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We derive the quantum master equations for heavy quark systems in a high-temperature quark-gluon
plasma in the Lindblad form. The master equations are derived in the influence functional formalism for
open quantum systems in perturbation theory. These master equations have a wide range of applications,
such as decoherence of a heavy quarkonium and Langevin dynamics of a heavy quark in the quark-gluon
plasma. We also show the equivalence between the quarkonium master equations in the recoilless limit and
the Schrödinger equations with stochastic potential.
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I. INTRODUCTION

The fate of heavy quarkonium bound states in finite-
temperature QCD matter has long been considered as a
sensitive probe of deconfined nature of such a matter. In the
deconfined phase at finite temperature, the linear potential
that confines a heavy quark-antiquark pair in the vacuum is
screened by colored excitations (light quarks and gluons) in
the medium and in such a short-ranged potential the
quarkonium bound state levels will eventually disappear
at high temperature. In relativistic heavy-ion collisions,
suppression of the quarkonium yield, in particular ϒ and
J=Ψ states, is expected to serve as a signal for the formation
of a quark-gluon plasma (QGP) [1], the deconfined matter
that once existed just after the big bang in the early
Universe. Indeed, experimental data from the CMS col-
laboration at the LHC show sequential suppression of ϒ
states [the ground (1S) and excited states (2S, 3S)] [2],
suggesting sequential melting of the ϒ bound states in the
QGP. To investigate the real-time dynamics of quarkonium
quantum states and its suppression in the QGP, the
appropriate theoretical framework is that of open quantum
systems [3].
There have been various studies on the quarkonium

properties at finite temperature. Thermodynamic quantities,
such as free energy change caused by putting an infinitely
heavy quark and antiquark pair, are calculated in lattice
QCD simulations. The results clearly show that color
charges are screened above the deconfinement transition
temperature Tc [4]. Spectral structures of ϒ and J=Ψ are
investigated by lattice QCD simulations and suggest that
the ground states are fairly stable even at higher temper-
ature up to T < 2Tc. The stability of quarkonium ground
states indicates a strongly coupled nature of the quark-
gluon plasma [5,6]. It is not yet clear how these
independent observations by numerical simulations can
be understood in a unified point of view.
Recently, a real-time static potential, defined in terms of

the real-time propagator of the quarkonium operator at

finite temperature, has been calculated in perturbation
theory [7], nonperturbative lattice QCD simulations [8],
and the potential nonrelativistic QCD approach [9]. The
same quantity has also been calculated for strong coupling
plasmas using the conjectured gauge/gravity duality [10].
The real-time static potential is one of the crucial quantities
to understand the quarkonium dynamics in the QGP. The
potential is found to be complex valued with a negative
imaginary part. Using this complex-valued potential, one
can calculate the spectral functions for quarkonia in the
QGP [11]. Although the potential has an imaginary
part, particle number conservation of the nonrelativistic
heavy quarks with infinite mass is not violated. Quantum
decoherence of quarkonium wave functions due to sto-
chastic processes (the stochastic potential) can give a
physically natural explanation to the imaginary part [12].
Clearly, the complex potential and its stochastic potential
interpretation indicates that the quantum mechanical prop-
erties of quarkonium in the QGP must be studied from the
viewpoint of the open quantum systems [3], which we will
summarize briefly.

A. Basics of open quantum systems

In general, dynamics of open quantum systems is
characterized by the reduced density matrix ρ̂SðtÞ defined
as ρ̂SðtÞ≡ TrEρ̂totðtÞ. Here, ρ̂totðtÞ is the total density matrix
for both system and environment degrees of freedom and
TrE denotes the trace over the environment degrees of
freedom. In the case of heavy quark systems in the QGP, the
system consists of heavy quarks and the environment is
composed of light quarks and gluons. Time evolution of
ρ̂SðtÞ in the Markov limit is given by the quantum master
equation:

d
dt

ρ̂SðtÞ ¼ Lρ̂SðtÞ: ð1Þ

Note that the generator of the time evolution L is a
superoperator that acts linearly on the operator ρ̂SðtÞ.
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There are two major regimes in the open quantum
systems [3]: Quantum optical limit and quantum
Brownian motion. The former applies to systems whose
intrinsic time scale τS is much shorter than their relaxation
time τR. In the quantum optical limit, one can distinguish
quantum states with typical energy level differences (τ−1S ) in
the time scale of interest (τR), and the so-called rotating
wave approximation is applicable. The latter applies to
systems where τS is much longer than the correlation time
of the environment τE. In the quantum Brownian motion, τS
is estimated by the orbital period of the Brownian particle.
When τE ≪ τS, one can neglect the acceleration of the
Brownian particle during a short time period τE. In both of
these regimes, τE ≪ τR must be satisfied so that the system
is insensitive to the initial condition of the environment.
The conditions on the time scales are summarized in
Table I. Roughly, these two regimes correspond to different
choices of the unperturbed Hamiltonian and representation
basis of quantum states (such as eigenstate basis or
position-space basis).
Several studies have applied the open quantum system

descriptions to heavy quark systems [12–15]. In terms of
the two regimes of the open quantum systems, Ref. [14]
considers the quantum optical limit while Refs. [12,13,15]
correspond to the quantum Brownian motion. In Ref. [14],
the quantum optical description for a quarkonium is
derived, but the treatment of unbound color octet states
is rather obscure. Reference [13] demonstrates how the
heavy quark quantities, such as mass, potential, and drag
force, affect the imaginary-time current correlator, assum-
ing the Caldeira-Leggett model [16] for quantum Brownian
motion of heavy quarks. In Ref. [15], quantum master
equations are first derived at leading order in perturbation
for nonrelativistic heavy quark systems. In this derivation,
the Feynman-Vernon’s influence functional formalism [17]
is applied to the finite-temperature QCD.

B. Summary of main results

One of the purposes of this paper is to extend the result of
Ref. [15] and derive heavy quark master equations in the
Lindblad form [18]. In particular, we derive explicit forms
of the Lindblad-form master equations for a single heavy
quark system and for a heavy quark-antiquark system in the
regime of quantum Brownian motion. The Lindblad form is
the form of the superoperator L that any Markovian master
equation that preserves complete positivity of the reduced
density matrix must conform to. The Lindblad form is
generally expressed with a Hermitian Hamiltonian Ĥ,

Lindblad operators L̂i, and positive coefficients γi > 0
ði ¼ 1; 2;…; NÞ:
d
dt
ρ̂SðtÞ ¼ −i½Ĥ; ρ̂S�

þ
XN
i¼1

γi

�
L̂iρ̂SL̂

†
i −

1

2
L̂†
i L̂iρ̂S −

1

2
ρ̂SL̂

†
i L̂i

�
: ð2Þ

Here, N is not necessarily connected to the dimension of
the Hilbert space. We do not know Ĥ, L̂i, γi, andN a priori.
By deriving the master equations in the Lindblad form, we
may be able to utilize several techniques, such as the
quantum state diffusion method [19] and quantum jump
method [20], to numerically simulate the master equation in
terms of wave function. In general, numerical calculation
with a wave function has substantial advantage over that of
the master equation because the dimension of a wave
function is the square root of that of a density matrix.
By applying the influence functional formalism [17] to

QCD at finite temperature, the master equations in the
Lindblad form are derived from an influence functional
with proper order of time coarse graining

SIF ¼ Spot þ Sfluct þ Sdiss þ SL: ð3Þ

A definition of the influence functional SIF and explicit
forms of each term will be given in Sec. II and Eqs. (31)–
(32) and (35)–(36). For each of the master equations, we
will explicitly identify the operators and parameters in the
Lindblad form Ĥ, L̂i, γi. We find that inclusion of SL is
essential in obtaining the Lindblad-form master equations.
The other purpose is to present a theoretical basis to the

concept of stochastic potential, which was first introduced
in Ref. [12] and has been recently simulated in Ref. [21].
This is partly because we find several confusing applica-
tions of the complex potential to the problem of quarko-
nium survival probability.1 By definition, the master
equation corresponding to the stochastic potential is of
the Lindblad form because we derive it from the ensemble
of wave functions with positive probability. Therefore, the
stochastic potential can be regarded as a method to
calculate certain types of the Lindblad-form master equa-
tions in terms of wave function. The stochastic potential has
two sources of quantum decoherence: One is decoherence
among the wave functions in the ensemble at the same point
X ¼ ð~xQ; ~xQc

Þ, and the other is decoherence in each wave
function at different points X and Y, where ~xQ and ~xQc

TABLE I. Two major regimes of open quantum systems [3].

Quantum optical limit Quantum Brownian motion

τS ≪ τR τE ≪ τS
τE ≪ τR τE ≪ τR

1(i) There is a conceptual problem if one calculates expecta-
tion values by using a wave function that is evolved by the
Schrödinger equation with the complex potential and its con-
jugate [22,23]. (ii) Using the complex potential, one can calculate
the width [24]. But the width only gives a rate of transition from
one state to any of the other states in one scattering, which is
sometimes insufficient to describe the dynamics.
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denote positions of heavy quark and antiquark [12]. With
the information of the complex potential, we only know the
former source for decoherence. Thus, if we only know the
complex potential, as is the case at present for nonpertur-
bative lattice calculation of the complex potential [8], we
can just guess the latter, for example, by referring to the
perturbative results. In the perturbative analysis, we see that
the imaginary part of the complex potential has enough
information to know the decoherence at different points X
and Y.
In terms of the influence functional SIF ¼ Spot þ Sfluct þ

Sdiss þ SL above, the stochastic potential derives from Spot
and Sfluct. The resultant stochastic Schrödinger equation is
given in (81), which we quote here,

i
∂
∂tψ

rðt; ~rÞ ¼ Hr
ξðtÞψ rðt; ~rÞ; ð4Þ

Hr
ξðtÞ ¼ −

~∇2
r

M
þ iCFDð~0Þ þ ð−Vð~rÞ − iDð~rÞÞðta ⊗ ta�Þ

þ θaðt; ~r=2Þðta ⊗ 1Þ − θaðt;−~r=2Þð1 ⊗ ta�Þ: ð5Þ

Here, ψ rðt; ~rÞ is a quarkonium wave function in Nc ⊗ N�
c

representation of the color SUðNcÞ group and θa is a white
noise with color (see the main text for more details). The
random color rotation by the stochastic potential is a unique
feature in the quark-gluon plasma. We also discuss quan-
tum decoherence for a bound state of size lcoh and estimate
typical time scales for the decoherence as in Eq. (88):

tDðlcoh; TÞ ∼
1

g2T

�
aþ b

g2 lnð1=gÞT2l2coh

�
; ð6Þ

with a and b of order Oðg0Þ. Clearly, it takes a longer time
for smaller bound states to get decoherent and excited.
This paper is organized as follows. In Sec. II, we begin

with a review of the method developed in Ref. [15] and
update it by including a new term necessary to obtain the
master equations in the Lindblad form. In Sec. III, we
derive several master equations for a single heavy quark
and for a quarkonium in the QGP. We show that the master
equations can be simplified for localized wave packets. We
also show that if the coherence length of a wave function is
long enough, decoherence phenomena can be described by
master equations in the recoilless limit. Each of them is
shown to be in the Lindblad form. In Sec. IV, we give the
stochastic potential with color degrees of freedom, an
extension of Ref. [12]. We then study the decoherence
of a quarkonium wave function by comparing two scales,
correlation length of thermal fluctuation and coherence
length of the wave function. We also discuss how quantum
wave function description can be evolved into a classical
regime through decoherence. Section V is devoted to a
summary. Throughout this paper, we adopt the natural

units, ℏ ¼ c ¼ kB ¼ 1, and operators in Hilbert and Fock
spaces are denoted by bold fonts.

II. INFLUENCE FUNCTIONAL OF
HEAVY QUARKS

In this section, we review and also update the formalism
developed in Ref. [15]. The formalism relies on three
approximations for actual computations: (i) a nonrelativ-
istic limit of heavy quarks v ≪ 1, (ii) perturbative expan-
sion in terms of coupling constant g ≪ 1, and (iii) coarse
graining in time. Since the heavy quarks are nonrelativistic,
we only consider the color density interaction in the
couplings between heavy quarks and gluons, which is
the leading contribution in the 1=c expansion [25]. The
region of validity of these approximations is summarized
in Table II. Through these approximations, we can obtain
the influence functional and renormalized effective
Hamiltonian, from which master equations for an arbitrary
number of heavy quarks can be derived.

A. Heavy quark velocity and acceleration

Here, we consider heavy quarks and quarkonium bound
states close to their kinetic equilibrium. As we will see,
heavy quark velocity in such a condition is small in the rest
frame of the thermal medium. However, in realistic
situations in the heavy-ion collisions, they are not always
close to kinetic equilibrium and thus the nonrelativistic
approximation is sometimes not appropriate for phenom-
enological studies. For quarkonium bound states, in addi-
tion to the velocity, we also need to estimate the
acceleration by potential force in order to make coarse
graining in time.
First of all, the heavy quark velocity in unbound states is

estimated as v ∼
ffiffiffiffiffiffiffiffiffiffi
T=M

p
close to kinetic equilibrium. Here,

the heavy quark mass is Mb ≈ 4.8 GeV andMc ≈ 1.5 GeV
for bottom and charm quarks and the typical temperature is
T ≈ ð1–3ÞTcrit ∼ 200–500 MeV in the heavy-ion collision
experiments. Therefore, close to kinetic equilibrium, the
heavy quark velocity is small for both bottom and charm
quarks in unbound states.
In the case of quarkonium bound states, we also expect

that the quarkonium velocity is small close to equilibrium.
In addition, we need to take into account the relative

TABLE II. Region of validity of the approximations. The
validity for the quarkonium case is evaluated assuming the
Coulomb bound states. Also we only consider the leading
contribution of 1=c expansion in the heavy quark interactions.

Heavy quark Heavy quarkonium

(i) Nonrelativistic limit
ffiffiffiffiffiffiffiffiffiffi
T=M

p
≪ 1 α;

ffiffiffiffiffiffiffiffiffiffi
T=M

p
≪ 1

(ii) Perturbation g ≪ 1 g ≪ 1
(iii) Coarse graining − 1=gT ≪ 1=Mα2
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velocity and acceleration of a heavy quark-antiquark pair.
Let us now consider bound states in the Coulomb potential
VðrÞ ¼ −α=r since the fastest relative velocity can be
estimated by the most deeply bound states. The
Coulomb part of the phenomenological Cornel potential
is typically chosen as α ∼ 1=4 [26]. The momentum of
Coulomb bound states is estimated as p ∼Mα and thus
v ∼ α ∼ 1=4. Therefore, in the temperature range of phe-
nomenological interest, we can assume that the relative
velocity of the heavy quark-antiquark pair is small.
As for the acceleration by the potential force, it can be

estimated by _v ∼ α=Mr2 ∼Mα3. When we perform coarse
graining in time later, we need to assume that the effect of
acceleration is small during a scattering event. Since typical
correlation time of the medium is ∼1=gT or shorter (∼1=T),
the condition is obtained as Mα2 ≪ gT. This condition
corresponds to τE ≪ τS for the quantum Brownian motion
in Table I. Using phenomenological values α ∼ 1=4 and
g ∼ 2, this condition is satisfied for charmonium but is not
very obvious for bottomonium at lower temperature.
Nevertheless, we neglect the effect of acceleration in
the bottomonium bound states in the coarse-graining
procedure because Mα2 ≫ gT is also not at all obvious
for these states.2

B. Influence functional

The influence functional can be defined using the closed-
time path formalism of nonequilibrium field theory [15]. In
the closed-time path formalism [27], fields ϕ ¼ ðA; q;ψÞ
on the forward (backward) time axis are denoted by ϕ1ðϕ2Þ,
where A is the gauge field, q is the light quark field, and ψ
is the heavy quark field. Since the time-integration contour
is originally a closed path, the fields ϕ1 and ϕ2 satisfy
proper boundary conditions at t → ∞. The sources η1;2 for
the fields ϕ1;2 are also introduced. The partition function of
the total system is defined as

Z½η1; η2� ¼
Z

D½ϕ�1;2hϕ1jρtotjϕ2it0

× exp

�
i
Z
t0

d4xfLtotðϕ1Þ − ϕ1η1g
�

× exp

�
−i
Z
t0

d4xfLtotðϕ2Þ − ϕ2η2g
�
; ð7Þ

where LtotðϕÞ denotes the Lagrangian density for the total
system of gluons, light quarks, and heavy quarks. Here, jϕi
is the coherent state introduced to obtain path-integral

formulation. The contributions from the gauge fixing term
and ghost are implicit here.
Let us assume that the initial density matrix for the total

system is factorized as ρtot ¼ ρeqE ⊗ ρS with ρeqE being the
equilibrium density matrix at temperature T for interacting
gluons and light quarks. Switching off the sources, we
arrive at

Z½0; 0� ¼
Z

D½ψ �1;2hψ†
1jρSjψ2it0

× exp½iSkin½ψ1� − iSkin½ψ2� þ iSIF½j1; j2��; ð8Þ

where the influence functional SIF is defined as a functional
of the heavy quark color current jaμ ¼ ψ̄taγμψ :

eiSIF½j1;j2� ¼
Z

D½A; q�1;2hA1; q1jρeqE jA2; q2it0

× exp

�
i
Z
t0

d4xfLgþqðA1; q1Þ − gjaμ1 Aa
1μg
�

× exp

�
−i
Z
t0

d4xfLgþqðA2; q2Þ − gjaμ2 Aa
2μg
�
:

ð9Þ

Here, SkinðψÞ is the kinetic term for heavy quarks and
LgþqðA; qÞ is the Lagrangian density for gluons and
light quarks. As we see later, the influence functional
provides time evolution of the reduced density matrix
hψ†

1jρSðtÞjψ2i.

1. Nonrelativistic limit

Since heavy quark velocity is small, we take a non-
relativistic limit for the heavy quark Lagrangian. Here,
we take the leading order of the 1=c expansion [25], where
c is the velocity of light. By recovering c to distinguish the
time and length scales, the heavy quark Lagrangian
becomes

Lψ ¼ cψ̄

�
i∂ −

g
c
Aata −Mc

�
ψ

¼ Q†
�
ið∂t þ igAa

0t
aÞ þ ∇2

2M
þ � � �

�
Q

þQc

�
ið∂t þ igAa

0t
aÞ − ∇2

2M
þ � � �

�
Q†

c; ð10Þ

where the expansion continues with Oð1=cÞ corrections.
Here, we take ∂0 ¼ ∂t=c andQ andQc are heavy quark and
antiquark fields, respectively, in the nonrelativistic limit.
Keeping only the leading-order terms in the 1=c expansion,
the heavy quark Lagrangian contains only the nonrelativ-
istic kinetic term and the interaction term with gluon scalar
potential (Aa

0). This expansion explicitly breaks the full
gauge invariance but still there remains an invariance with

2A relation τE ≈ τS indicates that the system should be treated
in the quantum optical limit, where the system is described with
a few relevant bound states. If one attempts to obtain such a
description, one would need to evaluate transition amplitudes
between those singlet bound states.
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respect to the temporal gauge transformation.3 Note that the
1=c expansion for the heavy quark Lagrangian does not
necessarily lead to the same expansion in the final result.
This is because the environment is still relativistic and
inevitably involves factors of c if recovered. If we formally
distinguish the velocity of light in the heavy quark
Lagrangian by using cQ, the nonrelativistic limit here
corresponds to taking 1=cQ → 0 limit. Despite these short-
comings, we take this approach because of a clear physical
picture: Heavy quarks interact with the environment
through the color electric interaction.4 The influence func-
tional now becomes a functional of heavy quark color
density ρa ¼ ψ̄taγ0ψ :

eiSIF½ρ1;ρ2� ≃
Z

D½A; q�1;2hA1; q1jρeqE jA2; q2it0

× exp

�
i
Z
t0

d4xfLgþqðA1; q1Þ − gρa1A
a
1;μ¼0g

�

× exp

�
−i
Z
t0

d4xfLgþqðA2; q2Þ − gρa2A
a
2;μ¼0g

�
:

ð11Þ

2. Perturbative expansion

In the perturbative expansion, assuming the medium
temperature is very high but much lower than the heavy
quark mass, the leading-order terms in SIF are given by

iSIF½ρ1; ρ2� ¼ −
g2

2

Z
t0

d4xd4yðρa1; ρa2ÞðxÞ

×

� GF
ab;00 −G<

ab;00

−G>
ab;00 G ~F

ab;00

�
ðx−yÞ

�
ρb1
ρb2

�
ðyÞ

þOðg3Þ: ð12Þ

The two-point functions of gluons are defined as

GF
ab;00ðx − yÞ≡ hTAa

0ðxÞAb
0ðyÞi; ð13Þ

G ~F
ab;00ðx − yÞ≡ h ~TAa

0ðxÞAb
0ðyÞi; ð14Þ

G>
ab;00ðx − yÞ≡ hAa

0ðxÞAb
0ðyÞi; ð15Þ

G<
ab;00ðx − yÞ≡ hAb

0ðyÞAa
0ðxÞi; ð16Þ

where hOi denotes the thermal average in the gluon and
light quark system. For completeness, let us also define the
following retarded and advanced propagators, symmetrized
correlation function, and spectral function:

GR
ab;00ðx − yÞ≡ iθðx0 − y0Þh½Aa

0ðxÞ;Ab
0ðyÞ�i; ð17Þ

GA
ab;00ðx − yÞ≡ −iθðy0 − x0Þh½Aa

0ðxÞ;Ab
0ðyÞ�i; ð18Þ

GS
ab;00ðx − yÞ≡ hfAa

0ðxÞ;Ab
0ðyÞgi; ð19Þ

σab;00ðω; ~x − ~yÞ≡
Z

dte−iωðx0−y0Þh½Aa
0ðxÞ;Ab

0ðyÞ�i: ð20Þ

For a later purpose of coarse graining in time, let us
change the time variables from ðx0; y0Þ to ðt; sÞ with

t ¼ maxðx0; y0Þ; s ¼ jx0 − y0j: ð21Þ

The new time variable t is taken to be always the later one
of x0 and y0. This is essential in obtaining correct time-
evolution equations. In terms of the new time variables, the
interaction terms can be schematically written as

Z
t0

d4xd4yρðxÞGðx − yÞρðyÞ

¼
Z

∞

t0

dt
Z

t−t0

0

ds
Z

d3xd3y

×

�
ρðt; ~xÞGðs; ~x − ~yÞρðt − s; ~yÞ
þρðt − s; ~xÞGð−s; ~x − ~yÞρðt; ~yÞ

�

≃
Z

∞

t0

dt
Z

∞

0

ds
Z

d3xd3y

×

�
ρðt; ~xÞGðs; ~x − ~yÞρðt − s; ~yÞ
þρðt − s; ~xÞGð−s; ~x − ~yÞρðt; ~yÞ

�
: ð22Þ

The final expression is obtained by noting that the
information of the initial time t0 will become irrelevant
after (a few times) the finite correlation time of gluons. The
gluon correlation time is much shorter than the dynamical
time scales of the heavy quark systems, such as the
relaxation time. The former is ∼1=gT or shorter (∼1=T)
while the latter is ∼1=g2T ≫ 1=gT for decoherence and
color diffusion (the kinetic relaxation time is much longer,
∼M=g4T2). This condition corresponds to τE ≪ τR for the
quantum Brownian motion in Table I. Using the symmetry

of gluon two-point functions, such as GFð ~FÞ
ab;00ð−s;−~rÞ ¼

GFð ~FÞ
ba;00ðs; ~rÞ and G>

ab;00ð−s;−~rÞ ¼ G<
ba;00ðs; ~rÞ, we obtain

3One can easily check that the resultant master equations give
gauge invariant expectation values for color singlet observables.
Here, the gauge transformation is, of course, limited to the
temporal direction ψðt; ~xÞ → UðtÞψðt; ~xÞ with UðtÞ ∈ SUðNcÞ.

4In the 1=M expansion, the full gauge invariance is preserved
in the heavy quark Lagrangian. In this expansion, heavy quarks
interact with the environment through the color magnetic inter-
action as well as the color electric interaction.
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iSIF½ρ1; ρ2�≃ −g2
Z

∞

t0

dt
Z

d3xd3y
Z

∞

0

dsðρa1; ρa2Þðt;~xÞ

×

� GF
ab;00 −G<

ab;00

−G>
ab;00 G ~F

ab;00

�
ðs;~x−~yÞ

�
ρb1
ρb2

�
ðt−s;~yÞ

:

ð23Þ
This influence functional is still nonlocal in time. By the
Markov approximation that will be made shortly, the
influence functional becomes local in time and thus
Markovian master equations will be obtained.

3. Coarse graining in time

When the intrinsic (not dynamical) time scale of the
heavy quark color density is long compared to the gluon
correlation time, we can perform a coarse graining in time
as is commonly done in the derivation of quantum
Brownian motion. This corresponds to the condition τE ≪
τS in Table I. The time scales of the heavy quark color
density are v=_v ∼∞ for single heavy quark kinetics and
v= _v ∼ 1=Mα2 for relative motion in a quarkonium (assum-
ing the Coulomb bound states), while the gluon correlation
time is ∼1=gT or shorter (∼1=T). Therefore, if Mα2 ≪ gT
is satisfied, the quantum Brownian motion approach can
also be applicable to a quarkonium. In this case, we can
neglect the effect of acceleration by the potential force
during a scattering.
Schematically, the coupling of the heavy quark color

densities at different times is approximated by truncating
the following expansions:Z

∞

0

dsGðsÞρðtÞρðt − sÞ

¼
X∞
n¼0

1

n!
½ρðtÞði∂tÞnρðtÞ�

Z
∞

−∞

dω
2πi

∂n
ω
~GðωÞ

ω − iϵ
; ð24Þ

where ~GðωÞ ¼ R dteiωtGðt; ~rÞ and ϵ > 0. The truncation
corresponds to focusing on the long time behavior of
the heavy quark color density ρðtÞ. In our case, we keep the
terms with n ≤ 2, which corresponds to neglecting the
effect of acceleration (after partial integration in time for

n ¼ 2). Since _ρa ¼ − ~∇ · ~ja ∼ ~v · ~∇ρa, it formally takes a
form of velocity expansion.

Using GFð ~FÞ
ab;00ðs; ~rÞ ¼ G>ð<Þ

ab;00ðs; ~rÞ ¼ − i
2
ði
2
ÞGR

ab;00ðs; ~rÞ þ
1
2
GS

ab;00ðs; ~rÞ for s > 0, Eq. (23) can be expressed with
GR

ab;00ðs; ~rÞ and GS
ab;00ðs; ~rÞ. For the couplings with the

retarded propagator, the analytic structure of ~GR
ab;00ðω; ~rÞ in

the complex ω plane leads toZ
∞

0

dsGR
ab;00ðs; ~x − ~yÞρaðt; ~xÞρbðt − s; ~yÞ

≃ X
n¼0;1;2

1

n!
½ρaðt; ~xÞði∂tÞnρbðt; ~yÞ�∂n

ω
~GR
ab;00ð0; ~x − ~yÞ:

ð25Þ

For the couplings with the symmetrized correlation func-
tion, we obtainZ

∞

0

dsGS
ab;00ðs; ~x − ~yÞρaðt; ~xÞρbðt − s; ~yÞ

≃ 1

2

X
n¼0;2

1

n!
½ρaðt; ~xÞði∂tÞnρbðt; ~yÞ�∂n

ω
~GS
ab;00ð0; ~x − ~yÞ

þ ½ρaðt; ~xÞi∂tρ
bðt; ~yÞ�

Z
∞

−∞

dω
2πi

1

ω
∂ω

~GS
ab;00ðω; ~x − ~yÞ

≃ 1

2

X
n¼0;2

1

n!
½ρaðt; ~xÞði∂tÞnρbðt; ~yÞ�∂n

ω
~GS
ab;00ð0; ~x − ~yÞ;

ð26Þ

using the fact that ~GS
ab;00ðω; ~rÞ ¼ cothðω=2TÞσab;00ðω; ~rÞ

is an even function of ω. Here, we drop the indices
of the time contour in ρa. By approximating the
spectral function by an Ohmic one σab;00ðω; ~rÞ∼
γabð~rÞω with a cutoff at jωj ¼ Ω ≪ gT or T to ignore
the memory effect of gluons, the integral in the third line of
Eq. (26) turns out to be ∝ Ω=T ≪ 1 and thus can be
ignored.
The choice of t matters because, if we took it to be

t ¼ ðx0 þ y0Þ=2, we would have integrals of the formR
∞
t0

dt
R
∞
−∞ dsGðsÞρðtÞρðt − sÞ. Then GA

ab;00ðs; ~rÞ would

also contribute in GFð ~FÞ
ab;00ðs; ~rÞ for s < 0 and cancel the

diagonal parts of Eq. (33) or (35) in the final result. The
reason why we have to take t ¼ maxðx0; y0Þ will become
clear when we discuss how to obtain the functional master
equation.

4. Influence functional in the Markov limit

Let us define the following three functions to parametrize
the influence functional:

Vð~rÞδab ≡ −g2Re ~GR
ab;00ð0; ~rÞ; ð27Þ

Dð~rÞδab ≡ −g2T
∂
∂ωσab;00ð0; ~rÞ; ð28Þ

Að~rÞδab ≡ −g2
�

1

6T
∂
∂ωþ T

3

∂3

∂ω3

�
σab;00ð0; ~rÞ

≃ −
g2

6T
∂
∂ωσab;00ð0; ~rÞ; ð29Þ

where the Ohmic spectral function for σ00;abðω; ~rÞ is
assumed as before to obtain Að~rÞ≃Dð~rÞ=6T2. Explicit
forms of Re ~GR

ab;00ð0; ~rÞ and ∂
∂ω σab;00ð0; ~rÞ at typical dis-

tance r ∼ 1=gT are given in Appendix A, using the hard
thermal loop (HTL) resummed perturbation theory. Using
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these functions, the influence functional in the Markov limit is given by four terms5:

SIF ¼ Spot þ Sfluct þ Sdiss þ SL þ � � � ; ð30Þ

iSpot ¼ −
i
2

Z
t0

dt
Z

d3xd3yVð~x − ~yÞðρa1; ρa2Þðt;~xÞ
�
1 0

0 −1

��
ρa1
ρa2

�
ðt;~yÞ

; ð31Þ

iSfluct ¼ −
1

2

Z
t0

dt
Z

d3xd3yDð~x − ~yÞðρa1; ρa2Þðt;~xÞ
�−1 1

1 −1

��
ρa1
ρa2

�
ðt;~yÞ

; ð32Þ

iSdiss ¼ −
i
4T

Z
t0

dt
Z

d3xd3yDð~x − ~yÞðρa1; ρa2Þðt;~xÞ
�−1 −1

1 1

��
_ρa1
_ρa2

�
ðt;~yÞ

; ð33Þ

iSL ¼ −
1

4

Z
t0

dt
Z

d3xd3yAð~x − ~yÞð_ρa1; _ρa2Þðt;~xÞ
�−1 1

1 −1

��
_ρa1
_ρa2

�
ðt;~yÞ

: ð34Þ

Each term has physical meanings: Spot gives a potential
between two heavy quarks, Sfluct accounts for thermal
fluctuations, Sdiss gives rise to dissipative dynamics such as
the drag force, and SL, which is proportional to
ð_ρ1 − _ρ2Þð_ρ1 − _ρ2Þ, is a new term first introduced in this
paper and makes an essential contribution to render the
Lindblad-form master equations. This is analogous to the
situation in the quantum Brownian motion [16], where it is
necessary to include the ð_x1 − _x2Þ2 term in the influence
functional in order to obtain the Lindblad-form master
equation [28].
The counting in the perturbative and velocity expansion

is Spot; Sfluct ∼ g2v0, Sdiss ∼ g2v, and SL ∼ g2v2. In the
counting, the order of Vð~rÞ; Dð~rÞ; Að~rÞ is loosely counted
as Oðg2Þ for all ~r and similarly for their derivatives. We
keep it loose unless it is worth making it more precise. This
is because our description in the regime of quantum
Brownian motion is not confined to particular states (such
as 1S and 2S states) and thus the spatial size of the wave
function is not necessarily determined uniquely. In Spot, we
ignore a term ∝ ð_ρ1 _ρ1 − _ρ2 _ρ2Þ because it would just give an
Oðg2v2Þ correction to the potential. To be strict, this is not
consistent with the velocity expansion, but we keep SL in
order to obtain the master equations in the Lindblad form.
It should also be remarked that we also implicitly rely on

the perturbative expansion in the procedure of coarse
graining in time. The couplings in SIF is originally nonlocal
in time. Because of the coarse graining, the couplings are

approximated to be local. This approximation corresponds
to the ladder approximation in the Bethe-Salpeter equation.
The overlap of two interactions is thus neglected, which
would yield a cross-ladder contribution of higher order in g.
As discussed before, one can use the free equations of

motion for _ρ1 and _ρ2 in the coarse graining and hence Sdiss
and SL become

iSdiss ¼
i
4T

Z
t0

dt
Z

d3xd3y ~∇xDð~x − ~yÞ

·ðρa1; ρa2Þðt;~xÞ
�−1 −1

1 1

�� ~ja1
~ja2

�
ðt;~yÞ

; ð35Þ

iSL ¼ 1

4

Z
t0

dt
Z

d3xd3y∇k
x∇l

xAð~x − ~yÞ

×ðja1; ja2Þkðt;~xÞ
�−1 1

1 −1

��
ja1
ja2

�l

ðt;~yÞ
: ð36Þ

Equations (30)–(32) and (35)–(36) constitute the influence
functional in the leading orders in perturbative and velocity
expansions up to the order ofOðg2v0; g2vÞ [and some terms
of order Oðg2v2Þ] in the Markov limit. Note that here we
only consider the color density interaction in the heavy
quark sector, which remains in the 1=c → 0 limit.

C. Functional master equations

Here, we review how to obtain the renormalized effective
Hamiltonian described in Ref. [15]. The total action SCTP ¼R
t0
dtLCTP on the closed-time path is given by adding

nonrelativistic kinetic terms for ψ1;2 ¼ ðQ;Q†
cÞ1;2, where

QðcÞs are Pauli spinors for a heavy (anti)quark:

SCTP½ψ1;ψ2� ¼ Skin½ψ1� − Skin½ψ2� þ SIF½ρ1; ρ2�; ð37Þ

5To obtain the influence functional (30), we need to change
the variables ~x ↔ ~y in the integral to cancel some terms.
However, this apparently trivial operation is possible only for
terms with ρa1ð~xÞði∂tÞnρa2ð~yÞ or ρa2ð~xÞði∂tÞnρa1ð~yÞ. For terms with
ρa1ð~xÞði∂tÞnρa1ð~yÞ or ρa2ð~xÞði∂tÞnρa2ð~yÞ, the variables ~x and ~y
indicate the original order in time, which is essential when
deriving the functional differential equation. Such a problem does
not occur for terms with ρa1ð~xÞði∂tÞnρa2ð~yÞ or ρa2ð~xÞði∂tÞnρa1ð~yÞ.
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Skin½ψ � ¼
Z
t0

d4xQ†
�
i∂0 −M þ ∇2

2M

�
Q

þ
Z
t0

d4xQc

�
i∂0 þM −

∇2

2M

�
Q†

c: ð38Þ

Since the partition function is

Z½η1; η2� ¼
Z

D½ψ1;ψ2�hψ†
1jρSjψ2it0eiSCTP

× e
i
R
t0
d4xðη†

1
ψ1þψ†

1
η1−η

†
2
ψ2−ψ

†
2
η2Þ; ð39Þ

where ρS is the arbitrary initial density matrix in the heavy
quark Fock space, the reduced density matrix at later time
t0 > t0 is given by

hψ 0†
1jρSðt0Þjψ 0

2i ¼
Z

ψ 0†
1
;ψ 0

2

D½ψ1;ψ2�hψ†
1jρSjψ2it0e

i
R

t0
t0
dtLCTP ;

ð40Þ

with boundary conditions ψ†
1ðt0Þ ¼ ψ 0†

1 and ψ2ðt0Þ ¼ ψ 0
2.

Note that time integration is limited to t < t0. This is why
we must choose t ¼ maxðx0; y0Þ in the previous section.
The time-evolution equation for ρS½t;ψ†

1;ψ2�≡
hψ†

1jρSðtÞjψ2i is given by an analogy with the Schrödinger
equation.
(1) Derive the Hamiltonian HCTP½ψ†

1;ψ1;ψ
†
2;ψ2� corre-

sponding to the Lagrangian LCTP by the Legendre
transformation.

(2) Obtain functional representation of HCTP by the
following replacement:

HCTP½ψ†
1;ψ1;ψ

†
2;ψ2�→HCTP

�
ψ†
1;

δ

δψ†
1

;−
δ

δψ2

;ψ2

�
:

ð41Þ

(3) The functional master equation is obtained as

i
∂
∂t ρS½t;ψ

†
1;ψ2�

¼ HCTP

�
ψ†
1;

δ

δψ†
1

;−
δ

δψ2

;ψ2

�
ρS½t;ψ†

1;ψ2�: ð42Þ

In the first step, we must take care of the order of operators,
which must be ordered by time. For example, in the fermion
bilinear in ρa1;2ðt; ~xÞ and in the kinetic terms, time is assigned

as ψ†
1ðtþ ϵÞ;ψ1ðt − ϵÞ and ψ†

2ðt − ϵÞ;ψ2ðtþ ϵÞwith ϵ > 0.
Also, as is clear from Eq. (23), the time for ρa1;2ðt; ~xÞ is later
than that for ρa1;2ðt; ~yÞ in Eq. (30). Use of new variables ~ψ2 ¼
ψ†
2; ~ψ

†
2 ¼ ψ2 will make the fields on the 1 and 2 axes look

symmetric.

Since we are interested in systems with a few heavy
quarks in the QGP, coherent states hQ�

1ðcÞj and j ~Q�
2ðcÞi

defined as

hQ�
1ðcÞj ¼ hΩje−

R
d3xðQð~xÞQ�

1
ð~xÞþQcð~xÞQ�

1cð~xÞÞ; ð43Þ

j ~Q�
2ðcÞi ¼ e−

R
d3xð ~Q�

2ð~xÞQ†ð~xÞþ ~Q�
2cð~xÞQ†

cð~xÞÞjΩi ð44Þ

are more convenient to express ρSðtÞ. Here, jΩi is the
vacuum state that satisfies QðcÞjΩi ¼ 0. This amounts to
changing the variables for functional differentiation,

HCTP½Q†
1ðcÞ;Q1ðcÞ; ~Q

†
2ðcÞ; ~Q2ðcÞ�

→ HCTP

�
Q�

1ðcÞ;
δ

δQ�
1ðcÞ

; ~Q�
2ðcÞ;−

δ

δ ~Q�
2ðcÞ

�
; ð45Þ

and the functional master equation is given by

i
∂
∂tρS½t;Q

�
1ðcÞ; ~Q

�
2ðcÞ� ¼HCTP

�
Q�

1ðcÞ;
δ

δQ�
1ðcÞ

; ~Q�
2ðcÞ;−

δ

δ ~Q�
2ðcÞ

�

×ρS½t;Q�
1ðcÞ; ~Q

�
2ðcÞ�: ð46Þ

In general, the time-ordered product does not give an
operator HCTP in such a way that all the differentiation is
moved on the right. Therefore, in the course of doing so
after deriving the time-ordered HCTP, we need to subtract
divergent contributions in the vacuum, e.g., Coulomb

potential at the origin Vð~0Þ in the self energy, by intro-
ducing counterterms.

D. From fields to particles

The functional master equation can generate master
equations for systems with an arbitrary finite number of
heavy quarks in the QGP. Since the coherent states act as a
generating functional for heavy quarks as in Eqs. (43)–(44),
the reduced density matrices are given by functionally
differentiating ρS½t; Q�

1ðcÞ; ~Q
�
2ðcÞ�. For example, the reduced

density matrix of a single heavy quark system in the QGP is
obtained by

ρijQðt; ~x; ~yÞ ¼ h~x; ijρQðtÞj~y; ji
¼ hΩjQið~xÞρSðtÞQj†ð~yÞjΩi

¼ −
δ

δQi�
1 ð~xÞ

δ

δ ~Qj�
2 ð~yÞ

ρS½t; Q�
1ðcÞ; ~Q

�
2ðcÞ�jQ�¼0:

ð47Þ

Therefore, in order to obtain the master equations for heavy
quark reduced density matrices, we just need to perform
appropriate functional differentiations on both sides of the
functional master equation (46) and switch off the source
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Q�
1ðcÞ ¼ ~Q�

2ðcÞ ¼ 0. In Appendix B, we illustrate how a term

− 1
2

R
t0 dt

R
d3xd3yDð~x − ~yÞρa1ðt; ~xÞρa2ðt; ~yÞ ∈ iSfluct con-

tributes in the master equation for a single heavy quark
as an example.
Similarly, the forward propagators of heavy quarks

are given by differentiating only with Q�
1ðcÞ fields, up to

the correction of order Oðe−M=TÞ ≪ 1. For example, the
one-body forward propagator is obtained by

G>
Q;iðt; ~xÞ ¼

Tr½e−HQCD=TQiðt; ~xÞQj†ðt0; ~yÞ�
Tr½e−HQCD=T �

≃ δ

δQi�
1 ð~xÞ

ρS½t; Q�
1ðcÞ; ~Q

�
2ðcÞ�jQ�¼0: ð48Þ

Therefore, the time-evolution equations for forward
propagators are also derived from the functional master
equation (46) by performing appropriate functional dif-
ferentiations withQ�

1ðcÞ fields. In Appendix C, we show the

time-evolution equation for the forward propagator of a
quarkonium, for which the leading correction in the
velocity expansion is found to be OðvÞ. The OðvÞ term
couples relative position and momentum of a heavy quark-
antiquark pair in an intriguing way. It may be necessary to
take into account the OðvÞ term when one computes the
vector current spectral function using the complex
potential.

III. MASTER EQUATIONS IN THE
LINDBLAD FORM

In this section, we derive master equations for a
single heavy quark and a quarkonium in the QGP. We
show that each master equation can be written in the
Lindblad form

d
dt
ρSðtÞ¼−i½H;ρS�

þ
XN
i¼1

γi

�
LiρSL

†
i −

1

2
L†
iLiρS−

1

2
ρSL

†
iLi

�
; ð49Þ

with H† ¼ H and γi > 0 for S ¼ Q and QQc. This is
equivalent to showing the master equations preserving
complete positivity of the reduced density matrices.

A. Single heavy quark master equations

1. Full master equation

By following the procedures outlined in the previous
section, the master equation for the reduced density
matrix of a single heavy quark ρ̂Qðt; ~x; ~yÞ [Nc ⊗ N�

c
representation of the color SUðNcÞ group] is obtained as

∂
∂t ρ̂Qðt; ~x; ~yÞ ¼ i

~∇2
x − ~∇2

y

2M
ρ̂Qðt; ~x; ~yÞ

þ F1ð~x − ~yÞtaρ̂Qðt; ~x; ~yÞta

− CFF1ð~0Þρ̂Qðt; ~x; ~yÞ
þ ~F2ð~x − ~yÞ · ð ~∇x − ~∇yÞtaρ̂Qðt; ~x; ~yÞta
þ Fij

3 ð~x − ~yÞ∇i
x∇j

ytaρ̂Qðt; ~x; ~yÞta

þ CFFii
3 ð~0Þ

~∇2
x þ ~∇2

y

6
ρ̂Qðt; ~x; ~yÞ; ð50Þ

where CF ¼ ðN2
c − 1Þ=2Nc and

F1ð~rÞ ¼ −
�
Dð~rÞ þ

~∇2
Dð~rÞ

4MT
þ ð ~∇2Þ2Að~rÞ

8M2

�
; ð51Þ

~F2ð~rÞ ¼ − ~∇
�
Dð~rÞ
4MT

þ
~∇2
Að~rÞ

4M2

�
; ð52Þ

Fij
3 ð~rÞ ¼ ∇i∇j

�
Að~rÞ
2M2

�
: ð53Þ

In the master equation (50), there are terms with different
factors of 1=M. As can be understood from the factors of
1=M in the influence functional, ð1=MÞ0 terms come from
Sfluct, 1=M from Sdiss, and ð1=MÞ2 from SL. All the terms in
the master equation can be evaluated by the orders of
perturbation g, velocity v, and T=Mð≡δÞ. Here, velocity
comes from ∇ ∼Mv acting on the reduced density matrix.
For example, F1ð~x − ~yÞtaρ̂Qðt; ~x; ~yÞta consists of
Oðg2v0δ0Þ;Oðg2v0δÞ, and Oðg2v0δ2Þ terms. Note that
terms of OðvnÞ in the influence functional SIF yield terms
of OðvlδmÞ with n ¼ lþmðl; m ≥ 0Þ in the master equa-
tion. For instance, Sdiss ∼ g2v produces Oðg2v0δÞ (the
second term in F1) as well as Oðg2vδ0Þ terms (the first
term in F2). This happens because some of the derivatives

in ~ja in Eqs. (35)–(36) act on Dð~x − ~yÞ or Að~x − ~yÞ, not on
Q�, in the course of deriving the functional master
equation (46). Owing to this mismatch in the counting,
an approximation to the master equation and that to the
influence functional may not be consistent with each other.
In this respect, the influence functional is more fundamen-
tal than the master equations. Therefore, we always make
such approximations to the master equations that can be
derived from approximated influence functionals.
The master equation (50) can be written in the Lindblad

form Eq. (49) with H ¼ ~p2=2M. The label is i ¼ ð~k; a; αÞ,
where ~k is the wave number in a box with volume L3, a is
the label for color matrix ta, and α ¼ 1; 2 is introduced for
classification. The Lindblad operators Lα

~ka
and coefficients

γα~ka
are
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8<
:

Lα¼1
~ka

¼ ei~k·~x=2
�
1 − ~k·~p

4MT

�
ei~k·~x=2ta;

γα¼1
~ka

¼ − ~Dð~kÞ
L3 > 0;

ð54Þ

8<
:

Lα¼2
~ka

¼ ei~k·~x=2
�

~k·~p
4MT

�
ei~k·~x=2ta;

γα¼2
~ka

¼ − 1
L3 ð8T2 ~Að~kÞ − ~Dð~kÞÞ > 0.

ð55Þ

Here, ~Dð~kÞ ¼ R d3re−i~k·~rDð~rÞ and similarly for ~Að~kÞ.
Without the term ~Að~kÞ, or SL in the influence functional,
the coefficient γα¼2

~ka
is negative and the master equation

cannot be in the Lindblad form. Therefore, keeping SL
together with Sdiss in the influence functional is essential in
obtaining the Lindblad-form master equation.
By tracing out the color space dynamics ρ̄Qðt; ~x; ~yÞ ¼

Trcolorρ̂Qðt; ~x; ~yÞ ¼ ρiiQðt; ~x; ~yÞ, the master equation for
ρ̄Qðt; ~x; ~yÞ reads

∂
∂t ρ̄Qðt; ~x; ~yÞ ¼ i

~∇2
x − ~∇2

y

2M
ρ̄Qðt; ~x; ~yÞ

þCFðF1ð~x− ~yÞ − F1ð~0ÞÞρ̄Qðt; ~x; ~yÞ
þCF

~F2ð~x− ~yÞ · ð ~∇x − ~∇yÞρ̄Qðt; ~x; ~yÞ

þCF

 
Fij
3 ð~x− ~yÞ∇i

x∇j
y

þFii
3 ð~0Þ

~∇2
xþ ~∇2

y

6

!
ρ̄Qðt; ~x; ~yÞ; ð56Þ

and the Lindblad operators are obtained by replacing tas
with 1 in Eqs. (54)–(55) and the coefficients are CF times
those in Eqs. (54)–(55).
So far, we have not assumed a typical size of heavy quark

wave functions. In the next sections, the full master
equation is approximated according to the wave function
size. We derive effective quantum dynamics for localized
wave packets and extended wave functions. These effective
dynamics are summarized in Table III.

2. Master equation for wave packets

Now let us assume that the heavy quark is kinetically
thermalized and its wave function is localized compared to
the length scale of functionsDð~rÞ and Að~rÞ. Close to heavy
quark kinetic equilibrium, the heavy quark wave function

extends over the thermal de Broglie wavelength ldB∼
1=

ffiffiffiffiffiffiffiffi
MT

p
. The size of the wave function is characterized

by the “correlation length” j~x − ~yj of ρ̄Qðt; ~x; ~yÞ. Therefore,
in the master equation (56), we can approximate Dð~rÞ and
Að~rÞ by

Dð~rÞ≃Dð~0Þ þ ~r2

6
~∇2
Dð~0Þ≡D0 þ

D2

6
~r2; ð57Þ

Að~rÞ≃ Að~0Þ þ ~r2

6
~∇2
Að~0Þ≡ A0 þ

A2

6
~r2; ð58Þ

which yields

∂
∂t ρ̄Qðt;~x;~yÞ¼ i

~∇2
x− ~∇2

y

2M
ρ̄Qðt;~x;~yÞ

−
CFD2

6

�
ð~x−~yÞ2þð~x−~yÞ ·

~∇x− ~∇y

2MT

�
ρ̄Qðt;~x;~yÞ

þCFA2

12M2
ð ~∇xþ ~∇yÞ2ρ̄Qðt;~x;~yÞ: ð59Þ

As is clear from Eqs. (57)–(58), this approximation can be
made at the level of the influence functional.
By means of the counting in g, δ ¼ T=M, and

v ∼
ffiffiffiffiffiffiffiffiffiffi
T=M

p ¼ δ1=2, we can also make the above argument
more precise. The thermal de Broglie wavelength of a
heavy quark ldB ∼ 1=

ffiffiffiffiffiffiffiffi
MT

p ¼ δ1=2=T is much smaller than
the length scale lfluct ∼ 1=gT ofDð~rÞ and Að~rÞ. The latter is
defined so that for j~rj≳ lfluct, Dð~rÞ; Að~rÞ≃ 0 holds. Then
Eqs. (57)–(58) are evaluated as expansions up to
ðldB=lfluctÞ2 ∼ g2δ. The master equation is also expanded
in terms of g2δ. Keeping the terms up to Oðg2δÞ in this
expansion yields Eq. (59). UsingD2 ∼D0=l2fluct ∼ g4T3 and
A2 ∼ A0=l2fluct ∼ ðD0=T2Þ=l2fluct, the time scale of the
Langevin dynamics of Eq. (59) is estimated to be
∼M=g4T2. To be strict, there is a logarithmic correction
∼M=½g4 lnð1=gÞT2� because D2, which is proportional to a
momentum diffusion constant, receives as much contribu-
tion from hard scatterings as from soft scatterings. See
Appendix A for details.
The Lindblad operators and coefficients are labeled with

i ¼ ðl; αÞ, where l ¼ x; y; z,(
Lα¼1
l ¼

�
~xþ i~p

4MT

�
l
;

γα¼1
l ¼ CFD2

3
> 0;

ð60Þ

8<
:

Lα¼2
l ¼

�
~p
M

�
l
;

γα¼2
l ¼ CF

48T2 ð8T2A2 −D2Þ > 0;
ð61Þ

and the Hamiltonian is

H ¼ ~p2

2M
þ CFD2

12MT
f~x; ~pg
2

: ð62Þ

TABLE III. Summary of the approximated master equa-
tions (59) and (63) for the single heavy quark.

Wave packet Recoilless limit

Wave function size Δx ∼ ldB ≪ lfluct Δx ≫ ldB

Approximation of SIF Dð~rÞ≃D0 þD2~r2=6
Að~rÞ≃ A0 þ A2~r2=6

SIF ≃ Sfluct

Physical process Langevin dynamics Decoherence
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Here, the number of the Lindblad operators is reduced to
only six and the Hamiltonian contains a term which is time-
reversal odd. If we neglect A2, the master equation (59) is
the same as that of the Caldeira-Leggett model of quantum
Brownian motion. Note that, without A2, the second
coefficient becomes γα¼2

l < 0 and the master equation is
no longer in the Lindblad form. Thus, again, we find that SL
makes an essential contribution in obtaining the Lindblad-
form master equation.

3. Master equation in the recoilless limit

If one is interested in decoherence of a wave function at
distant points, which takes place much faster than the
momentum dissipation, one can approximate the full
master equation (50) by just keeping the kinetic term
and terms from Sfluct in the influence functional:

∂
∂t ρ̂Qðt; ~x; ~yÞ¼ i

~∇2
x− ~∇2

y

2M
ρ̂Qðt; ~x; ~yÞ−Dð~x− ~yÞtaρ̂Qðt; ~x; ~yÞta

þCFDð~0Þρ̂Qðt; ~x; ~yÞ: ð63Þ

This is called the recoilless limit of the full master equation.
Note that Spot has no contribution to the master equation of
a single heavy quark.
Let us examine in more detail under which conditions the

decoherence takes place rapidly compared to the momen-
tum dissipation. The condition for the distance Δx is

jF1ðΔ~xÞ − F1ð~0Þj ≫ j~F2ðΔ~xÞjMv or jDðΔ~xÞ −Dð~0Þj ≫
j ~∇DðΔ~xÞjv=4T. At large enough distance Δx≳ lfluct,
where DðΔ~xÞ≃ 0 holds, the condition is satisfied. At
shorter distance Δx ≪ lfluct, we can derive a condition
Δx ≫ v=T, that is Δx ≫ ldB. Therefore, for Δx ≫ ldB, the
decoherence takes place more rapidly than momentum
dissipation and the full master equation (50) can be
approximated by taking the recoilless limit. The time scale
depends on Δx: For Δx≳ lfluct the time scale is ∼1=Dð0Þ ∼
1=g2T and for lfluct ≫ Δx ≫ ldB the time scale is
∼ð1=D2Þ=ðΔxÞ2 ∼ ½g4 lnð1=gÞT3ðΔxÞ2�−1. Even if an ini-
tial wave function is coherent over Δx ≫ ldB, its coherence
is lost [ρ̂ðt; ~x; ~yÞ≃ 0 for j~x − ~yj≃ Δx] through a few
scatterings with medium particles. Note that for heavy
quarks to be kinetically thermalized, it requires many
scatterings (∝ M=T) and thus takes a much longer time
than decoherence. Close to heavy quark kinetic equilibrium,
the typical wave function is coherent only over Δx ∼ ldB
and thus the master equation (63) is not applicable there.
The master equation in the recoilless limit (63) can be

written in the Lindblad form. The Lindblad operator is

L~ka ¼ ei~k·~xta and the coefficient is γ~ka ¼ − ~Dð~kÞ=L3 > 0.
The Hamiltonian is H ¼ ~p2=2M. As mentioned before,

the master equation (63) is in the Lindblad form but cannot
describe heavy quark kinetic equilibration.

The same approximation can be made to the color-traced
master equation (56). Or equivalently one can trace
out the color space dynamics in the master equation (63).
The form of the master equation is different only in
Dð~x−~yÞtaρ̂ðt;~x;~yÞta→CFDð~x−~yÞρðt;~x;~yÞ. The Lindblad

operator is L~k ¼ ei~k·~x and the coefficient is γ~k ¼
−CF

~Dð~kÞ=L3 > 0.

B. Heavy quarkonium master equations

1. Full master equation

In the case of quarkonium, the reduced density matrix
ρ̂QQc

ðt; ~xQ; ~xQc
; ~yQ; ~yQc

Þ is in the ðNc ⊗ N�
cÞ ⊗ ðN�

c ⊗ NcÞ
representation. The master equation has the following
structure:

∂
∂t ρ̂QQc

ðt; ~xQ;~xQc
; ~yQ;~yQc

Þ¼LQQc
ρ̂QQc

ðt; ~xQ; ~xQc
; ~yQ; ~yQc

Þ;
ð64Þ

LQQc
¼ LQ þ LQc

þ Lð2Þ
QQc

: ð65Þ

Here, LQ denotes the superoperator in the right-hand side
of Eq. (50) andLQc

is obtained by substituting −ta� for ta in
LQ. LQ acts on variables of heavy quark while LQc

acts on
those of heavy antiquark. The interaction between the

heavy quark and antiquark is given by Lð2Þ
QQc

, whose explicit
form is shown in Appendix D.
The structure of the master equation is quite complicated

but the Lindblad operators and coefficients turn out to be
remarkably simple. We just need to add a contribution from
a heavy antiquark with the appropriate color representation
in Eqs. (54)–(55):8>>>>>><
>>>>>>:

Lα¼1
~ka

¼ ei~k·~xQ=2
�
1 −

~k·~pQ
4MT

�
ei~k·~xQ=2ðta ⊗ 1Þ

− ei~k·~xQc=2
�
1 −

~k·~pQc
4MT

�
ei~k·~xQc=2ð1 ⊗ ta�Þ;

γα¼1
~ka

¼ − ~Dð~kÞ
L3 > 0;

ð66Þ

8>>>>><
>>>>>:

Lα¼2
~ka

¼ ei~k·~xQ=2
�
~k·~pQ
4MT

�
ei~k·~xQ=2ðta ⊗ 1Þ

− ei~k·~xQc=2
�~k·~pQc
4MT

�
ei~k·~xQc=2ð1 ⊗ ta�Þ;

γα¼2
~ka

¼ − 1
L3 ð8T2 ~Að~kÞ − ~Dð~kÞÞ > 0.

ð67Þ

Here, ~xQ; ~pQ are position and momentum operators for the
heavy quark and ~xQc

; ~pQc
are those for the heavy antiquark.

The Hamiltonian in the Lindblad form (49) has two
contributions in the potential: one is the screened potential
from Spot and the other is from Sdiss in the influence
functional.
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H ¼ ~p2Q þ ~p2Qc

2M
− Vð~xQ − ~xQc

Þðta ⊗ ta�Þ

þ 1

8MT
fð~pQ − ~pQc

Þ; ~∇Dð~xQ − ~xQc
Þgðta ⊗ ta�Þ: ð68Þ

Note that this Hamiltonian contains a term which is time-
reversal odd. The physical meaning of the second line of
Eq. (68) is remarkable. In the classical Hamiltonian, the
anticommutator part is positive (negative) when ð~xQ − ~xQc

Þ ·
ð~pQ − ~pQc

Þ is positive (negative) because Dð~rÞ is an
increasing function of r. Therefore, when a heavy quark-
antiquark pair in the singlet state is moving apart from
(approaching) each other, the term makes a positive (neg-
ative) contribution to the Hamiltonian, while the sign is
opposite for a heavy quark-antiquark pair in the octet states.

2. Master equation in the recoilless limit

Suppose there is a quarkonium initial state at rest in the
quark-gluon plasma. Let us parametrize the coherence
length of the quarkonium bound state by lcoh. To analyze
the two-body problem, it is convenient to introduce the
center of mass and relative coordinates:	 ~R ¼ ~xQþ~xQc

2
; ~S ¼ ~yQþ~yQc

2
;

~r ¼ ~xQ − ~xQc
; ~s ¼ ~yQ − ~yQc

:
ð69Þ

Since we are mainly interested in the relative motion of the

heavy quark and antiquark, we take ~R ¼ ~S. Then by
repeating the similar argument previously made, the
decoherence of the wave function is the dominant process
if Δr ≫ vQ;Qc

=T. Here, Δr denotes the coherence length in
the relative coordinate, which is given by the typical values

of j~r − ~sj in the wave functions (at ~R ¼ ~S). Typically,
j~rj; j~sj≲ lcoh in the initial wave function and thus Δr≃ lcoh
holds. Initially, the center-of-mass motion is almost static
so that vQ;Qc

≃ vrel=2. Here, vrel ∼ 1=Mlcoh is the relative
velocity of the heavy quark and antiquark in the quarko-
nium. Therefore, if lcoh ≫ ldB ∼ 1=

ffiffiffiffiffiffiffiffi
MT

p
is satisfied, the

dominant process for a quarkonium at rest is decoherence.
Note that lcoh ∼ 1=Mα ≫ ldB is satisfied by all the bound
states if the condition for the coarse graining in time
Mα2 ≪ gT is satisfied.
When studying the decoherence of bound states

with lcoh ≫ ldB, the master equation can be approximated
by keeping the kinetic term and terms from Spot and Sfluct in
the influence functional. The superoperator LQQc

in the
recoilless limit is

LQρ̂QQc
≃ i

~∇2
xQ − ~∇2

yQ

2M
ρ̂QQc

−Dð~xQ − ~yQÞðta ⊗ 1Þρ̂QQc
ðta ⊗ 1Þ

þ CFDð~0Þρ̂QQc
; ð70Þ

LQc
ρ̂QQc

≃ i
~∇2
xQc

− ~∇2
yQc

2M
ρ̂QQc

−Dð~xQc
− ~yQc

Þð1 ⊗ ta�Þρ̂QQc
ð1 ⊗ ta�Þ

þ CFDð~0Þρ̂QQc
; ð71Þ

and

Lð2Þ
QQc

ρ̂QQc
≃ ðiVð~xQ− ~xQc

Þ−Dð~xQ − ~xQc
ÞÞðta ⊗ ta�Þρ̂QQc

− ðiVð~yQ− ~yQc
ÞþDð~yQ − ~yQc

ÞÞρ̂QQc
ðta ⊗ ta�Þ

þDð~xQ− ~yQc
Þðta ⊗ 1Þρ̂QQc

ð1⊗ ta�Þ
þDð~yQ− ~xQc

Þð1⊗ ta�Þρ̂QQc
ðta ⊗ 1Þ: ð72Þ

This master equation is in the Lindblad form with8<
:

L~ka ¼ ei~k·~xQðta ⊗ 1Þ − ei~k·~xQc ð1 ⊗ ta�Þ;
γ~ka ¼ − ~Dð~kÞ

L3 > 0;
ð73Þ

and with the Hamiltonian

H ¼ ~p2Q þ ~p2Qc

2M
− Vð~xQ − ~xQc

Þðta ⊗ ta�Þ: ð74Þ

In the master equation given by the superoperators (70)–
(72), the relative motion and center-of-mass motion decou-
ple. Note that these motions decouple only after taking the
recoilless limit. Let us define the reduced density matrix for
the relative motion ρ̂rQQc

ðt; ~r; ~sÞ,

ρ̂rQQc
ðt;~r;~sÞ¼

Z
d3Rd3Sδð~R− ~SÞρ̂QQc

ðt; ~xQ; ~xQc
; ~yQ; ~yQc

Þ;

ð75Þ
and derive a master equation for it. The result is

∂
∂t ρ̂

r
QQc

ðt; ~r; ~sÞ

¼
�
i
~∇2
r − ~∇2

s

M
þ 2CFDð~0Þ

�
ρ̂rQQc

ðt; ~r; ~sÞ

þ ðiVð~rÞ −Dð~rÞÞðta ⊗ ta�Þρ̂rQQc
ðt; ~r; ~sÞ

− ðiVð~sÞ þDð~sÞÞρ̂rQQc
ðt; ~r; ~sÞðta ⊗ ta�Þ

−D

�
~r − ~s
2

�� ðta ⊗ 1Þρ̂rQQc
ðt; ~r; ~sÞðta ⊗ 1Þ

þð1 ⊗ ta�Þρ̂rQQc
ðt; ~r; ~sÞð1 ⊗ ta�Þ

�

þD

�
~rþ ~s
2

�� ðta ⊗ 1Þρ̂rQQc
ðt; ~r; ~sÞð1 ⊗ ta�Þ

þð1 ⊗ ta�Þρ̂rQQc
ðt; ~r; ~sÞðta ⊗ 1Þ

�
:

ð76Þ
The Lindblad operator is obtained by substituting ~xQ →
~r=2 and ~xQc

→ −~r=2 in Eq. (73) and the coefficient is the
same as Eq. (73). The Hamiltonian is obtained by just
expressing Eq. (74) in the relative coordinate. In Table IV,
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we summarize the recoilless limit master equation for the
quarkonium.
Since the potential and thermal fluctuation depends on

the color states of quarkonium, one cannot trace out the
color space dynamics in the master equation (76). Instead,
we can obtain coupled master equations for the color
singlet occupation ρ1ðt; ~r; ~sÞ≡ Trcolor½ρ̂rQQc

ðt; ~r; ~sÞP1� and
for the color octet [or ðN2

c − 1Þ representation] occupation
ρ8ðt; ~r; ~sÞ≡ Trcolor½ρ̂rQQc

ðt; ~r; ~sÞP8�, where P1 and P8 are
projection operators onto color singlet and octet states.

IV. QUANTUM DECOHERENCE OF
HEAVY QUARKONIUM

In this section, we show that the master equations in the
recoilless limit are equivalent to stochastic Schrödinger
equations. The stochastic Schrödinger equations describe
the effects of thermal fluctuation on the quantum states
of heavy quarks. Because of the thermal fluctuation, the
wave function at distant points becomes decoherent.
Decoherence is essential for quarkonium dissociation so
that here we concentrate on the quarkonium sector. Since
the stochastic Schrödinger equations can be understood as
Hamiltonian dynamics with time-dependent random poten-
tial, they cannot describe irreversible processes such as
momentum dissipation. We also discuss decoherence and
classicalization of a wave function. After the system enters
in the classical regime, classical descriptions, such as [29],
would become applicable.

A. Stochastic potential

The basics of the stochastic potential are given in [12].
The wave function of a quarkonium ψðt; ~xQ; ~xQc

Þ is in the
Nc ⊗ N�

c representation. The stochastic and unitary time
evolution of ψðt; ~xQ; ~xQc

Þ is

ψðtþ dt; ~xQ; ~xQc
Þ ¼ e−idtHθðtÞψðt; ~xQ; ~xQc

Þ; ð77Þ

with the following stochastic Hamiltonian:

HθðtÞ¼Hþθaðt; ~xQÞðta ⊗ 1Þ
−θaðt; ~xQc

Þð1⊗ ta�Þ;

H¼−
~∇2
xQ þ ~∇2

xQc

2M
−Vð~xQ− ~xQc

Þðta⊗ ta�Þ;
hθaðt; ~xÞθbðs;~yÞi¼−Dð~x− ~yÞδðt− sÞδab: ð78Þ

Note that −Dð~rÞ is positive definite. In the limit dt → 0,
the stochastic Schrödinger equation becomes (in the Itô
discretization)

i
∂
∂tψðt; ~xQ; ~xQc

Þ ¼ HξðtÞψðt; ~xQ; ~xQc
Þ; ð79Þ

HξðtÞ¼HθðtÞþ iCFDð~0Þ− iDð~xQ− ~xQc
Þðta ⊗ ta�Þ: ð80Þ

In the stochastic Hamiltonian HξðtÞ, we omit terms of
the form dtðθ2 − hθ2iÞ ∼Oðdt0Þ because they do not
contribute in the master equation. In the stochastic
Schrödinger equation, the reduced density matrix is defined
as ρ̂QQc

ðt;~xQ;~xQc
;~yQ;~yQc

Þ≡hψðt;~xQ;~xQc
Þψ�ðt;~yQ;~yQc

Þiθ
and its time evolution is governed by the master equation
obtained previously.
In the relative coordinate, the stochastic Schrödinger

equation for the wave function ψ rðt; ~rÞ is also obtained
similarly:

i
∂
∂tψ

rðt; ~rÞ ¼ Hr
ξðtÞψ rðt; ~rÞ; ð81Þ

Hr
ξðtÞ¼−

~∇2
r

M
þ iCFDð~0Þþð−Vð~rÞ− iDð~rÞÞðta ⊗ ta�Þ

þθaðt;~r=2Þðta ⊗ 1Þ−θaðt;−~r=2Þð1⊗ ta�Þ; ð82Þ

and the master equation (76) is obtained by defining the
reduced density matrix ρ̂rQQc

ðt; ~r; ~sÞ≡ hψ rðt; ~rÞψ r�ðt; ~sÞiθ.
In a numerical simulation, solving the stochastic

Schrödinger equation has a substantial advantage over
solving the master equation because the dimension of
the former is the square root of the latter.

B. Heavy quarkonium dissociation

In the stochastic Schrödinger equations (79) and (81), the
noise and imaginary part describes how the color density
fluctuation in the medium affects quantum dynamics while
the potential describes how the heavy quark and antiquark
interact with each other in the medium. The important
scales here are correlation length lfluct of the color density
fluctuation −Dð~rÞ and the range of the screened potential
Vð~rÞ (or more precisely coherence length lcoh of the bound
states). If the former is much longer than the latter
lfluct ≫ lcoh ≫ ldB, the wave function remains almost
unchanged by a scattering except for receiving a nearly
uniform but random phase factor. In the opposite case
lfluct ≲ lcoh, the wave function easily becomes decoherent
by a scattering.
To see these features explicitly, let us write down the

coupled master equations for density matrices projected
onto color singlet and octet states [ρ1ðt; ~r; ~sÞ and ρ8ðt; ~r; ~sÞ
defined previously]:

TABLE IV. Summary of the approximated master equation (76)
for the quarkonium.

Recoilless limit

Bound state size lcoh ≫ ldB
Approximation of SIF SIF ≃ Spot þ Sfluct
Physical process Decoherence
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∂
∂t
�
ρ1

ρ8

�
ðt;~r;~sÞ

¼
�
i
~∇2
r − ~∇2

s

M

��
ρ1

ρ8

�
ðt;~r;~sÞ

þ iðVð~rÞ − Vð~sÞÞ
�
CF 0

0 −1=2Nc

��
ρ1

ρ8

�
ðt;~r;~sÞ

þDð~r; ~sÞ
�
ρ1

ρ8

�
ðt;~r;~sÞ

; ð83Þ

where Dð~r; ~sÞ, which describes decoherence, is defined as

Dð~r; ~sÞ ¼ 2CFDð~0Þ − ðDð~rÞ þDð~sÞÞ
�
CF 0

0 −1=2Nc

�
− 2D

�
~r − ~s
2

��
0 1=2Nc

CF CF − 1=2Nc

�
þ 2D

�
~rþ ~s
2

��
0 1=2Nc

CF −1=Nc

�
:

ð84Þ

Before discussing decoherence, let us start from a simpler
case with ~r ¼ ~s as a warm-up. Since ρ1ðt; ~r; ~rÞ and
ρ8ðt; ~r; ~rÞ represent probability densities to find a quarko-
nium with separation ~r in the singlet and octet states,
Dð~r; ~sÞ at the same points ~r ¼ ~s gives the rate of color
singlet-octet transitions there:

Dð~r; ~rÞ ¼ 2ðDð~0Þ −Dð~rÞÞ
�

CF −1=2Nc

−CF 1=2Nc

�
: ð85Þ

Because Dð~0Þ −Dð~rÞ < 0ðj~rj ≠ 0Þ, Dð~r; ~rÞ has zero and
negative eigenvalues for eigenvectors tð1; N2

c − 1Þ and
tð1;−1Þ. The eigenvector tð1; N2

c − 1Þ represents the equal
occupation in the color singlet and octet states. If we ignore
the kinetic and potential terms, a color space configuration
would approach this state, within a shorter time scale at
larger j~rj. It is also important to observe that ρ1ðt; ~r; ~rÞ þ
ρ8ðt; ~r; ~rÞ is conserved byDð~r; ~rÞ. In the recoilless limit, the
scatterings are equivalently described by a stochastic
potential, which randomly gives phase and color rotations
to a wave function. Therefore, the probability density to
find a quarkonium with a given separation ~r either in the
color singlet or octet states must be conserved in each
scattering in the recoilless limit.
Now let us discuss the decoherence of a wave function.

If the coherence length of a wave function is small

lfluct ≫ lcoh ≫ ldB, we have Dð~rÞ; Dð~sÞ≃Dð~0Þ for
j~rj; j~sj≃ lcoh in the domain of the wave function. In this
case, the decoherence is not effectiveDð~r; ~sÞ≃ 0. Note that
this holds both for ρ1ðt; ~r; ~sÞ and ρ8ðt; ~r; ~sÞ even though the
color singlet and octet states are quite different in their
interaction with medium particles: Since the wave function
is localized, the singlet state is almost invisible to them
while the octet states clearly interact with them. An octet
state does interact with the medium but it remains as one of
the octet states. In the limit of small wave function
j~rj; j~sj → 0, the octet state can be regarded as a pointlike
gluon so that it remains octet through the interaction.6 This
is why Dð~r; ~sÞ≃ 0 also for the octet states. This kind of

information cannot be gained just from the imaginary part
of the potential. By taking ~s≃ −~r and expanding Dð~r;−~rÞ
in terms of j~rj=lfluct ≃ lcoh=lfluct ≪ 1 to second order, we
obtain

Dð~r;−~rÞ≃ −
D2~r2

3

�
CF 1=2Nc

CF CF − 1=Nc

�
: ð86Þ

Here, Dð~r;−~rÞ has only negative eigenvalues and the time
scale of decoherence at the opposite edges of the wave
function is estimated as ∼1=D2l2coh ∼ ½g4 lnð1=gÞT3l2coh�−1.
If the coherence length of a wave function is large

lcoh ≳ lfluct, we have Dð~rÞ; Dð~sÞ≃ 0 for j~rj; j~sj≃ lcoh ≳
lfluct and thus the decoherence at the edges of the wave
function ~s≃ −~r is given by

Dð~r;−~rÞ≃ 2Dð~0Þ
�
CF 1=2Nc

CF CF − 1=Nc

�
: ð87Þ

Because Dð~0Þ < 0, Dð~r;−~rÞ has only negative eigenvalues
so that it makes the wave function decoherent by scatter-

ings. The time scale for the decoherence is ∼1=Dð~0Þ∼
1=g2T. In this regime, the potential Vð~rÞ is screened and
does not play an important role.
In summary, we have shown that the bound states with

larger size dissociate more easily by scattering with
medium particles, as one can imagine quite intuitively.
We can simply parametrize the decoherence time scale by

tDðlcoh; TÞ ∼
1

g2T

�
aþ b

g2 lnð1=gÞT2l2coh

�
; ð88Þ

with dimensionless coefficients a and b of order Oðg0Þ.
Comparison of the decoherence time scale tD and the
lifetime of the QGP fireball in heavy-ion collisions will
give us a rough estimate of quarkonium dissociation. For
detailed information, such as the occupation number of a
state at a given time, we need to solve the master equation
or its equivalent stochastic Schrödinger equation. In par-
ticular, there is the non-negligible probability that the octet
states get deexcited to the singlet bound states in the
medium. This process is not captured by the decoherence
time scale.

6More specifically, one can see that an operator θaðt; ~0Þ×
½ðta ⊗ 1Þ − ð1 ⊗ ta�Þ� in Eq. (4) maps an octet state to another
octet state. The singlet state is a zero mode of this operator.
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C. Classicalization

When the quarkonium wave function becomes decoher-
ent and typically j~rj; j~sj≳ lfluct, the medium interacts with
the heavy quark and antiquark independently. However,
even after the wave function becomes decoherent, the wave
property still remains until the medium correlation length
lfluct cannot resolve the wave packet of size Δr. Note that
the wave packet here has color in the fundamental
representation.
Once the wave packet becomes small enough compared

to lfluct ≫ Δr, a classical description is applicable and
practically suitable.7 For example, one can obtain phase
space distribution of the heavy quark and antiquark by
Wigner transformation and switch to classical description
such as Ref. [29]. Since the master equation in the recoilless
limit is applicable for Δr ≫ ldB, there exists a regime
lfluct ≫ Δr ≫ ldB where the switch to classical description
is possible.

V. SUMMARY

In this paper, we have derived the Lindblad-form master
equations for heavy quark systems in the quark-gluon
plasma. The master equation in the Lindblad form ensures
the complete positivity of the reduced density matrix as it
evolves in time. Therefore, deriving the master equations in
the Lindblad form is an important theoretical advance in the
formulation of quantum dynamics of heavy quarks.
In order to obtain the master equations in the Lindblad

form, we derive the influence functional SIF by perturbative
expansion and by coarse graining in time. In the heavy
quark Lagrangian, we take the nonrelativistic limit and
keep the leading terms in the 1=c expansion, namely, the
color density interaction terms. The influence functional
consists of Spot; Sfluct ∼Oðg2v0Þ, Sdiss ∼Oðg2vÞ, and SL∼
Oðg2v2Þ. Here, SL plays an essential role in deriving the
master equations in the Lindblad form. The velocity v
comes into play in the course of the coarse graining in time.
In the coarse graining, we need a conditionMα2 ≪ gT in

order to neglect the effect of acceleration in the quarkonium
bound states during a scattering event. This regime is called
the quantum Brownian motion in the open quantum
systems. When Mα2 ≪ gT is not satisfied, it indicates that
quantum optical description works better for a quarkonium.
In such a case, the master equations for a single heavy
quark and those for a quarkonium are not derived from a
common influence functional SIF.
After deriving the master equations in the Lindblad form,

we have made approximations to obtain more effective
master equations appropriate to the physical conditions of
the problems. One is for Langevin dynamics of localized
wave packets and the other is for the decoherece of

extended wave functions. Both approximations yield
master equations in the Lindblad form.
Finally, we have examined the decoherence of a quar-

konium wave function. The decoherence is described by
the master equation in the recoilless limit, which is
equivalent to the Schrödinger equation with a stochastic
potential. In terms of a stochastic potential, quarkonium
dissociation can be understood as an interplay of two length
scales, the coherence length of a state lcoh and the
correlation length of the thermal fluctuation lfluct. For
lfluct ≫ lcoh ≫ ldB, the decoherence of the wave function
is not effective and quarkonium dissociation requires a
longer time of the order ∼½g4 lnð1=gÞT3l2coh�−1. For
lfluct ≲ lcoh, the decoherence is so efficient that the quarko-
nium dissociates quickly with the typical time scale
∼1=g2T. The recoilless limit master equation can also
describe the classicalization until the wave packet size Δr
becomes too small to be resolved by the medium fluc-
tuation lfluct ≫ Δr ≫ ldB. In this regime, one can switch to
a classical description that is more effective.
As future prospects, the calculation of the ϒ spectrum at

the LHC is one of the important applications of our
approach. For this application, we need to model the
dynamics of the open quantum system in the nonperturba-
tive region by referring to and extending the perturbative
results. It is also an open problem to describe the real gluon
processes, such as excitation of quarkonium by absorbing a
real gluon (gluodissociation). For this extension, we need to
keep higher order terms in the 1=c expansion or the 1=M
expansion in the heavy quark Lagrangian.
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APPENDIX A: TWO-POINT FUNCTIONS
OF GLUONS

The influence functional SIF up to the order of
Oðg2v0; g2vÞ and some of Oðg2v2Þ is given by two-point
functions of gluons. Since we are interested in the distance
scale of r≃ 1=gT, where the Debye screening of the color
charges becomes important, we need to include HTL
resummations to obtain the two-point functions at the
leading order Oðg2Þ.
The two-point functions Vð~rÞ, Dð~rÞ, and Að~rÞ are

defined by using the retarded propagator ~GR
ab;00ðω; ~rÞ

and the spectral function σab;00ðω; ~rÞ, as shown in
7We may also call this process decoherence. The difference is

whether it is for one-body or two-body wave functions.
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Eqs. (27)–(29). The explicit forms of the retarded propa-
gator and the spectral function are

~GR
ab;00ð0; ~rÞ ¼ −

e−ωDr

4πr
; ðA1Þ

∂
∂ωσab;00ð0; ~rÞ ¼

Z
d3k
ð2πÞ3

πω2
De

i~k·~r

kðk2 þ ω2
DÞ2

; ðA2Þ

with the Debye screening mass ω2
D¼ðg2T2=3ÞðNcþNf=2Þ

for QCD with Nf light flavors. With these, Vð~rÞ, Dð~rÞ, and
Að~rÞ are determined to leading order in g.
It should be emphasized that the HTL-resummed cal-

culation gives the leading-order result for r≃ 1=gT but
does not give a correct extrapolation from r≃ 1=gT to
r≃ 1=T. For example, if we calculate the heavy quark
momentum diffusion constant, which is given by

ðCF=3Þ ~∇2
Dð~rÞjr¼0 [15], the scattering processes with

exchanged momentum k≃ T (hard) as well as k≃ gT
(soft) become relevant. In this case, we need to split the
momentum integral at some intermediate scale gT ≪ Λ ≪
T in momentum space and add the two contributions to
obtain the heavy quark diffusion constant. In k < Λ the
HTL-resummed result for soft momentum exchange is
reliable, while in k > Λ the scattering processes with hard
exchanged momentum k need to be considered separately.
The contributions from different momentum regions
are logarithmically sensitive to the scale Λ but these
dependences are canceled in the sum, yielding a finite
and Λ-independent heavy quark momentum diffusion
constant [30].

APPENDIX B: AN ILLUSTRATION OF
OBTAINING THE MASTER EQUATIONS

Here, we briefly sketch how a term − 1
2

R
t0 dt×R

d3xd3yDð~x − ~yÞρa1ðt; ~xÞρa2ðt; ~yÞ ∈ iSfluct in the influence
functional contributes in the master equation for a single
heavy quark. First, we obtain the corresponding term in the
Hamiltonian HCTP as

HCTP ∋ i
2

Z
t0
dt
Z

d3xd3yDð~x − ~yÞ½ta�ij½ta�kl
× ψ i†

1 ðt; ~xÞψj
1ðt; ~xÞψ l

2ðt; ~yÞψk†
2 ðt; ~yÞ: ðB1Þ

Note that the operators are ordered by time. The overall
sign is determined by ð−1Þ2: ð−1Þ from conversion to
Hamiltonian and ð−1Þ from fermion field ordering for ψ2.
In the single heavy quark sector, the relevant term is

HCTP ∋ i
2

Z
t0
dt
Z

d3xd3yDð~x − ~yÞ½ta�ij½ta�kl
× Qi†

1 ðt; ~xÞQj
1ðt; ~xÞQl

2ðt; ~yÞQk†
2 ðt; ~yÞ: ðB2Þ

We introduce ð ~Q†
2; ~Q2Þ≡ ðQ2;Q

†
2Þ and obtain a functional

operator by replacing ðQ†
1;Q1Þ→ ðQ�

1;
δ

δQ�
1

Þ and ð ~Q†
2; ~Q2Þ →

ð ~Q�
2;− δ

δ ~Q�
2

Þ. This yields

HCTP ∋ −
i
2

Z
t0
dt
Z

d3xd3yDð~x − ~yÞ½ta�ij½ta�kl

×Qi�
1 ðt; ~xÞ

δ

δQj�
1 ðt; ~xÞ

~Ql�
2 ðt; ~yÞ

δ

δ ~Qk�
2 ðt; ~yÞ

¼ −
i
2

Z
t0
dt
Z

d3xd3yDð~x − ~yÞ½ta�ij½ta��lk

× ~Ql�
2 ðt; ~yÞQi�

1 ðt; ~xÞ
δ

δQj�
1 ðt; ~xÞ

δ

δ ~Qk�
2 ðt; ~yÞ : ðB3Þ

This functional operator acts on ρS½t; Q�
1ðcÞ; ~Q

�
2ðcÞ� in the

functional master equation i∂tρS ¼ HCTPρS. As in Eq. (47),
reduced density matrix of a single heavy quark is given by

ρijQðt; ~x; ~yÞ ¼ −
δ

δQi�
1 ð~xÞ

δ

δ ~Qj�
2 ð~yÞ

ρS½t; Q�
1ðcÞ; ~Q

�
2ðcÞ�jQ�¼0:

ðB4Þ

Thus, we obtain the master equation for a single heavy
quark as

∂
∂tρ

ij
Qðt; ~x; ~yÞ¼

�
� � �−1

2
Dð~x− ~yÞ½ta�ik½ta��jlþ�� �

�
ρklQðt; ~x; ~yÞ:

ðB5Þ

We have the same contribution from − 1
2

R
t0 dt

R
d3xd3y×

Dð~x − ~yÞρa2ðt; ~xÞρa1ðt; ~yÞ ∈ iSfluct so that we see the
sum of these in the master equation (50) (the first term
in F1).

APPENDIX C: TIME-EVOLUTION EQUATION
FOR THE FORWARD PROPAGATOR

By the method explained in Sec. II, we can derive
the time-evolution equation for the forward propagator
G>

QQc
ðt; ~xQ; ~xQc

Þ in the Nc ⊗ N�
c representation. The

time-evolution equation is often called the Schrödinger
equation, causing a lot of confusion by its name. Using
the influence functional up to Oðg2v0; g2vÞ [thus, we
do not consider SL ∼Oðg2v2Þ here], the time evolution
of the forward propagator is given by an operator
Kð~xQ; ~xQc

Þ:

i
∂
∂t G

>
QQc

ðt; ~xQ; ~xQc
Þ ¼ Kð~xQ; ~xQc

ÞG>
QQc

ðt; ~xQ; ~xQc
Þ; ðC1Þ
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Kð~xQ;~xQc
Þ¼
8<
:
2M−

~∇2
xQ

þ ~∇2
xQc

2M

þCF

�
− g2ωD

4π þ iDð~0Þþ i
~∇2

Dð~0Þ
4MT

�
9=
;þ

8>><
>>:
−Vð~xQ− ~xQc

Þ− iDð~xQ− ~xQc
Þ

− i
4MT

 ~∇2
xQDð~xQ− ~xQc

Þ
þ ~∇xQDð~xQ− ~xQc

Þ · ð ~∇xQ − ~∇xQc
Þ

!
9>>=
>>;ðta ⊗ ta�Þ: ðC2Þ

We find that there are terms not only from Spot; Sfluct ∼Oðg2v0Þ but also from Sdiss ∼Oðg2vÞ in the operator Kð~xQ; ~xQc
Þ.

This shows that the leading correction to the operator Kð~xQ; ~xQc
Þ in the velocity expansion is OðvÞ. The OðvÞ term comes

from the diagonal parts of Sdiss. This is correctly obtained by choosing t ¼ maxðx0; y0Þ.
In Eq. (C2), the term − i

4MT ð� � �Þðta ⊗ ta�Þ in Kð~xQ; ~xQc
Þ is Hermitian and identical to the second line of Eq. (68).

Therefore, by projecting Eqs. (C1)–(C2) onto the singlet channel, we can see that the term makes a positive (negative)
contribution to Kð~xQ; ~xQc

Þ when a heavy quark-antiquark pair is moving apart from (approaching) each other. The sign is
opposite if we project onto the octet channel.

APPENDIX D: EXPLICIT FORM OF Lð2Þ
QQc

The explicit form of Lð2Þ
QQc

consists of four terms:

Lð2Þ
QQc

ρ̂QQc
¼L11

QQc
ð~xQ;~xQc

Þðta ⊗ ta�Þρ̂QQc
þL12

QQc
ð~xQ;~yQc

Þðta⊗ 1Þρ̂QQc
ð1⊗ ta�ÞþL21

QQc
ð~yQ;~xQc

Þð1⊗ ta�Þρ̂QQc
ðta ⊗ 1Þ

þL22
QQc

ð~yQ;~yQc
Þρ̂QQc

ðta⊗ ta�Þ: ðD1Þ

With ~r11 ¼ ~xQ − ~xQc
and ~r12 ¼ ~xQ − ~yQc

, each of them is given by

L11
QQc

ð~xQ;~xQc
Þ¼ iVð~r11Þ−Dð~r11Þ−

∇2Dð~r11Þ
4MT

þð ~∇2Þ2Að~r11Þ
8M2

− ~∇
�
Dð~r11Þ
4MT

−
~∇2
Að~r11Þ
4M2

�
·ð ~∇xQ − ~∇xQc

Þ−∇i∇jAð~r11Þ
2M2

∇i
xQ∇j

xQc
;

ðD2Þ

L12
QQc

ð~xQ; ~yQc
Þ ¼ Dð~r12Þ þ

∇2Dð~r12Þ
4MT

þ ð ~∇2Þ2Að~r12Þ
8M2

þ ~∇
�
Dð~r12Þ
4MT

þ
~∇2
Að~r12Þ
4M2

�
· ð ~∇xQ − ~∇yQc

Þ −∇i∇jAð~r12Þ
2M2

∇i
xQ∇j

yQc
;

ðD3Þ

L21
QQc

ð~yQ; ~xQc
Þ ¼ L12

QQc
ð~yQ; ~xQc

Þ; ðD4Þ

L22
QQc

ð~yQ; ~yQc
Þ ¼ ðL11

QQc
ð~yQ; ~yQc

ÞÞ�: ðD5Þ
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