the flavon
field ΦT derives dimension-5 operators in the Dirac
neutrino sector, while the flavon field Ψ derives higher-
dimensional operators with the Uð1ÞX flavor symmetry
responsible for the hierarchical charged lepton masses as
shown in Eq. (25). Imposing the continuous global Uð1ÞX
symmetry in Table III explains the absence of the Yukawa
terms LNcΦS and NcNcΦT as well as does not allow the
interchange between ΦT and ΦS, both of which transform
differently under Uð1ÞX, so that bilarge θ12; θ23 mixings
with a nonzero θ13 mixing for the leptonic mixing matrix
could be obtained after seesawing (which will be
shown later).
Especially, since the field ΦT is not charged under

the Uð1ÞX, nontrivial next-to-leading order operators could
be generated via ΦT . So we will show that, after flavor
symmetry breaking, the next leading operators can con-
tribute to the Majorana neutrino sector (see more details
in Sec. IV), while there are no new structures contributing
to the Dirac neutrino and charged lepton sectors after
symmetry breaking. It is very crucial to note the following,
which guarantees the superpotential for the Dirac neutrino
and charged lepton sectors in Eq. (24): (i) in the charged
lepton sector higher-dimensional operators including
ðΦTΦTÞ10;100 , that is, ŷαβðΨΛÞnLαβ

cHdðΦTΦTÞ10;100=Λ2 where
α ≠ β ¼ e; μ; τ and n ≥ 1 (integer), are all vanishing
due to the VEV alignment hΦTi ∼ vTð1; 0; 0Þ; (ii) since
higher-dimensional operators involving ðΦTΦTÞ3s or
ðΦTΦTÞ1 have the same direction as ΦT , the corrections
to the charged lepton sector appear as an order of
1=Λ4 and absorbed into a redefinition of the leading
order terms; (iii) in the Dirac neutrino sector higher-
dimensional operators driven by the ΦT field, that is,
ŷαLα½NcðΦTÞn�1;10;100Hu=Λn with n ≥ 2 (integer), are
absorbed into a redefinition of the leading order terms
due to the same reasons addressed in the previous cases;
and (iv) higher-dimensional operators via the insertions of
Ψ ~Ψ=Λ2 and HuHd=Λ2 are all absorbed into the leading
order terms and redefined; on the other hand, (v) higher-
dimensional operators including ðΦSΦSÞ1;10;100;3 or Θ are
forbidden by the Uð1ÞX symmetry. Note that the other
higher-dimensional operators invariant under A4 ×Uð1ÞX
are vanishing due to Uð1ÞR symmetry. Therefore, the
unwanted off-diagonal entries in the charged lepton and
Dirac neutrino mass matrices, as will be shown in Eqs. (30)
and (33), are all vanishing or absorbed into a redefinition of
the leading order terms, while there will be new structure
corrections to the Majorana neutrino sector due to next-to-
leading order operators whose contributions could be
below the percent level as will be seen in Eqs. (67) and (75).
As mentioned before, the model has two Uð1Þ sym-

metries that are generated by the charges X1 ≡ −2p and
X2 ≡ −q. The A4 flavor symmetry along with the flavored

PQ symmetry Uð1ÞX1
is spontaneously broken by two A4

triplets ΦT;ΦS and by a singlet Θ in Table III. And the
Uð1ÞX2

symmetry is spontaneously broken by Ψ; ~Ψ, whose
scale is denoted as μΨ, and the VEV of Ψ (scaled by the
cutoff Λ) is assumed as

hΨi
Λ

≡ λ: ð27Þ

Here, the parameter λ stands for the Cabbibo parameter. We
take the A4 symmetry breaking scale and the Uð1ÞX2

breaking scale to be much above the electroweak scale
in our scenario, i.e., hΨi; h ~Ψi; hΘi; hΦTi; hΦSi ≫ hHu;di.
We assume that the electroweak symmetry is broken by
some mechanism, such as radiative effects when SUSY is
broken. As discussed in the previous section, the fields
ΦT;ΦS;Θ; ~Θ and Ψ; ~Ψ develop VEVs along the directions

hΦTi ¼
1ffiffiffi
2

p ðvT; 0; 0Þ; hΦSi ¼
1ffiffiffi
2

p ðvS; vS; vSÞ;

hΘi ¼ vΘffiffiffi
2

p ; h ~Θi ¼ 0; hΨi ¼ h ~Ψi ¼ vΨffiffiffi
2

p : ð28Þ

Even these VEVs could be slightly perturbed by higher-
dimensional operators contributing to the driving super-
potential; their corrections to the lepton and quark mass
matrices are absorbed into the leading order terms and
redefined due to the same VEV directions as in Eq. (73), or
can be kept small enough and negligible, which will be
shown in Sec. IV B.
Once the scalar fields ΦS;Θ; ~Θ;Ψ and ~Ψ get VEVs, the

flavor symmetry Uð1ÞX × A4 is spontaneously broken.9

After electroweak and flavor symmetry breaking, the mass
terms and the charged gauge interactions in a weak
eigenstate basis are simply expressed as

−LmW ¼ 1

2
Nc

RMRNR þ νLmDNR þ lLMllR

þ gffiffiffi
2

p W−
μlLγ

μνL þ H:c:

¼ 1

2
ð νL Nc

R Þ
�

0 mD

mT
D MR

��
νcL
NR

�
þ lLMllR þ gffiffiffi

2
p W−

μlLγ
μνL þ H:c:; ð29Þ

where g is the SU(2) coupling constant.
We first consider the charged lepton sector. After the

breaking of the flavor symmetries and electroweak sym-
metry, with the VEValignment in Eq. (28), the mass matrix
of charged leptons is given by

9If the symmetry Uð1ÞX is broken spontaneously, the Gold-
stone modes would be axions. See more details in Sec. V.
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Ml ¼

0B@ ye 0 0

0 yμ 0

0 0 yτ

1CAvd ¼

0B@ ŷeλ8 0 0

0 ŷμλ4 0

0 0 ŷτλ2

1CAvd;

ð30Þ

recalling that the hat Yukawa couplings are all of order
unity and complex numbers. And the corresponding
charged lepton masses are given by

mτ ≡ jyτjvd ¼ λ2jŷτjvd; mμ ≡ jyμjvd ¼ λ4jŷμjvd;
me ≡ jyejvd ¼ λ8jŷejvd; ð31Þ

where hHdi ≡ vd ¼ v cos β=
ffiffiffi
2

p
with v≃ 246 GeV. These

results are in a good agreement with the empirical
charged lepton mass ratios calculated from the measured
values [16]:

me

mτ
≃ 2.9 × 10−4;

mμ

mτ
≃ 5.9 × 10−2: ð32Þ

On the other hand, the Dirac andMajorana neutrino mass
terms read

mD ¼

0B@ ŷν1 0 0

0 0 ŷν2
0 ŷν3 0

1CA vTffiffiffi
2

p
Λ
vu ¼ ŷν1

0B@1 0 0

0 0 y2
0 y3 0

1CA vTffiffiffi
2

p
Λ
vu;

ð33Þ

MR ¼

0BB@
1þ 2

3
~κeiϕ − 1

3
~κeiϕ − 1

3
~κeiϕ

− 1
3
~κeiϕ 2

3
~κeiϕ 1− 1

3
~κeiϕ

− 1
3
~κeiϕ 1− 1

3
~κeiϕ 2

3
~κeiϕ

1CAM; ð34Þ

where hHui ≡ vu ¼ v sin β=
ffiffiffi
2

p
, and

y2 ≡ ŷν2
ŷν1

; y3 ≡ ŷν3
ŷν1

;

~κ ≡
ffiffiffi
3

2

r ����ŷR vSM
����;

ϕ ≡ arg

�
ŷR
ŷΘ

�
with

M ≡
����ŷΘ vΘffiffiffi

2
p

����: ð35Þ

Note here that due to the magnitude of ŷνi being of order
unity, in other words Oðy2Þ≃Oðy3Þ≃Oð1Þ, the μ − τ
symmetry is broken, which leads to nonzero θ13 after
seesawing.
A crucial point is that, by redefining the light neutrino

field νL as PννL and transforming lL → PνlL, lR → PνlR,
one can always make the Yukawa couplings ŷν1; y2; y3 real
and positive. Then, from Eqs. (33) and (35) the light
neutrino mass matrix formed by the seesaw formula,
Mν ¼ −mDM−1

R mT
D, leads to the following μ–τ power

mass matrix:

Mν ¼ m0eiπ

0BBB@
1þ 2F ð1 − FÞy2 ð1 − FÞy3

ð1 − FÞy2
�
1þ Fþ3G

2

�
y22

�
1þ F−3G

2

�
y2y3

ð1 − FÞy3
�
1þ F−3G

2

�
y2y3

�
1þ Fþ3G

2

�
y23

1CCCA; ð36Þ

where

m0 ≡
���� ŷν21 υ2u
6M

�����vTΛ
�

2

; F ¼ ð~κeiϕ þ 1Þ−1;

G ¼ ð~κeiϕ − 1Þ−1: ð37Þ

It is diagonalized by the transformation

U†
PMNSMνU�

PMNS ¼ Diag:ðmν1 ; mν2 ; mν3Þ: ð38Þ

As is well known, because of the observed hierarchy
jΔm2

Atmj≡ jm2
ν3−m

2
ν1 j≫Δm2

Sol≡m2
ν2−m

2
ν1>0, and the

requirement of a Mikheyev-Smirnov-Wolfenstein reso-
nance for solar neutrinos, there are two possible neutrino
mass spectra: (i) the NO mν1 < mν2 < mν3 , and (ii) the IO

mν3 < mν1 < mν2 . In the limit yν2 ¼ yν3 (y2 → y3), the mass
matrix in Eq. (36) acquires a μ–τ symmetry that leads to
θ13 ¼ 0 and θ23 ¼ −π=4. Moreover, in the limit yν1 ¼ yν2 ¼
yν3 (y2; y3 → 1), the mass matrix (36) gives the TBM angles
and their corresponding mass eigenvalues

sin2θ12 ¼
1

3
; sin2θ23 ¼

1

2
; sin θ13 ¼ 0;

mν1 ¼ 3m0jFj; mν2 ¼ 3m0; mν3 ¼ 3m0jGj:
ð39Þ

These mass eigenvalues are disconnected from the mixing
angles [30]. Note here that the light neutrino mass matrix in
Eq. (36) contains five physical parameters (m0; y2; y3; ~κ;ϕ),
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leading to a neutrino mass sum rule10 1=mν1 − 1=mν3 ¼
2=mν2 in the limit y2;3 → 1, while the neutrino mass
matrix in Eq. (12) has seven physical parameters. How-
ever, it is in general expected that deviations of y2; y3
form unity, leading to recent neutrino data, i.e. θ13 ≠ 0,
and in turn opening a possibility to search for CP
violation in neutrino oscillation experiments. These de-
viations generate relations between mixing angles and
mass eigenvalues. Therefore, Eq. (36) directly indicates
that there could be deviations from the exact TBM if the
Dirac neutrino Yukawa couplings do not have the same
magnitude, and the light neutrino masses are all of same
order,

mν1 ≃mν2 ≃mν3 ≃Oðm0Þ: ð40Þ

Before discussing quarks and axions, let us consider
the constraints on the X symmetry (or PQ symmetry)
breaking scale implied by the fermion mass scales in the
model. From the overall scale of the light neutrino mass
in Eq. (37) the scale of the heavy neutrino, which is
connected to the PQ symmetry breaking scale via the
axion decay constant in Eq. (105), is expected to be

M ≃ 5 × 1012
�eV
m0

����ŷν1 vTΛ ���2sin2β GeV: ð41Þ

As shown in Eq. (20), the scale of M is expected as
OðvΘÞ ∼OðvSÞ ∼OðMÞ. And Eq. (41) shows that the
value of ŷν1vT=Λ depends on the magnitude M once m0 is
determined: the smaller the ratio vT=Λ, the smaller the
leptogenesis (seesaw) scale becomes.11 The value of
vT=Λ is also related to the μ-term in Eq. (13): when
soft SUSY breaking terms are included into the flavon
potential, the driving fields attain VEVs, and in turn the
magnitude of the μ-term is expected to be 200 GeV≲
μeff ≲ 1 TeV for mS ∼Oð10Þ TeV and vT=Λ ∼ 0.05. For
example, when the Yukawa coupling ŷν1 is of order unity,
i.e., 1=

ffiffiffiffiffi
10

p ≲ jŷν1j≲
ffiffiffiffiffi
10

p
, and sin β≃ 1 due to Eq. (61)

are considered, the scale M should be close to

7.5 × 1011 ≲M ½GeV�≲ 7.5 × 1013 for
vT
Λ

≃ 0.05:

ð42Þ

Since the values of vT=Λ and vS=Λ are closely associated
with the CKM mixing matrix and the down-type quark

masses, respectively, see Eq. (79), their values should lie
in the ranges

vT
Λ

∼Oð0.1Þ; vS
Λ

≲ vΘ
Λ

∼ λ2 <
vΨ
Λ

¼ λ < 1: ð43Þ

Here, the first term is derived from the requirement that
the term should fit its size down to generate the correct
CKM matrix in Eq. (79) as well as the μ-term in
Eq. (13), and the second one comes from Eqs. (20)
and (27), and vΘ ¼ vΨN1=N2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
with N1 ¼ 3,

N2 ¼ 17, and κ ≡ vS=vΘ [see also its related parameter
~κ in Eq. (35)], which will be shown in Eq. (103). With
the assumptions ŷΘ ≃ ŷν1, κ ≃ 0.5, and vT=Λ≃ 0.05, the
neutrino overall scale m0 ≃ ð1 − 5Þ × 10−2 eV gives
1011 ≲ vΘ ½GeV�≲ 4 × 1012. Thus, it is very likely that
the PQ symmetry breaking scale roughly lies
in 7 × 1011 ≲ vΨ ½GeV�≲ 2.8 × 1013.
In conclusion, all VEVs (scaled by the cutoff Λ)

breaking the symmetries are connected to each other:
(i) the VEV vT is correlated with both the μ-term in
Eq. (13) and the overall scale of light neutrino mass
through the seesaw formula, Eq. (37), and its size scaled
by the cutoff Λ is crucial for generating the correct CKM
matrix. (ii) The scale between vS ¼ κvΘ and vT is
determined by the overall scale of light neutrino mass
through the seesaw formula. (iii) The VEV vΨ (scaled by
the cutoff Λ), which is defined as the Cabbibo parameter
in Eq. (27), is connected to the scale vΘ or vS via the
axion constraints, Eqs. (103)–(105); in turn thereby the
cutoff scale Λ is determined.

1. Light neutrino phenomenology

After the observation of a nonzero mixing angle θ13 in
the Daya Bay [18] and RENO [19] experiments, the
Dirac CP-violating phase δCP and a precise measurement
of the atmospheric mixing angle θ23 are the next
observables on the agenda of neutrino oscillation experi-
ments. We explore what values of the low energy CP
phases can predict a value for the mass hierarchy of
neutrino (normal or inverted mass ordering) and inves-
tigate the observables that can be tested in the current and
the next generation of experiments: the rate of 0νββ
decay via the effective mass jðMνÞeej (the modulus of
the ee-entry of the effective neutrino mass matrix) at
90% C.L shows upper bounds:

jðMνÞeej < 0.12–0.25 eV;

ð136Xe-based experiments ½39; 40�Þ
jðMνÞeej < 0.20–0.40 eV;

ð76Ge-based experiments ½41; 42; 43�Þ: ð44Þ

Current 0νββ-decay experimental upper limits and the
reach of near-future experiments are collected for

10The flavor symmetry models giving an exact TMB mixing
pattern have neutrino mass sum rules [31], which are different
from our model due to in general y2;3 ≠ 1.

11Moreover, the overall scale of the light neutrino mass m0 is
closely related with a successful leptogenesis [32,33], constraints
of lepton flavor violation, and 0νββ-decay rate through the
seesaw formula as well as the CKM mixing matrix; therefore,
it is very important to fit the parameters vT=Λ and M.
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example in Ref. [34]. Recently, there were two interesting
measurements on the sum of the light neutrino massesP

3
i¼1mνi ; (i) the first one given by the Planck

Collaboration [35] is subject to the cosmological boundsP
imνi < 0.23 eV at 95% C.L. [Planck-I, derived from

the combination PlanckþWMAP low-multipole polari-
zation + high resolution CMBþ baryon acoustic oscil-
lations (BAO), assuming a standard ΛCDM cosmological
model] and

P
imνi < 0.66 eV at 95% C.L. (Planck-II,

derived from the data without BAO [35]); and (ii) the
other one from the South Pole Telescope (SPT)
Collaboration [36] states a 3σ preference for positive
neutrino masses, and the median value isX

i

mνi ¼ 0.32� 0.11 eV: ð45Þ

We perform a numerical analysis using the linear algebra
tools of Ref. [37]. The Daya Bay [18] and RENO [19]
experiments have accomplished the measurement of all
three neutrino mixing angles θ12, θ23, and θ13, associated
with three kinds of neutrino oscillation experiments. Global
fit values and 3σ intervals for the neutrino mixing angles
and the neutrino mass-squared differences [22] are listed in
Table I.12 The mass matrices mD in Eq. (33) and MR in
Eq. (34) contain seven parameters: y1ð≡ vTŷν1=

ffiffiffi
2

p
ΛÞ;

vu;M; y2; y3; ~κ;ϕ. The first three (y1, M, and vu) lead to
the overall neutrino scale parameter m0. The next four
(y2; y3; ~κ;ϕ) give rise to the deviations from TBM as well as
the CP phases and corrections to the mass eigenvalues [see
Eq. (39)]. In our numerical analysis, we take M ¼
1012 GeV and13tan β ¼ 5 [see Eqs. (42) and (61)], for
simplicity, as inputs. Then the effective neutrino mass
matrix in Eq. (36) contains only the five parameters
m0; y2; y3; ~κ;ϕ, which can be determined from the exper-
imental results of three mixing angles, θ12; θ13; θ23, and
the two mass squared differences, Δm2

Sol ¼ m2
ν2 −m2

ν1 ;
Δm2

Atm ¼ jm2
ν3 −m2

ν1 j. In addition, the effective neutrino
mass jMeej and the CP phases δCP;φ1;2 can be predicted
after determining the model parameters. Scanning all the
parameter spaces by putting the experimental constraints
in Table I with the above input parameters, we obtain for
the NO

~κ ∈ ½0.17; 0.73�; y2 ∈ ½1.0; 1.25�;
y3 ∈ ½1.0; 1.25�; m0=ð10−2 eVÞ ∈ ½1.5; 5.3�;
ϕ ∈ ½96°; 114°�∪½246°; 266°�; ð46Þ
for the IO,

~κ ∈ ½0.17; 0.63�; y2 ∈ ½0.80; 1.16�;
y3 ∈ ½0.82; 1.17�; m0=ð10−2 eVÞ ∈ ½2.3; 5.9�;
ϕ ∈ ½93°; 104°�∪½255°; 267°�: ð47Þ

First, the magnitude of the CP-violating effects is
determined by the invariant JCP associated with the
Dirac CP-violating phase

JCP ≡ −Im½U�
e1Ue3Uτ1U�

τ3�

¼ 1

8
sin 2θ12 sin 2θ13 sin 2θ23 cos θ13 sin δCP: ð48Þ

Here,Uαj is an element of the PMNSmatrix in Eq. (3), with
α ¼ e; μ; τ corresponding to the lepton flavors and j ¼
1; 2; 3 corresponding to the light neutrino mass eigenstates.
Because of the precise measurement of θ13, which is
relatively large, it may now be possible to put constraints
on the Dirac phase δCP that will be obtained in the long
baseline neutrino oscillation experiments T2K, NOνA, etc.
(see Ref. [16]). However, the current large uncertainty on
θ23 is at present limiting the information that can be
extracted from the νe appearance measurements. Precise
measurements of all the mixing angles are needed to
maximize the sensitivity to the leptonic CP violation.
Since the 0νββ decay is a probe of lepton number violation
at low energy, its measurement could be the strongest
evidence for lepton number violation at high energy. In
other words, the discovery of 0νββ decay would suggest the
Majorana character of the neutrinos and thus the existence
of heavy Majorana neutrinos (via the seesaw mechanism),
which are a crucial ingredient for leptogenesis [32,33]. In
the model, the effective neutrino mass jðMνÞeej that
characterizes the amplitude for 0νββ decay is given by

jðMνÞeej ¼ m0

���� 3þ ~κeiϕ

1þ ~κeiϕ

����: ð49Þ

This shows that in the model the rate of 0νββ decay
depends on the parameters m0, ~κ, and ϕ associated with the
heavy Majorana neutrinos in Eq. (34). Figure 1 indicates
the importance of the precise measurements of the atmos-
pheric mixing angle θ23 to distinguish between normal and
inverted mass ordering; here, the blue dots and red crosses
correspond to the IO and the NO, respectively. The IO is
very predictive on δCP and jðMνÞeej ≡ jmeej, while the NO
is less predictive on those. The left plot in Fig. 1 shows the
predictions on δCP in terms of the large uncertainty on θ23;
on the other hand, the right plot stands for the model
predictions on jðMνÞeej in terms of θ23. Within the model,
future precise measurements of θ23 should be able to
distinguish between IO and NO. For NO, θ23 would be
close to 44 or 46°. For IO, θ23 would be in the range
½38°; 42°�∪½48°; 53°�, that is 3 to 8° away from maximality.
In turn, such precise measurements of θ23 would restrict the

12The model parameter spaces constrained by the global
analysis in Table I are slightly different from those of Ref. [26]
where the global analysis by Ref. [22] was used.

13As noticed in Eq. (61), in our model small values of tan β ¼
vu=vd are preferred.
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possible range of δCP in the model. A value of θ23 slightly
larger than maximal, i.e., θ23 ∈ ½45°; 47°�, would imply an
NO and δCP ∈ ½90°; 270°�, while a value of θ23 slightly
smaller than maximal, i.e., θ23 ∈ ½43°; 45°�, would imply
a NO and δCP ∈ ½0; 90°�∪½270°; 360°�. A value of θ23
considerably larger or smaller than maximal, i.e.,
½38°; 42°�∪½48°; 53°�, would imply IO and δCP within a
few degrees of 70, 110, 250, or 290°.
Recently, the T2K Collaboration analyzed that the recent

measurements of θ13 combined with the T2K data result in

θ23 ¼ 46.61þ3.17
−2.18 ; θ13 ¼ 9.10þ0.47

−0.49 ;

jΔm2
32j ¼ 2.51� 0.11 ð50Þ

and exclude values of δCP between 25.2 and 156.6° with
90% probability, which points to the highest posterior
probability in the normal mass ordering [38]. Interestingly,
as can be seen in Fig. 1, the recent analysis by the T2K
collaboration, Eq. (50), favors the data points (red crosses)
indicating the NO. In the near future, KamLAND-Zen [39],
EXO [40], and GERDA [41] are expected14 to probe the
range 0.01 eV < jðMνÞeej < 0.1 eV. If these experiments
measure a value of jðMνÞeej > 0.01 eV, the normal mass
hierarchical spectrum would be strongly disfavored [45].
Figure 2 directly shows that the model predictions lie on the
testable region of those experiments. The correlations
shown in the left plot in Fig. 2 indicate that in our model

precise measurements of or improved upper bounds on
jðMνÞeej from 0νββ-decay experiments may be able to
restrict the possible ranges of δCP, and in some cases may
even distinguish NO from IO. In the right plot in Fig. 2, the
more stringent Planck-I limit cuts into our region of points
and starts to disfavor a quasidegenerate light neutrino mass
spectrum. Interestingly, the data given in Eq. (45) from the
SPT Collaboration [36] favor our model as indicated in the
left plot in Fig. 2. Figure 2 explicitly shows that the current
0νββ-decay experiments also cut into our region of points,
and the near-future 0νββ-decay experiments can test our
model completely. We remark that the tritium beta decay
experiment KATRIN [46] may not be expected to reach
into our model region. KATRIN will be sensitive to an

effective electron neutrino mass mβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ijUeij2m2
νi

q
[47]

down to about 0.2 eV, while our model produces values in
the range 0.050≲mνe ≲ 0.160 eV for NO and 0.051≲
mνe ≲ 0.171 eV for IO.

C. Quark sector

In the quark sector, the superpotential Wq driven by
ΦT;ΦS;Θ;Ψ, invariant under SUð2ÞL × Uð1ÞY × A4×
Uð1ÞX, is given at leading order by

Wu
q ¼ yuQ1ucHu þ ycQ2ccHu þ ytQ3tcHu; ð51Þ

Wd
q ¼ ydQ1ðDcΦSÞ1

Hd

Λ
þ ysQ2ðDcΦSÞ10

Hd

Λ

þ ybQ3ðDcΦSÞ100
Hd

Λ
: ð52Þ

In the above superpotential, each quark sector has three
independent Yukawa terms at the leading order: apart from
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FIG. 1 (color online). The left plot shows predictions of δCP as a function of θ23, while the right plot shows model prediction of
jmeej ≡ jðMνÞeej in terms of θ23. Here, the vertical dashed (dotted) lines show the best-fit values for NO (IO), and the blue dots and red
crosses correspond to IO and NO, respectively. And the horizontal solid (dashed) lines show the Xe-based current bounds (near-future
reachable sensitivity) of 0νββ experiments.

14The Advanced Mo based Rare process Experiment collabo-
ration is now planning to search for 0νββ decay of 100Mo isotope,
which reaches the sensitivity of the effective Majorana neutrino
mass jðMνÞeej ∼ 0.02–0.06 eV [44].
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the Yukawa couplings, each up-type quark sector does not
involve flavon fields, while the down-type quark sector
involves the A4-triplet flavon fields ΦT and ΦS. The left-
hand quark doublets Q1; Q2; Q3 transform as 1; 100, and 10,
respectively; the right-hand quarks uc ∼ 1; cc ∼ 10; tc ∼ 100,
and Dc ≡ fdc; sc; bcg ∼ 3. Since the right-hand down-type
quark transforms as 3, in contrast with the up-type quark
sector, the down-type quark sector can have nontrivial next-
to-leading order terms as will be shown in Eq. (68).
According to the Uð1ÞX quantum numbers assigned in

Tables II–III, it is expected that the flavon field A4-singletΨ
derives higher-dimensional operators, which are eventually
visualized into the Yukawa couplings of up-type quarks as
a function of flavon field Ψ, i.e., yu;c ¼ yu;cðΨÞ, except for
the top Yukawa coupling:

yu ¼ ŷu

�
Ψ
Λ

�
8

; yc ¼ ŷc

�
Ψ
Λ

�
4

; yt ¼ ŷt; ð53Þ

and, similarly, the Yukawa couplings of down-type quarks
as a function of flavon field Ψ, i.e., yd;s ¼ yd;sðΨÞ, except
for the Yukawa coupling yb:

yd ¼ ŷd

�
Ψ
Λ

�
3

; ys ¼ ŷs

�
Ψ
Λ

�
2

; yb ¼ ŷb; ð54Þ

recalling that all the hat Yukawa couplings are of order
unity and complex numbers.
Similar to the lepton sector, even though the flavon

fields A4-triplet ΦS;T and A4-singlets Θ, Ψ derive higher-
dimensional operators, they are all forbidden or vanishing.
Notice that the effects of nontrivial next-to-leading order
operators will be discussed in Sec. IV. A few comments are

in order: (i) next-to-next-to-leading order operators driven
by ΦS or Θ, and higher-dimensional operators including
ðΦSΦSÞ1;10;1003 are all forbidden by the Uð1ÞX; (ii) higher-
dimensional operators driven by ðΦTΦTÞ10;100 are all vanish-
ing due to the VEV alignment hΦTi ∼ vTð1; 0; 0Þ, for
example, ŷifðΨΛÞnQifcHuðΦTΦTÞ10;100=Λ2 where i ¼ 1; 2;
3, f ¼ u; c; t, and n ≥ 1 (integer), and ði; fÞ ≠ ð1; uÞ;
ð2; cÞ; ð3; tÞ; (iii) higher-dimensional operators through
the insertions of ðΦTΦTÞ1 or ðΦTΦTÞ3s, ðΦSΦTÞ1;10;100 have
a VEV in the same direction as ΦT due to the VEV
alignment hΦTi ∼ vTð1; 0; 0Þ, all of which are absorbed
into a redefinition of the leading terms; and (iv) higher-
dimensional operators via the insertion of HuHd and Ψ ~Ψ
are all absorbed into a redefinition of the leading
order terms.
After the breaking of the flavor and electroweak sym-

metries, with the VEV alignments as in Eq. (28), in the
weak eigenstate basis the up- and down-type quark mass
terms in Eqs. (51)–(52), and the charged current inter-
actions between quarks, can be written in matrix form as

−Lq ¼ quLMuquR þ qdLMdqdR þ gffiffiffi
2

p Wþ
μ quLγ

μqdL þ H:c:

ð55Þ

Here, qu ¼ ðu; c; tÞ, qd ¼ ðd; s; bÞ, and

Mu ¼

0B@ yu 0 0

0 yc 0

0 0 yt

1CAvu ¼

0B@ ŷuλ8 0 0

0 ŷcλ4 0

0 0 ŷt

1CAvu;

ð56Þ
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FIG. 2 (color online). Plots for predictions of jmeej ≡ jðMνÞeej in terms of δCP (left) and
P

mν (right). The horizontal solid (dashed)
lines show the Xe-based current bounds (near-future reachable sensitivity) of 0νββ experiments. In the right plot the vertical dashed
(solid) lines indicate the cosmological Planck-I (Planck-II) upper bounds, while the two vertical dotted lines show the median value from
the SPT in Ref. [36].
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Md ¼

0B@ yd yd yd
ys ys ys
yb yb yb

1CA vSffiffiffi
2

p
Λ
vd

¼

0B@ ŷdλ3 ŷdλ3 ŷdλ3

ŷsλ2 ŷsλ2 ŷsλ2

ŷb ŷb ŷb

1CA vSffiffiffi
2

p
Λ
vd: ð57Þ

Naively speaking, since the leading matrix Md has six
physical parameters, while observables are seven (CKM
parameters: 4, down-type quark masses: 3), it alone may
not generate the correct CKM matrix. With Eqs. (56)–(57)
they directly show that the mass spectra of quarks are
strongly hierarchical, i.e., the masses of the third generation
fermions are much heavier than those of the first and
second generation quarks.
Because of the diagonal form in Eq. (56), the contribu-

tions of the up-type quark sector to the CKM matrix are
absent. The mass eigenvalues of the up-type quark can be
made real and positive by the field redefinitions quL →
Pu
Lq

u
L and quR → Pu

Rq
u
R (here, Pu

LðRÞ is a diagonal matrix of

phase factors):

cMu ¼ Pu
LMuPu�

R ¼ diagðmu;mc;mtÞ: ð58Þ

The corresponding up-type quark masses are given as

mt ≡ jŷtjvu; mc ≡ jycjvu ¼ λ4vujŷcj;
mu ≡ jyujvu ¼ λ8vujŷuj; ð59Þ

which are comparable with the results calculated from the
measured values [16]

mu

mt
≃ 1.4 × 10−5;

mc

mt
≃ 7.4 × 10−3: ð60Þ

From the top Yukawa coupling and pole mass (ŷt and mt)
and the neutral Higgs VEV ratio (tan β ¼ vu=vd), by
requiring ŷt to be order of one, 1=

ffiffiffiffiffi
10

p ≲ jŷtj ≲
ffiffiffiffiffi
10

p
, we

have the following allowed range for tan β:

1.7≲ tan β < 10; ð61Þ

where15 we have used mt¼173.07�0.52�0.72GeV [16].
On the other hand, Md in Eq. (57) generates the down-

type quark masses:

cMd ¼ Vd†
L MdVd

R ¼ diagðmd;ms;mbÞ; ð62Þ

where Vd
L and Vd

R are the diagonalization matrices for Md.
Then Vd

L and Vd
R can be determined by diagonalizing the

matricesMdM
†
d andM

†
dMd, respectively, indicated from

Eq. (62). Especially, the mixing matrix Vd
L becomes one of

the matrices composing the CKM mixing matrix. The
Hermitian matrix MdM

†
d is diagonalized by the mixing

matrix Vd
L:

Vd†
L MdM

†
dV

d
L

¼ v2d
3

2

�
vS
Λ

�
2

Vd†
L

0B@ λ6jŷdj2 λ5ŷdŷ�s λ3ŷdŷ�b
λ5ŷ�dŷs λ4jŷsj2 λ2ŷsŷ�b
λ3ŷ�dŷb λ2ŷ�s ŷb jŷbj2

1CAVd
L

¼ diagðjmdj2; jmsj2; jmbj2Þ: ð63Þ

Because of the strong hierarchal structure of the Hermitian
matrix, one can fit the results calculated from the measured
values [16]:

md

mb
≃ 1.2 × 10−3;

ms

mb
≃ 2.4 × 10−2: ð64Þ

However, as mentioned before, one could not obtain the
correct CKMmixing matrix (it seems difficult to reproduce
the correct CKM matrix in the standard parametrization in
Ref. [16]). Therefore, we should include nontrivial next-to-
leading order corrections in order to obtain the correct
CKM matrix.

IV. HIGHER ORDER CORRECTIONS

Higher-dimensional operators invariant under A4 ×
Uð1ÞX symmetry, suppressed by additional powers of the
cutoff scale Λ, can be added to the leading terms in the
superpotential. The mass and mixing matrices of fermions
can be corrected by both a shift of the vacuum configu-
ration and nontrivial next-to-leading operators contributing
to the Yukawa superpotential Wf. We have shown in the
previous section that the next-to-leading order corrections
in the charged lepton and up-type quark Yukawa super-
potentials are either vanishing or absorbed into a redefi-
nition of the leading order terms. Here, we show that the
next leading corrections in the Dirac neutrino, Majorana
neutrino, and down-type quark sectors are well under
control.

A. Corrections to the Yukawa superpotential

In addition to the leading order Yukawa superpotential
Wf, we should also consider those higher-dimensional
operators that could be induced by the flavon field ΦT that
is not charged under the Uð1ÞX.

15We take a lower bound of tan β preferred in the minimal
supersymmetric standard model. For tan β < 1.7 the top quark
Yukawa coupling blows up before the momentum scale
μ ≈ 2 × 1016 GeV.
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1. Corrections to the lepton sector

At the next leading order in the Majorana neutrino sector
those operators triggered by the field ΦT are written as

ðNcNcΘΦTÞ1=Λ; ðNcNcΦSΦTÞ1=Λ: ð65Þ

Here, the first term, after symmetry breaking, is absorbed
into the leading order terms in the superpotential (24) and
the corresponding Yukawa couplings are redefined. On the
other hand, the second term could be nontrivial and can be
clearly expressed as

ΔWν ¼
ŷR1
Λ

ðNcNcÞ1ðΦSΦTÞ1 þ
ŷR2
Λ
ðNcNcÞ10 ðΦSΦTÞ100 þ

ŷR3
Λ

ðNcNcÞ100 ðΦSΦTÞ10

þ ŷRs
Λ

ðNcNcÞ3sðΦSΦTÞ3s þ
ŷRa
Λ
ðNcNcÞ3sðΦSΦTÞ3s : ð66Þ

Indeed, at order 1=Λ, after symmetry breaking, there is a new structure contributing to MR, whose contribution is
written as

ΔMR ¼ vT
Λ

ffiffiffi
6

p

0BBB@
~κ1 þ 4

3
~κs ~κ2 þ 1

3
~κs − 1ffiffi

3
p ~κa ~κ3 þ 1

3
~κs þ 1ffiffi

3
p ~κa

~κ2 þ 1
3
~κs − 1ffiffi

3
p ~κa ~κ3 þ 2

3
~κs − 2ffiffi

3
p ~κa ~κ1 − 2

3
~κs

~κ3 þ 1
3
~κs þ 1ffiffi

3
p ~κa ~κ1 − 2

3
~κs ~κ2 − 2

3
~κs þ 2ffiffi

3
p ~κa

1CCCAM; ð67Þ

where ~κi ≡
ffiffi
3
2

q
vS
M ŷRi with i ¼ 1; 2; 3; s; a. Even though

these corrections to the leading order picture seem non-
trivial, these can be kept small, below the percent level due
to vT=

ffiffiffi
6

p
Λ≃ 0.02 with vT=Λ≃ 0.05, Eq. (42), and ~κi ≃ ~κ

with Eq. (35). Therefore, the mass and mixing matrices of
the neutrino at leading order cannot be crucially changed.

2. Corrections to the quark sector

The nontrivial next leading order operators induced by
the ΦT field in the down-type quark sector are written as

ΔWd
q ¼ xdQ1ðDcΦTÞ1

Θ
Λ2

Hd

þ xsQ2ðDcΦTÞ10
Θ
Λ2

Hd þ xbQ3ðDcΦTÞ100
Θ
Λ2

Hd

þ xasd Q1ðDcΦTΦSÞ1
Hd

Λ2

þ xass Q2ðDcΦTΦSÞ10
Hd

Λ2
þ xasb Q3ðDcΦTΦSÞ100

Hd

Λ2
:

ð68Þ

Here, the next-to-leading order terms associated with the
field Θ play crucial roles for the CKM mixing angles to be
correctly fitted, while the contributions associated with the
field ΦS including the coefficients xsf (which are from
symmetric operators) and xaf (which are from antisymmet-
ric operators) do cancel each other out at leading contri-
bution due to the character of symmetry and antisymmetry
(the first contributions to the CKM appear as λ4). Moreover,

these next-to-leading order terms are correlated with the
mass scale of the neutrino in Eq. (37) and the μ-term in
Eq. (13) through the flavon field ΦT .
In the above superpotential (68), the Yukawa couplings

of down-type quarks are expressed as a function of flavon
field Ψ, i.e. xd;s ¼ xd;sðΨÞ with x ¼ x; xas:

xd ¼ x̂d

�
Ψ
Λ

�
3

; xs ¼ x̂s

�
Ψ
Λ

�
2

; xb ¼ x̂b: ð69Þ

With the help of Eq. (69) the corrections of down-type
quark matrix ΔMd can be expressed as

ΔMd ¼

0B@ xd 0 0

0 xs 0

0 0 xb

1CA vTvΘ
2Λ2

vd

þ

0BBB@
2ffiffi
3

p xsd xþd x−d
2ffiffi
3

p xss xþs x−s
2ffiffi
3

p xsb xþb x−b

1CCCA vTvS
2Λ2

vd ð70Þ

¼

0BBBBB@
λ3
�
x̂d
κ þ 2x̂sdffiffi

3
p
�

λ3x̂þd λ3x̂−d

λ2 2x̂ssffiffi
3

p λ2
�
x̂s
κ þ x̂þs

�
λ2x̂−s

2x̂sbffiffi
3

p x̂þb
x̂b
κ þ x̂−b

1CCCCCA
vTvS
2Λ2

vd;

ð71Þ
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where x̂�f ¼ −
x̂sfffiffi
3

p � ix̂af, recalling that all the hat Yukawa

couplings are of order unity and complex numbers. Each row
of the leading matrix in Eq. (57) has the same entries, while
for the next leading order matrix in the second matrix in
Eq. (70) the first term in each row cancels out the second plus
third term; therefore, in the production ðMdþΔMdÞðM†

dþ
ΔM†

dÞ the mismatches between the leading matrix in
Eq. (57) and the second matrix for the next leading matrices
in Eq. (70) cancel each other out, and the mismatch between
the first matrix inΔMd and the second one can contribute to
the CKM matrix but its effects are below the few percent
level. However, a mismatch between the first matrix, ΔMd,
and the leadingmatrix, Eq. (57), can reproduce themasses of

down-type quarks, jVubj and δqCP, once θq23 ¼ Aλ2 and θq12 ¼
λ are determined. We show this nontrivial effect and analyze
its physical effects in Sec. IV C.

B. Corrections to the vacuum alignment

Now we consider higher-dimensional operators induced
by ΦT;ΦS;Θ;Ψ invariant under A4 ×Uð1ÞX in the driving
superpotential Wv, which are suppressed by additional
powers of the cutoff scale Λ. They can lead to small
deviations from the leading order vacuum alignments.
The next leading order superpotential δWv, which is

linear in the driving fields and invariant under A4 ×Uð1ÞX,
is given by

δWv¼
1

Λ
fa1ðΦTΦTÞ3aðΦTΦT

0 Þ3aþa2ðΦTΦTÞ1ðΦTΦT
0 Þ1þa3ðΦTΦTÞ10 ðΦTΦT

0 Þ100 þa4ðΦTΦTÞ100 ðΦTΦT
0 Þ10 þa5Ψ ~ΨðΦTΦT

0 Þ1g

þ 1

Λ
fb1ðΦSΦSÞ3sðΦTΦS

0Þ3aþb2ðΦSΦSÞ3sðΦTΦS
0Þ3sþb3ðΦSΦSÞ1ðΦTΦS

0Þ1þb4ðΦSΦSÞ10 ðΦTΦS
0Þ100

þb5ðΦSΦSÞ100 ðΦTΦS
0Þ10 þb6ΦS

0ðΦSΦTÞ3aΘþb7ΦS
0ðΦSΦTÞ3sΘþb8ΦS

0ðΦSΦTÞ3a ~Θþb9ΦS
0ðΦSΦTÞ3s ~Θ

þb10ðΦS
0ΦTÞ1ΘΘþb11ðΦS

0ΦTÞ1Θ ~Θþb12ðΦS
0ΦTÞ1 ~Θ ~ΘgþΘ0

Λ
fc1ðΦSΦSÞ3sΦTþc2ðΦSΦTÞ1 ~Θgþ

Ψ0

Λ
d1ðΦTΦTÞ3sΦT:

ð72Þ

By keeping only the first order in the expansion, we obtain
the minimization equations. The details are in Appendix B
2. The corrections to the VEVs, Eqs. (18), (20), and (22),
are of relative order 1=Λ and affect the flavon fields ΦS, ~Θ,
and Ψ, and the vacuum configuration is modified into

hΦTi →
1ffiffiffi
2

p ðvT þ δvT1
; 0; 0Þ;

hΘi → vΘffiffiffi
2

p ; h ~Θi → δ ~Θ;

hΦSi →
1ffiffiffi
2

p ðvS þ δvS1 ; vS þ δvS2 ; vS þ δvS3Þ;

hΨi → vΨffiffiffi
2

p þ δvΨ: ð73Þ

If there is no fine-tuning among the dimensionless param-
eters (a1…a5, b1…b12, c1; c2, d1), when vT=Λ ∼Oð0.1Þ it
is expected that

jδvΨj ∼Oð0.01ÞvT;
jδ ~Θj ∼ jδvS1 j ∼ jδvS2 j ∼ jδvS3 j ∼Oð0.1ÞvS: ð74Þ

From Appendix B 2, given the expected range for vT=Λ, we
see that the shifts jδ ~Θj=vS; jδvSi j=vS can be kept small
enough, below the percent level without any fine-tuning.
The next leading order terms in the driving superpotential
lead to small deviations from the leading order vacuum

alignments. And the mass and mixing matrices are cor-
rected by the shift of the vacuum configuration.

1. Corrections to the Majorana neutrino sector

The corrected vacuum alignments in Eq. (73) modify the
leading order Majorana neutrino mass term into
M0

R ¼ MR þ δMR, while the Dirac neutrino mass term is
not affected due to the redefinition of hΦTi → ðv0T; 0; 0Þ:
with the redefinition of M → M ¼ yΘ

vΘffiffi
2

p þ y ~Θδ
~Θ the cor-

rected heavy neutrino mass term reads

δMR ¼ Meiϕ

0BB@
2
ffiffi
2

p
3
ϵ1 −

ffiffi
2

p
3
ϵ2 −

ffiffi
2

p
3
ϵ3

−
ffiffi
2

p
3
ϵ2

2
ffiffi
2

p
3
ϵ3 −

ffiffi
2

p
3
ϵ1

−
ffiffi
2

p
3
ϵ3 −

ffiffi
2

p
3
ϵ1

2
ffiffi
2

p
3
ϵ2

1CCA; ð75Þ

where ϵi ¼ δvSi
vS

~κ with i ¼ 1; 2; 3. Because of Eq. (74) it is
expected that the magnitude of ϵi is of order 0.1 or can be
controlled, below the percent level. Then the mixing angles
and masses of the light neutrinos may not be crucially
modified by the next-to-leading order results.

2. Corrections to the down-type quark sector

And also the new vacuum in Eq. (73) modifies the
leading order mass matrix of the down-type quark into
M0

d ¼ Md þ δMd,

FLAVORED PECCEI-QUINN SYMMETRY PHYSICAL REVIEW D 91, 056005 (2015)

056005-17



δMd ¼

0BB@
yd

δvS1
vS

yd
δvS3
vS

yd
δvS2
vS

ys
δvS2
vS

ys
δvS1
vS

ys
δvS3
vS

yb
δvS3
vS

yb
δvS2
vS

yb
δvS1
vS

1CCA vS
Λ

ffiffiffi
2

p vd: ð76Þ

The corrections from the vacuum alignments in Eq. (76) are
absorbed into the leading order terms and can be redefined.
In order to show that this correction does not crucially
affect the generation of small mixing angles in the CKM
matrix, we explicitly express the Hermitian matrix
M0

dM
0†
d, which is diagonalized by the mixing matrix Vd

L:

M0
dM

0†
d

≃ v2d
3

2

�
vS
Λ

�
2

×

0B@ λ6jŷdj2ð1þ εÞ λ5ŷdŷ�sð1þ εÞ λ3ŷdŷ�bð1þ εÞ
λ5ŷ�dŷsð1þ εÞ λ4jŷsj2ð1þ εÞ λ2ŷsŷ�bð1þ εÞ
λ3ŷ�dŷbð1þ εÞ λ2ŷ�s ŷbð1þ εÞ jŷbj2ð1þ εÞ

1CA;

ð77Þ

with ε ¼ 2ðδvS1vS
þ δvS2

vS
þ δvS3

vS
Þ=3. It is easy to find that this

matrix could not lead to the correct CKMmixing angles. So
in this work we will not consider the next-to-leading order

contributions of vacuum alignments that may not crucially
change the leading order results of Wf.

C. Corrected masses and the CKM matrix

The light neutrino mass matrix can be modified by both
the nontrivial operators, Eq. (66), and by the shift of the
vacuum alignment, Eq. (73). The remaining results modify
Mν in Eq. (36) into M0

ν ¼ Mν þ ΔMν,

ΔMν ¼ mDM−1
R ΔMRM−1

R mT
D þmDM−1

R δMRM−1
R mT

D

þO
�
ϵ2i ;

v2T
Λ2

�
: ð78Þ

As expected from Secs. IVA 1 and IV B, the corrections
from these nonleading terms can be kept small enough,
below the percent level. Therefore, it is expected that
corrections from the leading order results can be obtained
for all measurable quantities at approximately the same
level.
As seen in Eq. (77), including the corrections from the

shift of the vacuum configuration of down-type quark, they
can be all absorbed into a redefinition of the overall factor.
So considering the corrections from the nontrivial next
leading operators in Yukawa superpotential, Eq. (68), we
obtain the Hermitian matrix ~Md

~M†
d:

~Md
~M†

d ¼ v2d
3

2

�
vS
Λ

�
2

0B@ λ6jŷdj2ð1þ εddÞ λ5ŷdŷ�sð1þ εdsÞ λ3ŷdŷ�bð1þ εdbÞ
λ5ŷ�dŷsð1þ ε�dsÞ λ4jŷsj2ð1þ εssÞ λ2ŷsŷ�bð1þ εsbÞ
λ3ŷ�dŷbð1þ ε�dbÞ λ2ŷ�s ŷbð1þ ε�sbÞ jŷbj2ð1þ εbbÞ

1CAþO
�
v2T
Λ2

;
1

κ

v2T
Λ2

�
; ð79Þ

where

εαα ¼
1

3
ffiffiffi
2

p
κ

vT
Λ

�
x̂α
ŷα

þ x̂�α
ŷ�α

�
þ
�

1

3
ffiffiffi
2

p
κ

vT
Λ

�
2 jx̂αj2
jŷαj2

; εαβ ¼
1

3
ffiffiffi
2

p
κ

vT
Λ

�
x̂α
ŷα

þ x̂�β
ŷ�β

�
:

Here, ~Md ≡ Md þ ΔMd and the Hermitian matrix is diagonalized as Vd†
L

~Md
~M†

dV
d
L ¼ diagðjmdj2; jmsj2; jmbj2Þ by the

mixing matrix Vd
L, recalling that κ ≡ vS=vΘ. Notice here that the parameters εαα; εαβ are only associated with the next

leading operators driven by the Θ field of ΔWd
q in the Yukawa superpotential (68), while the contributions associated with

the ΦS field do cancel out each other and do not play a part. Because of the strong hierarchical structure of the Hermitian
matrix, we can obtain the mixing matrix Vd

L of the down-type quarks: under the constraint of unitarity up toOðλ3Þ, it can be
written as

Vd
L ¼

0BB@
1 − 1

2
λ2Γ2 λΓeiϕd

3 λ3Beiϕ
d
2

−λΓe−iϕd
3 1 − 1

2
λ2Γ2 λ2Aeiϕ

d
1

λ3ðAΓe−iðϕd
1
þϕd

3
Þ − Be−iϕ

d
2Þ −λ2Ae−iϕd

1 1

1CCAPd þOðλ4Þ ð80Þ

with the phases

ϕd
1 ¼

1

2
argfŷsŷ�bð1þ εsbÞg; ϕd

2 ¼
1

2
arg

�
ŷdð1þ εdbÞ
ŷsð1þ εsbÞ

	
; ϕd

3 ¼
1

2
argðΣÞ − ϕd

2

2
;
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and the associated parameters

A ¼ jŷsð1þ εsbÞj
jŷbð1þ εbbÞj

; B ¼ jŷdð1þ εdbÞj
jŷbð1þ εbbÞj

;

Γ ¼ jΣjð1þ εbbÞ
jŷsj2fð 13κ vTΛ Þ2Γ1 þ ð 1

3κ
vT
Λ Þ3Γ2 þ ð 1

3κ
vT
Λ Þ4Γ3g

:

Here, Σ ¼ ŷdŷ�sð1þ εdsÞeiϕd
1 − Aŷdŷ�bð1þ εdbÞe−iϕd

1 , Γ1 ¼
x̂s
ŷs

x̂�b
ŷ�b
þ x̂�s

ŷ�s
x̂b
ŷb
, Γ2 ¼ ðx̂bŷb þ

x̂�b
ŷ�b
Þ jx̂sj2jŷsj2 þ ðx̂sŷs þ

x̂�s
ŷ�s
Þ jx̂bj2jŷbj2, and Γ3 ¼

jx̂sj2
jŷsj2

jx̂bj2
jŷbj2. In Eq. (80) the diagonal phase matrix Pd can be

rotated away by redefinition of quark fields. Then, from the
charged current interactions of the quark sector, we can
obtain the CKM matrix

VCKM ¼ Vu†
L Vd

L ¼ Vd
L: ð81Þ

It is very crucial to note that the next-to-leading order terms
denoted as εαα; εαβ lead to the correct CKM matrix. From
Eqs. (80)–(81), if we set

jŷdð1þ εdbÞj
jŷsð1þ εsbÞj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ η2

q
; Γ ¼ 1; ð82Þ

and by redefining the quark fields with the transformation
c → ceiϕ

d
3 , s → seiϕ

d
3 , b → beiðϕ

d
1
þϕd

3
Þ and t → te−iðϕ

d
1
þϕd

3
Þ,

we obtain the CKM matrix in the Wolfenstein parametri-
zation [48] given by

VCKM ¼

0B@ 1 − λ2=2 λ Aλ3ðρþ iηÞ
−λ 1 − λ2=2 Aλ2

Aλ3ð1 − ρþ iηÞ −Aλ2 1

1CA
þOðλ4Þ; ð83Þ

with the CKM CP phase δqCP ¼ ϕd
1 þ ϕd

3 − ϕd
2 , or equiv-

alently δqCP ¼ tan−1ðρ=ηÞ. From the global fits to the quark
mixing matrix reported in Ref. [49], the best-fit values of
the parameters λ, A, ρ̄, η̄ with 3σ errors are

λ ¼ sin θC ¼ 0.22457þ0.00200
−0.00027 ; A ¼ 0.823þ0.025

−0.049 ;

ρ̄ ¼ 0.129þ0.075
−0.027 ; η̄ ¼ 0.348þ0.037

−0.044 ; ð84Þ

where ρ̄ ¼ ρð1 − λ2=2Þ and η̄ ¼ ηð1 − λ2=2Þ. The effects
caused by CP violation are always proportional to the
Jarlskog invariant [50] in the quark sector given by

JqCP ¼ −Im½VudVtbV�
ubV

�
td�≃ A2λ6η; ð85Þ

whose value is 3.02þ0.42
−0.36 × 10−5 at 3σ level [49]. Numeri-

cally, it reads JqCP ≃ 0.2 × λ6. And the corresponding mass
eigenvalues are given in a good approximation as

mb ≃
ffiffiffi
3

2

r
vS
Λ
vdjŷbj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εbb

p
;

ms ≃ λ2
ffiffiffi
3

2

r
vS
Λ
vd

ffiffiffiffiffiffi
jΣj

p
;

md ≃ λ3
ffiffiffi
3

2

r
vS
Λ
vdjŷdj

�
1

3
ffiffiffi
2

p
κ

vT
Λ

��
Γa þ

�
1

3κ

vT
Λ

�
Γb

	1
2

;

ð86Þ

where Γa ¼ x̂d
ŷd

x̂�b
ŷ�b
þ x̂�d

ŷ�d
x̂b
ŷb
, and Γb ¼ ðx̂dŷd þ

x̂�d
ŷ�d
Þ jx̂bj2jŷbj2 þ

ðx̂bŷb þ
x̂�b
ŷ�b
Þ jx̂dj2jŷdj2. Considering the expected value for the VEVs

for vS; vT, and vd with Eqs. (43) and (61), these results can
be in a good agreement with the empirical down-type quark
masses calculated from the measured values [16].

V. A LIGHT AXION

The QCD Lagrangian has a CP-violating term

Lϑ ¼ ϑeff
αs
8π

Gaμν ~Ga
μν; ð87Þ

where−π ≤ ϑeff ≤ π is the effective ϑ parameter defined, in
the basis where quark masses are real and positive,
diagonal, and γ5 free, as

ϑeff ¼ ϑþ arg fdetðMuÞ detðMdÞg: ð88Þ

Here, the angle ϑ is given above the electroweak scale,
which is the coefficient of ϑg2sGaμν ~Ga

μν=32π2 where Ga

is the color field strength tensor and its dual ~Ga
μν ¼

1
2
εμνρσGaμν, coming from the strong interaction. And the

second term comes from a chiral transformation of weak
interaction for diagonalization of the quark mass matrices
by ψq → e−iγ5 arg½detmq�=2ψq, directly indicating the CKM
CP phase δCP in Eq. (85), which is of order unity. However,
experimental bounds on CP violation in strong interactions
are very tight, the strongest ones coming from the limits on
the electric dipole moment of the neutron dn < 0.29 ×
10−25 e [6] that implies jϑeff j < 0.56 × 10−10. ϑeff should
be very small to make a theory consistent with exper-
imental bounds. A huge cancellation between ϑ and
arg fdetðMuÞ detðMdÞg suggests that there should be a
physical process.
Until now, the most elegant solution to the strong CP

problem has been the PQ mechanism, which yields a light
pseudo–Nambu-Goldstone boson, called the axion [4,5].
There are two prototype models by how they couple
to Uð1ÞPQ: (i) the Kim-Shifman-Vainshtein-Zakharov
(KSVZ) model [51], where only new heavy quarks charged
under Uð1ÞPQ are introduced, and (ii) the Dine-Fischler-
Srednicki-Zhitnitsky (DFSZ) model [52], where only
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known quarks exist and Higgs doublets carry PQ charges.
And there are good reviews, Refs. [53–55], on the axion.
Now, based on the model described by the superpotential

(16), (24), and (51)–(52), we wish to discuss an automatic
theory for strong CP invariance introducing the so-called
flavored PQ symmetry Uð1ÞX (which is introduced for
describing the SM fermion mass hierarchies) with non-
Abelian A4 symmetry in the superpotential as in Tables II–
III. The flavored PQ symmetry Uð1ÞX guarantees the
absence of bare mass terms. The model incorporates the
SM gauge singlet flavon fields FA ¼ ΦS;Θ;Ψ; ~Ψ with
the following interactions invariant under the Uð1ÞX × A4

and the resulting chiral symmetry, i.e., the kinetic and
Yukawa terms, and the scalar potential VSUSY in the SUSY
limit,16 are of the form

L ¼ ∂μF
†
A∂μFA þ LY − VSUSY þ Lϑ; ð89Þ

in which the VSUSY term is replaced by V total, Eq. (23),
when SUSY breaking effects are considered. The kinetic
term is written as

∂μΦ
†
S∂μΦS þ ∂μΘ†∂μΘþ ∂μΨ†∂μΨþ ∂μ

~Ψ†∂μ ~Ψ: ð90Þ

The relevant Yukawa interaction term with chiral fermions
ψ charged under the flavored PQ symmetry Uð1ÞX sym-
metry is given as

LY ¼ −
1

2
yΘΘðNc

RNRÞ1 −
yR
2
ðNc

RNRÞ3sΦS

− ψ̄LYψðΨ;ΦS;ΘÞψRHu;d þ H:c: ð91Þ

And the relevant F-term scalar potential term is given as

VSUSY ¼
���� 2g1ffiffiffi

3
p ðΦS1ΦS1 − ΦS2ΦS3Þ þ g2ΦS1

~Θ
����2

þ
���� 2g1ffiffiffi

3
p ðΦS2ΦS2 − ΦS1ΦS3Þ þ g2ΦS3

~Θ
����2

þ
���� 2g1ffiffiffi

3
p ðΦS3ΦS3 − ΦS1ΦS2Þ þ g2ΦS2

~Θ
����2

þ jg3ðΦS1ΦS1 þ 2ΦS2ΦS3Þ þ g4Θ2 þ g5Θ ~Θ

þ g6 ~Θ2j2 þ jg7Ψ ~Ψþ μ2Ψj2 þ � � � ð92Þ

Here, dots represent the other scalar potential f…g ¼P
ij ∂Wv∂φi

j2 with φi ¼ fΦT
0 ;ΦT;ΦS;Θ; ~Θ;Ψ; ~Ψg, and all of

those are irrelevant for our discussion [c.f. Eq. (B3)].

After getting VEVs hΘi; hΦSi ≠ 0 [which generates
the heavy neutrino masses given by Eq. (34)] and
hΨi ≠ 0, the flavored PQ symmetry Uð1ÞX is sponta-
neously broken at a scale much higher than the
electroweak scale and is realized by the existence of
the NG mode A that couples to ordinary quarks at the
tree level through the Yukawa couplings as in Eq. (91)
[see also Eqs. (51)–(52)], and the resulting NG boson
becomes the axion.17 Through triangle anomalies, the
axion mixes with mesons (leading to a nonzero mass),
and thus couples to photons, nucleons, and leptons. The
explicit breaking of the Uð1ÞX by the chiral anomaly
effect further breaks it down to ZN discrete symmetry,
where N is the color anomaly number. At the QCD
phase transition, the ZN symmetry is spontaneously
broken, which gives rise to a domain wall problem
[15]. Such a domain wall problem can be overcome
because the model has two anomalous axial Uð1Þ
symmetries that are generated by the charges X1 and
X2, Uð1ÞX ≡ Uð1ÞX1

×Uð1ÞX2
.

The scalar fields ΦS;Θ, and Ψð ~ΨÞ have X charges X1 ¼
−2p and X2 ¼ −qðqÞ, respectively, that is,

ΦSi → eiξ1X1ΦSi ; Θ → eiξ1X1Θ;

Ψ → eiξ2X2Ψ; ~Ψ → e−iξ2X2 ~Ψ; ð93Þ

where ξk (k ¼ 1; 2) are constants. So the potential VSUSY
has Uð1ÞX global symmetry. In order to extract NG bosons
resulting from spontaneous breaking of Uð1ÞX symmetry,
we set the decomposition of complex scalar fields as
follows18:

ΦSi ¼
ei

ϕS
vSffiffiffi
2

p ðvS þ hSÞ; Θ ¼ ei
ϕθ
vΘffiffiffi
2

p ðvΘ þ hΘÞ;

Ψ ¼ ei
ϕΨ
vΨffiffiffi
2

p ðvΨ þ hΨÞ; ð94Þ

in which we have assumed ΦS1 ¼ ΦS2 ¼ ΦS3 ≡ ΦSi. And
the NG modes A1, A2 are expressed as

A1 ¼
vSϕS þ vΘϕθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2S þ v2Θ
p ; A2 ¼ ϕΨ ð95Þ

16In our superpotential, the superfields ΦS;Θ, and Ψð ~ΨÞ are
gauge singlets and have −2p and −qðqÞ X-charges, respectively.
Given soft SUSY breaking potential, the radial components of the
X fields jΦSj, jΘj, jΨj, and j ~Ψj are stabilized. The X fields contain
the axion, saxion (the scalar partner of the axion), and axino (the
fermionic superpartner of the axion).

17The VEV configurations in Eqs. (18), (20), and (22)
break the Uð1ÞX spontaneously and the superpotential
dependent on the driving field Θ0 in Eq. (16) becomes, for
simplicity, if we let ΦS1 ¼ ΦS2 ¼ ΦS3, WΘ0

¼ Θ0ðg3ΦSΦS þ
g4ΘΘþ 6κg3fvΘΦSi − vSΘg þ g5ðΘþ 2 vS

κ Þ ~Θþ g6 ~Θ ~ΘÞ after
shifting by vΘ;vS. This shows clearly that the linear com-
bination ðvΘΘþvSΦSiÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Θþv2S

p
is a massless superfield.

18Note that the massless modes are not contained in the fields
~Θ;ΦT;ΦT

0 ;Φ
S
0;Θ0;Ψ0.
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with the angular fields ϕS, ϕθ, and ϕΨ. With Eqs. (90) and
(94), the derivative couplings of A arise from the kinetic
terms

∂μF �
k∂μF k ¼

1

2
ð∂μA1Þ2

�
1þ hF

vF

�
2

þ 1

2
ð∂μA2Þ2

�
1þ hΨ

vΨ

�
2

þ 1

2
ð∂μhF Þ2

þ 1

2
ð∂μhΨÞ2 þ � � � ; ð96Þ

where vF ¼ vΘð1þ κ2Þ1=2 and hF ¼ ðκhS þ hΘÞ=
ð1þ κ2Þ1=2, and the dots stand for the orthogonal
components h⊥F and A⊥

1 , recalling that κ ≡ vS=vΘ.
Clearly, the derivative interactions of Ak (k ¼ 1; 2) are
suppressed by the VEVs vF and vΨ. From Eq. (96),
performing vF ; vΨ → ∞, the NG modes A1;2, whose
interactions are determined by symmetry, are distin-
guished from the radial modes, like hF ; hΨ, which are
model dependent (SUSY breaking mechanism) and
invariant under the symmetry.
The model has two anomalous Uð1Þ symmetries,

Uð1ÞX1
×Uð1ÞX2

, with respective anomalies N1 and
N2, both of which are the coefficients of the Uð1ÞXk

−
SUð3ÞC − SUð3ÞC anomaly, so there are two would-be
axions A1 and A2, with the transformation of the phase
fields A1 → A1 þ vFX1

N1
ξ1 and A2 → A2 þ vΨX2

N2
ξ2, respec-

tively [56]. Their charges X1 and X2 are linearly
independent. And the color anomaly coefficients are
obtained by letting 2

P
ψ i
Xkψ i

TrðtatbÞ ¼ Nkδ
ab, where

the ta are the generators of the representation of SUð3Þ
to which ψ belongs and the sum runs over all Dirac
fermions ψ with X charge. Since the two Uð1Þs are
broken by two types of field attaining VEVs, a new PQ
symmetry Uð1Þ ~X that is a linear combination of the two
Uð1Þss has anomaly, while another Uð1Þ is anomaly free
[it is the broken Uð1Þf symmetry by hΘi; hΦSi ≠ 0

responsible for lepton number violation]. Under
Uð1Þ ~X ×Uð1Þf the fields are transformed as

F 1 ¼
vFe

i
A1
vFffiffiffi
2

p
�
1þ hF

vF

�
;

F 1 → eiX1ξ1F 1; with ξ1 ¼ N2α;

F 2 ¼
vΨe

i
A2
vΨffiffiffi
2

p
�
1þ hΨ

vΨ

�
;

F 2 → eiX2ξ2F 2; with ξ2 ¼ −N1α: ð97Þ

One linear combination of the phase fields A1 and A2

becomes the axion (≡ A), and the other orthogonal
combination corresponds to the Goldstone boson
(≡ G):

�
A

G

�
¼

�
cos ϑ sinϑ

− sinϑ cos ϑ

��
A1

A2

�
: ð98Þ

Here, the G is the true Goldstone boson of the
spontaneously broken Uð1Þf. And since the Goldstone
boson interactions arise only through the derivative
couplings as Eq. (96), we can have the nonlinearly
realized global symmetry below the symmetry breaking
scale

Uð1Þf∶ G → Gþ ΥðconstantÞ: ð99Þ

Then the angle is obtained as cos ϑ ¼ − ~X2vΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~X1vF Þ2þð− ~X2vΨÞ2

p

and sinϑ ¼ ~X1vFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~X1vF Þ2þð− ~X2vΨÞ2

p with ~X1 ≡ N2X1 and

~X2 ≡ −N1X2. Therefore, the axion A and the
Goldstone boson G can be expressed as

A ¼ −A1
~X2vΨ þ A2

~X1vFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~X1vF Þ2 þ ð− ~X2vΨÞ2

q ;

G ¼ −A1
~X1vF − A2

~X2vΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~X1vF Þ2 þ ð− ~X2vΨÞ2

q : ð100Þ

Meanwhile, the X current for Uð1Þ ~X with the condition
(97) is given by

J ~X
μ ¼ i ~X1F

†
1∂
↔

μF 1 − i ~X2F
†
2∂
↔

μF 2 þ
1

2

X
ψ

~Xψ ψ̄γμγ5ψ ;

ð101Þ

where ψ ¼ all X-charged Dirac fermions and
~Xψ ≡ ~X1ψ − ~X2ψ , which is conserved, ∂μJ ~X

μ ¼ 0, up to
the triangle anomaly. This current creates a massless
particle, the axion. The X current in Eq. (101) is now
decoupled in the limit vF ; vΨ → ∞ as

J ~X
μ ¼ ~X1vF∂μA1 þ ð− ~X2vΨÞ∂μA2 þ

1

2

X
ψ

~Xψ ψ̄γμγ5ψ

¼ ∂μAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð 1
2vF ~X1

Þ2 þ ð− 1
2vΨ ~X2

Þ2
q þ 1

2

X
ψ

~Xψ ψ̄γμγ5ψ ; ð102Þ

which corresponds to the charge flow satisfying the
current conservation equation if the symmetry is exact.
Since the J ~X

μ does not couple to the Goldstone boson G in

Eq. (100), requiring J ~X
μ not to create G from the vacuum

h0jJ ~X
μ jGi ¼ 0, it follows

ð ~X1vF Þ2 ¼ ð ~X2vΨÞ2: ð103Þ
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This indicates that, if one of the symmetry breaking scales
is determined, the other one is automatically fixed. The NG
boson A (which will be the axion) possesses the decay
constant, fA, defined by

h0jJ ~X
μ ðxÞjAðpÞi ¼ ipμfAe−ip·x: ð104Þ

From Eqs. (102) and (104), we obtain the spontaneous
symmetry breaking scale

fA ¼
��

1

2vF ~X1

�
2

þ
�

1

−2vΨ ~X2

�
2
	

−1
2

; ð105Þ

which will be more reduced to fA ¼ ffiffiffi
2

p
N2jX1jvF ¼ffiffiffi

2
p

N1jX2jvΨ by using Eq. (103). Under the Uð1Þ ~X trans-
formation, the axion field A translates with the axion decay
constant FA,

A → Aþ FAα with FA ≡ fA=N; ð106Þ

where α ≡ P
iαi and N ¼ 2N1N2. Note here that ifN were

large, then FA could be lowered significantly compared to
the symmetry breaking scale.
However, the current J ~X

μ is anomalous, that is, it is

violated at one loop by the triangle anomaly ∂μJ ~X
μ ¼

N g2s
32π2

Ga
μν
~Gaμν [57]. Then the corresponding Lagrangian

has the form

Leff ∋ g2s
32π2

�
ϑeff þ

A1

fa1
N1 þ

A2

fa2
N2

�
Ga

μν
~Gaμν

¼ g2s
32π2

�
ϑeff þ

A
FA

�
Ga

μν
~Gaμν; ð107Þ

where fa1 ≡ X1vF and fa2 ≡ X2vΨ. Since ϑeff is an angle
of mod 2π, after chiral rotations on the Dirac fermion
charged under Uð1ÞX1

×Uð1ÞX2
, the Lagrangian should be

invariant under

A1

fa1
→

A1

fa1
þ 2π

N1

n1;
A2

fa2
→

A2

fa2
þ 2π

N2

n2; ð108Þ

where n1;2 are non-negative integers. So it is clear to see the
following by replacing ni with NDWNi: if N1 and N2 are
relative prime (so the domain wall numberNDW ¼ 1), there
can be no ZNDW

discrete symmetry and therefore no domain
wall problem. Our model (N1 ¼ 3, N2 ¼ 17) corresponds
to the case.
The heavy neutrinos and SM fermions get the flavored

PQ symmetry Uð1ÞX breaking mass terms and the effective
Yukawa couplings, respectively, and the remaining mass-
less (at this level) modes A1 of the scalar ΦS (or Θ) and A2

of the scalar Ψ appear as phases:

−LY →
ei

A1
vF

2
Nc

RMRNR þQLYUURHu

þ ei
A1
vF Q̄LYDDRHd þ l̄LYLlRHd þ H:c: ð109Þ

Here, UR ¼ ðuR; cR; tRÞT , DR ¼ ðdR; sR; bRÞT , and the
Yukawa matrices YU; YL, and YD are expressed as

YU ¼

0BB@ yue
8i

A2
vΨ 0 0

0 yce
4i

A2
vΨ 0

0 0 yt

1CCA;

YL ¼

0BB@
yee

8i
A2
vΨ 0 0

0 yμe
4i

A2
vΨ 0

0 0 yτe
2i

A2
vΨ

1CCA;

YD ¼

0BB@ e3i
A2
vΨ 0 0

0 e2i
A2
vΨ 0

0 0 1

1CCA
0BB@

~yd yd yd
ys ~ys ys
yb yb ~yb

1CCA vS
Λ
; ð110Þ

where ~yf ¼ yf þ xf
1
κ
vT
Λ with f ¼ d; s; b. Note that all

of the Yukawa couplings above are dependent on the
phases. The Yukawa Lagrangian of the fermions in
Eq. (109) has the ~X symmetry with the transformation
parameter α under

Uð1Þ ~X∶ NR → e−i
~X1
2
αNR; DR → e−i ~X1αDR;

uR → e−5i ~X2αuR; cR → e−2i ~X2αcR;

QL1
→ e3i ~X2αQL1

; QL2
→ e2i ~X2αQL2

;

eR → e−ið
~X1
2
þ8 ~X2ÞαeR; μR → e−ið

~X1
2
þ4 ~X2ÞαμR;

τR → e−ið
~X1
2
þ2 ~X2ÞατR; lL → e−i

~X1
2
αlL;

others ¼ invariant; ð111Þ

where we took, without loss of generality, the quantum
number r to be zero. At energies below the electroweak
scale, all quarks and leptons obtain masses. From Eqs. (29)
and (55) [see also Eq. (109)] the fermion mass matrix is
defined as −LM ¼ ψ̄LMψψR þ H:c:. The axion coupling
matrices to the up-type quarks, charged leptons, and down-
type quarks, respectively, are diagonalized through biuni-
tary transformations: V†

LMψVR ¼ M̂ψ (diagonal), ψ0
L ¼

V†
LψL (ψ0

L: mass eigenstates) and ψ0
R ¼ V†

RψR (ψ0
R:

mass eigenstates). These transformation include, in par-
ticular, the chiral transformation necessary to make
Mu and Md real and positive. This induces a contribution
to the QCD vacuum angle, i.e., ϑ → ϑeff ¼ ϑþ
arg fdetðMuÞ detðMdÞg as in Eq. (88). Note here that
under the chiral rotation of the quark field given by
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Eq. (114) the effective QCD angle ϑeff is invariant. The
physical structure of the Lagrangian given by Eqs. (109)
and (114) may be examined if we diagonalize the mass
matrices for fermions. After diagonalization, between 1 and
246 GeV the axion-fermion Lagrangians are expressed as

−La−q ≃ A1

fa1
fX1dmdd̄iγ5dþ X1smss̄iγ5sþ X1bmbb̄iγ5bg

þ A2

fa2
fXumuūiγ5uþ Xcmcc̄iγ5cþ X2dmdd̄iγ5d

þ X2smss̄iγ5sg þmuūuþmcc̄cþmtt̄t

þmdd̄dþmss̄sþmbb̄b − q̄iγμDμq; ð112Þ

−La−l ≃ A2

fa2
fXemeēiγ5eþ Xμmμμ̄iγ5μþ Xτmττ̄iγ5τg

þmeēeþmμμ̄μþmττ̄τ − l̄iγμDμl ð113Þ

in which q ¼ u; c; t; d; s; b, l ¼ e; μ; τ represent mass
eigenstates, and Dμ are the covariant derivatives for the
SUð3Þ × SUð2Þ ×Uð1Þ gauge interactions of the SM. The
axion couplings are model dependent with the elements
of the matrices, so the X charges of the fermions are given
as Xu ¼ 8X2, Xc ¼ 4X2, Xe ¼ 8X2, Xμ ¼ 4X2, Xτ ¼ 2X2,
X1d ¼ X1s ¼ X1b ¼ X1, X2d ¼ 3X2, and X2s ¼ 2X2,
recalling that X1 ¼ −2p and X2 ¼ −q. The above axion-
SM fermion interactions are applicable above 1 GeV such
as in J=Ψ and Υ decays. It is clear that the hadronic axion
does not couple to leptons at tree level, whereas the new
Goldstone bosons, A1 and/or A2, interact with both quarks
and leptons. Such couplings, however, are suppressed by
factors v=fa1 or v=fa2. Consequently, both the hadronic
axion and the new Goldstone bosons are invisible. Below
the QCD scale (1 GeV ≈ 4πfπ), the axion-hadron inter-
actions are meaningful rather than the axion-quark cou-
plings: the chiral symmetry is broken and π; K and η are
produced as pseudo-Goldstone bosons. Then the axion
coupling to quarks is changed as will be seen in the
following subsection.

A. Axion interactions with quarks, leptons,
gluons, and photons

Now, through a chiral rotation on ψ , we can dispose of
the ϑeff angle in Eq. (87). Let us chiral-rotate the fth ψ in
the Fujikawa measure of the path integral

ψf → exp

�
i
αfγ5
2

�
ψf with

αf ≡ ρ ~Xψf
¼ ρð ~X1ψf

− ~X2ψf
Þ ð114Þ

on Dirac spinors, which contributes

L → Lþ g2s
16π2

X
ψf

ρ ~Xψf
Ga

μν
~GbμνTrðtatbÞ

¼ Lþ g2s
32π2

ρNGa
μν
~Gaμν ð115Þ

to the Lagrangian, where the N is the axion color
anomaly of the Uð1Þ ~X symmetry. And the second term
in Eq. (115) is obtained by letting 2

P
ψf

~X1ψf
TrðtatbÞ−

2
P

ψf
~X2ψf

TrðtatbÞ ¼ Nδab, where the sum runs over all ψ

with ~X charge.
Through a rotation Eq. (114), i.e., ψf →

expfi ~Xψ

N
A
FA

γ5
2
gψf, we obtain the vanishing anomaly terms

by adding the QCD vacuum given in Lagrangian (87) to the
above Lagrangian

Lϑ ¼
�
ϑeff þ

A1

Fa1

þ A2

Fa2

�
αs
8π

Gaμν ~Ga
μν

≡
�
ϑeff þ

A
FA

�
αs
8π

Gμνa ~Ga
μν: ð116Þ

Here, Fai ¼ fai=Ni with i ¼ 1; 2. At low energies A will
get a VEV, hAi ¼ −FAϑeff , eliminating the constant ϑeff
term. The axion then is the excitation of the A field,
a ¼ A − hAi. Since the SM fields ψ have Uð1ÞEM charges,
the axion coupling to photon will be added to the
Lagrangian through a rotation, Eq. (114), which survives
to the QCD scale:

L → Lþ e2
2ρ
P

ψ
~XψðQem

i Þ2
32π2

Fμν
~Fμν

¼ Lþ e2

32π2

�
E
N

�
A
FA

Fμν
~Fμν ð117Þ

with the axion electromagnetic anomaly E ¼
2
P

ψ
~X1ψf

ðQem
f Þ2 − 2

P
ψ
~X2ψf

ðQem
f Þ2 because here ψ ¼

all ~X-charged Dirac fermions, where Fμν is the electro-
magnetic field strength and its dual ~Fμν. Note that since the
field A is not a constant, this term is not a total derivative,
and so cannot be neglected.
In order to remove the axion fields from the Yukawa

interactions in Eqs. (112)–(113), instead of using Eq. (114)
we transform the quark and lepton fields by the chiral
rotations

DR → ei
X1A1
fa1 DR; uR → ei

5X2A2
fa2 uR;

cR → ei
2X2A2
fa2 cR; QL1

→ ei
3X2A2
fa2 QL1

;

QL2
→ ei

2X2A2
fa2 QL2

; lL → ei
X1
2

A1
fa1lL;

eR → eið
X1A1
2fa1

þ8X2A2
fa2

ÞeR; μR → eið
X1A1
2fa1

þ4X2A2
fa2

ÞμR;

τR → eið
X1A1
2fa1

þ2X2A2
fa2

ÞτR: ð118Þ
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Then derivative interactions from the kinetic terms for the
fermions are generated,

−La−q ≃ ∂μA1

2fa1
fX1dd̄γμγ5dþ X1ss̄γμγ5sþ X1bb̄γμγ5bg

þ ∂μA2

2fa2
fXuūγμγ5uþ Xcc̄γμγ5c

þ X2dd̄γμγ5dþ X2ss̄γμγ5sg
þmuūuþmcc̄cþmtt̄tþmdd̄dþmss̄s

þmbb̄b − q̄iγμDμq; ð119Þ

−La−l ≃ ∂μA2

2fa2
fXeēγμγ5eþ Xμμ̄γ

μγ5μþ Xττ̄γ
μγ5τg

þmeēeþmμμ̄μþmττ̄τ − l̄iγμDμl; ð120Þ

both of which are equivalent to Eqs. (112)–(113).
The derivative interactions can also be simplified,
and in turn they can be expressed in terms of the
axion A as

1

2

X
ψ

�∂μA1

fa1
X1ψ þ ∂μA2

fa2
X2ψ

�
ψ̄γμγ5ψ

¼ ∂μA

fA

X
ψ

~Xψ ψ̄γ
μγ5ψ : ð121Þ

At energies far below fA, after integrating out the X
charge carrying heavy degrees of freedom, in terms of
the physical axion field a (which is the excitation with
the vacuum expectation removed) we can obtain the
following effective Lagrangian L19 including the SM
Lagrangian LSM:

L ∋ 1

2
ð∂μaÞ2 −

∂μa

fA

X
ψ

~Xψ ψ̄γ
μγ5ψ þ g2s

32π2
a
FA

Ga
μν
~Gaμν

þ e2

32π2

�
E
N

�
a
FA

Fμν
~Fμν: ð122Þ

B. Axion mass and axion-photon coupling

Now, below the SUð2Þ ×Uð1Þ breaking scale where
all quarks and leptons obtain masses, the X current given
in Eq. (102) is constructed from the axion, quark, and
lepton transformations under the X symmetry. The reason
that the axion gets a mass is that the X current has the

color anomaly. Then we neglect the lepton current for the
axion mass.
We integrate out the heavy quarks (c; b; t) to obtain

the effective couplings just above QCD scale. Now there
are three light quarks (u; d; s). In order to obtain the axion
mass and derive the axion coupling to photons, we
eliminate the coupling of axions to gluons through rotation
of the light quark fields

q → exp

�
−iαq

γ5
2

�
q with q ¼ u; d; s: ð123Þ

With the above chiral rotation, such that a=FA −P
qαq ¼ 0, the quark-axion sector of the Lagrangian

(122) reads

LA ¼ iq̄γμDμqþ 1

2
ð∂μaÞ2 − ∂μa

fA

X
q

ð ~Xq þ αqÞq̄γμγ5q

−
� X

q¼u;d;s

mqq̄LeiαqqR þ H:c:

�

þ e2

32π2

�
E
N

a
FA

− 6
X
q

αqðQem
q Þ2

�
Fμν

~Fμν: ð124Þ

As can be seen here, the CP-violating ϑeff term at the
minimum is canceled out, which provides a dynamical
solution to the CP problem [4], but there is a phase in mq.
Clearly, we have some freedom in choosing the phase20:
since the QCD vacuum is a flavor singlet, i.e.,
hūui ¼ hd̄di ¼ hs̄si, the αq is determined by the flavor
singlet condition, that is, αumu ¼ αdmd ¼ αsms. From
a=FA −

P
qαq ¼ 0 we obtain

αu ¼
a
FA

1

1þ zþ w
; αd ¼

a
FA

z
1þ zþ w

;

αs ¼
a
FA

w
1þ zþ w

; ð125Þ

where z ¼ muhūui=mdhd̄di ¼ mu=md and w ¼ muhūui=
mshs̄si ¼ mu=ms in the SUð3Þflavor symmetric vacuum.
Considering u, d, and s quarks, the chiral symmetry
breaking effect due to the mixing between the axion and
light mesons is

X
q

αqðQem
q Þ2 ¼ 4þ zþ w

9ð1þ zþ wÞ
a
FA

: ð126Þ

19Reference [58] has recently considered several interesting
effects arising from and detection schemes based on some of
these effects for the axion couplings to quarks, leptons, and
gluons.

20In the case that mu;md, and ms are equal, it is natural to
choose these phases to be the same, i.e., αu ¼ αd ¼ αs ≡ α=3
[59].
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And the value of E=N is determined by the X charge carrying quarks and leptons

E
N

¼ 2 · ½ð ~Xe þ ~Xμ þ ~XτÞð−1Þ2 þ 3ð ~Xu þ ~XcÞð23Þ2 þ 3ð ~Xd þ ~Xs þ ~XbÞð− 1
3
Þ2�

2ðX1d þ X1s þ X1bÞðXu þ Xc þ X2d þ X2sÞ
; ð127Þ

which corresponds to 112=51, where N1 ¼ 3, N2 ¼ 17 for
the given X charges X1 ¼ X2 ¼ 1. Here, the axion color
anomalyN and electromagnetic anomaly E are given below
Eqs. (115) and (117), respectively.
And below the QCD scale where the quarks have

hadronized into mesons, which will result in mixing
between axions and NG mesons of the broken chiral
SUð3ÞL × SUð3ÞR, the kinetic terms vanish,

LA ¼ −
� X

q¼u;d;s

mqq̄LeiαqqR þ H:c:

�

þ e2

32π2

�
E
N
−
2

3

4þ zþ w
1þ zþ w

�
a
FA

Fμν
~Fμν: ð128Þ

From the effective Lagrangian (109) or Eq. (112) the
interaction for the light quarks preserves the X symmetry,
while it does not preserve the chiral symmetry. So we may
include the effects of the Yukawa interactions in the
effective Lagrangian by adding a term that explicitly breaks
the symmetry. Let us consider the form of the chiral
Lagrangian

Leff ¼ −
f2π
4
Tr½DμΣ†DμΣ� − 1

2
μf2πTr½ΣAMq þ ðΣAMqÞ†�;

ð129Þ

where Σ ≡ exp½2iπaTa=fπ� (a ¼ 1;…; 8) is the meson
field, Ta are the generators of SUð3Þ, Dμ is the appropriate
covariant derivative that introduces the electroweak inter-
actions, fπ ¼ 93 MeV, μ is an undetermined constant,
which is related to explicit chiral symmetry breaking,
Mq ¼ diagðmu;md;msÞ is the light quark mass matrix,
and A ¼ diagðeiαu ; eiαd ; eiαsÞ is the axion phase rotation.
The first term in the above Lagrangian (129) is invariant
under global transformation Σ → gLΣg

†
R where gL ¼ I

(unit matrix) and gR ¼ diagðeiα1 ; eiα2 ; eiα3Þ, while the
second term is not invariant. Thus, the axion and mesons
will acquire masses from the second term in the Lagrangian
(129). Note that the invariance of the above Lagrangian
(129) under Uð1Þ ~X requires that Σ transform as

Σ→Σ

0B@e−iα ~Xu 0 0

0 e−iα ~Xd 0

0 0 e−iα ~Xs

1CA; A→AþFAα: ð130Þ

Even though the A field is generated at high energy, it
develops a VEV below the QCD scale. Expanding Σ and

considering the constant term corresponding to ground
state energy, the A potential is given as

VðAÞ ¼ −μf2π
�
mu cos

1

1þ zþ w

�
A
FA

þ ϑeff

�
þmd cos

z
1þ zþ w

�
A
FA

þ ϑeff

�
þms cos

w
1þ zþ w

�
A
FA

þ ϑeff

�	
; ð131Þ

which is minimized when hAi ¼ −ϑeffFA. Then the axion
mass is proportional to the curvature of the effective
potential induced by the anomaly. Expanding VðAÞ at
the minimum gives the axion mass

m2
a ¼


∂2VðAÞ
∂a2

�
hAi¼−ϑeffFA

¼ f2π
F2
A

μmu

1þ zþ w
: ð132Þ

The physical axion/meson states and the mixing parameters
may be determined from the axion/meson mass matrix that
can be obtained by expanding the symmetry breaking part
in Lagrangian (129) and taking the terms quadratic in the
fields [see Eq. (C1)]. The axion mass in terms of the pion
mass is obtained as

m2
aF2

A ¼ m2
π0
f2πFðz; wÞ; ð133Þ

where m2
π0

is the π0π0 entry of M2 in Eq. (C3), and

Fðz; wÞ ¼ z
ð1þ zÞð1þ zþ wÞ ;

FA ¼
��

1

Fa1

�
2

þ
�

1

Fa2

�
2
	

−1
2

: ð134Þ

It is clear that the axion mass vanishes in the limit mu or
md → 0. The axion mass derived in Eq. (133) is equivalent
to Eq. (132). In order to estimate the axion mass, first we
determine the parameters μmu and w as a function of z from
the physical masses of the NG bosons. In Eq. (C1) they can
be extracted as μmu ¼ ð108.3 MeVÞ2z; w ¼ 0.315z. Then
we can estimate the axion mass

ma ≃ 2.53 × 10−5 eV

�
1012 GeV

3
ffiffiffi
2

p
FA

�
; ð135Þ

where the Weinberg value for z ≡ mu=md ¼ 0.56 [60] and
Eq. (103) are used. After integrating out the heavy π0 and η
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at low energies, there is an effective low energy Lagrangian
with an axion-photon coupling gaγγ:

Laγγ ¼
1

4
gaγγaphysFμν ~Fμν ¼ −gaγγaphys ~E · ~B; ð136Þ

where ~E and ~B are the electromagnetic field components.
And the axion-photon coupling can be expressed in terms
of the axion mass, pion mass, pion decay constant, z, andw:

gaγγ ¼
αem
2π

ma

fπmπ0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðz; wÞp �

E
N
−
2

3

4þ zþ w
1þ zþ w

�
: ð137Þ

The axion coupling to photon gaγγ divided by the
axion mass ma is dependent on E=N. Figure 3 shows

the E=N dependence of ðgaγγ=maÞ2 so that the experimental
limit is independent of the axion mass ma: the value
of ðgaγγ=maÞ2 of our model is one or two orders of
magnitude lower than that of the conventional axion model,
i.e., KSVZ or DFSZ model. For the Weinberg value
z ¼ 0.56, the anomaly value E=N ¼ 112=51 predicts
ðgaγγ=maÞ2 ¼ 2.754 × 10−21 GeV−2 eV−2, which is lower
than the ADMX bound [61]. Figure 4 shows the plot for the
axion-photon coupling jgaγγj as a function of the axion
mass ma in terms of anomaly values E=N ¼ 0; 8=3; 112=
51 that correspond to the KSVZ, DFSZ, and our model,
respectively. The model will be testable in the very near
future through experiments such as that at the Center for
Axion and Precision Physics research (CAPP) [62].

VI. CONCLUSION

We have suggested a μ − τ power law under which
certain elements associated with the muon and tau flavors
in the lepton mass matrices are distinguished, such that
relatively large 13 mixing angle and bilarge mixing ones
could be derived. According to this, we have proposed a
neat and economical model for both the fermion mass
hierarchy problem of the standard model and a solution of
the strong CP problem, in a way that no domain wall
problem occurs, based on A4 ×Uð1ÞX symmetry in a
supersymmetric framework. Here, the global Uð1ÞX sym-
metry that can explain the above problems is referred to as
flavored Peccei-Quinn symmetry. In the model, a direct
coupling of the SM gauge singlet flavon fields responsible
for spontaneous symmetry breaking to ordinary quarks
and leptons, both of which carry X charges, comes to pass
through Yukawa interactions. All the VEVs (scaled by the
cutoff scale Λ) breaking the symmetries are connected to
each other. So the other VEV scales are automatically
determined, once a VEV scale is fixed through low energy
phenomenology. In the model, the scale of Peccei-Quinn
symmetry breaking is shown to be roughly located around
the 1012 GeV section through its connection to the fermion
masses.
On phenomenology, we have examined leptonic CP

violation and neutrinoless double beta (0νββ) decay:
Figs. 1–2 show the main results. A future precise measure-
ment on the atmospheric mixing angle θ23 is of importance
in order to distinguish between NO and IO in the model.
The value of θ23 would lie on jθ23 − 45°j ∼ 1° for NO, and
jθ23 − 45°j ∼ 3° − 8° for IO.Moreover, themodel predictions
have shown that the IO is more predictive onDiracCP phase
δCP ∼ 70°, 110°, 250°, 290° than theNO δCP ∈ ½90°; 270°� for
θ23 ∼ 46° and δCP ∈ ½0°; 90°� and ½270°; 360°� for θ23 ∼ 44°,
and the effective neutrino mass proportional to the 0νββ
decay jmeej ∼ 0.044–0.16 eV for NO and 0.066–0.171 eV
for IO. Also, we have shown that the model naturally
describes the fermion mass and mixing hierarchies of the
standardmodel,whichare in goodagreementwith the present
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g a
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1

FIG. 4 (color online). Plot of jgaγγj versus ma for KSVZ
(black dashed line), DFSZ (blue dashed line), and our model
(red solid line) in terms of E=N ¼ 0, 8=3, and 112=51, respec-
tively. Here, the horizontal dotted line stands for the upper
bound jgaγγ j≲ 1 × 10−10 GeV−1 that is from globular-cluster
stars [16]. And the black bar corresponding to ma ≲ 16 meV
is the constraint derived from the measured duration of the
neutrino signal of the supernova SN1987A [16]. Especially, in
the model, for fA ¼ 1012 GeV we obtain ma ¼ 2.53 × 10−5 eV
and jgaγγj ¼ 1.33 × 10−15 GeV−1.

KSVZ ADMX

DFSZ

The model
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FIG. 3 (color online). Plot of ðgaγγ=maÞ2 versus E=N for
z ¼ 0.56. The solid-red line represents the experimental upper
bound ðgaγγ=maÞ2 ≤ 1.44 × 10−19 GeV−2 eV−2 from the axion
dark matter experiment (ADMX) [61]. Here, the dashed-black,
dotted-brown, and solid-blue lines stand for ðgaγγ=maÞ2¼1.404×
10−19GeV−2eV−2 for E=N ¼ 0, 2.074 × 10−20 GeV−2 eV−2 for
E=N ¼ 8=3, and 2.754 × 10−21 GeV−2 eV−2 for E=N ¼ 112=51,
respectively.
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data. Interestingly, we have shown model predictions on the
axion massma ≃ 2.53 × 10−5 eV and the axion coupling to
photon gaγγ ≃ 1.33 × 10−15 GeV−1. In turn, the square of the
ratio between them is shown to be one or two orders of
magnitude lower than that of the conventional axion model,
i.e., KSVZ or DFSZmodel. The model can be testable in the
very near future through ongoing experiments for neutrino
oscillation, neutrinoless double beta decay, and the axion.
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APPENDIX A: THE A4 GROUP

The group A4 is the symmetry group of the tetrahedron,
isomorphic to the finite group of the even permutations of
four objects. The group A4 has two generators, denoted S
and T, satisfying the relations S2 ¼ T3 ¼ ðSTÞ3 ¼ 1.
In the three-dimensional complex representation, S and T
are given by

S¼ 1

3

0B@−1 2 2

2 −1 2

2 2 −1

1CA; T ¼

0B@1 0 0

0 ω 0

0 0 ω2

1CA: ðA1Þ

A4 has four irreducible representations: one triplet 3 and
three singlets 1; 10; 100. An A4 singlet a is invariant under
the action of S (Sa ¼ a), while the action of T produces
Ta ¼ a for 1, Ta ¼ ωa for 10, and Ta ¼ ω2a for 100, where
ω ¼ ei2π=3 ¼ −1=2þ i

ffiffiffi
3

p
=2 is a complex cubic root

of unity. Products of two A4 representations decompose
into irreducible representations according to the following
multiplication rules: 3⊗3¼3s⊕3a⊕1⊕10⊕100, 10⊗100¼1,
10 ⊗ 10 ¼ 100, and 100 ⊗ 100 ¼ 10. Explicitly, if ða1; a2; a3Þ
and ðb1; b2; b3Þ denote two A4 triplets, then we have
Eq. (15).
To make the presentation of our model physically more

transparent, we define the T-flavor quantum number Tf
through the eigenvalues of the operator T, for which
T3 ¼ 1. In detail, we say that a field f has T flavor
Tf ¼ 0,þ1, or−1when it is an eigenfield of the T operator
with eigenvalue 1, ω, ω2, respectively (in short, with
eigenvalue ωTf for T flavor Tf, considering the cyclical
properties of the cubic root of unity ω). The T flavor is
an additive quantum number modulo 3. We also define the
S flavor parity through the eigenvalues of the operator S,
which are þ1 and −1 since S2 ¼ 1, and we speak of
S-flavor-even and S-flavor-odd fields. For A4 singlets,
which are all S flavor even, the 1 representation has
no T flavor (Tf ¼ 0), the 10 representation has T flavor
Tf ¼ þ1, and the 100 representation has T flavor Tf ¼ −1.
Since for A4 triplets the operators S and T do not commute,

A4-triplet fields cannot simultaneously have a definite T
flavor and a definite S flavor parity.
The real representation, in which S is diagonal, is

obtained through the unitary transformation

A → A0 ¼ UωAU
†
ω; ðA2Þ

where A is any A4 matrix in the real representation and

Uω ¼ 1ffiffiffi
3

p

0B@ 1 1 1

1 ω ω2

1 ω2 ω

1CA: ðA3Þ

We have

S0 ¼

0B@ 1 0 0

0 −1 0

0 0 −1

1CA; T 0 ¼

0B@ 0 1 0

0 0 1

1 0 0

1CA: ðA4Þ

For reference, an A4 triplet field with T-flavor eigenfields
ða1; a2; a3Þ in the complex representation can be expressed
in terms of components ðaR1; aR2; aR3Þ as

a1R ¼ a1 þ ac2 þ a3ffiffiffi
3

p ; a2R ¼ a1 þ ωa2 þ ω2a3ffiffiffi
3

p ;

a3R ¼ a1 þ ω2a2 þ ωa3ffiffiffi
3

p : ðA5Þ

Inversely,

a1 ¼
a1R þ a2R þ a3Rffiffiffi

3
p ; a2 ¼

a1R þ ω2a2R þ ωa3Rffiffiffi
3

p ;

a3 ¼
a1R þ ωa2R þ ω2a3Rffiffiffi

3
p : ðA6Þ

Now, in the S diagonal basis the product rules of two
triplets ðaR1; aR2; aR3Þ and ðbR1; bR2; bR3Þ according to 3 ⊗
3 ¼ 3s⊕3a⊕1⊕10⊕100 are as follows:

ðaR ⊗ bRÞ3s ¼ ða2Rb3R þ a3Rb2R; a3Rb1R

þ a1Rb3R; a1Rb2R þ a2Rb1RÞ;
ðaR ⊗ bRÞ3a ¼ ða2Rb3R − a3Rb2R; a3Rb1R

− a1Rb3R; a1Rb2R − a2Rb1RÞ;
ðaR ⊗ bRÞ1 ¼ a1Rb1R þ a2Rb2R þ a3Rb3R;

ðaR ⊗ bRÞ10 ¼ a1Rb1R þ ω2a2Rb2R þ ωa3Rb3R;

ðaR ⊗ bRÞ100 ¼ a1Rb1R þ ωa2Rb2R þ ω2a3Rb3R: ðA7Þ

APPENDIX B:

1. Vacuum configuration for the driving fields

From the vanishing of the F terms associated to the
flavons, the vacuum configuration of the driving fields
ΦT

0 ;Φ
S
0;Θ0;Ψ0 are determined by
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∂Wv

∂ΦT1
¼ 2~gffiffiffi

3
p ð2ΦT1ΦT

01 − ΦT2ΦT
03 − ΦT3ΦT

02Þ þ ~μΦT
01 ¼ 0;

∂Wv

∂ΦT2
¼ 2~gffiffiffi

3
p ð2ΦT2ΦT

02 − ΦT3ΦT
01 − ΦT1ΦT

03Þ þ ~μΦT
03 ¼ 0;

∂Wv

∂ΦT3
¼ 2~gffiffiffi

3
p ð2ΦT3ΦT

03 − ΦT2ΦT
01 − ΦT1ΦT

02Þ þ ~μΦT
02 ¼ 0;

ðB1Þ
∂Wv

∂ΦS1
¼ 2g1ffiffiffi

3
p ð2ΦS1ΦS

01 − ΦS2ΦS
03 − ΦS3ΦS

02Þ

þ g2ΦS
01
~Θþ 2g3ΦS1Θ0 ¼ 0;

∂Wv

∂ΦS2
¼ 2g1ffiffiffi

3
p ð2ΦS2ΦS

02 − ΦS3ΦS
01 − ΦS1ΦS

03Þ

þ g2ΦS
03
~Θþ 2g3ΦS3Θ0 ¼ 0;

∂Wv

∂ΦS3
¼ 2g1ffiffiffi

3
p ð2ΦS3ΦS

03 − ΦS1ΦS
02 − ΦS2ΦS

01Þ

þ g2ΦS
02
~Θþ 2g3ΦS2Θ0 ¼ 0; ðB2Þ

∂Wv

∂Θ ¼ Θ0ð2g4Θþ g5 ~ΘÞ ¼ 0;

∂Wv

∂ ~Θ
¼ Θ0ðg5Θþ 2g6 ~ΘÞ

þ g2ðΦS1ΦS
01 þ ΦS2ΦS

03 þ ΦS3ΦS
02Þ ¼ 0;

∂Wv

∂Ψ ¼ g7Ψ0
~Ψ ¼ 0;

∂Wv

∂ ~Ψ
¼ g7Ψ0Ψ ¼ 0: ðB3Þ

From this set of ten equations, we obtain

hΦT
0 i ¼ ð0; 0; 0Þ; hΦS

0i ¼ ð0; 0; 0Þ;
hΘ0i ¼ 0; hΨ0i ¼ 0; ðB4Þ

which are valid to all orders.

2. Correction to the vacuum configuration

By keeping only the first order in the expansion, the
minimization equations become

2~gδvT1ffiffiffi
3

p þ a2v2T
Λ

þ a5v2Ψ
Λ

¼ 0; δvT2 ¼ 0; δvT3 ¼ 0;

ðB5Þ

2
ffiffiffi
3

p
g1

3
ð2δvS1 − δvS2 − δvS3Þ þ g2δ ~Θþ p1vS ¼ 0;

2
ffiffiffi
3

p
g1

3
ð2δvS2 − δvS1 − δvS3Þ þ g2δ ~Θþ p2vS ¼ 0;

2
ffiffiffi
3

p
g1

3
ð2δvS3 − δvS1 − δvS2Þ þ g2δ ~Θþ p3vS ¼ 0; ðB6Þ

2g3ðδvS1 þ δvS2 þ δvS3Þ þ ð2g4δΘþ g5δ ~ΘÞ
ffiffiffiffiffiffiffiffiffiffiffi
−
3g3
g4

s
¼ 0;

ðB7Þ

2g7vΨδvΨ þ d1
2ffiffiffi
3

p v3T
Λ

¼ 0; ðB8Þ

where p1¼vT
Λ f3b3þ2b7

ffiffiffiffiffiffiffi
−g3

g4

q
−3b10g3

g4
g, p2¼vT

Λ f3b5−
ði ffiffiffi

3
p

b6þb7Þ
ffiffiffiffiffiffiffi
−g3

g4

q
g, and p3¼vT

Λ f3b4þði ffiffiffi
3

p
b6−

b7Þ
ffiffiffiffiffiffiffi
−g3

g4

q
g. These equations can be solved by

δvT1 ¼ −
a2v2T þ a5v2Ψ

Λ

ffiffiffi
3

p

2g
; δvT2 ¼ δvT3 ¼ 0;

δ ~Θ ¼ −
p1 þ p2 þ p3

3g2
vS; δΘ ¼ 0;

δvS1 ¼ ðg02 þ g05Þ
p1 þ p2 þ p3

9g2
vS −

ffiffiffi
3

p

6g1
p1vS;

δvS2 ¼ ðg02 þ g05Þ
p1 þ p2 þ p3

9g2
vS −

ffiffiffi
3

p

6g1
p2vS;

δvS3 ¼ ðg02 þ g05Þ
p1 þ p2 þ p3

9g2
vS −

ffiffiffi
3

p

6g1
p3vS;

δvΨ ¼ d1
g7

ffiffiffi
3

p vT
vΨ

v2T
Λ

; ðB9Þ

in which g02 ¼
ffiffi
3

p
2

g2
g1
and g05 ¼ g5

ffiffiffiffiffiffiffiffi
−3

4g3g4

q
.

APPENDIX C: MIXING BETWEEN AXION
AND MESON

The mass terms reads

Lmass ¼ μmu

�
f2π

2ð1þ zþ wÞF2
A
a2 þ 1þ z

2z
π20

þ wþ 4zþ zw
6zw

η2 −
1 − z

2
ffiffiffi
3

p
z
π0ηþ

�
zþ w
zw

�
K̄0K0

þ 1þ w
w

KþK̄− þ 1þ z
z

πþπ−
	
: ðC1Þ

As for the axion-photon coupling, both the π0 and η couple
to photons through triangle anomalies. However, from
Eq. (C1) we see that there are no mixings with the axion
and the heavy π0 and η. We explicitly show the mass
squared terms in Eq. (C1) and the boson-photon-photon
couplings Gaγγ; Gπγγ , and Gηγγ for the axion, π0, and η,
respectively:
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1

2
ð a π0 η ÞM2

0B@ a

π0

η

1CAþ 1

4
ð a π0 η Þ

0B@Gaγγ

Gπγγ

Gηγγ

1CAF ~F; ðC2Þ

where

M2 ¼

0BB@
μmu

f2π
F2
Að1þzþwÞ 0 0

0 μmu
1þz
z μmu

z−1ffiffi
3

p
z

0 μmu
z−1ffiffi
3

p
z

μmu
wþ4zþzw

3zw

1CCA: ðC3Þ

Diagonalizing the mass squared matrix M2 in a basis a − π0 − η basis, one can find the physical masses for the axion
a, π0, and η. And the physical masses for π0 and K0 mesons as well as the electromagnetic contributions to the physical
π� and K� mesons are expressed as

ðm2
π0
Þphys ¼ 2μmu

�
zþ wþ zw −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ wþ zwÞ2 − 3zwð1þ zþ wÞ

p
3zw

�
;

ðm2
K0Þphys ¼ μmu

�
1

z
þ 1

w

�
; ðm2

K� −m2
π�Þphys ¼ μmu

�
1

w
−
1

z

�
: ðC4Þ
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