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The Pontecorvo–Maki–Nakagawa–Sakata and Cabibbo–Kobayashi–Maskawa matrices are phenom-
enologically close to symmetric, and a symmetric form could be used as zeroth-order approximation for
both matrices. We study the possible theoretical origin of this feature in flavor symmetry models. We
identify necessary geometric properties of discrete flavor symmetry groups that can lead to symmetric
mixing matrices. Those properties are actually very common in discrete groups such as A4, S4, orΔð96Þ. As
an application of our theorem, we generate a symmetric lepton mixing scheme with θ12 ¼ θ23 ¼ 36.21°;
θ13 ¼ 12.20°, and δ ¼ 0, realized with the group Δð96Þ.
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I. INTRODUCTION

The properties of the fermion mixing matrices are
expected to give important hints on the underlying flavor
physics. Flavor symmetries [1] are an attractive and most
often studied approach to explain the rather different
structure of the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) and Cabibbo–Kobayashi–Maskawa (CKM) mix-
ing matrices. Literally hundreds of models have been
proposed in the literature, applying many possible discrete
groups in order to explain lepton and quark mixing. Instead
of adding simply another model to that list, we study in this
paper an interesting possible property of both the CKM and
PMNS matrices. Namely, despite the fact that the CKM
mixing is a small while the PMNS mixing is large, both can
to reasonable precision be estimated to be symmetric. The
symmetric form of the CKM matrix was noticed early and
has been studied in many references [2–10]. After neutrino
oscillation was well established, the possible symmetric
PMNS matrix also attracted some attention [11–17]. The
symmetric form discussed in these references includes the
manifestly symmetric case (U ¼ UT) and the Hermitian
case (U ¼ U†). It is easy to get the relation

ðU ¼ UTÞ ⇒ ðjUj ¼ jUjTÞ⇐ðU ¼ U†Þ ð1Þ

by taking absolute values, which implies any physical
prediction from jUj ¼ jUjT can also be used in the other
two cases U ¼ UT or U ¼ U†. Both of them are special
cases of jUj ¼ jUjT , which is what we mean by symmetric
mixing matrix from now on.
Using the global fits of the CKM [18] and PMNS [19]

matrices, one finds

jUCKMj ¼

0
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ð2Þ

jUPMNSj ¼

0
BBBBBBBBB@

�
0.845

0.791

� �
0.592

0.512

� �
0.172

0.133

�

�
0.521

0.254

� �
0.698

0.455

� �
0.782

0.604

�

�
0.521

0.254

� �
0.698

0.455

� �
0.782

0.604

�

1
CCCCCCCCCA
: ð3Þ

Here, the upper (lower) values in each entry are upper
(lower) bounds of the matrix elements. The CKM matrix
has been measured to a high precision (here, we show the
1σ range), and the relations jU12j ¼ jU21j, jU23j ¼ jU32j
are still quite compatible with data. The relation jU13j ¼
jU31j is, however, not fulfilled by data. As a symmetric
mixing matrix requires that [2,11]

jU31j2 − jU13j2 ¼ jU12j2 − jU21j2 ¼ jU23j2 − jU32j2 ¼ 0;

ð4Þ

we have an interesting option, namely, that some flavor
symmetry or other mechanism generates jU12j ¼ jU21j and
jU23j ¼ jU32j, but U13 ¼ U31 ¼ 0. Higher-order correc-
tions, which are frequently responsible for the smallest
mixing angles, are then the source of nonzero jU13j ≠ jU31j
as well as of CP violation. Rather trivially, matrices with
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only one mixing angle are symmetric, and the same holds
for the unit matrix.
The symmetry conjecture for the PMNS mixing is less

compatible with data, as shown by the 3σ bounds in Eq. (3)
[20]. Similar to the quark sector, the 13 and 31 elements are
incompatible with symmetry (the other two relations
between the elements are also not favored by data), and
a similar situation as mentioned above for the CKM matrix
might be realized. Of course, one could also imagine that
an originally symmetric mixing matrix is modified by
higher-order corrections, vacuum expectation value (VEV)
misalignment, renormalization group effects, or other
mechanisms that have been studied in the literature.
For completeness, we give the phenomenological pre-

diction of a symmetric mixing matrix, using the standard
parametrization of the CKM and PMNS mixing matrices
[11]:

jU13j ¼
sin θ12 sin θ23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − sin2δcos2θ12cos2θ23
p

þ cos δ cos θ12 cos θ23
:

ð5Þ

This is the unique physical prediction of both jUj ¼ jUjT
and U ¼ UT . Note that jUj ¼ jUjT has only one prediction
as the unitarity requires that the relation in Eq. (4) is
fulfilled, so once we set jU13j2 ¼ jU31j2, we immediately
get jUj ¼ jUjT . It is also the unique prediction of U ¼ UT

because any 3-by-3 unitary U with jUj ¼ jUjT can be
transformed to a new U0 satisfying U0 ¼ U0T simply by
rephasing [2,11]. Note that this does not hold for more than
three generations. The Hermitian caseU ¼ U† has not only
the prediction of Eq. (5) but also CP conservation [13].
Thus, it would predict sin θ13 ¼ tan θ12 tan θ23.
Despite the apparent deviation from their symmetric

forms, one can still use it as an attractive zeroth-order
ansatz and attempt to study its theoretical origin. One
option, put forward in Ref. [15], is that a single unitary
matrix V diagonalizes all mass matrices of quarks and
leptons at leading order, in addition to the SUð5Þ relation
md ¼ mT

l between the down quark and charged lepton mass
matrices. While it is difficult to embed this in realistic mass
spectra in grand unified theories, the predictions of this
scenario are thatUCKM ¼ V†V ¼ 1whileUPMNS ¼ VTV is
symmetric.
In this paper, we study the origin of symmetric mixing

matrices from an underlying flavor symmetry. We prove a
theorem that links geometric properties of discrete sym-
metry groups to the symmetric form of the mixing matrices.
This theorem, explained in detail in Sec. II, holds only for
subgroups of SOð3Þ with real representations and can
interestingly be realized in the most often studied groups
A4 and S4. We find a modification that holds in the complex
case in Sec. III, which could be applied to subgroups of
SUð3Þ, for instance, to Δð96Þ. We use this to reproduce a

previously studied, and actually symmetric, mixing sce-
nario for the PMNS matrix in Sec. IV.
Since our analysis links the properties of the symmetry

group with the mixing matrix, we end our Introduction with
a summary on how the generators of the group can be
related to the matrices diagonalizing the mass matrices,
following the strategy developed in Refs. [21–23]. In
general, if a flavor symmetry group G is applied to, for
instance, the lepton sector, then it must be broken to two
residual symmetries Gl and Gν acting on the charged
lepton sector and neutrino sector:

G →

�
Gν∶ STMνS ¼ Mν

Gl∶ T†MlT ¼ Ml:
ð6Þ

Here, the left-handed neutrino (assumed to be Majorana)
mass matrix Mν is invariant under the transformation
STMνS for S ∈ Gν, and Ml (defined by mlm

†
l, where

ml is the charged lepton mass matrix) is the effective mass
matrix of left-handed charged leptons, invariant under
T†MlT. Then, the diagonalizing matrices Uν and Ul
defined by

Mν ¼ UνDνUT
ν ; ð7Þ

Ml ¼ UlDlU
†
l ð8Þ

can be directly determined by S and T according to [21–23]

U†
νSUν ¼ DS; ð9Þ

U†
lTUl ¼ DT; ð10Þ

where all D are diagonal matrices. Note that Uν obtained
from Eq. (9) does not include Majorana phases that rephase
each column of Uν. Equation (9) is independent of such
rephasing, which means the Majorana phases are not
determined by flavor symmetries in this approach. For
Majorana neutrinos, Gν has to be a direct product of two
Z2, i.e., Z2 ⊗ Z2, to fully determine the mixing in neutrino
sector [24]. For quarks, we have the same framework but
since they are Dirac fermions, we do not have to be limited
to Z2 ⊗ Z2. In this case, note that ST and UT

ν in Eqs. (6)
and (7) should be replaced with S† and U†

ν.

II. THEOREM FOR jUj ¼ jUjT
In this paper, as mentioned above, we define the

symmetric mixing matrix as

jUj ¼ jUjT ð11Þ

rather than the original definition of U ¼ UT or the
Hermitian case U ¼ U†. The phenomenology is the same
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for jUj ¼ jUjT and U ¼ UT but more general than the
Hermitian case.
Before we formulate our theorem that links geometrical

properties of the flavor symmetry group to a symmetric
mixing matrix, we will first define the geometric concepts
that will be used.
The Z2 symmetries used in neutrino sector are actually

just reflections or 180° rotations (the difference between
them is trivial, and any 180° rotation in three-dimensional
space can be changed to a reflection if we add an overall
minus sign and vice versa). In three-dimensional flavor
space, going without loss of generality in the diagonal
neutrino basis, the Z2 transformations correspond to put-
ting minus signs to neutrino mass eigenstates: νi → −νi.
The combined Z2 ⊗ Z2 in three-dimensional flavor space
corresponds to two reflections with respect to the direction
of neutrino mass eigenstates. Or, in a picture with which we
are more familiar, if there are planes of which the normal
vectors are neutrino mass eigenstates, the Z2 symmetries
are just the mirror symmetries of those planes. Since Z2 ⊗
Z2 contains commutative mirror transformations or since
the mass eigenstates are orthogonal, the mirrors should be
perpendicular to each other, as shown in Fig. 1 by trans-
lucent squares. If the transformation from Gl is real (we
will discuss the complex case later) in flavor space, it is an
SOð3Þ transformation that can always be represented by a
rotation. If the rotation axis is on the bisecting plane, which
is defined as the plane that bisects the two mirror squares,
or as the boundaries of octants in the diagonal neutrino

basis, then we define that Gl bisects the two Z2 ⊗ Z2. We
show two bisecting planes in Fig. 1, while all bisecting
planes are shown in Fig. 2. This gives now all definitions
necessary for our theorem. Theorem A.— If an SOð3Þ
subgroup G contains two noncommutative Abelian sub-
groups Gν and Gl, and if Gν is isomorphic to Z2 ⊗ Z2

whileGl bisects the Z2 ⊗ Z2, thenG as a flavor symmetry
can produce a symmetric mixing matrix.
The definition of bisection and symmetric mixing were

given previously. The subgroups Gν and Gl are required to
be Abelian because the residual flavor symmetries are
always Abelian [21–23] and noncommutative so that the
mixing is nontrivial.
The proof of this theorem will be obvious after we

introduce the general SOð3Þ rotation and the diagonaliza-
tion below [see Eqs. (20) and (24)]. The Z2 symmetries are
applied to Majorana neutrinos and the bisecting rotation to
charged leptons. However, one can also apply the theorem
to quarks and obtain a symmetric CKM mixing. In the case
of Dirac fermions, Z2 is not necessary but sufficient. We
will comment further on CKM mixing later. Because the
axis of a bisecting rotation can be rotated on its bisecting
planes, there are infinite bisecting rotations. Hence,
Theorem A can produce infinite symmetric mixing matri-
ces with 1 degree of freedom. Note that the unitary matrix
with the constraint jUj ¼ jUjT has only one prediction;
see Eq. (5).
Actually a lot of discrete flavor symmetries satisfy the

conditions required by Theorem A, for example, the
tetrahedral group T and octahedral group O, which are

FIG. 1 (color online). The geometrical relation of the mirror
planes and the bisecting planes. The mirrors are placed on the
y − z, z − x, or x − y plane. The two round disks are called
bisecting planes because they bisect all the square mirror planes.
The bisecting planes are boundaries of octants.

FIG. 2 (color online). The complete collection of all six
possible bisecting planes and their geometrical relation with
the mirror planes. A rotational symmetry with its axis on one of
these bisecting planes can give, according to Theorem A, a
symmetric mixing jUj ¼ jUjT .
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just the widely used A4 and S4 flavor symmetry groups,
respectively (for geometrical interpretations on A4 and S4,
see, e.g., Ref. [25]). We can see in Fig. 3 that if we choose
the three 180∘ rotational axes as x, y, and z axes, which
penetrate the tetrahedron through the two central points of
two edges, then the bisecting planes are determined, as
shown by dark blues circles. The tetrahedron is also
invariant under the 120° rotation marked in Fig. 3, which
is a bisecting rotation since the axis is on three bisecting
planes. In explicit formulas, we say the tetrahedron is
invariant under the rotations

Rbs ¼

0
B@

0 −1 0

0 0 −1
1 0 0

1
CA; ð12Þ

S1 ¼ diagð1;−1;−1Þ; S2 ¼ diagð−1; 1;−1Þ: ð13Þ

Here, Rbs is the 120° bisecting rotation, and Siði ¼ 1; 2Þ are
the 180° rotations around the x and y axes. Equation (12)
can be obtained by requiring that Rbsð1; 0; 0ÞT ¼ ð0; 0; 1ÞT ,
which means Rbs rotates the x axis to the z axis, as well as
the other two relations Rbsð0; 1; 0ÞT ¼ ð−1; 0; 0ÞT and
Rbsð0; 0; 1ÞT ¼ ð0;−1; 0ÞT .
If Rbs and Siði ¼ 1; 2Þ are the residual symmetries

of the charged lepton sector and neutrino sector, respec-
tively, i.e.,

R†
bsMlRbs ¼ Ml; STi MνSi ¼ Mν; ð14Þ

then according to Eqs. (9) and (10), we can compute Ul
and Uν from Rbs and Si. The result is

Ul ¼ 1ffiffiffi
3

p

0
B@

1 ω ω2

−1 −ω2 −ω
1 1 1

1
CA; Uν ¼ 1: ð15Þ

We see thatUl is theWolfenstein matrix, up to trivial signs.
Therefore, in this case, the PMNS matrix U ¼ U†

lUν is
symmetric, i.e, jUj ¼ jUjT .
As another example, we show in Fig. 4 that the octahedral

symmetry, which is isomorphic to the widely used S4
symmetry, also has the required properties for Theorem
A. Figures 3 and 4 show that the properties required by
Theorem A are quite common in discrete groups with three-
dimensional irreducible real representations.
Now we present the theorem in explicit formulas. For

simplicity, we choose a basis under which the mirror has a
normal vector ð1; 0; 0ÞT, ð0; 1; 0ÞT , or ð0; 0; 1ÞT, so the
mirror symmetry is just a reflection with respect to the
y − z, z − x, or x − y plane. Then, the mirror transforma-
tions through the y − z and z − x planes are

S1 ¼ diagð−1; 1; 1Þ and S2 ¼ diagð1;−1; 1Þ;

respectively. Under this basis, the normal vectors n ¼
ðn1; n2; n3ÞT of the six bisecting planes satisfy one of
the six conditions,

jnij ¼ jnjj; ði; j ¼ 1; 2; 3; i ≠ jÞ; ð16Þ

FIG. 3 (color online). Tetrahedron symmetry. The dark blue
circles show the bisecting planes. The axes of the 120° rotational
symmetries of the tetrahedron are on those planes; therefore,
according to Theorem A, the tetrahedral group as a flavor
symmetry can produce a symmetric mixing matrix jUj ¼ jUjT .

FIG. 4 (color online). Octahedron symmetry. Similar to Fig. 3,
according to Theorem A, the octahedral group can also be used to
produce a symmetric mixing matrix jUj ¼ jUjT .
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i.e., n1 ¼ �n2, n2 ¼ �n3, or n1 ¼ �n3. The bisecting
rotations Rbs with such an axis have special forms that
we will show below. The neutrino and charged lepton mass
matrices are now invariant under transformations of (S1, S2)
and Rbs, respectively:

STi MνSi ¼ Mν; ði ¼ 1; 2Þ ð17Þ

R†
bsMlRbs ¼ Ml: ð18Þ

Diagonalizing these matrices with the transformation

Mν ¼ UνDνUT
ν ; Ml ¼ UlDlU

†
l ð19Þ

gives the PMNS mixing matrix U ¼ U†
lUν. According to

Theorem A, U will be symmetric with proper ordering of
the eigenvectors.
Since we choose the basis in which S1 and S2 are

diagonal,Mν is constrained to be diagonal by Eq. (17), and
hence Uν is diagonal. As discussed at the end of the
Introduction, diagonalization of ðS1; S2Þ and Rbs will give
Uν and Ul. So actually the key point of Theorem A can be

stated as follows: For any SOð3Þmatrix R, if R ¼ Rbs, there
must be a unitary matrix U that is symmetric (jUj ¼ jUjT)
and can diagonalize R. The converse is also true, which
means R ¼ Rbs is the necessary and sufficient condition
for jUj ¼ jUjT.
Thus, in the basis we choose, we have a bisecting

rotation to generate jUlj ¼ jUljT and the mirror sym-
metries to make Uν diagonal, and therefore we get a
symmetric PMNS matrix. In the above discussion, we
have explained the theorem in a specific basis; however, the
physical result is independent of any basis. One can choose
another basis in which the mirrors are not on the x − y,
y − z, and z − x planes, in which case the neutrino sector is
not diagonal and in general jUlj ≠ jUljT . However, the
geometrical relation of the bisecting planes and the mirror
planes makes sure that the product U†

lUν is symmetric.
As for the explicit form of the bisecting rotation Rbs, we

should first introduce the general rotation. The most
general rotation in Euclidean space that rotates the whole
space around an axis n ¼ ðn1; n2; n3ÞT (n:n ¼ 1) by an
angle ϕ is

Rðn;ϕÞ ¼

0
B@

n21 þ cðn22 þ n23Þ ð1 − cÞn1n2 þ sn3 −sn2 þ ð1 − cÞn1n3
ð1 − cÞn1n2 − sn3 cþ n22 − cn22 sn1 þ ð1 − cÞn2n3
sn2 þ ð1 − cÞn1n3 −sn1 þ ð1 − cÞn2n3 cþ n23 − cn23

1
CA; ð20Þ

where c ¼ cosϕ and s ¼ sinϕ.
One can check that Eq. (20) does rotate the whole space

around n by an angle ϕ while keeping n invariant. For
example, when n ¼ nz ≡ ð0; 0; 1ÞT , we have

Rðnz;ϕÞ ¼

0
B@

c s 0

−s c 0

0 0 1

1
CA; ð21Þ

which is the familiar form of a rotation in the x − y plane
around the z axis.
For each of the six conditions in Eq. (16) we can get a

bisecting rotation matrix from Eq. (20). We use the symbol
Rð�ijÞ to denote these bisecting rotations:

Rð�ijÞ ≡ Rðnjni¼�nj ;ϕÞ:

As an example, for n1 ¼ n3, we have

Rð13Þ ¼

0
B@

d a p

b h a

q b d

1
CA; ð22Þ

where a ¼ sn1 þ ð1 − cÞn1n2, b ¼ ð1 − cÞn1n2 − sn1, and
d ¼ cþ n21ð1 − cÞ. The remaining parameters p, q, and h

are determined by RRT ¼ 1 if a, b, and d are fixed. In
general, they are not equal to each other, but their precise
forms are not important here. The point we should stress
here is that, if R has n1 ¼ n3, then the 12 element equals the
23 element, the 21 the 32 element, and the 11 the 33
element. Conversely, if an SOð3Þ matrix has the form of
Eq. (22), then it must be a bisecting rotation with its axis on
the x ¼ z plane. This can be seen by solving Eq. (22) as an
equation for ðn;ϕÞ [the solution always exists since
Eq. (20) contains all possible SOð3Þ matrices] and finding
that the solutions always have n1 ¼ n3.
R can be diagonalized by

U†
RRUR ¼ diagðeiϕ; 1; e−iϕÞ; ð23Þ

where the eigenvalues only depend on ϕ while UR only
depends on n. As one can check numerically or by direct
analytic calculation, jURj has the following form:

jURj2 ¼
1

2

0
B@

1 − n21 2n21 1 − n21
1 − n22 2n22 1 − n22
1 − n23 2n23 1 − n23

1
CA: ð24Þ

Here, jURj2 is not jURjjURj, but each element xij of jURj2
is the absolute value squared of the ij element of UR.
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Note that the order of the columns in Eq. (24) can be
changed since reordering of the columns of a diagonaliza-
tion matrix is just a matter of permutation of eigenvectors.
For n1 ¼ n3, we recommend writing it in this order so that
once one takes n1 ¼ n3 one immediately obtains a sym-
metric matrix. For the other cases such as n1 ¼ n2, etc., we
can always reorder the columns to get a symmetric matrix.
From Eq. (24), the proof of Theorem A is easy. One just

sets Eq. (24) equal to its transpose and finds n21 ¼ n23. There
are two other possible permutations of the columns in
which ðn21; n22; n23ÞT is the first or the last column of UR,
from which we can get n22 ¼ n23 or n21 ¼ n22.
This completes our proof of Theorem A.

III. GENERALIZATION TO THE COMPLEX CASE

The previous theorem only applies for flavor symmetries
with real representations, while some groups used in flavor
symmetry model building enjoy complex representations.
For the complex case, we cannot find a clear geometrical
picture as was possible for real representations in three-
dimensional Euclidean space. However, we can somewhat
generalize the previous theorem to the complex case by
finding some connections between the real and complex
cases [26]. In the following discussion, all unitary matrices
are elements of SUð3Þ since the difference between Uð3Þ
and SUð3Þ is a trivial phase. Theorem B.— If an SUð3Þ
matrix T can be rephased to a real matrix R as

T ¼ diagðeiα1 ; eiα2 ; eiα3ÞRdiagðeiβ1 ; eiβ2 ; eiβ3Þ; ð25Þ

if the R is one of the bisecting rotations with ni ¼ nj [27]
from Theorem A, and if further

αk þ βk ¼ 0ðk ≠ i; jÞ; ð26Þ

then T gives a symmetric mixing matrix [28].
As a note on Theorem B, k in Eq. (26) is the remaining

number among f1; 2; 3g when jnij ¼ jnjj picks out two
numbers for i and j. Since the rephasing matrices
diagðeiα1 ; eiα2 ; eiα3Þ and diagðeiβ1 ; eiβ2 ; eiβ3Þ should be in
SUð3Þ, it must hold that α1þα2þα3¼β1þβ2þβ3¼0. So
actually Eq. (26) is equivalent to αi þ αj ¼ −βi − βj.
As an example, consider that the bisecting rotation

is Rð13Þ in Eq. (22); then we have α2 þ β2 ¼ 0. In this
case, T is

Tð13Þ ¼

0
B@

f þ ig aη1 pη5
bη3 h aη2
qη6 bη4 f − ig

1
CA; ð27Þ

where ηi are some phases, i.e., jηij ¼ 1. The 22 element is
still h (it is real) and 11 element is the conjugate of the 33
element, as a result of α2 þ β2 ¼ 0. We also have
η1η2η3η4 ¼ 1 because α1 þ α3 þ β1 þ β3 ¼ 0. Tð13Þ can

be diagonalized by a unitary matrix that we call UT13
and one can check that

jUT13j2 ¼

0
BBB@

t
2
þ g

2sφ
1 − t t

2
− g

2sφ

1 − t h−cφ
1−cφ

1 − t

t
2
− g

2sφ
1 − t t

2
þ g

2sφ

1
CCCA; ð28Þ

where cφ ¼ cosφ, sφ ¼ sinφ and

cφ ¼ ð−1þ 2f þ hÞ=2; ð29Þ

t ¼ 1 −
1 − h

2ð1 − cφÞ
: ð30Þ

We can see that indeed jUT13j ¼ jUT13jT .

IV. APPLICATION

In this section, we will apply our theorems to an actual
mixing scheme. After the T2K neutrino experiment mea-
sured a large nonzero θ13 in 2011 [29], many models have
been proposed to explain the result. References [30,31]
scanned a series of discrete groups [Δð6n2Þ and ΓN], and
one of the found schemes was quite close to the T2K result
at the time. In the standard parametrization, the angles are

θ23 ¼ θ12 ¼ tan−1
2ffiffiffi
3

p þ 1
¼ 36.21° ð31Þ

and

θ13 ¼ sin−1
�
1

2
−

1

2
ffiffiffi
3

p
�

¼ 12.20°: ð32Þ

In total, the PMNS matrix is

U ¼

0
BBB@

1
6
ð3þ ffiffiffi

3
p Þ 1ffiffi

3
p 1

6
ð3 − ffiffiffi

3
p Þ

− 1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p

1
6
ð3 − ffiffiffi

3
p Þ − 1ffiffi

3
p 1

6
ð3þ ffiffiffi

3
p Þ

1
CCCA: ð33Þ

While this mixing scheme is ruled out by current data, it
fulfills our criterion of a symmetric mixing matrix and could
serve as a starting point or zeroth-order approximation.
The mixing scheme can be produced in the Δð96Þ group,

which can be defined by three generators a, b, and c with
the following properties [32]:

a3 ¼ b2 ¼ ðabÞ2 ¼ c4 ¼ 1;

caca−1 ¼ a−1c−1a ¼ bcb−1 ¼ b−1cb;

cbc−1b−1 ¼ bc−1b−1c: ð34Þ
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In a three-dimensional faithful representation, a, b, and c
can be represented by [32]

að3Þ ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; bð3Þ ¼

0
B@

0 0 −1
0 −1 0

−1 0 0

1
CA;

cð3Þ ¼

0
B@

i 0 0

0 −i 0

0 0 1

1
CA: ð35Þ

The mixing scheme is produced if a Z3 subgroup generated
by T ¼ a2ðcbÞ2c and a Z2 ⊗ Z2 subgroup generated by
S1 ¼ b; S2 ¼ a2c2ac2 is applied to charged leptons and
neutrinos, respectively. To be precise,

Z3∶T ¼

0
B@

0 0 i

−1 0 0

0 i 0

1
CA; ð36Þ

and the two Z2 are generated by

Z2 ⊗Z2∶S1 ¼−

0
B@
0 0 1

0 1 0

1 0 0

1
CA; S2 ¼

0
B@
−1 0 0

0 1 0

0 0 −1

1
CA:

ð37Þ

From our theorem, it is easy to see that this can produce
symmetric mixing. In the diagonal neutrino basis, we
transform T to Td,

Td ¼

0
BB@

i
2

iffiffi
2

p i
2

− 1ffiffi
2

p 0 1ffiffi
2

p

− i
2

iffiffi
2

p − i
2

1
CCA; ð38Þ

and ðS1; S2Þ to ðS1d; S2dÞ,

S1d ¼ diagð−1;−1; 1Þ; S2d ¼ diagð−1; 1;−1Þ: ð39Þ

Then, according to our theorem, we see that Td can be
rephased via a transformation defined in Eq. (25) to a
bisecting rotation R with α2 ¼ β2 ¼ 0, ðα1;α3Þ ¼
ðπ=2;−π=2Þ, and ðβ1; β3Þ ¼ ð0; 0Þ. Or, in a simpler way,
Td has the form of Eq. (27). So the mixing matrix should be
symmetric.
A dynamical realization of the mixing scheme in Δð96Þ

has been studied in Ref. [33]. That model is rather
complicated using both three- and six-dimensional repre-
sentations. Here, we present a simpler model that only uses
two additional sets of scalar fields ϕν;ϕl, and features all
particles in the same three-dimensional representation of
Δð96Þ of Eqs. (36) and (37),

l;lc; ν;ϕν;ϕl ∼ 3: ð40Þ

We use the representation in Eqs. (36) and (37) rather than
Eqs. (38) and (39) because the Clebsch—Gordan (CG)
coefficients are simpler. The result does not depend on the
basis. The CG coefficients we will use in this representation
are

3 ⊗ 3̄ → 1∶δij ð41Þ

3 ⊗ 3 ⊗ 3 → 1∶ϵijk ð42Þ

3 ⊗ 3 ⊗ 3 ⊗ 3 → 1∶δijmn ð43Þ

3 ⊗ 3 ⊗ 3̄ ⊗ 3̄ → 1∶δimδjnδinδjm: ð44Þ

Here, ϵijk is the Levi-Civitá tensor (or order 3 antisym-
metric tensor), and δijmn is defined as

δijmn ¼
�
1 ði ¼ j ¼ m ¼ nÞ;
0 otherwise:

ð45Þ

The invariant Lagrangian in the lepton sector is

L ¼ yl1ϵijkϕ
l
i ljlc

k þ yl2δijmnϕ
l
i ϕ

l
jlmlc

n

þ yl3δimδjnϕ̄
l
i ϕ̄

l
jlmlc

n þ yν1δijmnϕ
ν
iϕ

ν
jνmνn

þ yν2δimδjnϕ
ν
iϕ

ν
jνmνn: ð46Þ

After symmetry breaking, ϕν and ϕl obtain the following
VEVs:

hϕli ¼ vlð1;−1; iÞ; hϕνi ¼ vνð1; 0; 1Þ: ð47Þ

In the charged lepton sector, Ml ¼ mlm
†
l is

Ml ¼ jvlj2
0
B@

u xþ iy −ix − y

x − iy u ix − y

ix − y −ix − y u

1
CA; ð48Þ

while the neutrino mass matrix is

Mν ¼ jvνj2
0
B@

A 0 B

0 0 0

B 0 A

1
CA; ð49Þ

where A ¼ yν1 þ yν2;B ¼ yν2 with

u ¼ 2jyl1 j2 þ 2jyl3 j2 þ jyl2 þ yl3 j2 ð50Þ

x ¼ jyl1 j2 − 3jyl3 j2 − 2Re½yl�2 yl3 �; ð51Þ

y ¼ 2Re½yl�1 yl2 �: ð52Þ
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Ml and Mν can be diagonalized by the following unitary
matrices:

Uν ¼

0
BB@

1ffiffi
2

p 0 − 1ffiffi
2

p

0 1 0

1ffiffi
2

p 0 1ffiffi
2

p

1
CCA; ð53Þ

Ul ¼ 1ffiffiffi
3

p

0
B@

ω2 1 ω

−ω −1 −ω2

−i −i −i

1
CA: ð54Þ

Thus, the PMNS matrix is

UPMNS ¼

0
BBB@

iþωffiffi
6

p − ω2ffiffi
3

p −−iþωffiffi
6

p

1þiffiffi
6

p − 1ffiffi
3

p − 1−iffiffi
6

p

iþω2ffiffi
6

p − ωffiffi
3

p −−iþω2ffiffi
6

p

1
CCCA: ð55Þ

It is related to the matrix in Eq. (33) via

UPMNS ¼ diagðeiβ1 ; eiβ2 ; eiβ3ÞUdiagð1; eiα1 ; eiα2Þ; ð56Þ

where β1 ¼ 105°, β2 ¼ 225°, β3 ¼ 165°, α1 ¼ 45°, and
α2 ¼ 90°. Here, α1 and α2 would be the Majorana phases if
the couplings yν1 and yν2 in Eq. (46) were real. Therefore,
even though the Dirac-type CP is conserved in this model,
generally there is still CP violation due to the nonzero
Majorana phases, unless the phases of yν1 and yν2 are tuned
to exactly cancel α1 and α2.
Our theorem can also be applied to the quark sector. One

just assigns the bisecting rotational symmetry to the
residual symmetry of up-type (or down type) quarks and
the mirror symmetries to that of down-type (or up-type)
quarks; then, the CKM mixing will be symmetric.
However, building a realistic model for the CKM mixing
is a somewhat more difficult task. Compared to the lepton
sector in which hundreds of flavor symmetry models have
been proposed, for the quark sector, much fewer models
exist. This is due to the fact that the small CKM mixing
angles do not have straightforward geometric interpreta-
tion, which is the basis of discrete flavor symmetry

building. Among the existing models for the CKM mixing,
we cannot find one that fulfills our criteria (exceptions are
of course the trivial cases in which one interprets the CKM
matrix as the unit matrix or as a matrix that only consists of
the Cabibbo angle), and scanning all discrete groups for the
flavor symmetry of quarks is out of the main purpose of this
paper. Anyway, when looking for flavor groups to build
models for the quark sector, our theorem could be a
guidance because when a mixing scheme generated from
a flavor symmetry is close to realistic CKMmixing, it must
be also close to a symmetric form.

V. CONCLUSION

A possible zeroth order, but surely aesthetically attrac-
tive, mixing ansatz for the CKM and PMNS matrices is that
they are symmetric. The origin of symmetric PMNS and
CKM matrices from the viewpoint of flavor symmetry
models has been the focus of our paper.
We have proposed a theorem on the relation between

symmetric mixing matrices and geometric properties of
discrete flavor symmetry groups. An illustrative connection
between the rotation axes of the geometric body associated
to the symmetry group exists and shows that popular
subgroups of SOð3Þ such as A4 and S4 can lead to
symmetric mixing matrices.
Groups with complex irreducible representations do not

easily allow for a geometrical interpretation, but a partial
generalization of our theorem is possible, which can then
apply to SUð3Þ subgroups such as Δð96Þ. A previously
studied mixing scheme that turns out to correspond to a
symmetric PMNS matrix was used as an explicit example.
The connection of geometric properties of discrete

groups and possible features of the mixing matrices may
have further applications.
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