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In an attempt to uncover any underlying physics in the standard model (SM), we suggest a y—z power
law in the lepton sector, such that relatively large 13 mixing angle with bilarge ones can be derived. On
the basis of this, we propose a neat and economical model for both the fermion mass hierarchy problem
of the SM and a solution to the strong charge parity (CP) problem, in a way that no domain wall problem
occurs, based on Ay x U(1)y symmetry in a supersymmetric framework. Here we refer to the global
U(1)y symmetry that can explain the above problems as “flavored Peccei-Quinn symmetry.” In the
model, a direct coupling of the SM gauge singlet flavon fields responsible for spontaneous symmetry
breaking to ordinary quarks and leptons, both of which are charged under U(1), comes to pass through
Yukawa interactions, and all vacuum expectation values breaking the symmetries are connected to each
other. So the scale of Peccei-Quinn symmetry breaking is shown to be roughly located around the
10'2 GeV section through its connection to the fermion masses. The model predictions are shown to lie
on the testable regions in the very near future through on-going experiments for neutrino oscillation,
neutrinoless double beta decay, and the axion. We examine the model predictions, arisen from the
u—t power law, on leptonic CP violation, neutrinoless double beta decay, and atmospheric mixing
angle, and show that the fermion mass and mixing hierarchies are in good agreement with the present
data. Interestingly, we show the model predictions on the axion mass m, =2.53 x 107> eV and the
axion coupling to photon g,,, = 1.33 X 10715 GeV~!. And subsequently the square of the ratio between
them is shown to be one or two orders of magnitude lower than that of the conventional axion

model.
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I. INTRODUCTION

The standard model (SM) of particle physics has been
successful in describing phenomena until now, but it suffers
from some problems that have not been solved yet, among
which are the following: the fine-tuning of the cosmological
constant, the gauge hierarchy problem, the candidate for
dark matter, the baryon asymmetry of the Universe, and the
flavor puzzle associated with the fermion mass matrices and
the strong charge parity (CP) problem. Surely the most
pressing among them are the first and second problem. The
gauge hierarchy problem is solved if we introduce the
supersymmetry (SUSY) which is the symmetry with
respect to the replacement of bosons with fermions. All
of the latter three may be solved economically by imple-
menting the seesaw mechanism [1] for neutrino masses and
Froggatt and Nielsen mechanism [2] for quark mixing
angles and masses. Various solutions to these problems
have been proposed, inevitably leading to physics beyond
the SM'. The most elegant solution for the strong CP
problem was proposed by Peccei and Quinn (PQ) [4].
When the PQ symmetry is broken spontaneously, a pseudo—
Nambu-Goldstone boson appears, which is called an axion
[4,5]. The PQ mechanism has been invented to account for
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the small value of the QCD vacuum angle that is required to
explain the observed bounds on the neutron electric dipole
moment [6]. And its resulting axion is a strongly motivated
particle candidate as dark matter.

In the absence of a fundamental theory, one has to adopt
a model independent approach and search for symmetries
that may explain the mixing pattern which in turn can shed
light on the nature of fundamental theory for quarks and
leptons. Flavor symmetry provides a promising framework
for generating viable quark and lepton masses and mixings.
Indeed implementing the seesaw mechanism with non-
Abelian discrete symmetries [7,8] has been shown to lead
quite naturally to “near tribimaximal” neutrino mixing [9],
while the Froggatt and Nielsen mechanism has been
suggested for a hierarchical structure.” This fact has
motivated an interest in non-Abelian finite groups with
an Abelian flavor U(1) symmetry as a means to depict the
flavor structure of leptons and quarks. Since such discrete
or continuous global symmetry is protected against viola-
tions by quantum gravity effects [11], one can assume that
this symmetry originates in a continuous gauge symmetry
that is spontaneously broken.

’In Ref. [10] the authors described acceptable quark and lepton
mass matrices based on anomalous U(1) symmetry in a super-
symmetric standard model.
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In this work, we speculate on the possible origin of the
quark and lepton spectra that masses of successive particles
increase by large factors by the introduction of global
U(1)y symmetry with non-Abelian discrete A, symmetry.’
Moreover, we wish to discuss an automatic theory for
strong CP invariance by the U(1)y symmetry that is
anomalous in the Lagrangian, like the PQ symmetry. So
we refer to this U(1), symmetry as flavored PQ symmetry.
We stress that the flavored PQ symmetry U(1)y is better
embedded in the non-Abelian A, finite group. First, the
U(1)y symmetry is natural in that it is a part of a flavor
symmetry, which explains the mass hierarchy of quarks and
leptons. So the choice of X-quantum numbers could be in
some sense unique. Second, the scale of PQ symmetry
breaking can be coincident with that of A, symmetry
breaking. Third, the U(l)y symmetry provides a neat
and economical solution to the strong CP problem and
its resulting axion. Fourth, the U(1), symmetry introduced
can remove the axionic domain wall problem if it is
composed of two anomalous U(1) symmetries [14].
Thus we have a good motivation for considering the
flavor-axion model in the framework of SUSY.

The goal of this work is to construct a minimalistic
supersymmetric model based on A, x U(1l)y symmetry
with the following features:

(i) All the hat Yukawa couplings appearing in super-

potential are complex numbers and of order unity.
The right-hand Majorana neutrino and the top quark
terms are only renormalizable, while nonrenorma-
lizable terms appear with successive powers of the
flavon fields F, = @, ®, ¥ according to appropriate
Ay x U(1)y symmetry. Here, the U(1)y symmetry
(simultaneously, A4 symmetry as well) is broken
spontaneously by SM gauge singlet flavon field F,
which acquires a vacuum expectation value (VEV)
below a cutoff scale A that corresponds to a mass
of messenger field. By integrating out all heavy
messenger fields, all effective Yukawa couplings
become hierarchical, and the U(1)y charge assign-
ments make them correspond to the measured
fermion mass hierarchies.

(i) The U(1)y symmetry, which is responsible for both
the fermion mass hierarchy of the SM and vacuum
configuration, is composed of two anomalous
U(1)y = U(1)y, x U(1)y, symmetries that are gen-
erated by the charges X and X,. When flavon fields
F 4 acquire VEVs, both lepton number U(1), and
U(1)pq appear to be broken. Actually, there are
linear combinations of the two U(1)y symmetries,
whichare U(1)z x U(1). Here, the U(1)3 symmetry
has anomaly, while the U(1);, which corresponds to

3E. Ma and G. Rajasekaran [12] have introduced for the first
time the A4 symmetry to avoid the mass degeneracy of y and 7
under a p—7 symmetry [13].
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lepton number is anomaly free. Then the right-hand
neutrinos acquire Majorana masses when U(1),
symmetry is broken with its breaking scale.

(iii) Even though the flavon fields F 4 are the SM gauge
singlets, a direct coupling of F, to the quarks and
leptons is possible through Yukawa couplings. So
the U(1)y symmetry plays a role in the solution to
the strong CP problem leading to the existence of a
light axion. The mass scale of the U(1) breaking is
equivalent to the one of A, symmetry breaking.
Thus, (F4) # 0leads to U(1)y violation. All VEVs
breaking the symmetries are connected each other.
After the X symmetry is broken spontaneously,
axion A appears as a pseudo—Nambu-Goldstone
boson of the X symmetry. Accordingly, the mass
of the axion is given by my = m,f,/(F,) with its
decay constant (F,) ~ 10'> GeV. Interestingly, the
axion decay constant is constrained by its connec-
tion to the fermion masses; see Egs. (41)—(43) and
Egs. (103)-(105).

(iv) The flavored PQ symmetry U(1)y is spontaneously
broken at a scale much higher than the electroweak
scale. And the explicit breaking of the U(1); by the
chiral anomaly effect further breaks it down to Zy
discrete symmetry, where N is the color anomaly
number. At the QCD phase transition, the Zy
symmetry is spontaneous broken, which gives rise
to a domain wall problem [15]. Such a domain wall
problem can be overcome by the two anomalous
axial U(1) symmetries, U(1)y, x U(1)y,, when N,
and N, are relative prime [14].

The rest of this paper is organized as follows. In Sec. II we
address a special pattern of lepton sector in a model
independent way that follows a p—r power law under
which certain elements associated with the muon and tau
flavors in mass matrices are distinguished. And, further-
more, we consider a renormalizable ultraviolet (UV)
complete theory above a new physics scale where among
the fermion operators only the heavy neutrino and top
quark operators are renormalizable. We argue that this is a
plausible way to depict leptonic mixing pattern. In Sec. III,
according to the u—7 power law and the UV completion
textures, we construct a minimalistic SUSY model for
quarks and leptons based on A4 x U(1), symmetry. Here,
we show that the observed hierarchy in the masses and
mixings of quarks and leptons, which is one of the most
puzzling features of nature, can be obtained in a natural
way. Especially, we show explicitly symmetry breaking
scales, explore what values of the low energy CP phases
can predict a value for the neutrino mass hierarchy, and
investigate the observables that can be tested in the current
and the next generation of experiments. Since an observa-
tion of neutrinoless double beta (Ovpf) decay and a
sufficiently accurate measurement of its half-life can
provide information on lepton number violation, the
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Majorana vs Dirac nature of neutrinos, and the neutrino
mass scale and hierarchy, we show that our model is
experimentally testable in the near future. In Sec. IV, we
study the higher order corrections in our framework and
show that a direct extension to the lepton and quark sectors
can lead, apart from negligible terms, to would-be non-
trivial next leading contributions for Majorana neutrino and
down-type quark mass matrices, both of which could be
well controlled, so that both a light neutrino mass matrix
can remain a leading order term and the Cabibbo-
Kobayashi-Maskawa (CKM) matrix is reproduced.
Section V is dedicated to the study of the strong CP
invariance and its resulting axion. We demonstrate how the
domain wall problem can be overcome and show model
predictions on the axion mass and axion-photon coupling.
We give our conclusions in Sec. V.

II. HINT FOR A FUNDAMENTAL THEORY

Let us address a special pattern of lepton sector as a hint
for a fundamental theory. In the weak eigenstate basis, the
Yukawa interactions in both neutrino and charged lepton
sectors and the charged gauge interaction can be written as

|

C13C12
_ . i
Upmns = | —C23812 — $23C12813€"¢7
i6
§23812 — €23C12813€ 7
where s;; = sin6;;, ¢;; =cos6;;, and P, is the phase

matrix in which particles are Majorana ones. The large
values of the solar (6;,) and atmospheric (6,3) mixings as
well as the nonzero but relatively large reactor mixing angle
(0,3) are consequences of a nontrivial structure of the
neutrino mass matrix M, in the charged lepton basis, as
indicated in Table I. The very different structure of leptonic
mixings compared to the quark ones for all possible
neutrino mass orderings indicates an unexpected texture
of the mass matrix and may provide important clues to our
understanding of the physics of fundamental constituents of
matter. Even though nothing is known on the physics
related to the leptonic CP violation, the measurements of

TABLE L
ordering; IO = inverted mass ordering.
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1 _
—E = EWMU(Z/L)C + lxﬂLMfLﬂR +

V2

W, ¢ r*v, + Hee.
(1)

In the charged lepton mass basis, i.e. M, = diag(m,, m
m,), the neutrino mass matrix has the form

i’y

Mee Mgy My
— _ dyiT
M, =|m, m, m,|=UMIUI (2)
Mer My My
where M = diag(m,, .m,,,m,,). Then in this mass

eigenstates  basis the  Pontecorvo-Maki-Nakagawa
(PMNS) leptonic mixing matrix [16] at low energies is
visualized in the charged weak interaction terms
Upvns = U,. And in the standard parametrization of the
leptonic mixing matrix Upyys, it is expressed in terms of
three mixing angles, 6,,, 613, 0,3, and three CP-odd phases
(one S¢p for the Dirac neutrino and two ¢, for the
Majorana neutrino) as

C13512 s13e”"%cr
is
€23C1p — 8§23812813€°F siciz | Py (3)
i6
—$23C1p — €238512813€°"  €23C13

I
nonvanishing 13 mixing, 65, open up the possibilities for
searching for CP violation in neutrino oscillation experi-
ments. It needs a new paradigm to explain the peculiar
structure of lepton sector compared to the quark one.
After the relatively large reactor angle 0,3 measured in
Daya Bay [18] and RENO [19] including Double Chooz,
T2K, and MINOS experiments [20], the recent analysis
based on global fits [17,21,22] of the neutrino oscillations
enters into a new phase of precise determination of mixing
angles and mass squared differences, indicating that the
tribimaximal mixing (TBM) [23] for three flavors should
be corrected in the lepton sector: especially, in the most
recent analysis [17] their allowed ranges at 1o best fit (30)

The global fit of three-flavor oscillation parameters at the best-fit (BF) and 3¢ level [17]. NO = normal neutrino mass

015[°] Scr[’] 012[°] 03] Am2 (1075 eV Am3,[1073 eV?]
BE  NO 8.80 2412 34.63 48.85 (43.11)° 7.60 2.48
10 8.91 266.4 49.20 2.38
36 NO  765-987  0-360 31823776 3876 — 5331 7.11 - 8.18 2.30 > 2.65
10 7.77 - 9.92 39.41 — 53.13 2.20 > 2.54

A local minimum in the first octant of 0,3.
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from global fits are given by Table I, where Am%o1 =
mg, —m;,, Am%,, = m;, —m; for the NO, and Am3,, =
m2 —m?, for the IO.

In the limit of reactor mixing angle 6;3 — 0 and
atmospheric mixing angle 6,; — 45°, the neutrino mass
matrix reflects the y—r symmetric form: m,, = m,, and
m,, = m.; in Eq. (2). In a basis where charged leptons are
mass eigenstates, a simple way to address the y—7 sym-
metry [13] (interchange symmetry of the second and third
generation of the leptonic fields; m,, = m,, and m,,, = m,
in neutrino sector and m, = m, in charged lepton sector) is
to postulate that both the charged leptons and the neutrinos
follow a y—t symmetry:

A, 0 0 A, B, B,
M, = 0 ¢ 0|, M,=18B, C, D,
0 0 C B, D, C,

4)

Surely the muon and tau lepton masses are so different
[16], as well as the 13 mixing angle having nonzero value
[18-20], that such a symmetry could therefore not be
realized in nature.

In this work, we consider two Ansatze in order to
describe the present and future lepton and quark sector.
First, we consider that the elements of the neutrino and
charged lepton mass matrices, in a basis where the charged
lepton mass matrix is diagonal, follow a power law.
According to this law, certain elements associated with
the flavors y and 7 in both M, and M, are distinguished.
We will call this the y—z power on lepton masses. Assigning
the distinctions to each u and 7 flavor, the charged lepton
and neutrino mass matrices are written as

Ay 0 0
My,=| 0 Cpx3 0 |,
0 0 Cfxg
A, B,y, B,ys
M, =| By ny% D,ys3y> |, (5)
B,y; D,y3y, Cu)’%

which presents that the y— symmetry is explicitly broken.
It is clear from the above discussion in the limit of y, 3 — 1
and x,3 — 1 that exact y—r symmetry is recovered. The
mass ratio between m,, and m_ can be expressed in terms of
the Cabbibo parameter 4 = sin @,

My (Me)y (%) _
m, (M) <x3> = )

And in terms of the neutrino mass matrix elements, ratios
associated with y and 7 flavors are written as

PHYSICAL REVIEW D 91, 056005 (2015)

Mey _ Y2 My Gy

Mer Y3 ’ m,; D,ys '

My _ Duya My _ <y_2>2 (7)
My Cy3’ My i)

Both Egs. (6) and (7) indicate that the y—r power has a
relationship between two quantities associated with y and =
flavors and the matrix elements vary as a power of some
attribute of those flavors, where the distinctions y, and y;
are taken as real and positive parameters [which will be
shown below Eq. (12)].

As a second Ansatz, we consider the renormalizable UV
complete theory above a new physics scale. For neutrinos,
it leads to a number of independent O(1) parameters, which
is of the form [24,25]

o) 0(1) o(1)
MO=4, | o) o) on |. (8)
o(1) o) o)

The above matrix seems to suggest that the masses and
mixing angles of neutrinos are expected to be of order
O(1). On the other hand, above the new physics scale
among charged fermion operators only the top quark
operator seems to be dominated by the (3, 3) matrix
element, which is of the form [25]

000
My =410 0 o] (9)
00 1

This may provide a hint of why the mass of the top quark is
uniquely big compared with those of other fermions.

Now, as a good example, considering flavored structure
AM, to the democratic matrix MY, leading to TBM
pattern, the mass matrix is given by

1+ 2a, 1—a, 1—a,
Mi=A,| 1—a, 1+%+3b, 1+%-3b,
l—a, 1+%-3b, 1+%+30b,
34,a, 0 0
=Uy| 0 34, o0 |[UL (10)

Here, the diagonalizing matrix, the so-called TBM mixing
matrix [23], U, is given by

2 1
55 0
— 1 1 1
Yo V6 V3 V2 |- (1)
1 1 1
V6 Vi V2
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While the matrix in Eq. (9) may give a hint for the
hierarchical pattern of charged fermion masses, the above
neutrino mass matrix in Eq. (10) would provide a clue of
the mildness of neutrino masses due to the matrix having a
|

1+ 2a,

(1 _au)yQ
M, =A, (1-a,)y, (1+%+%by)y% <1+%—%by)y2y3

PHYSICAL REVIEW D 91, 056005 (2015)

democratic form given by Eq. (8). According to the p—7
power law, the above matrix in Eq. (10) is modified in a
way that muon and tau flavors are distinguished, leading to
naturally nonzero 0,3, to

(1 - ab)y3
(12)

(1-a,)y; (1 +% —%bu>)’2)’3 (1 +%“+%bu)y§

As expected, in the limit y, ; — 1 the neutrino mass matrix
recovers the TBM mixing pattern. And small deviations of
Y23 from unity guarantee the small but relatively large
value of 6,5.

Now one can count the physical parameters in the y—7
power mass matrix in Eq. (5) or (12). A general 3 x 3
mixing matrix contains three moduli and six phases and can
be written as U = ¢’ *PUQ where Q = diag(1, €2, ¢/)
and P = diag(1, e, ¢7%) are diagonal phase matrices,
and U is a unitary “CKM-like” matrix containing one
phase and three mixing angles, with an overall phase Q.
Then the leptonic PMNS mixing matrix can be expressed as
Upvns = V{* U, = V{TP}PD f]UQ,,, which contains six
mixing angles and eight phases, while it should have
physical three mixing angles and one Dirac and two
Majorana phases as indicated in Eq. (3). This can be
achieved by choosing P, = P, in a basis where the charged
lepton mass matrix is diagonal. Letting arg(y,) = ¢, and
arg(y3) = {3, the parameters y,, y; appearing in the y—t
power mass matrix can always be chosen to be real and
positive. Therefore, the y—z power mass matrix contains
nine physical parameters A,,|B,|,|C,|,|D,|, arg(B,),
arg(C,), arg(D,), y,, and y3 in Eq. (5) for nine observables
053,013,015, Ocp, 1,9, (mixing parameters), and
m,, ,m,, ,m, (mass eigenvalues). By considering the y—r
power flavored symmetry as in Eq. (12), one can reduce
physical degree of freedoms more: there are seven physical
parameters A,, |a, |, |b,|, arg(a, ), arg(b,), y,, and y;3, which
in turn can lead to any light neutrino mass pattern, i.e.
normal, inverted, or quasidegenerate mass hierarchy
(remember that there are five neutrino oscillation observ-
ables 05, 0,3, 023, Am3 .., Am3,,). Note that the y—t power
mass matrix leads naturally to a nonzero 6;5. Moreover, as

’

[

will be seen later, by embedding a specific flavor model to
the Lagrangian the y—7 power mass matrix can contain only
five physical parameters [see Eqgs. (36)—(37)] and lead to a
TBM-like one, which would not provide all possible
neutrino mass patterns unlike Eq. (12), because it has a
neutrino mass sum rule 1/m, —1/m, =2/m, in the
limit y,3 — 1 (which is guaranteed by the small value
of 13).

We believe that this approach is very important to take a
step forward in understanding the mixing patterns for large
leptonic and small quark mixings as well as the origin of the
fermion mass hierarchies (mildness of neutrino masses and
the strongly hierarchical charged fermion masses).

III. FLAVOR A, x U(1)y SYMMETRY

Unless flavor symmetries are assumed, particle masses
and mixings are generally undetermined in the SM gauge
theory. To understand the present fermion mass hierarchy
with the large leptonic mixing and small quark mixing data,
we introduce the non-Abelian discrete A4 flavor symmetry
that is mainly responsible for the peculiar mixing patterns
with an additional continuous global symmetry U(1)y that
is mainly for vacuum configuration as well as for describ-
ing mass hierarchies of leptons and quarks. Moreover, the
spontaneous breaking of U(1) realizes the existence of the
Nambu-Goldstone (NG) mode (called axion) and provides
an elegant solution of the strong CP problem. Therefore,
we refer to this global U(1) symmetry as flavored PQ
symmetry. Then the symmetry group for matter fields
(Ieptons and quarks), flavon fields, and driving fields is
Ay x U(1)y, whose quantum numbers are assigned in
Tables II-III. In addition, there is a continuous U(1)g
symmetry, containing the usual R-parity as a subgroup, that

TABLE II. Representations of the driving, flavon, and Higgs fields under A4 x U(1)y with U(1).

Field of @ © W, By o, ) 6 v § H, H,
Ay 3 3 1 1 3 3 1 1 1 1 1 1
U(l)y 0 4p 4p 0 =2p 0 -2p -2p —q q 0 0
U(l)g 2 2 2 2 0 0 0 0 0 0 0 0
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TABLE III.  Representations of the matter fields under A4 x U(1)y with U(1)g.

Field 01,05, 05 De uc, ¢, 1 L,.L, L, AN N¢
Ay L1, 1 3 ,L1,17 L1,1 L1, 1 3
Ul (3¢—r.2q—r,—r) r+2p (r+5¢,r+2q.7) -p (8q+p.4q+p.2q+p) p
U(1), 1 1 1 1 1 1

is classified as three sectors: driving fields 42, flavon fields
and Higgs fields 0, and matter fields +1. And the other
superpotential term x,L,H, and the terms violating the
lepton and baryon number symmetries are not allowed by
this U(1), symmetry.*

To impose the A, flavor symmetry on our model
properly, apart from the usual two Higgs doublets H, ,
responsible for electroweak symmetry breaking, which are
invariant under A, (i.e. flavor singlets 1 with no 7-flavor),
the scalar sector is extended by introducing two types of

new scalar multiplets, flavon fields® Pr, P, 0, é v, U that
are SU(2) singlets and driving fields @], 5, 0,, ¥, that
are associated to a nontrivial scalar potential in the
symmetry breaking sector: we take the flavon fields
D7, Og to be Ay triplets, and O, @, v, U to be A, singlets
with no T-flavor (1 representation), respectively, that are
SU(2) singlets, and driving fields ®7, @3 to be A4 triplets
and Oy, ¥V, to be an A, singlet. Moreover, due to the
assignment of quantum numbers under A, x U(1)y X
U(1)g the usual superpotential term uH ,H ; is not allowed,
while the leading order operator is allowed,

X (@f@r) H,Hy, (13)

which promotes the pi-term pogp = g7 (P2 )vy/ A of the order
of mgvy/A ((®1): the VEV of the scalar components of the
driving field; mg: soft SUSY breaking mass). Here, the
supersymmetry of the model is assumed to be broken by all
possible holomorpic soft terms that are invariant under
Ay x U(l)y x U(1)g symmetry, where the soft breaking
terms are already present at the scale relevant to flavor
dynamics.

In the lepton sector the A4 model giving nonzero 6,5 as
well as bilarge mixings, 6,3,60;,, works as follows.
According to both the y—r power law in Egs. (6)—(7)
and the UV completion textures in Egs. (8)—(9), one can
assign charged leptons to the three inequivalent singlet
representations of A4: we assign the left-handed charged
leptons denoted as L,, L,, L., the electron flavor to the 1
(T-flavor 0), the muon flavor to the 1’ (T-flavor +1), and

“In addition, higher-dimensional supersymmetric operators
like Q;Q;0L; (i, j, k must not all be the same) are not allowed
either, and stabilizing proton.

These flavon fields are responsible for the spontaneous
breaking of the flavor symmetry.

the tau flavor to the 1”7 (T-flavor —1), while the right-
handed charged leptons denoted as e€, u¢, ¢, the electron
flavor to the 1 (T-flavor 0), the muon flavor to the 1”7 (T-
flavor —1), and the tau flavor to the 1’ (T-flavor +1). On the
other hand, for the quark flavors we assign the left-hand
quark SU(2), doublets denoted as Q1, Q,, and Q5 to the 1,
1”7, and 1, respectively, while the right-hand up-type quarks
are assigned as u¢, ¢¢, and ¢ to the 1, 1’, and 1” under A,,
respectively, and the right-hand down-type quark SM
gauge singlet D¢ = {d°, s, b} to the 3 under Ay.

Finally, the additional symmetry U(1), is imposed,
which is a continuous global symmetry under which matter
fields, flavon fields, and driving fields carry their own X
charges. The U(1)y invariance forbids renormalizable
Yukawa couplings for the light families, but would allow
them through effective nonrenormalizable couplings sup-
pressed by (F/A)" with n being positive integers. Then the
gauge singlet flavon field F is activated to dimension-4 (3)
operators with different orders [26],

1
C00P4(f)0 +C/1(9Pg(f)l +C10P4(i)

F 2 F 3
+620P4<X> +C30P4(X> +---, (14)

where OP,3) is a dimension-4 (3) operator, and all the
coefficients ¢; and ¢} are complex numbers with absolute
value of order unity. Even with all couplings being of order
unity, hierarchical masses for different flavors can be
naturally realized. The flavon field F is a scalar field that
acquires a VEV and breaks spontaneously the flavored PQ
symmetry U(1)y. Here, A, above which there exists
unknown physics, is the scale of flavor dynamics, and is
associated with heavy states that are integrated out. The
effective theory below A is rather simple, while the full
theory will have many heavy states. So, in our framework,
the hierarchy (H, ;) = v, 4 < A is maintained, and below
the scale A the higher-dimensional operators express the
effects from the unknown physics. Since the Yukawa
couplings are eventually responsible for the fermion
masses, they must be related in a very simple way at a
large scale in order for intermediate scale physics to
produce all the interesting structure in the fermion mass
matrices.

Here, we recall that A, is the symmetry group of the
tetrahedron and the finite groups of the even permutation of
four objects having four irreducible representations: its
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irreducible representations are 3,1,1,1” with 3 ® 3 =
3.03,0101'd1", and 1’ ® 1’ = 1”. The details of the
A, group are shown in Appendix A. Let (a;,a,,a3) and
(b1, by, b3) denote the basis vectors for two 3s. Then we have

1
%(20151

— arby — a\by,2a,b, — azb; — a, b3),
(a® bc)sa = i(azb, — aybs, ayby — a\by, a,b3 — azb,),
(a ® b)y = a1by +aybs + asbs,
(a ® b)y = arby + arb; + asbs,
(a @ b)yr = aybs + aby + azb. (15)

(a®b); = — ayb3 — azby, 2a3bs

Under Ay x U(1)y x U(1)g, the driving, flavon, and Higgs
fields are assigned as in Table II.

A. Vacuum configuration

Now let us first investigate the vacuum configuration.
Indeed, the VEV pattern of the flavons is determined
dynamically, in which the vacuum alignment problem
can be solved by the supersymmetric driving field method
[27].6 In order to make a nontrivial scalar potential in
the SUSY breaking sector, we introduce driving fields
ol ®5,0,, ¥y, which have the representation of A, x
U(1l)y as in Table II. The leading order superpotential
dependent on the driving fields, which is invariant under the
flavor symmetry A, x U(1)y, is given by

W, = ®f (i®7 + §@rPr) + 5(g1 PsPs + 9,0®5)
+ 0 (93PsPs + 9400 + 959(:) + 96(:) (:))
+ Uy (g, 0T + 4i3,), (16)

where the fields ¥ and ¥ charged by —q, g, respectively,
are ensured by the U(1), symmetry extended to a complex
U(1) due to the holomorphy of the supepotential. Note
here that the model implicitly has two U(1)x = U(1)y, x

U(1)y, symmetries that are generated by the charges

X, =-2p and X, = —¢, which will be discussed more
in Sec. V. Since there is no fundamental distinction

®There is another generic way to solve the vacuum alignment
problem by extending the model with a spacial extra dimen-
sion [28].

"In the model there are three U(1) symmetries, U(1); (lepton
number) [or U(1)p_; ), U(1)pq, and U(1)y except for U(1)g and
U(1)g (baryon number)]. All of these three are finally broken.
When flavon fields acquire VEVs, both U(1), and U(1)pq
appear to be broken. Actually, there are linear combinations of the
two U(1)x, symmetries, which are U(1)z x U(1),. Here, the
U(1); symmetry has anomaly, while the U(1), Wthh corre-
sponds to lepton number, is anomaly free. See the superpotential
(24) and (51)—(52).
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between the singlets ® and © as indicated in Table II,
we are free to define © as the combination that couples
to P3P in the superpotential W, [27]. At the leading
order there are no terms involving the Higgs fields H, 4,
while at the next leading order the effective u-term arises
OT® H,H,;/A in Eq. (13). And it is evident that at the
leading order the scalar supersymmetric W(®;®y) terms
are absent due to a different U( 1)y quantum number, which
is crucial for relevant vacuum alignments in the model to
produce the present lepton and quark mixings. It is
interesting that at the leading order the electroweak scale
does not mix with the potentially large scales vg, v7, vg,
and vy.

In the SUSY limit, the vacuum configuration is obtained
by the F terms of all fields being required to vanish. The
vacuum alignment of the flavon ®; is determined by

ow,

ooT = u®p; + \/g(q)% Q7 Or3) =0,

8W 2g

oo = u®p3 + \/g(q)%z Q7 Pr3) =0,

ow, . o

90T, APy + Ve (973 — @71 Ppy) =0.  (17)
03

From this set of three equations, we can obtain the
supersymmetric vacuum for ®,

<®T>:<%,0,0), with vT:—\/gg, (18)

where ¢ is a dimensionless coupling. The minimization

equations for the vacuum configuration of ®g and (O, (:))
are given by

ow, 2g
9DS % (P51 P51 — Py Py3) + 92 P50 =0,
01
ow, 2g .
a%;, ﬁ (P ®gr — P51 Py3) + 92 P30 =0,
ow, 2q -
93 ﬁ (<I>53<I>53 Q1 Pgy) + 9, P50 = 0,
03
ow,
90, 93(@51 gy + 2Dy Dg3) + 9,07 + 9500 + g0

|
e

(19)

And from Eq. (19), we can get the supersymmetric vacua
for the fields ¢4, 0, O,

1
(s) = 75(1’5’ v, Vs),

@) =0, with ve=0g,/-3%, (20)
9a
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where vg is undetermined. As can be seen in Eq. (20), the
VEVs vg and wg are naturally of the same order of
magnitude (here, the dimensionless parameters g; and g,
are the same order of magnitude).

Finally, the minimization equation for the vacuum
configuration of W is given by

ow,
a7,

= g; 0V + 3, =0, (21)

where ug is the U(1)y breaking scale and g; is a
dimensionless coupling. And from Eq. (21), we can get

the supersymmetric vacua for the fields W, 0,

<qz>:<®>:%, with w:w\/%. (22)

We see that the global minima of the potential are located at
Egs. (18), (20), and (22). The vacuum configuration of the
driving fields in the SUSY limit is given in Appendix B 1.
As can be seen in Egs. (20) and (22), in the SUSY limit
there exist flat directions along which the scalar fields

Py, ® and U, ¥ do not feel the potential. The SUSY
breaking effect lifts up the flat directions and corrects the
VEV of the driving field ¥, leading to soft SUSY breaking
mass terms (we do not specify a SUSY breaking mecha-
nism in this work). The full scalar potential is given by

2

ow
+ Vsofl + VD’ (23)

Viota = Z P

i

D

where ¢, = {®], B3, 0,, Uy, &7, &5,0,0, ¥, U} stand
for all the scalar fields; V. and V|, represent soft- and
D-terms for the fields charged under the gauge group. Since
all the soft SUSY breaking parameters in V. are expected
to be of order mg, which is much smaller than the mass
scales involved in W, it makes sense to minimize V, in
the SUSY limit and to explain soft breaking effects
subsequently.

By including generic soft SUSY breaking terms, which
originate from another sector of the theory, neutral under
the action of gauge group and under A4 x U(1)y, one can
introduce a set of generic soft SUSY breaking terms by
promoting the coupling constant of the theory to constant
superfields with nonvanishing auxiliary components [29].
Since all soft SUSY breaking parameters are of order mg,
all the VEVs appearing in Eq. (B4) can be of order miy.
And, by adding a soft SUSY breaking mass term to the

scalar potential one can execute (®) = 0 for the scalar field
® with mé > 0. Since there are flat directions in the SUSY
limit, by taking m(zl)s, my, m3, mé}
down toward its true minimum from a large scale, which
we assume to be stabilized far away from the origin by

<0, vg and vy roll
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one-loop radiative corrections in the SUSY broken phase.
Then the vacuum alignment is taken as the absolute
minimum.

Under A, x U(l)y x U(1)g, the matter fields are
assigned as in Table III. In the following superpotential,
the matter fields interact with X fields and have some X
charges.

B. Lepton sector

The superpotential for Yukawa interactions in the lepton
sector, which is invariant under SU(2), x U(1), x A4x
U(1)yx x U(1)g, is given at leading order by

H,
LA

H, H
T”+y3LT(NC<I>T)1/ Au

va = j}l]/Le(NC(I)T)

+ 9L, (N Pp)y
1, A A ¥y

+ 3 (960 + 550)(N°N°); + 7R (N°N€); @

+ yeLeeCHd + y,uL,u/’tCHd + y‘rLTTCHd' (24)

Because of the chiral structure of weak interactions, bare
fermion masses are not allowed in the SM. Fermion masses
arise through Yukawa interactions.® Since the U(1)y
quantum numbers are assigned appropriately to the matter
field content as in Table III, the Yukawa couplings of
charged leptons appearing in the superpotential W, are a
function of flavon field W, i.e., v, = Ve, (¥):

A AN (W2
ye_ye<K> s yﬂ_yﬂ<K> ’ y‘r_y‘:(X) .
(25)
Here, the couplings $, , . are complex numbers and of order

unity, ie. 1/v10 <9, ,.| <10, while the neutrino
Yukawa couplings are given as

o(1),

<>
—_
R
<>
T
Q
<>
ww
R

Yo~ 95~ Ir~ O(1). (26)

Since the fields associated with the superpotential (24) are
charged under U(1)y, it is expected that all the hat neutrino
Yukawa couplings appearing in the superpotential (24) are
of order unity and complex numbers.

In the above leptonic Yukawa superpotential, the right-
hand Majorana neutrino terms are associated with an A4
singlet ® and an A, triplet ®¢ flavon field, both of which

¥Since the right-hand neutrinos having a mass scale much
above the weak interaction scale are complete singlets of the SM
gauge symmetry, they can possess bare SM invariant mass terms.
However, the flavored PQ symmetry U(1)y guarantees the
absence of a bare mass term MNCN°.
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are the SM gauge singlets. So, below the cutoff scale A, the
Majorana neutrino mass terms comprise an exact TBM
pattern, which will be shown later. We note that the flavon
field ®; derives dimension-5 operators in the Dirac
neutrino sector, while the flavon field ¥ derives higher-
dimensional operators with the U(1)y flavor symmetry
responsible for the hierarchical charged lepton masses as
shown in Eq. (25). Imposing the continuous global U(1)y
symmetry in Table III explains the absence of the Yukawa
terms LN°®g and N°N°®P; as well as does not allow the
interchange between ®; and ®g, both of which transform
differently under U(1)y, so that bilarge 6,,, 6,3 mixings
with a nonzero 6,3 mixing for the leptonic mixing matrix
could be obtained after seesawing (which will be
shown later).

Especially, since the field ®; is not charged under
the U(1)y, nontrivial next-to-leading order operators could
be generated via ®;. So we will show that, after flavor
symmetry breaking, the next leading operators can con-
tribute to the Majorana neutrino sector (see more details
in Sec. IV), while there are no new structures contributing
to the Dirac neutrino and charged lepton sectors after
symmetry breaking. It is very crucial to note the following,
which guarantees the superpotential for the Dirac neutrino
and charged lepton sectors in Eq. (24): (i) in the charged
lepton sector higher-dimensional operators including
(PrPr)y s that is, $u4(3)" Lo Ha(PrPr)y /A Where
a#p=e,u,v and n>1 (integer), are all vanishing
due to the VEV alignment (®7) ~ v7(1,0,0); (ii) since
higher-dimensional operators involving (®;®7); or
(P D7), have the same direction as ¥, the corrections
to the charged lepton sector appear as an order of
1/A* and absorbed into a redefinition of the leading
order terms; (iii) in the Dirac neutrino sector higher-
dimensional operators driven by the ®; field, that is,
VaLaN(®7)" 1y 1vH, /A" with n>2 (integer), are
absorbed into a redefinition of the leading order terms
due to the same reasons addressed in the previous cases;
and (iv) higher-dimensional operators via the insertions of
W¥/A? and H, H,/A? are all absorbed into the leading
order terms and redefined; on the other hand, (v) higher-
dimensional operators including (®gPg); 4 473 or © are
forbidden by the U(1)y symmetry. Note that the other
higher-dimensional operators invariant under A4 x U(1)y
are vanishing due to U(l)p symmetry. Therefore, the
unwanted off-diagonal entries in the charged lepton and
Dirac neutrino mass matrices, as will be shown in Egs. (30)
and (33), are all vanishing or absorbed into a redefinition of
the leading order terms, while there will be new structure
corrections to the Majorana neutrino sector due to next-to-
leading order operators whose contributions could be
below the percent level as will be seen in Eqgs. (67) and (75).

As mentioned before, the model has two U(1) sym-
metries that are generated by the charges X; = —2p and
X, = —q. The A, flavor symmetry along with the flavored
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PQ symmetry U(1) x, is spontaneously broken by two A4
triplets 7, &g and by a singlet ® in Table III. And the
U(1)y, symmetry is spontaneously broken by W, 0, whose
scale is denoted as uy, and the VEV of ¥ (scaled by the
cutoff A) is assumed as

(¥)

A

A (27)

Here, the parameter 4 stands for the Cabbibo parameter. We
take the A; symmetry breaking scale and the U(1)y,
breaking scale to be much above the electroweak scale
in our scenario, i.e., (¥), (¥), (@), (B, (®g) > (H, ).
We assume that the electroweak symmetry is broken by
some mechanism, such as radiative effects when SUSY is
broken. As discussed in the previous section, the fields

Dr, g, 0, ® and v, U develop VEVs along the directions

(Or) = \/Li(vra 0,0), (®s) = %(Us, v, Vs),
_Ye _ AN
<®>—ﬁ, (©) =0. <\P>—<‘P>—ﬁ- (28)

Even these VEVs could be slightly perturbed by higher-
dimensional operators contributing to the driving super-
potential; their corrections to the lepton and quark mass
matrices are absorbed into the leading order terms and
redefined due to the same VEV directions as in Eq. (73), or
can be kept small enough and negligible, which will be
shown in Sec. IV B. _ _

Once the scalar fields ¢, ®, 0, ¥ and ¥ get VEVs, the
flavor symmetry U(1)y x A, is spontaneously broken.’
After electroweak and flavor symmetry breaking, the mass
terms and the charged gauge interactions in a weak
eigenstate basis are simply expressed as

1— o —
—Lyw = EN;?MRNR +vpmpNg + € MyCg
g

V2

1 /0 mD)<ui>
——(z; NC

5 (7L R)(m,T) My ) \ N,

L OM b+ % WiZip'v, + He.,  (29)

where g is the SU(2) coupling constant.

We first consider the charged lepton sector. After the
breaking of the flavor symmetries and electroweak sym-
metry, with the VEV alignment in Eq. (28), the mass matrix
of charged leptons is given by

+ W;K_Ly”vL + H.c.

°If the symmetry U(1)y is broken spontaneously, the Gold-
stone modes would be axions. See more details in Sec. V.
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ye 0 O 9,43 0 0
My;=10 y, 0 |og= 0 942 0 Jug
0 0 0 0 §2

(30)

recalling that the hat Yukawa couplings are all of order
unity and complex numbers. And the corresponding
charged lepton masses are given by

m, = |yﬂ|vd = )“4|§)M|/Ud’
(31)

where (H,) = v, = vcos 8/+/2 with v = 246 GeV. These
results are in a good agreement with the empirical
charged lepton mass ratios calculated from the measured
values [16]:

m; = |y‘rlvd = /12|5)T|Ud7
m, = |ye|vd = ’18|§}elvd’

Me_29x10%, ™=509%x102  (32)
m

T m‘[

On the other hand, the Dirac and Majorana neutrino mass
terms read

¥ 0 0 1 0 O
~ Ur ~ Ur
mp=10 0 3 v, =310 0 —
D Ny y2 \/EA yl Y2 \/EA
U 0 y; 0
(33)
14+2F
szmoei” (1 _F)yZ
(1=F)y;
where
2,2 2
_| Y1V i 1
= — F ?+1
"o =\ "o <A> ’ (ke +1)
G = (ke — 1)1, (37)
It is diagonalized by the transformation
U;MNSMDU;MNS = Diag.(m,,,m,,,m,,). ~ (38)

As is well known, because of the observed hierarchy
|Am3 | = |m2, —m2 |>Amd =m? —m? >0, and the
requirement of a Mikheyev-Smirnov-Wolfenstein reso-
nance for solar neutrinos, there are two possible neutrino

mass spectra: (i) the NO m,, < m,, < m,,, and (ii) the IO

(1 - F))’z
(1 n F+23G> ¥3 (1 i F—23G) Y2Y3

(1 +55¢ ‘230) Y2y3 (1 +55¢ *fG) 3
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1+3ke  —ike  —lke'
Mp=| —ike?  Zke'? 1-1ike'” |M, (34)
—ike? 1-1ke?  3ke'
where (H,) = v, = vsinf#/v/2, and
[y [y
_ " Y3
Y2 =0 Y3 =
1 it
~ 3 ~ Ug
K=1\/=[9r =,
2% m
¢ = arg ({—R> with
Yo
~ Ve

Note here that due to the magnitude of 3* being of order
unity, in other words O(y,) = O(y3) = O(1), the p—7
symmetry is broken, which leads to nonzero 63 after
seesawing.

A crucial point is that, by redefining the light neutrino
field v; as P v, and transforming ¢; — P,¢;,¢r = Pk,
one can always make the Yukawa couplings 3, y,, y; real
and positive. Then, from Eqs. (33) and (35) the light
neutrino mass matrix formed by the seesaw formula,
M, = —mpMz'ml, leads to the following p—t power
mass matrix:

(1=F)y;

|
my, < m, < m,. Inthelimity; = y4 (y, = y3), the mass
matrix in Eq. (36) acquires a y—z symmetry that leads to
013 = 0 and 6,3 = —7z/4. Moreover, in the limit y = y4 =
¥4 (v2,y3 — 1), the mass matrix (36) gives the TBM angles
and their corresponding mass eigenvalues

sin?6,, = sinf,; = sinf;; = 0,

N[ —

1
3’
=3m

my,, = 3my, my,. = 3my|G].

(39)
These mass eigenvalues are disconnected from the mixing

angles [30]. Note here that the light neutrino mass matrix in
Eq. (36) contains five physical parameters (m, v, y3, K, ¢),
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leading to a neutrino mass sum rule'® 1/ m, —1/m, =
2/m,, in the limit y,; — 1, while the neutrino mass
matrix in Eq. (12) has seven physical parameters. How-
ever, it is in general expected that deviations of y,,ys
form unity, leading to recent neutrino data, i.e. 63 # 0,
and in turn opening a possibility to search for CP
violation in neutrino oscillation experiments. These de-
viations generate relations between mixing angles and
mass eigenvalues. Therefore, Eq. (36) directly indicates
that there could be deviations from the exact TBM if the
Dirac neutrino Yukawa couplings do not have the same
magnitude, and the light neutrino masses are all of same
order,

m, =m,

1 y T My, O(mO) (40)

Before discussing quarks and axions, let us consider
the constraints on the X symmetry (or PQ symmetry)
breaking scale implied by the fermion mass scales in the
model. From the overall scale of the light neutrino mass
in Eq. (37) the scale of the heavy neutrino, which is
connected to the PQ symmetry breaking scale via the
axion decay constant in Eq. (105), is expected to be

M=~5x 1012 <ﬂ>
m

5 %‘Zsinzﬁ GeV.  (41)

As shown in Eq. (20), the scale of M is expected as
O(vg) ~ O(vs) ~O(M). And Eq. (41) shows that the
value of 3vy/A depends on the magnitude M once mj, is
determined: the smaller the ratio v;/A, the smaller the
leptogenesis (seesaw) scale becomes.'' The value of
vr/A is also related to the u-term in Eq. (13): when
soft SUSY breaking terms are included into the flavon
potential, the driving fields attain VEVs, and in turn the
magnitude of the p-term is expected to be 200 GeV <
Uerr S 1 TeV for mg ~ O(10) TeV and vy/A ~0.05. For
example, when the Yukawa coupling 3/ is of order unity,
ie., 1/v/10 < |34 <10, and sinf =1 due to Eq. (61)
are considered, the scale M should be close to

7.5 x 10" <M [GeV] <7.5x 103 for % ~ 0.05.
(42)

Since the values of v;/A and vg/A are closely associated
with the CKM mixing matrix and the down-type quark

""The flavor symmetry models giving an exact TMB mixing
pattern have neutrino mass sum rules [31], which are different
from our model due to in general y, 3 # 1.

'Moreover, the overall scale of the light neutrino mass m,, is
closely related with a successful leptogenesis [32,33], constraints
of lepton flavor violation, and Ovff-decay rate through the
seesaw formula as well as the CKM mixing matrix; therefore,
it is very important to fit the parameters v;/A and M.
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masses, respectively, see Eq. (79), their values should lie
in the ranges

%% 01, S<loip oo 43)
Here, the first term is derived from the requirement that
the term should fit its size down to generate the correct
CKM matrix in Eq. (79) as well as the u-term in
Eq. (13), and the second one comes from Egs. (20)
and (27), and vg = vyN;/N,V1 +k> with N, =3,
N, =17, and k = vg/vg [see also its related parameter
k in Eq. (35)], which will be shown in Eq. (103). With
the assumptions yg = 3/, k = 0.5, and vy/A = 0.05, the
neutrino overall scale my=(1—-5)x 1072 eV gives
10" < vg [GeV] < 4 x 10'2. Thus, it is very likely that
the PQ symmetry breaking scale roughly lies
in 7x 10" < vy [GeV] 2.8 x 103,

In conclusion, all VEVs (scaled by the cutoff A)
breaking the symmetries are connected to each other:
(i) the VEV wv; is correlated with both the p-term in
Eq. (13) and the overall scale of light neutrino mass
through the seesaw formula, Eq. (37), and its size scaled
by the cutoff A is crucial for generating the correct CKM
matrix. (ii) The scale between wvg =kvg and vy is
determined by the overall scale of light neutrino mass
through the seesaw formula. (iii) The VEV vy (scaled by
the cutoff A), which is defined as the Cabbibo parameter
in Eq. (27), is connected to the scale vg or vg via the
axion constraints, Egs. (103)—(105); in turn thereby the
cutoff scale A is determined.

1. Light neutrino phenomenology

After the observation of a nonzero mixing angle 63 in
the Daya Bay [18] and RENO [19] experiments, the
Dirac CP-violating phase dcp and a precise measurement
of the atmospheric mixing angle 6,3 are the next
observables on the agenda of neutrino oscillation experi-
ments. We explore what values of the low energy CP
phases can predict a value for the mass hierarchy of
neutrino (normal or inverted mass ordering) and inves-
tigate the observables that can be tested in the current and
the next generation of experiments: the rate of Ovff
decay via the effective mass [(M,),,| (the modulus of
the ee-entry of the effective neutrino mass matrix) at
90% C.L shows upper bounds:

(M,),.] < 0.12-0.25 eV,
(136Xe-based experiments [39, 40])
(M,),.] < 0.20-0.40 eV,
("5Ge-based experiments [41,42,43]).  (44)

Current Ovpp-decay experimental upper limits and the
reach of near-future experiments are collected for
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example in Ref. [34]. Recently, there were two interesting
measurements on the sum of the light neutrino masses
>3 ,m,; () the first one given by the Planck
Collaboration [35] is subject to the cosmological bounds
> im,, <023 eV at 95% C.L. [Planck-I, derived from
the combination Planck + WMAP low-multipole polari-
zation + high resolution CMB + baryon acoustic oscil-
lations (BAO), assuming a standard ACDM cosmological
model] and ) ;m, <0.66eV at 95% C.L. (Planck-II,
derived from the data without BAO [35]); and (ii) the
other one from the South Pole Telescope (SPT)
Collaboration [36] states a 30 preference for positive
neutrino masses, and the median value is

> m, =03240.11eV. (45)

We perform a numerical analysis using the linear algebra
tools of Ref. [37]. The Daya Bay [18] and RENO [19]
experiments have accomplished the measurement of all
three neutrino mixing angles 6;,, 0,3, and 6,3, associated
with three kinds of neutrino oscillation experiments. Global
fit values and 3o intervals for the neutrino mixing angles
and the neutrino mass-squared differences [22] are listed in
Table 1.'* The mass matrices m;, in Eq. (33) and My in
Eq. (34) contain seven parameters: y,(= v75%/v/2A),
vy, M, v, y3,K, ¢. The first three (y;, M, and v,) lead to
the overall neutrino scale parameter m, The next four
(v2, 3, K, ¢) give rise to the deviations from TBM as well as
the CP phases and corrections to the mass eigenvalues [see
Eq. (39)]. In our numerical analysis, we take M =
102 GeV and“tan =5 [see Egs. (42) and (61)], for
simplicity, as inputs. Then the effective neutrino mass
matrix in Eq. (36) contains only the five parameters
My, Y2, V3, K, ¢, which can be determined from the exper-
imental results of three mixing angles, 0,,, 0,3, 6,3, and
the two mass squared differences, Am, = m?, —mZ
Am3,, = |m}, —mZ |. In addition, the effective neutrino
mass |M,,| and the CP phases d¢p, 1, can be predicted
after determining the model parameters. Scanning all the
parameter spaces by putting the experimental constraints
in Table I with the above input parameters, we obtain for
the NO

k€[0.17,0.73], ¥, €[1.0,1.25],

y3 €[1.0,1.25],  my/(107% eV) € [1.5,5.3],

¢ € (96", 114°]U[246°,266]; (46)
for the 10,

“The model parameter spaces constrained by the global
analysis in Table I are slightly different from those of Ref. [26]
where the global analysis by Ref. [22] was used.

As noticed in Eq. (61), in our model small values of tan f =
v,/ v, are preferred.
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k€[0.17.0.63].  y, €[0.80,1.16],
y; €[0.82,1.17],  my/(1072 eV) € [2.3,5.9].
¢ € [93°,104]U[255°, 2677 (47)

First, the magnitude of the CP-violating effects is
determined by the invariant Jcp associated with the
Dirac CP-violating phase

JCP = —Im[UZer3UTI U%]

1
= gsin 2912 sin 2913 sin 2923 COS 013 sin 5CP' (48)

Here, U,,; is an element of the PMNS matrix in Eq. (3), with
a = e, u, 7 corresponding to the lepton flavors and j =
1,2, 3 corresponding to the light neutrino mass eigenstates.
Because of the precise measurement of 63, which is
relatively large, it may now be possible to put constraints
on the Dirac phase 6-p that will be obtained in the long
baseline neutrino oscillation experiments T2K, NOvA, etc.
(see Ref. [16]). However, the current large uncertainty on
0,3 is at present limiting the information that can be
extracted from the v, appearance measurements. Precise
measurements of all the mixing angles are needed to
maximize the sensitivity to the leptonic CP violation.
Since the Oypp decay is a probe of lepton number violation
at low energy, its measurement could be the strongest
evidence for lepton number violation at high energy. In
other words, the discovery of Oy decay would suggest the
Majorana character of the neutrinos and thus the existence
of heavy Majorana neutrinos (via the seesaw mechanism),
which are a crucial ingredient for leptogenesis [32,33]. In
the model, the effective neutrino mass |(M,),,| that
characterizes the amplitude for Oyff decay is given by

3 + kel

M - T < 7
|( l/)ee| mg 1 +K€"/)

. (49)

This shows that in the model the rate of Oypp decay
depends on the parameters my, k, and ¢ associated with the
heavy Majorana neutrinos in Eq. (34). Figure 1 indicates
the importance of the precise measurements of the atmos-
pheric mixing angle 8,5 to distinguish between normal and
inverted mass ordering; here, the blue dots and red crosses
correspond to the IO and the NO, respectively. The 1O is
very predictive on §¢p and [(M,),,| = |m,.|, while the NO
is less predictive on those. The left plot in Fig. 1 shows the
predictions on dcp in terms of the large uncertainty on 6,5;
on the other hand, the right plot stands for the model
predictions on |(M,),,]| in terms of €,3. Within the model,
future precise measurements of 6,3 should be able to
distinguish between IO and NO. For NO, 6,5 would be
close to 44 or 46". For 10, 6,; would be in the range
[38°,427]U[48", 53], that is 3 to 8" away from maximality.
In turn, such precise measurements of 6,3 would restrict the
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The left plot shows predictions of d-p as a function of 6,3, while the right plot shows model prediction of

|m| = [(M,),.| in terms of 6y3. Here, the vertical dashed (dotted) lines show the best-fit values for NO (I0), and the blue dots and red
crosses correspond to IO and NO, respectively. And the horizontal solid (dashed) lines show the Xe-based current bounds (near-future

reachable sensitivity) of Oyff experiments.

possible range of d.p in the model. A value of 0,5 slightly
larger than maximal, i.e., 6,3 € [45°,47°], would imply an
NO and &¢p € [90°,270°], while a value of 6,5 slightly
smaller than maximal, i.e., 6,5 € [43°,457], would imply
a NO and &.p € [0,9071U[270°,360°]. A value of 6,3
considerably larger or smaller than maximal, i.e.,
[38°,4271U[48",53°], would imply IO and &cp within a
few degrees of 70, 110, 250, or 290°.

Recently, the T2K Collaboration analyzed that the recent
measurements of #;; combined with the T2K data result in

03 = 46.61151,

|Am2,| =251 +0.11

013 = 9.10104,

(50)

and exclude values of dqp between 25.2 and 156.6" with
90% probability, which points to the highest posterior
probability in the normal mass ordering [38]. Interestingly,
as can be seen in Fig. 1, the recent analysis by the T2K
collaboration, Eq. (50), favors the data points (red crosses)
indicating the NO. In the near future, KamLAND-Zen [39],
EXO [40], and GERDA [41] are expected14 to probe the
range 0.01 eV < |[(M,),,| < 0.1 eV. If these experiments
measure a value of |(M,),,| > 0.01 eV, the normal mass
hierarchical spectrum would be strongly disfavored [45].
Figure 2 directly shows that the model predictions lie on the
testable region of those experiments. The correlations
shown in the left plot in Fig. 2 indicate that in our model

"“The Advanced Mo based Rare process Experiment collabo-
ration is now planning to search for Ou38 decay of '°Mo isotope,
which reaches the sensitivity of the effective Majorana neutrino
mass |(M,),.| ~0.02-0.06 eV [44].

precise measurements of or improved upper bounds on
|(M,),,| from Oypp-decay experiments may be able to
restrict the possible ranges of d.-p, and in some cases may
even distinguish NO from IO. In the right plot in Fig. 2, the
more stringent Planck-I limit cuts into our region of points
and starts to disfavor a quasidegenerate light neutrino mass
spectrum. Interestingly, the data given in Eq. (45) from the
SPT Collaboration [36] favor our model as indicated in the
left plot in Fig. 2. Figure 2 explicitly shows that the current
Ovpp-decay experiments also cut into our region of points,
and the near-future Ovff-decay experiments can test our
model completely. We remark that the tritium beta decay
experiment KATRIN [46] may not be expected to reach
into our model region. KATRIN will be sensitive to an

effective electron neutrino mass my = /> _;|U,;[*m? [47]

down to about 0.2 eV, while our model produces values in
the range 0.050 <m, <O0.160 eV for NO and 0.051 <
m, <0.171 eV for IO.

C. Quark sector

In the quark sector, the superpotential W, driven by
O, &g, 0,V, invariant under SU(2), x U(1)y x Ayx
U(1)y, is given at leading order by

WZ:yquucHu +chZCCHu —f—th3l‘C[_Iu7 (51)
H H
Wi = y,0,(D®s), Td + ¥,0:(D®g)y Td
H
+ ¥, Q3(D @)y Td (52)

In the above superpotential, each quark sector has three
independent Yukawa terms at the leading order: apart from
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the Yukawa couplings, each up-type quark sector does not
involve flavon fields, while the down-type quark sector
involves the A-triplet flavon fields ®; and ®g. The left-
hand quark doublets Q, Q. Qx transform as 1,1”, and 1/,
respectively; the right-hand quarks u¢ ~1,¢¢ ~ 1", ~ 17,
and D¢ = {d°, s°, b°} ~ 3. Since the right-hand down-type
quark transforms as 3, in contrast with the up-type quark
sector, the down-type quark sector can have nontrivial next-
to-leading order terms as will be shown in Eq. (68).

According to the U(1)y quantum numbers assigned in
Tables II-I1I, it is expected that the flavon field A4-singlet ¥
derives higher-dimensional operators, which are eventually
visualized into the Yukawa couplings of up-type quarks as
a function of flavon field ¥, i.e., y, . = y,..(¥), except for
the top Yukawa coupling:

AR AN R
yu—yu<K>, yc—yc<X>, Vi =79, (53)

and, similarly, the Yukawa couplings of down-type quarks
as a function of flavon field W, i.e., y,; = y,,(¥), except
for the Yukawa coupling y,:

AN . (V)2 .
yd:yd<X>7 yS:ys(K> ) Yb = Vb

recalling that all the hat Yukawa couplings are of order
unity and complex numbers.

Similar to the lepton sector, even though the flavon
fields Ay-triplet ®g 7 and A4-singlets ®, W derive higher-
dimensional operators, they are all forbidden or vanishing.
Notice that the effects of nontrivial next-to-leading order
operators will be discussed in Sec. IV. A few comments are

(54)

in order: (i) next-to-next-to-leading order operators driven
by ®¢ or O, and higher-dimensional operators including
(®sPg)y.1173 are all forbidden by the U(1)y; (i) higher-
dimensional operators driven by (®7®7) 4+ are all vanish-
ing due to the VEV alignment (®;)~v7(1,0,0), for
example, 9;/(X)"Qif°H,(®r®r)y 10/A* where i=1,2,
3, f=u,c,t, and n>1 (integer), and (i, f) # (1,u),
(2,¢),(3,1t); (iii) higher-dimensional operators through
the insertions of (®7®7); or (O7P7); , (PsPr)y 4 have
a VEV in the same direction as ®; due to the VEV
alignment (®7) ~ v4(1,0,0), all of which are absorbed
into a redefinition of the leading terms; and (iv) higher-
dimensional operators via the insertion of H,H,; and A
are all absorbed into a redefinition of the leading
order terms.

After the breaking of the flavor and electroweak sym-
metries, with the VEV alignments as in Eq. (28), in the
weak eigenstate basis the up- and down-type quark mass
terms in Egs. (51)—(52), and the charged current inter-
actions between quarks, can be written in matrix form as

—L, = @M, + gI Mgl + - W qiyiqd + He.

V2
(55)
Here, ¢* = (u,c,t), ¢ = (d,s,b), and
yo 0 0 5.4° 0 0
Mu = 0 yo 0o, = 0 5)014 0 o,
0 0 0 0 3
(56)
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Ya Ya Yd ’
Md = Ys Vs Vs \/—TSA Vg
Yo Yo Vb
Pak® Pk 9k
N N o Ug
= yiﬂz yilz yiﬂ,z m Vy. (57)
Vb Vb Vb

Naively speaking, since the leading matrix M, has six
physical parameters, while observables are seven (CKM
parameters: 4, down-type quark masses: 3), it alone may
not generate the correct CKM matrix. With Eqs. (56)—(57)
they directly show that the mass spectra of quarks are
strongly hierarchical, i.e., the masses of the third generation
fermions are much heavier than those of the first and
second generation quarks.

Because of the diagonal form in Eq. (56), the contribu-
tions of the up-type quark sector to the CKM matrix are
absent. The mass eigenvalues of the up-type quark can be
made real and positive by the field redefinitions g} —
Piqj and g — Pgqy (here, Py g is a diagonal matrix of
phase factors):

—

M, = P{M, Py = diag(m,.m..m;).  (58)

The corresponding up-type quark masses are given as

m; = |5)t|vu’ me. = |yc|vu = A4vu|3}c

’

, (59)

m, = |yu|1]u = /lgvub\]u

which are comparable with the results calculated from the
measured values [16]

Me—74%107.  (60)
my; m;

From the top Yukawa coupling and pole mass (3, and m,)
and the neutral Higgs VEV ratio (tanf = v,/v,), by
requiring §, to be order of one, 1/v/10 < |9,] < /10, we
have the following allowed range for tan f:

1.7 <tang < 10, (61)

where'” we have used m,=173.07+£0.52+0.72GeV [16].
On the other hand, M, in Eq. (57) generates the down-
type quark masses:

//\Zd = V‘L”/\/ldV;ie = diag(md, mg, mb), (62)

""We take a lower bound of tan p preferred in the minimal
supersymmetric standard model. For tan 8 < 1.7 the top quark
Yukawa coupling blows up before the momentum scale
ur~2x10' Gev.

PHYSICAL REVIEW D 91, 056005 (2015)

where V¢ and V¢ are the diagonalization matrices for M.
Then V¢ and V¢ can be determined by diagonalizing the
matrices M d./\/lj, and Mj,./\/l 4» respectively, indicated from
Eq. (62). Especially, the mixing matrix V¢ becomes one of
the matrices composing the CKM mixing matrix. The
Hermitian matrix Md/\/l;z is diagonalized by the mixing
matrix V¢:

Vi MMV
P LT T oy
=v§5(f) VT #5ise AP 23 | VE
P99 2535 195
= diag(|mqf*. [ms[?. [m ). (63)

Because of the strong hierarchal structure of the Hermitian
matrix, one can fit the results calculated from the measured
values [16]:

Ma_12x10, "s=24x102 (64
my, my,

However, as mentioned before, one could not obtain the
correct CKM mixing matrix (it seems difficult to reproduce
the correct CKM matrix in the standard parametrization in
Ref. [16]). Therefore, we should include nontrivial next-to-
leading order corrections in order to obtain the correct
CKM matrix.

IV. HIGHER ORDER CORRECTIONS

Higher-dimensional operators invariant under Ay X
U(1)y symmetry, suppressed by additional powers of the
cutoff scale A, can be added to the leading terms in the
superpotential. The mass and mixing matrices of fermions
can be corrected by both a shift of the vacuum configu-
ration and nontrivial next-to-leading operators contributing
to the Yukawa superpotential W;. We have shown in the
previous section that the next-to-leading order corrections
in the charged lepton and up-type quark Yukawa super-
potentials are either vanishing or absorbed into a redefi-
nition of the leading order terms. Here, we show that the
next leading corrections in the Dirac neutrino, Majorana
neutrino, and down-type quark sectors are well under
control.

A. Corrections to the Yukawa superpotential
In addition to the leading order Yukawa superpotential
W, we should also consider those higher-dimensional
operators that could be induced by the flavon field & that
is not charged under the U(1)y.
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1. Corrections to the lepton sector

At the next leading order in the Majorana neutrino sector
those operators triggered by the field & are written as

PHYSICAL REVIEW D 91, 056005 (2015)

Here, the first term, after symmetry breaking, is absorbed
into the leading order terms in the superpotential (24) and
the corresponding Yukawa couplings are redefined. On the
other hand, the second term could be nontrivial and can be

(NN°@D;), /A, (NN ®3Py), /A. (65) clearly expressed as
|
t 5 3%
AW, = A (NN)(5Pr)y + X(NCNC)I’(CI)S(I)T)I” + A (NN)y(@5Pr)y
IS ene e enre
N (NCN€)3 (PsPr)3 + A (NN€)3 (P5Pr)s, - (66)

Indeed, at order 1/A, after symmetry breaking, there is a new structure contributing to My, whose contribution is

written as

~ 4~ 1 =~ 1~ |
1+ 3Ks Ky +3Ks = 5Ka K3 +3Ks +5Ka
vt Sz e o~ 2~ 2~ ~ 2=
AMR = A—\/E 2 +§Ks 7§Ka K3 +§Ks 7§Ka Kp — 3K M, (67)
S 1z 1z ro_2z % K 2%
K3 +§K‘+ﬁka K| — 5K K2—§Kv+ﬁl<a

where k; = \/gzjjzf with i =1,2,3,s,a. Even though
these corrections to the leading order picture seem non-
trivial, these can be kept small, below the percent level due
to v7/v/6A = 0.02 with v /A = 0.05, Eq. (42), and &; = &
with Eq. (35). Therefore, the mass and mixing matrices of
the neutrino at leading order cannot be crucially changed.

2. Corrections to the quark sector

The nontrivial next leading order operators induced by
the ®; field in the down-type quark sector are written as

Q]
IPH

+ x,0,(D¢ (I)T)l’

AWG = x,0,(DPr)

) 0
Hy+ x,Q3(D®r) PHd

AZ
H,
+x:llYQ1(D (I)Tq)S>1 A2
H, H
+ X§° Q2 (D D7 D)y P +x3°03(D @y Q) A—zd
(68)

Here, the next-to-leading order terms associated with the
field ® play crucial roles for the CKM mixing angles to be
correctly fitted, while the contributions associated with the
field ®¢ including the coefficients xp (which are from
symmetric operators) and x{ (which are from antisymmet-
ric operators) do cancel each other out at leading contri-
bution due to the character of symmetry and antisymmetry
(the first contributions to the CKM appear as 1*). Moreover,

these next-to-leading order terms are correlated with the
mass scale of the neutrino in Eq. (37) and the p-term in
Eq. (13) through the flavon field ®;.

In the above superpotential (68), the Yukawa couplings
of down-type quarks are expressed as a function of flavon
field U, ie. X, = X4,(V) with x = x, x*:

T3 VAR
Xy = ﬁd <K> s X, = ﬁs <K) . X, = ﬁb- (69)

With the help of Eq. (69) the corrections of down-type
quark matrix AM, can be expressed as

Xq 0 0
Vv
AM;=|0 x, 0O ;Tf 4
0 O Xp
Fxy Xy Ay
2 05yt oy UrVs 70
+ s s s | a2 Vd ( )
X, XX
2 ( ¥ %) it B
_ 238 R o N Urls
= /127‘3 /12( —I—xj) 255 A2 Ve
= N
(71)
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where 56% = —j—-S% + i}, recalling that all the hat Yukawa

couplings are of order unity and complex numbers. Each row
of the leading matrix in Eq. (57) has the same entries, while
for the next leading order matrix in the second matrix in
Eq. (70) the first term in each row cancels out the second plus
third term; therefore, in the production (M, +AM ;) (M +
AMZ) the mismatches between the leading matrix in
Eq. (57) and the second matrix for the next leading matrices
in Eq. (70) cancel each other out, and the mismatch between
the first matrix in A M and the second one can contribute to
the CKM matrix but its effects are below the few percent
level. However, a mismatch between the first matrix, AM,,
and the leading matrix, Eq. (57), can reproduce the masses of
|

PHYSICAL REVIEW D 91, 056005 (2015)

down-type quarks, |V ;| and 6¢p, once 0%, = AJ? and 07, =
A are determined. We show this nontrivial effect and analyze
its physical effects in Sec. IV C.

B. Corrections to the vacuum alignment

Now we consider higher-dimensional operators induced
by &7, g, ©, ¥ invariant under A4 x U(1)y in the driving
superpotential W,, which are suppressed by additional
powers of the cutoff scale A. They can lead to small
deviations from the leading order vacuum alignments.

The next leading order superpotential 6W,, which is
linear in the driving fields and invariant under A, x U(1)y,
is given by

1 .
ow, :K{al (PrP7) 3 (PrP] )30 + a2 (PrPr)y (P D]); + a3 (PrPr) p (PrPF) 1 + ag(PrPr) 1 (Pr D)y +as VU (P D), }

1
+K{b1((I)S(I)S)fss((I)Tq)g)?;a+b2((I)S(I)S)3s((I>T(I)g)35 + b3 (D5 D) (PrPG)y + ba(PsPs)y (D7 D)y

ers(‘psq’s)l"(‘l’T(I’g)l’+b6q’g(‘bs¢’r)3a®+b7‘pg(q’s¢’r)3s®+bs‘bg(q’s‘bﬁsaé+b9q’g(‘psq’T)3sé

- o~ 0 ~ )\
+b1o(P; D7), 00+ by (P; D7), 00+ by, (P; D7), 00} ‘|‘XO{CI (PsPg)3s Py + o (PsPr),OF +X0d' (@7 Pr)35Pr

By keeping only the first order in the expansion, we obtain
the minimization equations. The details are in Appendix B
2. The corrections to the VEVs, Egs. (18), (20), and (22),
are of relative order 1/A and affect the flavon fields &g, ©,
and ¥, and the vacuum configuration is modified into

1
(®7) = NG (vr + 6v7,,0,0),
Vo ~ ~
@) >—F%=, (0)—40,
V2
1
(Ps) — ﬁ (vs + vg,, vs + Svg,, V5 + Ovg,),
(1) — %MW. (73)

If there is no fine-tuning among the dimensionless param-
eters (ay...as, by...byy, ¢y, o, dp), when vy /A ~ O(0.1) it
is expected that

|6vg| ~ O(0.01)vy,
60| ~ |5, | ~ |6vs,| ~ |v5,| ~ O0.1)vg.  (74)

From Appendix B 2, given the expected range for v/ A, we
see that the shifts |50|/vs, 6vg,|/vs can be kept small
enough, below the percent level without any fine-tuning.
The next leading order terms in the driving superpotential
lead to small deviations from the leading order vacuum

(72)

alignments. And the mass and mixing matrices are cor-
rected by the shift of the vacuum configuration.

1. Corrections to the Majorana neutrino sector

The corrected vacuum alignments in Eq. (73) modify the
leading order Majorana neutrino mass term into
M = My + 6Mp, while the Dirac neutrino mass term is
not affected due to the redefinition of (®;) — (v%,0,0):

with the redefinition of M — M = yg *& + y50® the cor-
rected heavy neutrino mass term reads

2\/5 \/E 2
Tel _T€2 _T€3
i(ﬁ \/E 2\/5 2
\/5; \/E:: 2 2;
3“3 3 1 3 2

where ¢; = %5k with i = 1,2, 3. Because of Eq. (74) it is
expected that the magnitude of ¢; is of order 0.1 or can be
controlled, below the percent level. Then the mixing angles
and masses of the light neutrinos may not be crucially
modified by the next-to-leading order results.

2. Corrections to the down-type quark sector

And also the new vacuum in Eq. (73) modifies the
leading order mass matrix of the down-type quark into
M, = My+6M,,
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5 Sve Sve
)’d—ZfI )’d—Z‘:3 Yd_szz
5v 5 5 Us
SMy= [ »52 y 58 y7E [ —zvs (76)

AV2

Vb 55—;3 b 5;}—;2 b 6%

The corrections from the vacuum alignments in Eq. (76) are
absorbed into the leading order terms and can be redefined.
In order to show that this correction does not crucially
affect the generation of small mixing angles in the CKM
matrix, we explicitly express the Hermitian matrix

MM ; which is diagonalized by the mixing matrix V¢:

MM
3 (vg)2
-35(%)
P3P0 +e) P35:(1+€) P91 +¢)
x| 29 (1+e) 23LP(1+e) 295;(1+¢) |,
P31l +e) 299,(1+e)  [9,/*(1+¢)
(77)

with &€ = 2(51% + 51% + 5%) /3. Tt is easy to find that this
matrix could not lead to the correct CKM mixing angles. So

in this work we will not consider the next-to-leading order
|

281941*(1 + €44)

/Pydyb( + €3p)

where

T
“ 3\/_K Ya 5’; 3\/§K A

2 15,5
Vg s " N
() | sma e 2

"
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contributions of vacuum alignments that may not crucially
change the leading order results of W.

C. Corrected masses and the CKM matrix

The light neutrino mass matrix can be modified by both
the nontrivial operators, Eq. (66), and by the shift of the
vacuum alignment, Eq. (73). The remaining results modify
M, in Eq. (36) into M) = M, + AM,,

AM, = mpMg' AM Mg mb + mpMz' 6MrMz' m})

rolath). -

As expected from Secs. IVA' 1 and IV B, the corrections
from these nonleading terms can be kept small enough,
below the percent level. Therefore, it is expected that
corrections from the leading order results can be obtained
for all measurable quantities at approximately the same
level.

As seen in Eq. (77), including the corrections from the
shift of the vacuum configuration of down-type quark, they
can be all absorbed into a redefinition of the overall factor.
So considering the corrections from the nontrivial next
leading operators in Yukawa superpotential, Eq. (68), we
obtain the Hermitian matrix /\/ld/\/lj,:

(14e4) 294951+ €4) 212
(+es) #35i0+en | +O(FE3D) (9
959 (1+5) 96171+ €pp)
2 5\C 2 1 v X
|Aa|2 ’ Eap = bUr ( + ﬂ)
|ya| 3\/_K Ya y[)’

Here, M, = M, 4+ AM and the Hermitian matrix is diagonalized as V4" M M V4 = diag(|my|?, |m,|?. |m,|?) by the
mixing matrix V¢, recalling that x = vg/ve. Notice here that the parameters &,,, € op are only associated with the next
leading operators driven by the © field of AWZ in the Yukawa superpotential (68), while the contributions associated with
the @ field do cancel out each other and do not play a part. Because of the strong hierarchical structure of the Hermitian
matrix, we can obtain the mixing matrix V¢ of the down-type quarks: under the constraint of unitarity up to O(4%), it can be
written as

1-12717 Cei®  BBeits
Vi = —ACe™ —12r2 2Ae | Py + O (80)
(AT (@1+05) — Be=ids)  — 241 1

with the phases

1 ($a1+e 1 d
# = Sare(5,5;(1 + ). ¢3=—arg{u}, o= Larg(z) -2
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and the associated parameters

|j>s(1 + 8sb)'
1951 + €pp)|”

91 + )|

9 (14 )|
1Z[(1 + eps)
PG )T + G T + D) Tt

A:

F:

Here, X = §,95(1 + 8ds>ei{/)‘]1 _A.i’dyb(l + 5db>e_id)l'1, =

R A 79 _ (% |5, [* 2y Bl _
R P A—i— + (4= and I'; =
353 T, 2 (yb ) 19, ( y.;) 95 3

Iflz }:’;}z In Eq. (80) the diagonal phase matrix P, can be
rotated away by redefinition of quark fields. Then, from the
charged current interactions of the quark sector, we can

obtain the CKM matrix

Verw = VETVE = ve, (81)

It is very crucial to note that the next-to-leading order terms
denoted as ¢,,, £, lead to the correct CKM matrix. From
Egs. (80)—(81), if we set

=\/p> + 1

and by redefining the quark fields with the transformation
¢ = ce, s > sei?, b — bel 9 and t — eI #1H9),
we obtain the CKM matrix in the Wolfenstein parametri-
zation [48] given by

[9a(1 + €4p)]

< =1, 82
5y (Tt e)] (82)

1-22/2 y) A2 (p +in)
Vekm = - 1-22/2 AN’
AP(1=p+in)  —AN? 1
+ O, (83)

with the CKM CP phase §%p = ¢ + ¢ — ¢4, or equiv-
alently 6%, = tan~!(p/n). From the global fits to the quark
mixing matrix reported in Ref. [49], the best-fit values of
the parameters A, A, p, 7 with 3¢ errors are

A =sinfc = 0.2245710 5055,

- 0.075
= 0.1291095,

A =0.823100%,
7 = 034815041, (84)

where p = p(1 —12/2) and ij = (1 — A>/2). The effects
caused by CP violation are always proportional to the
Jarlskog invariant [50] in the quark sector given by

Jtp =—Im[V, 2V, Vi, Vi ] =A%, (85)
whose value is 3.02J_r8:§62 x 1073 at 3¢ level [49]. Numeri-
cally, it reads J¢&p = 0.2 x 2°. And the corresponding mass
eigenvalues are given in a good approximation as
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f Ud|Yh| 1+ &,
=23
2 A
\/5
2

md:/1 KS |)7d|(

>{ ’ (31 T)F”}]’

(86)
B 7RSI E A &[>
where [, =gist 456, and T, = (y/ +Yd) 5T
. w o lep
(f—z +3£) [£al. Considering the expected value for the VEVs

)Z [$al
for vg, vy, and v, with Egs. (43) and (61), these results can
be in a good agreement with the empirical down-type quark
masses calculated from the measured values [16].

V. A LIGHT AXION
The QCD Lagrangian has a CP-violating term

Ly = st 8_ Ga’wGﬁw (87)

where —7 < J. < 7 is the effective d parameter defined, in
the basis where quark masses are real and positive,
diagonal, and y5 free, as

&eff =9+ arg {det(Mu) det(Md)}' (88)

Here, the angle & is given above the electroweak scale,
which is the coefficient of 9g? G“’“’G“D /327° where G¢

is the color field strength tensor and its dual G“ =

é €4psG™, coming from the strong interaction. And the

second term comes from a chiral transformation of weak
interaction for diagonalization of the quark mass matrices
by w, — e rsueldetm /2y, - directly indicating the CKM
CP phase 6-p in Eq. (85), which is of order unity. However,
experimental bounds on CP violation in strong interactions
are very tight, the strongest ones coming from the limits on
the electric dipole moment of the neutron d, < 0.29 x
1073 ¢ [6] that implies |9q5| < 0.56 x 10719, 9.4 should
be very small to make a theory consistent with exper-
imental bounds. A huge cancellation between J and
arg {det(M,,) det(M, )} suggests that there should be a
physical process.

Until now, the most elegant solution to the strong CP
problem has been the PQ mechanism, which yields a light
pseudo—Nambu-Goldstone boson, called the axion [4,5].
There are two prototype models by how they couple
to U(l)pg: (i) the Kim-Shifman-Vainshtein-Zakharov
(KSVZ) model [51], where only new heavy quarks charged
under U(1)p are introduced, and (ii) the Dine-Fischler-
Srednicki-Zhitnitsky (DFSZ) model [52], where only
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known quarks exist and Higgs doublets carry PQ charges.
And there are good reviews, Refs. [53-55], on the axion.
Now, based on the model described by the superpotential
(16), (24), and (51)—(52), we wish to discuss an automatic
theory for strong CP invariance introducing the so-called
flavored PQ symmetry U(1)y (which is introduced for
describing the SM fermion mass hierarchies) with non-
Abelian A4 symmetry in the superpotential as in Tables II-
II. The flavored PQ symmetry U(1), guarantees the
absence of bare mass terms. The model incorporates the
SM gauge singlet flavon fields F, = ®¢, 0, ¥, U with
the following interactions invariant under the U(1)y x A4
and the resulting chiral symmetry, i.e., the kinetic and
Yukawa terms, and the scalar potential Vgygy in the SUSY
limit,16 are of the form
L= 3,47:1;3”-7:/4 + Ly = Vsusy + Ly, (89)
in which the Vgygy term is replaced by V.., Eq. (23),
when SUSY breaking effects are considered. The kinetic
term is written as

0,850 ®g + 0,070+ + 0,V or T + 0, "B, (90)

The relevant Yukawa interaction term with chiral fermions

w charged under the flavored PQ symmetry U(1)y sym-
metry is given as
Ly = = o ®NEN ), — 2K (NN ), @
Y—_Eyé) (Ng R)l—j( R R)SS s
— LY, (¥, @5 O)yrH, 4+ H.c. (91)

And the relevant F-term scalar potential term is given as

2g ~ |2
Vsusy = \/l (P51 Pg1 — PsrPs3) + 9, P51 O
2g ~ |2
1 (s Psy — P Py3) + 92 P3O
\/_
29 ~ |2
‘ \/l (P53 P53 — P51 D) + 92 PO

+[93(Ps51 P51 + 20520 53) + 40* + 9500
+ 960 + g7 00 + i3 | + - - (92)
Here, dots represent the other scalar potential {...} =

2 with ¢; = {®F, &y, &5, 0,0, ¥, U}, and all of
those are irrelevant for our discussion [c.f. Eq. (B3)].

"®In our superpotential, the superfields ®g,®, and ¥ (V) are
gauge singlets and have —2p and —¢(q) X-charges, respectively.
Given soft SUSY breaking potential, the radial components of the
X fields are stabilized. The X fields contain
the axion, saxion (the scalar partner of the axion), and axino (the
fermionic superpartner of the axion).
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After getting VEVs (@), (®g) # 0 [which generates
the heavy neutrino masses given by Eq. (34)] and
(U) #0, the flavored PQ symmetry U(1)y is sponta-
neously broken at a scale much higher than the
electroweak scale and is realized by the existence of
the NG mode A that couples to ordinary quarks at the
tree level through the Yukawa couplings as in Eq. (91)
[see also Egs. (51)—(52)], and the resulting NG boson
becomes the axion.'’ Through triangle anomalies, the
axion mixes with mesons (leading to a nonzero mass),
and thus couples to photons, nucleons, and leptons. The
explicit breaking of the U(1)y by the chiral anomaly
effect further breaks it down to Zy discrete symmetry,
where N is the color anomaly number. At the QCD
phase transition, the Z, symmetry is spontaneously
broken, which gives rise to a domain wall problem
[15]. Such a domain wall problem can be overcome
because the model has two anomalous axial U(1)
symmetries that are generated by the charges X; and
X, U(l)x = U(l)y, xU(l)x,.

The scalar fields ®g, ©, and ¥ (V) have X charges X| =

—2p and X, = —q(q), respectively, that is,
Oy — O X1Pg 0 — %10,
U - eoX2y, o e, (93)

where &, (k = 1,2) are constants. So the potential Vgygy
has U(1)y global symmetry. In order to extract NG bosons
resulting from spontaneous breaking of U(1), symmetry,
we set the decomposition of complex scalar fields as
follows'®:

Ps Do

elﬂs e D@
)] i = Vg + h . @ ES Ve + h .
S \/E( S S) \/E( (€] @)
Dy
U =" (vy + hy) (94)
\/E v v/
in which we have assumed &y, = &g, = 3 = Pg;. And
the NG modes A, A, are expressed as
=l ttol gy o)

"The VEV configurations in Egs. (18), (20), and (22)
break the U(l)y spontaneously and the superpotential
dependent on the driving field ®, in Eq. (16) becomes, for
s1mphClty, if we let (I)Sl q)SZ @53, W@) = @0(93@5@3 +
g4®® =+ 6K'g3{1}®(bsl ’059} =+ gs (@ —+ 2 )@ + gﬁ® @) after
shifting by wvg,vs. This shows clearly ‘hat the linear com-
blnatlon (ve®@+v5Py;) /\/”e)"‘vs is a massless superfield.

"8Note that the massless modes are not contained in the fields
0, Or, Bf. D5, 0. V.
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with the angular fields ¢, ¢y, and ¢y. With Egs. (90) and
(94), the derivative couplings of A arise from the kinetic

terms
1 hyr\?
0, FiF = = (9,4,) (1 + —f)
2 Vr
1 he\2 1
+ 5 (G”Az)z <1 + E) + 5 (aﬂh]:)z
1
+5 Ophe)* + - (96)
where vy = vg(l +&2)'/2 and  hy = (khg + he)/

(14+x%)'2, and the dots stand for the orthogonal
components hr and Af, recalling that x = vg/ve.
Clearly, the derivative interactions of A; (k = 1,2) are
suppressed by the VEVs vr and vy. From Eq. (96),
performing vg, vy — co, the NG modes A;,, whose
interactions are determined by symmetry, are distin-
guished from the radial modes, like Az, hy, which are
model dependent (SUSY breaking mechanism) and
invariant under the symmetry.

The model has two anomalous U(1) symmetries,
U(1)x, x U(1)x,, with respective anomalies N; and
N,, both of which are the coefficients of the U(1)y, —
SU(3)s —SU(3). anomaly, so there are two would-be
axions A; and A,, with the transformation of the phase
fields A, —» A, + Llf\,)f‘ £ and Ay - A, +%§2, respec-
tively [56]. Their charges X; and X, are linearly
independent. And the color anomaly coefficients are
obtained by letting 2", X, Tr(1*1") = N;5*°, where
the 1 are the generators of the representation of SU(3)
to which y belongs and the sum runs over all Dirac
fermions yw with X charge. Since the two U(1)s are
broken by two types of field attaining VEVs, a new PQ
symmetry U(1)y that is a linear combination of the two
U(1)ss has anomaly, while another U(1) is anomaly free
[it is the broken U(1), symmetry by (®),(®s) #0

responsible for lepton number violation]. Under
U(1)z x U(1), the fields are transformed as
AL
vre'r ]’l]:
F, = 1+—);
: V2 < ”f)
fl g eixlglfl, with gl :Nza,
A2
vye v hy
Fa= I+—;
? V2 ( U@)
]:2 e eiXZ‘:Z}—Z, with 52 = —NI(Z. (97)

One linear combination of the phase fields A; and A,
becomes the axion (= A), and the other orthogonal
combination corresponds to the Goldstone boson
(= G):
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A cosd sind A
={ . : (98)

G —sind cosd A,
Here, the G is the true Goldstone boson of the
spontaneously broken U(1),. And since the Goldstone
boson interactions arise only through the derivative
couplings as Eq. (96), we can have the nonlinearly

realized global symmetry below the symmetry breaking
scale

U(1);: G — G + Y(constant). (99)

Then the angle is obtained as cosd = —$

} Xy vp)*+(=Xa09)’

and sind = % with X, = N,X, and
_ (X1vF)"+(=Xavy)

X, = —N;X,. Therefore, the axion A and the

Goldstone boson G can be expressed as

—Alizﬂ\p +A25(11)]:
\/(5(11}?)2 + (=Xavq)?
—AIXIU]: —Azizﬂ\y

VEios P+ (Kave)

A:

’

G:

(100)

Meanwhile, the X current for U(1); with the condition
(97) is given by

~ o~ <~ o~ <~ 1 -~
Jif = lefIa”fl - 1X2.7:;8ﬂ.7:2 +§ZXWW}/”]/5W,
IV
(101)

where yw = all X-charged Dirac fermions and

5(1,, = 5(1!// —)~(2y,, which is conserved, 8”Jif =0, up to
the triangle anomaly. This current creates a massless
particle, the axion. The X current in Eq. (101) is now
decoupled in the limit vz, vy — oo as

- - 1 -
J,)f = lefayAl + (—szxp)ayAz + EZX.,/W’#%V/
174

9,A [
A )2+§wawﬂysw, (102)
2v;)~(1 217\1})}2 v

which corresponds to the charge flow satisfying the
current conservation equation if the symmetry is exact.

Since the J,’;‘ does not couple to the Goldstone boson G in
Eq. (100), requiring Jff not to create G from the vacuum
(0]J%|G) = 0, it follows

(5(11/?)2 - (5(21)\1/)2- (103)
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This indicates that, if one of the symmetry breaking scales
is determined, the other one is automatically fixed. The NG
boson A (which will be the axion) possesses the decay
constant, f,, defined by

(0175 (x)|A(p)) = ip,fae™"™. (104)

From Egs. (102) and (104), we obtain the spontaneous
symmetry breaking scale

1 2 1 2) -
Ja= {<217}'5(1> " <_217\IJ5(2> } ’

which will be more reduced to f, = V2N,|X,|vy =
V2N |X,|vy by using Eq. (103). Under the U(1); trans-
formation, the axion field A translates with the axion decay
constant Fy,

(105)

where a = > ;a; and N = 2N N,. Note here that if N were
large, then F4 could be lowered significantly compared to
the symmetry breaking scale.

However, the current JX is anomalous, that is, it is

violated at one loop by the triangle anomaly 8"],’;( =

N 3312 Gl‘jyé"’“’ [57]. Then the corresponding Lagrangian

has the form

g A Ay ~
Lo > 258 —N| +-—=N, |G% G
eff 2 35 3 | Vet + I 1+ 7,02 ) O
g

A ~auv
— W ('9eff +F—A> G”UG H ,

where f,; = X vz and f,, = X,vy. Since 9. is an angle
of mod 2z, after chiral rotations on the Dirac fermion
charged under U(1)y, x U(1)y,, the Lagrangian should be
invariant under

(107)

A, A 2z A, Ay, 2z
__)_—’__nl’ _ — _n2’
Ny

fal fal faZ_)fa2+N2 (108)

where n, , are non-negative integers. So it is clear to see the
following by replacing n; with NpwN;: if Ny and N, are
relative prime (so the domain wall number Npyw = 1), there
canbe no Zy_ discrete symmetry and therefore no domain
wall problem. Our model (N, = 3, N, = 17) corresponds
to the case.

The heavy neutrinos and SM fermions get the flavored
PQ symmetry U(1) breaking mass terms and the effective
Yukawa couplings, respectively, and the remaining mass-
less (at this level) modes A; of the scalar ®¢ (or ®) and A,
of the scalar W appear as phases:
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Ay
evF ___ _
—;cy d TN%MRNR + QLYUURHM
A _ _
+eléQLYDDRHd+Z€LYLKRHd+H.C. (109)

Here, Ug = (ug.cg.1g)", Dg = (dg.sg.bg)", and the
Yukawa matrices Y, Y, and Y, are expressed as

822
y.e v 0 0

— A
YU = 0 yce4lé 0 N
0 0 v,
WA
yee&ﬁ 0 0
A
Y, = 0 yﬂemé 0 ;
A
0 0 yTe2 ﬁ

Ya Ya

. ~ Vg
Yp = 0 eZI?_\IZ/ 0 Ys Vs Vs X >
0 0 1 Yoo Yo Vb

(110)

where y; =y, +x, 1% with f=d,s,b. Note that all
of the Yukawa couplings above are dependent on the
phases. The Yukawa Lagrangian of the fermions in

Eq. (109) has the X symmetry with the transformation
parameter o under

U(l)y: Ng — e 39Ny, Dy — eXiaDy,

Up — e—Sif(zauR’ Cr = €—2i)~(2aCR’

0, - 33”?2{1QL1’ 0, - EZiJ?ZaQLf
eR_)e—i(S(T]JrSf(z)aeR’ ”Rﬁe—i(k—zl+4)~(2)aﬂR’
TR_’e_i(iT]JFZXZ)aTR? LﬁL _)e—i)-;—'afb

others = invariant, (111)

where we took, without loss of generality, the quantum
number 7 to be zero. At energies below the electroweak
scale, all quarks and leptons obtain masses. From Eqgs. (29)
and (55) [see also Eq. (109)] the fermion mass matrix is
defined as —Ly; = y; M, yg + H.c.. The axion coupling
matrices to the up-type quarks, charged leptons, and down-
type quarks, respectively, are diagonalized through biuni-
tary transformations: VzMWVR = MV, (diagonal), y} =
Viw, (p): mass eigenstates) and y% = Viwe %
mass eigenstates). These transformation include, in par-
ticular, the chiral transformation necessary to make
M, and M, real and positive. This induces a contribution
to the QCD vacuum angle, ie., 9-3945=39+
arg {det(M,) det(M,)} as in Eq. (88). Note here that
under the chiral rotation of the quark field given by
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Eq. (114) the effective QCD angle . is invariant. The
physical structure of the Lagrangian given by Eqs. (109)
and (114) may be examined if we diagonalize the mass
matrices for fermions. After diagonalization, between 1 and
246 GeV the axion-fermion Lagrangians are expressed as

A - _
L4749 = f—l {demddiysd—F Xlsmsii}/5s + lembbiysb}
al

A -
+22 {X, m,uiysu + X .m.ciysc + Xogmydiysd
a2

+ Xo,mSiysst + m,au + m.cc + m,it

+ mydd + m,5s + m,bb — giy,D"q, (112)

A . . =
_[at ~ f_2 {X,m,eiyse + X, m,fiysp + X, m Tiyst}
a2

+ myée + m,jiy + mzt — Ciy, D' (113)

in which ¢ =u,c,t,d,s,b, £ =e,u,7 represent mass
eigenstates, and D, are the covariant derivatives for the
SU(3) x SU(2) x U(1) gauge interactions of the SM. The
axion couplings are model dependent with the elements
of the matrices, so the X charges of the fermions are given
as X, = 8X,, X, = 4X,5, X, = 8X,, X, = 4X,, X, = 2X,,
X1g =Xy, =X = X1, Xog=3X;, and Xp; =2X,,
recalling that X; = —2p and X, = —¢q. The above axion-
SM fermion interactions are applicable above 1 GeV such
asin J/W and Y decays. It is clear that the hadronic axion
does not couple to leptons at tree level, whereas the new
Goldstone bosons, A; and/or A,, interact with both quarks
and leptons. Such couplings, however, are suppressed by
factors v/f,; or v/f . Consequently, both the hadronic
axion and the new Goldstone bosons are invisible. Below
the QCD scale (1 GeV =~ 4xzf,), the axion-hadron inter-
actions are meaningful rather than the axion-quark cou-
plings: the chiral symmetry is broken and z, K and 7 are
produced as pseudo-Goldstone bosons. Then the axion
coupling to quarks is changed as will be seen in the
following subsection.

A. Axion interactions with quarks, leptons,
gluons, and photons

Now, through a chiral rotation on y, we can dispose of
the 9. angle in Eq. (87). Let us chiral-rotate the fth y in
the Fujikawa measure of the path integral

.OrYs .
th
W — exp <l 5 )u/f w1

ap = pX,, = 'D<X1'/’.f - X2W./>

(114)

on Dirac spinors, which contributes
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L—L+ 15: 5> _pX,, Go,GM Tr(11h)
vr

g
327°
to the Lagrangian, where the N is the axion color
anomaly of the U(1); symmetry. And the second term
in Eq. (115) is obtained by letting ZEW}N('ly,fTr(t”tb)—

2>, ff}Zw fTr(t“tb ) = N6, where the sum runs over all y

=L+ pNG, G (115)

with X charge.

Through a rotation Eq. (114), ie., W=
exp{i%%%}y/f, we obtain the vanishing anomaly terms

by adding the QCD vacuum given in Lagrangian (87) to the
above Lagrangian

F F 87

aj a

A A\ ag ~a
Eé) = <’9eff + =L + 2 ) o GaMDG;w

A\ oy ~ 4
= <196ff+ >8—G’“’“Gw. (116)

F A T
Here, F, = f,,/N; with i = 1,2. At low energies A will
get a VEV, (A) = —F, 9., eliminating the constant 9
term. The axion then is the excitation of the A field,
a = A — (A). Since the SM fields y have U(1)g, charges,
the axion coupling to photon will be added to the

Lagrangian through a rotation, Eq. (114), which survives
to the QCD scale:

203, X, (05™)? -
Lo L+ == "F, F"
AT 3272 w
e (E\ A ~
=L — | —F,F" 117
T3 <N) Fy ™ (117)
with the axion electromagnetic —anomaly FE =

ZZWXW,f(Q;-m)z —ZZW)?ZW(Q;‘“)Z because here y =
all X-charged Dirac fermions, where F,, is the electro-

magnetic field strength and its dual F**. Note that since the
field A is not a constant, this term is not a total derivative,
and so cannot be neglected.

In order to remove the axion fields from the Yukawa
interactions in Eqs. (112)—(113), instead of using Eq. (114)
we transform the quark and lepton fields by the chiral
rotations

XAl [5%24
Dp — e Jat Dp, Up — e ' up,

2o Xoh
Cr = e o cp, Op, —e’2 0,
ot ASESR
Qp, > e ’2Qp, Cp —e?laty,
e S, )
R a e tep, Hr — € Fa Ja Ug,
XA 2XHA
TR — el(zflﬁul1 fi22>TR. (118)
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Then derivative interactions from the kinetic terms for the
fermions are generated,

A ) _
E—{X14dr"ysd + X1,57"7ss + X1p,br*ysb}

_Ea_q ~
a
{X aytysu + X cytysc
Zfa
+ Xogdy*ysd + X, 57"yss}
+ my it + m.cc + mit + mydd + m5s
+ mybb — giy,D*q, (119)
—Lo = {X er'yse + X, iay'ysu + X ar'yst}

2fa
+m,ée + myjip + m 7t — z?iy”D”f, (120)

both of which are equivalent to Eqs. (112)—(113).
The derivative interactions can also be simplified,
and in turn they can be expressed in terms of the
axion A as

Z(aAl)ﬁ a”AZX )_ )

f v 2 |WYVYSW
8 A
~fa

ZXWWY”VSW (121)

At energies far below f,, after integrating out the X
charge carrying heavy degrees of freedom, in terms of
the physical axion field a (which is the excitation with
the vacuum expectation removed) we can obtain the
following effective Lagrangian £ including the SM
Lagrangian Lgy:

2
—G%,G™

1 2
£25 0= Pt

f ZX.,/W}’”Vsll/ +

n e? E aF 2
272 \N) F,

B. Axion mass and axion-photon coupling

Now, below the SU(2) x U(1) breaking scale where
all quarks and leptons obtain masses, the X current given
in Eq. (102) is constructed from the axion, quark, and
lepton transformations under the X symmetry. The reason
that the axion gets a mass is that the X current has the

(122)

"Reference [58] has recently considered several interesting
effects arising from and detection schemes based on some of
these effects for the axion couplings to quarks, leptons, and
gluons.
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color anomaly. Then we neglect the lepton current for the
axion mass.

We integrate out the heavy quarks (c,b,t) to obtain
the effective couplings just above QCD scale. Now there
are three light quarks (u, d, s). In order to obtain the axion
mass and derive the axion coupling to photons, we
eliminate the coupling of axions to gluons through rotation
of the light quark fields

4

q — exp <—iaq 35>q with ¢ =u,d,s. (123)

With the above chiral rotation, such that a/F, —
> 4% =0, the quark-axion sector of the Lagrangian
(122) reads

Ma _
La = iq1,D,uq + L (9ay - 7 ——> (X, +a)ar'rsq

A g
- ( Z myqre®iqg —I—H.c.)
q=u.,d,s
e’ m) =
+ 50 ( 62%@e )FWF” . (124)

As can be seen here, the CP-violating 9. term at the
minimum is canceled out, which provides a dynamical
solution to the CP problem [4], but there is a phase in m,,.
Clearly, we have some freedom in choosing the phase®:

since the QCD vacuum is a flavor singlet, i.e.,
(itu) = (dd) = (ss), the a, is determined by the flavor
singlet condition, that is, a,m, = a;m,; = a;m,. From
a/Fy—>_,a, =0 we obtain

a 1 a z
au =0, ad =,

Fal4+z+w Fal4+z+w

a w

= 125

ST Faltztw (125)

where z = m,, (iiu)/my(dd) = m,/m, and w = m, (iu)/
mg(5s) = m,/m, in the SU(3)pq, Symmetric vacuum.
Considering u, d, and s quarks, the chiral symmetry
breaking effect due to the mixing between the axion and
light mesons is

Zaq(Qem —

44z+w a

126
1+Z+W>FA ( )

*In the case that m,,m,, and m, are equal, it is natural to
choose these phases to be the same, ie., a, =a;, = a; = a/3
[59].
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And the value of E/N is determined by the X charge carrying quarks and leptons

E_2-[(Xe+ X, + X)(=1)° +3(X, + X )G +3(Xa+ X, + X,)(=9)’]

N 2(X 1+ Xis + Xip) (X + X+ Xog + Xoy)

which corresponds to 112/51, where N, = 3, N, = 17 for
the given X charges X; = X, = 1. Here, the axion color
anomaly N and electromagnetic anomaly E are given below
Egs. (115) and (117), respectively.

And below the QCD scale where the quarks have
hadronized into mesons, which will result in mixing
between axions and NG mesons of the broken chiral
SU(3); x SU(3)g, the kinetic terms vanish,

Ly = —< Z m,qre®iqg +H.c.>

q=u,d,s

2 (E 24 -
e +z4+w)\ a (128)
N 31+4+z+w

_ il HY
+ 327° Fy Fu ™
From the effective Lagrangian (109) or Eq. (112) the
interaction for the light quarks preserves the X symmetry,
while it does not preserve the chiral symmetry. So we may
include the effects of the Yukawa interactions in the
effective Lagrangian by adding a term that explicitly breaks
the symmetry. Let us consider the form of the chiral
Lagrangian

fz 1

Loy = —Z”Tr[D,,z*Dﬂz] —5H FATr[EAM,, + (ZAM )],

(129)

where X = exp[2iz°T*/f,] (a=1,...,8) is the meson
field, 7¢ are the generators of SU(3), D,, is the appropriate
covariant derivative that introduces the electroweak inter-
actions, f, =93 MeV, p is an undetermined constant,
which is related to explicit chiral symmetry breaking,
M, = diag(m,,my, m,) is the light quark mass matrix,
and A = diag(e'®, e, ') is the axion phase rotation.
The first term in the above Lagrangian (129) is invariant
under global transformation X — gLZg;e where g; =1
(unit matrix) and gz = diag(e'™, e'®, ¢), while the
second term is not invariant. Thus, the axion and mesons
will acquire masses from the second term in the Lagrangian
(129). Note that the invariance of the above Lagrangian
(129) under U(1)y; requires that X transform as

e—iaffu 0 0
I=E 0 e 0 |
0 0 ek

A>A+Fq.  (130)

Even though the A field is generated at high energy, it
develops a VEV below the QCD scale. Expanding £ and

: (127)

considering the constant term corresponding to ground
state energy, the A potential is given as

1 A
V(A) = —uf2i m, cos——— | — + 9,
(A) ﬂf{ 1+Z+W(FA ff)
+ : )
m;CoOS— | — g
P w\F,

+ cos— —+9
my ,
Pl 4z w \Fy eff

which is minimized when (A) = —8.4F 4. Then the axion
mass is proportional to the curvature of the effective
potential induced by the anomaly. Expanding V(A) at
the minimum gives the axion mass

2 — <82V<A>> _Sropme
‘ Oa® (A)=—=9¢;F 4 Fz%\ I+z4+w

(131)

(132)

The physical axion/meson states and the mixing parameters
may be determined from the axion/meson mass matrix that
can be obtained by expanding the symmetry breaking part
in Lagrangian (129) and taking the terms quadratic in the
fields [see Eq. (C1)]. The axion mass in terms of the pion
mass is obtained as

miFy = m2 f2F(z.w), (133)

where m?, is the z%2° entry of M? in Eq. (C3), and

z
(I4+2)(1+z4+w)’

a{m) G

It is clear that the axion mass vanishes in the limit m, or
my — 0. The axion mass derived in Eq. (133) is equivalent
to Eq. (132). In order to estimate the axion mass, first we
determine the parameters pm, and w as a function of z from
the physical masses of the NG bosons. In Eq. (C1) they can
be extracted as um, = (108.3 MeV)?z,w = 0.315z. Then
we can estimate the axion mass

F(z,w) =

(134)

10!2 GeVv
3V2F,

where the Weinberg value for z = m, /m,; = 0.56 [60] and
Eq. (103) are used. After integrating out the heavy z° and 5

m, =2.53 x 1075 eV< ) (135)
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FIG. 3 (color online). Plot of (g,,/m,)* versus E/N for
z = 0.56. The solid-red line represents the experimental upper
bound (g,,/m,)* <1.44 x 107" GeV—2eV~2 from the axion
dark matter experiment (ADMX) [61]. Here, the dashed-black,
dotted-brown, and solid-blue lines stand for (g,,,,/m,)* =1.404x
1071°GeV~2eV~2 for E/N = 0, 2.074 x 10720 GeV~2eV~2 for
E/N = 8/3,and 2.754 x 1072! GeV~2eV~2for E/N = 112/51,
respectively.

at low energies, there is an effective low energy Lagrangian
with an axion-photon coupling g, :
L

FYF ) = —GaapysE - B, (136)

ary = g Jary@phys

where E and B are the electromagnetic field components.
And the axion-photon coupling can be expressed in terms
of the axion mass, pion mass, pion decay constant, z, and w:

Qe My 1 E 24+4+7+w
9 =2 g \JF(ew)

N 31+z4+w
The axion coupling to photon g,, divided by the
axion mass m, is dependent on E/N. Figure 3 shows

). (137)

-9
1077 ¢ Massive Stars k
™ = peeccucciceccccacmssscncsccsassssaacpnnenn 74
| _
% 10 11 L
e
— 1077}
= KSvZ SN1987A
So 10—15 L L The model 1
10717 LezZzZl, . .
1078 1076 10*4 0.01 1

Axion Mass m,(eV)

FIG. 4 (color online). Plot of |g,,| versus m, for KSVZ
(black dashed line), DFSZ (blue dashed line), and our model
(red solid line) in terms of E/N =0, 8/3, and 112/51, respec-
tively. Here, the horizontal dotted line stands for the upper
bound |g,,| <1x 107" GeV~" that is from globular-cluster
stars [16]. And the black bar corresponding to m, < 16 meV
is the constraint derived from the measured duration of the
neutrino signal of the supernova SN1987A [16]. Especially, in
the model, for f4, = 10'> GeV we obtain m, = 2.53 x 107 eV
and [g,,,| = 1.33 x 107 GeV~'.
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the E/N dependence of (g,,,/m,)* so that the experimental
limit is independent of the axion mass m,: the value
of (gay,/mg)* of our model is one or two orders of
magnitude lower than that of the conventional axion model,
i.e., KSVZ or DFSZ model. For the Weinberg value
7 =0.56, the anomaly value E/N = 112/51 predicts
(Gayy/ma)* = 2.754 x 107! GeV~2eV~2, which is lower
than the ADMX bound [61]. Figure 4 shows the plot for the
axion-photon coupling |g,,,| as a function of the axion
mass m, in terms of anomaly values E/N = 0,8/3,112/
51 that correspond to the KSVZ, DFSZ, and our model,
respectively. The model will be testable in the very near
future through experiments such as that at the Center for
Axion and Precision Physics research (CAPP) [62].

VI. CONCLUSION

We have suggested a u — 7 power law under which
certain elements associated with the muon and tau flavors
in the lepton mass matrices are distinguished, such that
relatively large 13 mixing angle and bilarge mixing ones
could be derived. According to this, we have proposed a
neat and economical model for both the fermion mass
hierarchy problem of the standard model and a solution of
the strong CP problem, in a way that no domain wall
problem occurs, based on A, x U(1), symmetry in a
supersymmetric framework. Here, the global U(1)y sym-
metry that can explain the above problems is referred to as
flavored Peccei-Quinn symmetry. In the model, a direct
coupling of the SM gauge singlet flavon fields responsible
for spontaneous symmetry breaking to ordinary quarks
and leptons, both of which carry X charges, comes to pass
through Yukawa interactions. All the VEVs (scaled by the
cutoff scale A) breaking the symmetries are connected to
each other. So the other VEV scales are automatically
determined, once a VEV scale is fixed through low energy
phenomenology. In the model, the scale of Peccei-Quinn
symmetry breaking is shown to be roughly located around
the 10'? GeV section through its connection to the fermion
masses.

On phenomenology, we have examined leptonic CP
violation and neutrinoless double beta (Ovfpf) decay:
Figs. 1-2 show the main results. A future precise measure-
ment on the atmospheric mixing angle 6,5 is of importance
in order to distinguish between NO and IO in the model.
The value of 6,3 would lie on |63 —45°| ~ 1° for NO, and
|6,3 — 45°| ~ 3" — 8’ for I0. Moreover, the model predictions
have shown that the IO is more predictive on Dirac CP phase
Scp ~70°,110° 250°,290° than the NO 6 € [90°, 2707 for
023 ~ 46" and 5¢p € [0°,907] and [270°,360°] for O3 ~ 44,
and the effective neutrino mass proportional to the Ovff
decay |m,,| ~0.044-0.16 eV for NO and 0.066-0.171 eV
for 10. Also, we have shown that the model naturally
describes the fermion mass and mixing hierarchies of the
standard model, which are in good agreement with the present
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data. Interestingly, we have shown model predictions on the
axion mass m, = 2.53 x 107> eV and the axion coupling to
photon g,,,, = 1.33 x 107> GeV~!. In turn, the square of the
ratio between them is shown to be one or two orders of
magnitude lower than that of the conventional axion model,
1.e., KSVZ or DFSZ model. The model can be testable in the
very near future through ongoing experiments for neutrino
oscillation, neutrinoless double beta decay, and the axion.
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APPENDIX A: THE A, GROUP

The group A, is the symmetry group of the tetrahedron,
isomorphic to the finite group of the even permutations of
four objects. The group A4 has two generators, denoted S
and 7T, satisfying the relations S?> = T3 = (ST)% = 1.
In the three-dimensional complex representation, S and T
are given by

NEER 10 0
s=z|2 -1 2| T=[0w 0 (A1)
2 2 -1 0 0 o?

A, has four irreducible representations: one triplet 3 and
three singlets 1,1’,1”. An A, singlet a is invariant under
the action of S (Sa = a), while the action of T produces
Ta = afor 1, Ta = wa for 1, and Ta = w?a for 1", where
w=e?3 =_1/2+i/3/2 is a complex cubic root
of unity. Products of two A, representations decompose
into irreducible representations according to the following
multiplication rules: 3®3=3,03,6101'®1",1'®1"=1,
'®1 =1, and 1" ® 1” = 1'. Explicitly, if (a,, a,, a3)
and (by,b,,b3) denote two A, triplets, then we have
Eq. (15).

To make the presentation of our model physically more
transparent, we define the T-flavor quantum number 7'
through the eigenvalues of the operator 7, for which
T3 = 1. In detail, we say that a field f has T flavor
Ty =0, +1,or —1 whenitis an eigenfield of the T’ operator
with eigenvalue 1, @, @?, respectively (in short, with
eigenvalue o’/ for T flavor T, considering the cyclical
properties of the cubic root of unity w). The T flavor is
an additive quantum number modulo 3. We also define the
S flavor parity through the eigenvalues of the operator S,
which are +1 and —1 since $? =1, and we speak of
S-flavor-even and S-flavor-odd fields. For A, singlets,
which are all S flavor even, the 1 representation has
no T flavor (T, = 0), the 1’ representation has 7 flavor
T; = +1, and the 1” representation has T flavor 7, = —1.
Since for A, triplets the operators S and 7" do not commute,
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Ay-triplet fields cannot simultaneously have a definite T
flavor and a definite S flavor parity.
The real representation, in which § is diagonal, is

obtained through the unitary transformation
A— A =U,AU,, (A2)

ar

where A is any A4 matrix in the real representation and

1 1 1
U, ! 1 2 (A3)
o0 =—= o o |.
V3 ’
l w w
We have
1 0 0 01 0
S=10 -1 0 |, T"=10 0 1]. (A4)
0O 0 -1 1 0 0

For reference, an A, triplet field with T-flavor eigenfields
(ay, a, az) in the complex representation can be expressed
in terms of components (ag;, dgo, dg3) as

a; +ag + aj R +0)(12+602(13

AR = T R = \/§ ,
a, + w*a, + wa
N (AS)
Inversely,
a = aig + arp + asg 4 — aig + w’arg + wasg
V3 ’ V3 ’
2
a3_a1R+a)a\2/R§+a) a3R‘ (A6)

Now, in the S diagonal basis the product rules of two
triplets (ag;, ags, ags) and (bgy, bgo, bgs) according to 3 ®
3=303,0101'®1" are as follows:
(ag ® bg)s, = (arrbag + asgbag, azgbig
+ aigbsg, a1rbog + asgbir),
(ar ® bR)z,a = (aarbsg — azgbog, azgbir
— aigbsg, airbog — arrbig),
(ag ® br)y = aigbig + axrbog + asgbsg,
(ag ® br)y = airbig + @*azrbag + wazgbsg,

(ag @ br)y = ajrbig + wasrbyg + w*aspbsg. (A7)

APPENDIX B:

1. Vacuum configuration for the driving fields

From the vanishing of the F terms associated to the
flavons, the vacuum configuration of the driving fields
Pl @5, 0, ¥ are determined by
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ow, 2
9, \/§ (Z@Tl‘bm ‘I)T2‘I’o3 - (I’T3‘I>oz) + #‘I’ 1 =0,
ow,, 29
9By, ﬂ(zq)rz@oz r30h; — PrP(3) + PGy =0,
ow, 2 -
0,5 \/§ (2@73P(; — 1o ®j, — Ppy P,) + fidf, =0,
(B1)
ow, 2g
9%y, \/31 (205, PF; — P Pps — Ps3®P5y)
+ 92@(5)1(:) + 293950y =0,
ow, 2g
e ﬁl (205, B, — 535, — Dy OF)
-+ 92©g3é + 293@53(")0 = O,
ow, 2g
G, = 5 20 P — 1B — P )
=+ gz<1>32@ +29395,0) =0, (B2)
ow,, ~
0 0)(2940 + ¢g50) = 0,
ow ~
=0 0 + 2¢O
90 0(95 J6 )
+ 92 ( P51 DG + Py P35 + P53 P5,) = 0,
an,‘ T,
v g7Yo¥ =0,
ow
Y = g, U, ¥ = 0. B3
Py g7 %o ( )
From this set of ten equations, we obtain
@1) = (0.0.0), () = (0.0.0).
(©y) =0, (Vo) =0, (B4)

which are valid to all orders.

2. Correction to the vacuum configuration

By keeping only the first order in the expansion, the
minimization equations become

293?1 + azﬁ + aSAv% =0,  Sup=0, vz =0,
(B5)

2\/_91 I (2805, — Svgy — Sus3) + 9200 + prvg =0,

2xgg1 (2605, — Bvs, — Bvs,) + 5200 + pyvg =0,

2\/jgl (26vs, — dvs, — 6vs,) + 9200 + p3vs =0,  (B6)
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~ 3
2g3(6vs, + Ovs, + vs,) + (29460 + g500)4 | - % =0,
4
(B7)
el
2977.)\1,51)\1; + dl 0, (Bg)

\/_A

where  py={3b3+2b;, /-L-0n) ) —L{3hs—
(iv3bs+b7)\ /—2}, and  py="{3b4+(iv3bs—

b7),/—%2}. These equations can be solved by

azva + asvﬁ, V3

ovp = — , Ovry = 6vps = 0,
T1 A 2 2 T3
56 = _P1LTP2tDs, o se o,
39,
P1+ P2+ D3 V3
Svs, = R T
v, = (¢ + d5) 9, Vg 60, Pivs
+ptps. V3
5 pinins, 3,
vs, = (d5 + d5) 9, Vg 601 DaUs
Pi+p2t+p V3
ovg, = (9’2+9I5)71 2 3 w5 ——— pavs,
99> 69,
dl Ur ’U%
vy = —_— B9
v g7\/§1}\1/ A ( )

in which ¢, = ‘/—gz and g5 = 95\/%‘

APPENDIX C: MIXING BETWEEN AXION
AND MESON

The mass terms reads
K
L = 2

wtdzt+zw , 1-z 24w
+ - + K°k°
6zw 1 2\/§z”017 < w >
(C1)

1
+ﬂK+K + +Zﬂ+ﬂ_}.
w Z

1
+zﬂ%

As for the axion-photon coupling, both the z° and 5 couple
to photons through triangle anomalies. However, from
Eq. (C1) we see that there are no mixings with the axion
and the heavy 7° and 5. We explicitly show the mass
squared terms in Eq. (C1) and the boson- photon photon
couplings G, G,,,, and G,,, for the axion, 7°, and 7,
respectively:

ayy» = nyy?
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where

f2
KM 7203 )

0
0

M2

PHYSICAL REVIEW D 91, 056005 (2015)

1 Gay}’
—i—Z(a 2 )| Guy |FF. (C2)
G’W}’
0 0
pm, M2 (C3)
pmy S, MR

Diagonalizing the mass squared matrix M? in a basis a — 7z —  basis, one can find the physical masses for the axion
a, 7°, and 5. And the physical masses for 7° and K° mesons as well as the electromagnetic contributions to the physical

7+ and K* mesons are expressed as

z+wr+aw—+/(z+w+zw)? =3w(l +z+w)

(mjzr())phys = Zﬂmu(

I 1

(m?(o)phys = pmy, <Z + ;

)

)

3zw

2 _
K*
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