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The trinification model is an interesting extension of the Standard Model (SM) based on the gauge group
SUð3ÞC × SUð3ÞL × SUð3ÞR. We study its low-energy phenomenology by constructing a low-energy
effective field theory, thereby reducing the number of particles and free parameters that need to be studied.
The resulting model predicts that several new scalar particles have masses in the Oð100 GeVÞ range. We
study a few of the interesting phenomenological scenarios, such as the presence of a light fermiophobic
scalar in addition to a SM-like Higgs, or a degenerate (twin) Higgs state at 126 GeV. We point out regions
of the parameter space that lead to measurable deviations from SM predictions of the Higgs couplings.
Hence, the trinification model awaits crucial tests at the Large Hadron Collider in the coming years.
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I. INTRODUCTION

The discovery of the Higgs boson [1,2] marks the
establishment of the Standard Model (SM) of particle
physics as the model that correctly describes physics at
experimentally available energies to date. All SM particles
have been discovered, and the experimental data gathered at
particle colliders match the predictions of the SM to good
precision [3]. Yet, the SM is regarded as an incomplete
theory of nature: it lacks a dark matter candidate and is
incompatible with the observation of nonzero neutrino
masses. Also, the fermion masses and mixings are free
parameters that display hierarchical patterns, and parity
violation is introduced by hand. Therefore, our quest towards
a better theory of nature requires us to extend the SM.
Grand unified theories (GUTs) [4–8] are interesting

extensions of the SM in which the SM gauge group
SUð3ÞC × SUð2ÞL ×Uð1ÞY is embedded in a larger simple
gauge group. The exceptional group E6 is an attractive
example of a GUT group [6–8]. It is anomaly free and left-
right-symmetric (LR-symmetric), and as such it provides an
explanation for parity violation in the SM by spontaneous
symmetry breaking. It appears in the compactification of
string theories, which leads to either four-dimensional E6

gauge symmetry or one of E6 ’s maximal subgroups [9,10].
One of these maximal subgroups is the “trinification group”
G333 ≡ SUð3ÞC × SUð3ÞL × SUð3ÞR. Models based on
the trinification group have been studied in several
contexts [11–18].
In this work, “trinification model” will refer to the setup

described in Refs. [7,19–23]. The setup described there is
interesting for several reasons: fermion masses and mixings
of the SM can be reproduced using only a few parameters,
with a satisfactory fit for the solar neutrino mass difference

and the neutrino mixing pattern. Also, a Standard-Model-
like Higgs with a mass close to 126 GeVappears in a large
region of parameter space of the model. Furthermore, it
gives predictions for the matrix element of neutrinoless
double-beta decay and the neutrino masses, which allow
the model to be tested with low-energy experiments. It also
allows for various interesting phenomenological scenarios,
such as the presence of a light fermiophobic Higgs in
addition to the Standard-Model-like Higgs, or even a
degenerate Higgs state at 126 GeV.
Inorder tocompare the trinificationmodelwithexperiment,

a studyof the low-energyphenomenology isnecessary.Due to
the large number of scalars, a study of the full scalar mass
matrix is challenging.However, severalof thescalar fieldswill
obtain very large masses when the trinification symmetry is
broken, and thus can be integrated out from the theory. The
result is aneffective field theorywith theLR-symmetricgauge
group SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L, and fewer
scalar fields than in the trinificationmodel. Thismodel has the
same low-energy properties as the trinification model but is
easier to study. We will refer to this model as the low-energy
trinification (LET) model.
Neither the LET model nor the trinification model

resolves the hierarchy problem. This problem is hidden
in the vacuum expectation values (VEVs) used in the
model, which are presently not understood. In our treat-
ment, all dimensionful parameters and masses are fully
determined by these VEVs multiplied by dimensionless
coupling constants. Since these VEVs are momentum and
scale independent (except for wave-function renormaliza-
tion), their use as fixed parameters is justified.
Left-right symmetric models based on the gauge group

SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L [24–26] have
been studied extensively in the literature. Moreover, these
models have many features in common with the two-
Higgs-doublet model (2HDM) [27]. However, the LET
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model has properties that distinguish it from more general
LR-symmetric models and the 2HDM, due to the trinifi-
cation origin at high energy scales. A LR-symmetric
model in the context of the trinification model has not
been studied before to the best of our knowledge.
Therefore, the LET model merits a study.
In this work, we explore the low-energy phenomenology

of the LET model. We briefly describe the trinification
model in Sec. II, and subsequently derive the properties of
the LET model in Sec. III. In order to aid our study of the
LET model, we first introduce the single-bidoublet (SB)
model, a simplified form of the LET model that has fewer
scalar fields. The possible phenomenological scenarios for
both the SB model and the LET model are worked out in
Sec. IV. We show how these models may be distinguished
experimentally from the SM by studying the modifications
of the SM Higgs couplings in Sec. V. It turns out that the
LET model allows for interesting phenomenological sce-
narios, such as a very light fermiophobic scalar with a mass
in the GeV range or a degenerate scalar state at 126 GeV.
We discuss these scenarios in more detail in Secs. VI and
VII. Our conclusions are presented in Sec. VIII.

II. THE TRINIFICATION MODEL

The Higgs sector of the trinification model contains two
complex scalar fields H1; H2 in the ð1; 3̄; 3Þ representation
of G333 ≡ SUð3ÞC × SUð3ÞL × SUð3ÞR. We can use the
SUð3ÞL × SUð3ÞR gauge symmetry to bring the VEVofH1

into diagonal form:

hH1i ¼
1ffiffiffi
2

p

0B@ v1 0 0

0 b1 0

0 0 M1

1CA;

hH2i ¼
1ffiffiffi
2

p

0B@ v2 0 0

0 b2 b3
0 M M2

1CA: ð1Þ

Here we employed a matrix notation in which SUð3ÞL
indices run vertically and SUð3ÞR indices run horizontally.
All VEV parameters are taken to be real in order to avoid
tree-level CP-violation. The second fieldH2 is necessary to
break the left-right symmetry of G333: it cannot be made
diagonal once hH1i is taken to be diagonal. The off-
diagonal parametersM, b3 are taken to be unequal, and thus
break the left-right symmetry. We assume the presence of
large hierarchies among the VEV parameters. The param-
eters M1;M2 ∼ 1013 GeV are of the order of the scale
where the Standard Model gauge couplings g1 and g2 unify.
The off-diagonal VEV M is taken to be an intermediate
scale of order 1010 GeV, but could also be as low as a few
TeV. The gauge couplings gL;R of SUð3ÞL;R are equal above
this scale, whereas below M the left-right symmetry
is broken. The other VEV parameters contribute to the

W-boson mass and are, therefore, much smaller than M1,
M2, M. As such, the former are constrained by the relation
v21 þ v22 þ b21 þ b22 þ b23 ¼ v2 ¼ ð246 GeVÞ2. The used
scalar potential is renormalizable and all its parameters
are taken to be real in order to avoid tree-level CP-
violation.
The fermions are grouped into the fundamental repre-

sentation 27 of E6. They are two-component left-handed
Weyl spinors with respect to the Lorentz group. The
fermion field decomposes into a lepton field L, a left-
handed quark field QL, and a right-handed quark field QR,
which are assigned to the representations of SUð3ÞC ×
SUð3ÞL × SUð3ÞR as follows:

L ∼ ð1; 3̄; 3Þ; QL ∼ ð3̄; 3; 1Þ; QR ∼ ð3; 1; 3̄Þ:
ð2Þ

In matrix notation, L is a 3 × 3 matrix, QL is a column
vector, and QR is a row vector:

L ¼

0B@ L1
1 E− e−

Eþ L2
2 ν

eþ ν̂ L3
3

1CA;

Qb
L ¼

0B@ ub

db

Db

1CA; Qb
R ¼ ð ûb d̂b D̂b Þ: ð3Þ

Here b ¼ 1; 2; 3 is a color index. The components u, d are
the left-handed up-type and down-type quarks from the
SM, whereasD is a new quark with electromagnetic charge
− 1

3
. The components û, d̂, D̂ are their respective right-

handed counterparts. The lepton field contains the charged
leptons e� and the left-handed neutrino ν. It contains
several new states: a right-handed neutrino ν̂; three neutral
states L1

1, L
2
2, L

3
3; and a pair of charged leptons E�. A

generation index α ¼ 1; 2; 3 on the fermion fields in Eq. (3)
has been suppressed.
The Higgs fieldsH1,H2 cannot both couple to fermions,

since this would lead to flavor-changing neutral current
(FCNC) processes, which are severely restricted by experi-
ment. In order to suppress tree-level FCNC interactions, the
existence of a Z2 symmetry is assumed under which H1

(H2) is even (odd). The fermions are even under this
symmetry as well, which implies thatH2 does not couple to
fermions. The Yukawa couplings are of the form

LY ¼ −gtGαβ

�
Qα

RH
T
1Q

β
L þ 1

2
ϵijkϵlmnLi

lL
j
mðH1Þkn

�
− AαβðQα

RH
T
AqQ

β
L þ ϵijkLi

lL
j
mðHAlÞkflmgÞ

−
1

MN
ðG2ÞαβTrfLαH†

1gTrfH†
2L

βg þ H:c: ð4Þ

JAMIL HETZEL AND BERTHOLD STECH PHYSICAL REVIEW D 91, 055026 (2015)

055026-2



The first line is a Yukawa interaction built from the fields we
have already introduced: the parameter gt is a dimensionless
coupling, Gαβ is a symmetric 3 × 3 generation matrix, and ϵ
is a totally antisymmetric symbol with ϵ123 ¼ ϵ123 ¼ þ1.
This interaction is sufficient to reproduce the up-quark
masses by choosing a generation basis in which gtGαβ is
diagonal and fitting its diagonal components to the up-quark
masses [23]. The VEV M1 in Eq. (1) gives large masses to
D, E�. The second line in Eq. (4) contains interactions with
new scalar fields HAq ∼ ð1; 3̄; 3Þ and HAl ∼ ð1; 3̄; 6̄Þ, cou-
pling to the fermions with a Hermitian antisymmetric matrix
Aαβ. [28] These terms come from the couplings of a scalar
field HA in the antisymmetric 351A representation of E6.
This interaction is necessary to describe the masses and
mixings of the down quarks and charged leptons correctly:
the Standard Model down quarks and charged leptons are
mixed with their heavy partners via the seesaw mechanism.
A good fit for the masses and mixings of the Standard Model
fermions is obtained using only very few extra parameters
[23]. It is assumed that the fields HAq, HAl have negligible
mixing with H1, H2 in order to simplify the analysis of the
scalar spectrum.
At this stage, neutrinos are still Dirac particles with

masses comparable to the other fermion masses. The third
line in Eq. (4) is necessary to obtain neutrino masses in
accordance with experiment. This line contains an effective
dimension-five Yukawa interaction that could originate
from the exchange of a new heavy Dirac fermion that is
a trinification singlet [20]. It violates the Z2 symmetry and
mixes the neutrinos ν, ν̂ with the other neutral leptons L1

1,
L2
2, L

3
3, giving rise to a generalized seesaw mechanism. The

light-neutrino mass matrix introduces two additional
parameters, which can be fixed by the experimentally
observed atmospheric mass-squared difference and the
lightest neutrino mass [23].

III. AN EFFECTIVE TRINIFICATION MODEL:
THE LET MODEL

We now consider the effective trinification model
obtained after integrating out the Higgs fields that are
made heavy by the large VEVs M1 and M2. We expect
the Higgs fields that are right-handed singlets with
respect to the SM to obtain large masses. These are the
fields with the SUð3ÞR index (3). On the other hand, the
fields (3,1) and (3,2) of H2 that are left-handed singlets
(with respect to the SM) are kept. These Higgs fields
are necessary to describe the breaking of the left-right
symmetry. The corresponding scale M is certainly
larger than the weak scale, but may be much lower than
M1 and M2.
The 2 × 2 blocks in the upper left corners of the fields

H1, H2 transform as bidoublets Φ1;Φ2 ∼ ð1; 2̄; 2; 0Þ under
SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L. The (3,1) and

(3,2) components of H2 transform as a right-handed
doublet ΦR ∼ ð1; 1; 2; 1Þ:

Φi ¼
 
Φ0

i;11 Φ−
i;21

Φþ
i;12 Φ0

i;22

!
↔

0B@ ðHiÞ11 ðHiÞ12 0

ðHiÞ21 ðHiÞ22 0

0 0 0

1CA;

ΦR ¼
�
Φþ

R Φ0
R

�
↔

0B@ 0 0 0

0 0 0

ðH2Þ31 ðH2Þ32 0

1CA: ð5Þ

These fields obtain the following VEVs:

hΦii ¼
1ffiffiffi
2

p
�
vi 0

0 bi

�
;

hΦRi ¼
1ffiffiffi
2

p ð 0 M Þ: ð6Þ

The fields Φ1, Φ2, ΦR, and their VEVs are sufficient to
describe the symmetry breaking from SUð3ÞC × SUð2ÞL ×
SUð2ÞR ×Uð1ÞB−L to electromagnetism via the SM. Note
that a right-handed doublet like ΦR resides inH1 as well. In
principle, ΦR may be a combination of both. Note that the
(3,3) components of H1 and H2 are total gauge singlets. A
combination of them, if sufficiently light, could be a dark
matter candidate. Also note thatΦ2 andΦR do not couple to
fermions.
Besides the eight gluon fields of SUð3ÞC, the gauge-

boson sector consists of seven vector gauge bosons. Their
masses and mixings are given in Sec. A. The VEVs of Φ1;2

contribute to the W mass and are, therefore, constrained
by the relation v21 þ b21 þ v22 þ b22 ¼ v2 ¼ ð246 GeVÞ2.
It is convenient to reparametrize the VEV parameters as

v1 ¼ v cos α cos β1;

v2 ¼ v sin α cos β2;

b1 ¼ v cos α sin β1;

b2 ¼ v sin α sin β2: ð7Þ

The parameter M is a mass scale above the electroweak
scale. Because of this hierarchy, it will often be convenient
to use the small parameter ξ≡ v=M.
We build the scalar potential of the LET model from all

possible gauge-invariant renormalizable operators consist-
ing of Φ1, Φ2, ΦR, leaving out those that could not have
arisen from the trinification model. This means that we do
not include operators involving charge conjugates: since
the 3 and 3̄ representations of SUð3Þ are inequivalent, such
operators have no possible origin in the trinification model.
The resulting potential is
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V ¼ V1ðΦ1;ΦRÞ þ V2ðΦ1;Φ2;ΦRÞ;

V1 ¼
λ1
2
TrfΦ†

1Φ1g2 þ
λ2
2
TrfΦ†

1Φ1Φ
†
1Φ1g þ

λ3
2
ðΦRΦ

†
RÞ2 þ λ4TrfΦ†

1Φ1gðΦRΦ
†
RÞ þ λ5ΦRΦ

†
1Φ1Φ

†
R þ μ211TrfΦ†

1Φ1g
þ μ2RΦRΦ

†
R þ ðμ21 detΦ1 þ H:c:Þ;

V2 ¼
~λ1
2
TrfΦ†

2Φ2g2 þ
~λ2
2
TrfΦ†

2Φ2Φ
†
2Φ2g þ ~λ3TrfΦ†

2Φ2gðΦRΦ
†
RÞ þ ~λ4ΦRΦ

†
2Φ2Φ

†
R þ ~λ5TrfΦ†

1Φ1gTrfΦ†
2Φ2g

þ ~λ6jTrfΦ†
1Φ2gj2 þ

~λ7
2
ðTrfΦ†

1Φ2g2 þ H:c:Þ þ ~λ8TrfΦ†
1Φ1Φ

†
2Φ2g þ ~λ9TrfΦ†

1Φ2Φ
†
2Φ1g

þ
~λ10
2

ðTrfΦ†
1Φ2Φ

†
1Φ2g þ H:c:Þ þ μ222TrfΦ†

2Φ2g þ ðμ22 detΦ2 þ H:c:Þ: ð8Þ

For later convenience, we have split the potential into the
parts V1 and V2 that, respectively, do and do not depend on
Φ2. As mentioned in the introduction, the five dimensionful
parameters μ211, μ

2
22, μ

2
R, μ

2
1, μ

2
2 are no free parameters. They

are determined in terms of the VEV parameters v1, b1, v2,
b2, M and the dimensionless parameters λi, ~λj by the
requirement that V has an extremum at the appropriate
place.
In the trinification model, the fermions obtain their

masses from Yukawa interactions with H1. In order to
combine the leptons and Φ1 into a gauge singlet, we need
the antisymmetric tensor iσ2, which can be absorbed into a
redefinition of the lepton fields. Absorbing a minus sign
into the phase of the e� fields, the fermionic field content of
the LET model becomes

QL ≡
�
u

d

�
∼
�
3̄; 2; 1;

1

3

�
;

QR ≡ ð û d̂ Þ ∼
�
3; 1; 2̄;−

1

3

�
;

L− ≡
�

ν

e−

�
∼ ð1; 2; 1;−1Þ;

Lþ ≡ ð ν̂ eþ Þ ∼ ð1; 1; 2̄; 1Þ: ð9Þ

After integrating out the heavy fields, the first line of the
Yukawa Lagrangian in Eq. (4) becomes

LY ¼ −GαβðQα
RΦ

T
1Q

β
L þ LþαΦT

1L
−βÞþH:c: ð10Þ

This term is insufficient to describe all fermion masses
correctly: down-quark masses as well as the charged-lepton
and neutrino masses would be proportional to each other
and the CKMmatrix would be a unit matrix at this point. In
order to describe the fermion masses and mixings correctly,
interactions with the additional fields HAq, HAl need to be
included. Here we restrict ourselves to the single Yukawa
term in Eq. (10) and fit the free parameters to the top- and
bottom-quark masses: these fermions are the most relevant

to compare our analysis to experimental searches for new
physics. We assume that flavor physics for the lower
fermion masses does not influence the spectrum of the
scalar particles. Fitting the free parameters to the top-
and bottom-quark masses, we find v ¼ 246 GeV,
tan β1 ¼ mb=mt ⇒ β1 ¼ 0.0166. Since Φ2 does not con-
tribute to the fermion masses, we have no such restrictions
on β2 and α.

A. The single-bidoublet model

The scalar potential of the LET model in Eq. (8) contains
15 free coupling constants, which are difficult to deal with.
As an intermediate step towards an understanding of the
LET model, we first discuss a model from which Φ2 has
been omitted; we will refer to this setup as the single-
bidoublet (SB) model. This model corresponds to the LET-
model limit α ¼ 0, μ222 → ∞ (α ¼ 0 implies v2 ¼ b2 ¼ 0,
for which μ222 is no longer constrained by the location of the
minimum of the scalar potential). Note however that the SB
model is not an appropriate effective field theory of the
trinification model, since the VEV parameters of Φ2 are of
order v for the general case α ≠ 0. Rather, we use it as a toy
model that helps us study the phenomenology of the
LET model.
The most general scalar potential for the SB model is

given by V1ðΦ1;ΦRÞ in Eq. (8). The minimalization of this
potential at the VEV in Eq. (6) fixes the dimensionful
parameters μ211, μ

2
R, μ

2
1 in terms of the λi and the VEV

parameters v1, b1, M. The VEV parameters v1, b1 can be
reparametrized in terms of v, β1 by Eq. (7), with α ¼ 0.
The scalar fields Φ1, ΦR contain twelve real scalar

components in total. After spontaneous symmetry break-
ing, six of them become massless Goldstone bosons that
give mass to the six massive vector gauge bosons. The
remaining components mix to form six massive scalars:
three CP-even scalars h0, H0

1, and H0
2, one CP-odd scalar

A0, and a pair of charged scalars H�. Their definitions in
terms of gauge eigenstates as well as their masses are given
in Sec. B. We identify h0 with the Standard-Model-like
Higgs particle that has been observed at the LHC [1,2],
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since it is the only scalar that naturally has a mass at the
electroweak scale. The other scalars have masses of order
M unless we give Oðξ2Þ ¼ Oðv2=M2Þ values to some of
the dimensionless scalar-potential parameters.
Note that the SBmodel resembles the two-Higgs-doublet

model (2HDM) [27] (see [29] for a recent review). The
2HDM is an extension of the SM in which the scalar sector
contains an additional SUð2ÞL doublet. It has been studied
extensively since it provides a low-energy description of
various models such as supersymmetry (see e.g. [30] for a
review), composite Higgs models [31], and little Higgs
models [32].
It is easy to see why the SB model resembles the 2HDM

at the Lagrangian level. To this end, we write Φ1 ¼
ðiσ2ϕ1;ϕ�

2Þ and ΦR ¼ ðϕþ;ϕ0Þ, where ϕ1;2 are SUð2ÞL
doublets and ϕþ;0 are SUð2ÞL singlets. Since ΦR has a
much larger VEV M than the VEV components v1, b1 of
Φ1, the mixing among Φ1, ΦR will be of order ξ ≪ 1. If we
set ΦR ¼ 0 in the scalar potential V1 in Eq. (8), we can
rewrite the entire scalar potential in terms of ϕ1, ϕ2 only.
The result is a 2HDM potential (see e.g. Eq. (98) in
Ref. [29]) with the following constraints on the scalar
parameters:

λ2HDM1;2;3 ¼ λ1 þ λ2; λ2HDM4 ¼ −λ2; λ2HDM5;6;7 ¼ 0;

m2
11 ¼ m2

22 ¼ μ211; m2
12 ¼ −μ21: ð11Þ

We can rewrite the Yukawa sector of the LET model in
terms of ϕ1, ϕ2 as well. In the Lagrangian in Eq. (10), the
up-type fermions couple only to ϕ1 whereas the down-type
fermions couple only to ϕ2. Hence, the SB model resem-
bles a constrained type-II 2HDM setup. It differs from the
2HDM due to the presence of two additional heavy SUð2ÞL
singlets. The neutral one gives rise to an additional physical
particle H0

2 that is fermiophobic. Its mass can be tuned
independently from the masses of the 2HDM-like scalars
H0

1, A
0, H� [see Eq. (B2)]. This can result in phenom-

enological scenarios that cannot appear in the 2HDM.
Moreover, the VEV ratio tan β≡ hϕ2i=hϕ1i is a free
parameter in the 2HDM, whereas tan β1 ¼ mb=mt is fixed
in the LET model. Likewise, the mixing angle α2HDM of the
CP-even scalars in the 2HDM can be taken to be a free
parameter: the λ2HDMi are usually rewritten in terms of the
scalar masses and α2HDM. However, the three mixing angles
of the CP-even scalars in the SB model cannot be treated as
free parameters: they are approximately fixed by the value
of β1 unless at least one of the new scalars becomes light.

B. LET-model scalar spectrum

Now let us consider the scalar sector of the LET model.
Compared to the SB model, it contains an additional
bidoubletΦ2 with eight real scalar components. This makes
14 physical scalars in total: five CP-even states h0,H0

1,H
0
2,

H0
3, H

0
4; three CP-odd states A0

1, A
0
2, A

0
3; and three pairs of

charged states H�
1 , H

�
2 , H

�
3 . Their definitions and masses

are given in Sec. B. The CP-even states h0,H0
1 have masses

of order v, whereas H0
2, H

0
3, H

0
4 have masses of order M.

This is not surprising: if we decouple the bidoubletΦ2 from
the model, we get one light state h0 and two heavy states.
Since Φ1 and Φ2 are copies of the same representation, we
expect that Φ2 adds one light and one heavy scalar to the
spectrum as well. The CP-odd state A0

1 is light, whereas A
0
2,

A0
3 are heavy. Again, this is not surprising. In the SB model,

theCP-odd components of the bidoubletΦ1 give rise to one
Goldstone and one heavy state. Thus we would expect Φ2

to contribute one heavy state as well. Since there are no
more would-be Goldstones, the other CP-odd component
of Φ2 becomes a massive state with a mass of order v.
Similarly, H�

1 is light whereas H�
2 , H

�
3 have masses of

order M.

IV. TRINIFICATION PHENOMENOLOGY

A. The SB model

Now we turn to the phenomenological scenarios that are
allowed by the scalar sector of the trinification model. As a
first step towards understanding the trinification phenom-
enology, we consider the phenomenological scenarios that
are possible in the SB model. The free parameter space of
the SB model is spanned by M and the five scalar
parameters λi. A full analysis of this parameter space
and the possible signatures is beyond the scope of this
work. Instead, we define a set of benchmark points that lead
to distinct phenomenological features. To get a feel for the
possibilities, consider the scalar masses given in Eq. (B2).
The mass of h0 can be adjusted by changing the values of
λ1, λ2, λ3, λ4. We tune these parameters such that mh0 ¼
126 GeV for each benchmark. The leading contributions to
mH0

1
, mA0 , mH� are all given by

ffiffiffiffiffi
λ5

p
M, so we expect them

to have similar masses, with OðvÞ mass splittings. On the
other hand, mH0

2
is proportional to

ffiffiffiffiffi
λ3

p
M, which can be

tuned independently of the other scalar masses. Thus we
expect the SB model to allow for different mass hierarchies
or compressed spectra, depending on the magnitudes
of λ3, λ5.
If any of the parameters λ3, λ5 have Oðξ2Þ values, some

of the new scalars may obtainOðvÞmasses. Thus a number
of phenomenologically different scenarios are possible. If
λ3, λ5 are not too small, all new scalars obtain OðMÞ
masses, beyond experimental reach. We denote these
benchmarks as having a single large hierarchy (SLH); an
additional hierarchy between H0

1, A
0, H� on one side and

H0
2 on the other side is possible, but of little phenomeno-

logical interest. For λ5 ∼Oðξ2Þ but not too small λ3, the
2HDM-like scalars H0

1, A
0, H� all have OðvÞ masses and

could be observed at the LHC. We choose two parameter
sets such that these particles have masses in the
Oð100 GeVÞ ballpark, and denote these benchmarks as
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2HDM-1 and 2HDM-2 since they have a 2HDM-like
spectrum at low energies. For λ3 ∼Oðξ2Þ but sizable λ5,
the fermiophobic state H0

2 lies within experimental reach
[33]. We choose two parameter sets such that mH0

2
lies in

the Oð100 GeVÞ range and denote these benchmarks as
light fermiophobic (LF). Note that for small λ3, the
parameters λ4, λ5 need to be chosen sufficiently small to
ensure thatm2

h0 remains positive [see Eq. (B2)]. This means
that the 2HDM-like scalars have masses well below M. A
combination of the 2HDM-like and LF scenarios is
possible as well: if both λ3 and λ5 are sufficiently small,
all new scalars could have masses within experimental
reach. Again, we choose two parameter sets and refer to
these benchmarks as Compressed for having a spectrum
compressed around the electroweak scale.
We also consider two special cases of the LF scenario.

For small enough λ3, H0
2 can have a mass in the Oð1 GeVÞ

ballpark. Such a state would decay into pairs of photons
only, since H0

2 is fermiophobic. If the signal strength for its
decay is low enough, it could have escaped detection so far;
we discuss the relevant experimental constraints in more
detail in Sec. VI. We refer to this scenario as having a very
light fermiophobic (VLF) Higgs. The second special case is
when h0 and H0

2 are approximately degenerate. If their
mass difference is less than their widths, both states would
contribute to the signal strength used for the Higgs
discovery, leading to a “twin Higgs” [34–36]. This might
result in deviations of the measured Higgs couplings from
their Standard Model values. We tweak the parameters such
that mh0;H0

2
¼ 126 GeV and denote the corresponding

benchmarks as Twin-1 and Twin-2.
For each benchmark point, we use the values

v ¼ 246 GeV, β1 ¼ 0.0166 as well as the experimental
values sin2 θW ¼ 0.23126, gL ¼ 0.65170, and our best

fit θ0W ¼ 0.62 as in Sec. A. The other gauge couplings
are fixed by the identities gR ¼ gL tan θW= sin θ0W ,
2g0 ¼ gL tan θW= cos θ0W . As for the scale M, we consider
both a high scaleM ¼ 1010 GeVwell outside experimental
reach and a lower scale M ¼ 104 GeV just beyond LHC
reach. We ensure that the constraints for vacuum stability
and S-matrix unitarity are satisfied. Multi-Higgs potentials
in general can have several minima. Determining the global
minimum of the potential is already challenging in the
2HDM [37]. We could not check that our minimum is the
global one. The corresponding parameter values are given
in Table I. Note that except for the SLH scenario, all
benchmarks contain very small values for λ3, λ4 and/or λ5:
these parameters need to have Oðv2=M2Þ values to com-
pensate for the large VEV of the corresponding scalar
invariants. This makes these scenarios unnatural.
To calculate the scalar masses we do not use the

approximations in Eq. (B2), since subleading terms in ξ
may become large for small λ3 and/or λ5. Instead, we
evaluate the mass matrix numerically in MATHEMATICA

[38] and then extract the masses and mass eigenstates. The
corresponding particle masses are given in Table II. The
scalar mass eigenstates are almost equal to the gauge
eigenstates in most benchmarks: mixings are mostly below
the percent level. In the Compressed-2 benchmark, there is
a 2% mixing of h01;11 with h0R. Only Twin-2 gives large
scalar mixing: in terms of squares of amplitudes, the SM-
like Higgs h0 is 62% h01;11 and 38% h0R, whereas the
fermiophobic Higgs H0

2 is 38% h01;11 and 62% h0R; mixing
with h01;22 is negligible.

B. The LET model

In the SBmodel, the new physics decouples from the SM
unless some of the dimensionless scalar parameters are set

TABLE I. Definitions of the benchmark points for the SB model in terms of the free parametersM (in GeV) and λi.
The parameter values v ¼ 246 GeV, β1 ¼ 0.0166, sin2 θW ¼ 0.23126, gL ¼ 0.65170, θ0W ¼ 0.62,
gR ¼ gL tan θW= sin θ0W , 2g

0 ¼ gL tan θW= cos θ0W are kept fixed.

Benchmark M λ1 λ2 λ3 λ4 λ5

SLH-1 1010 0.24 0.24 0.47 0.32 0.2
SLH-2 104 0.24 0.24 0.47 0.32 0.2

2HDM-1 1010 0.41 0.4 0.44 0.49 5 × 10−15

2HDM-2 104 0.41 0.4 0.44 0.49 5 × 10−3

LF-1 1010 0.133 0.13 2 × 10−15 1 × 10−12 3 × 10−7

LF-2 104 0.14 0.14 2 × 10−3 5.5 × 10−3 0.6

Compressed-1 1010 0.133 0.13 1.1 × 10−15 1 × 10−12 5 × 10−15

Compressed-2 104 0.15 0.14 1.1 × 10−3 5.2 × 10−3 5 × 10−3

VLF-1 1010 0.133 0.13 1 × 10−20 1 × 10−14 2 × 10−8

VLF-2 104 0.13 0.13 4.5 × 10−7 4 × 10−5 0.7

Twin-1 1010 0.13 0.133 1.58 × 10−16 1 × 10−16 1 × 10−10

Twin-2 104 0.131 0.131 1.59 × 10−4 1 × 10−5 0.1
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to Oðξ2Þ values. The reason is the fact that there is a large
hierarchy v ≪ M among the VEV parameters of Φ1, ΦR.
The picture changes with the inclusion of the bidoublet Φ2,
since its VEV parameters are bounded by the electroweak
scale. In the absence of a large hierarchy between the VEV
components of Φ1 and Φ2, we expect that the LET model
allows for large mixing between the components of both
bidoublets if the dimensionless scalar-potential parameters
haveOð1Þ values. Hence, the model naturally contains new
scalar particles with OðvÞ masses. As in the SB model,
significant mixing of Φ1, Φ2 with the components of ΦR is
only expected for unnaturally small values of some of the
parameters.
These insights have important consequences for the

benchmark scenarios considered in the previous section.
The SLH scenarios have no analogon in the LET model:
there is always new physics within experimental reach. The
2HDM-like, LF, VLF and Twin scenarios become natural
possibilities, since the 2HDM-like scalars can naturally
have OðvÞ masses. Moreover, mixing of Φ1 and Φ2 may
make these scalars fermiophobic, in which case this
scenario could be distinguished from the usual 2HDM.
Hence, we expect the LET model to be predictive: it allows
for phenomenologically interesting, experimentally test-
able scenarios, since the new physics does not decouple
from the SM in the large-M limit.
In the following, we discuss the prospects for measuring

the Higgs-coupling modifications in the context of the LET
model. To this end, we define a new set of benchmark
points, inspired by the considerations given above. As a
starting point for choosing the parameter values, we
observe the following about the scalar masses in
Eq. (B3). The main contribution to mh0 is given by
λ1 þ λ2c2β1 , with an overall scaling factor c2α due to the

presence of the second bidoublet. This means that a smaller
α is generally accompanied by a smaller value for
λ1 þ λ2c2β1 . Similarly, mH0

1
is mainly determined by ~λ1 þ

~λ2c2β2 with an overall factor s2α, so smaller values of α

should be compensated by larger values of ~λ1 þ ~λ2c2β2 . The
h0 −H0

1 mass difference and mixing are governed by sð2αÞ
as well as the scalar parameters ~λ5;6;7;8;9;10, so we tune these
parameters until we have a parameter set that corresponds
to the desired benchmark scenario. The scalar H0

4 has
mH0

4
≈

ffiffiffiffiffi
λ3

p
M, so we should take λ3 > 0. The squared

masses of A0
1, H�

1 are determined by ~λ6;7;9;10 with an
overall minus sign, so we take these parameters to be
negative to guarantee a positive-definite mass matrix.
Positivity of the squared masses of H0

2, A
0
2, H

�
2 requires

λ5 > 0, and the squared masses of H0
3, A

0
3, H

�
3 require

~λ4=cð2β2Þ > 0. We tune the parameters such that mh0 ¼
126 GeV is fixed and enforce a set of vacuum stability
conditions. The parameter values for the benchmark points
are given in Table III, and the resulting scalar masses are
given in Table IV.
We have defined two 2HDM-like benchmarks, in which

the scalars H0
1, A

0
1, H

�
1 all have masses in the Oð100 GeVÞ

range. In 2HDM-3, the state h0 is almost purely h01;11,
whereasH0

1 is 97% h02;11 and 3% h02;22. The state A
0
1 (H

�
1 ) is

87% a01;11 (h�1;21) and 13% a02;11 (h�2;21). The mixings are
even larger in the 2HDM-4 benchmark: h0 is 74% h01;11,
15% h02;11, and 11% h02;22 whereas H0

1 is 25% h01;11, 43%
h02;11 and 32% h02;22. The state A

0
1 (H

�
1 ) is 18% a01;11 (h

�
1;21),

TABLE II. Scalar masses for the benchmark points defined in
Table I. All masses are given in GeV. The mass of the SM-like
Higgs h0 has been tuned to 126 GeV in each case.

Benchmark
point mH0

1
mA0 mH� mH0

2

SLH-1 3.2 × 109 3.2 × 109 3.2 × 109 6.9 × 109

SLH-2 3.2 × 103 3.2 × 103 3.2 × 103 6.9 × 103

2HDM-1 488 488 500 6.6 × 109

2HDM-2 488 488 500 6.6 × 103

LF-1 3.9 × 106 3.9 × 106 3.9 × 106 447
LF-2 5.5 × 103 5.5 × 103 5.5 × 103 448

Compressed-1 496 496 500 332
Compressed-2 496 496 500 334

VLF-1 1.0 × 106 1.0 × 106 1.0 × 106 1.0
VLF-2 5.9 × 103 5.9 × 103 5.9 × 103 0.9

Twin-1 7.1 × 104 7.1 × 104 7.1 × 104 126
Twin-2 2.2 × 103 2.2 × 103 2.2 × 103 126

TABLE III. Benchmark-point definitions for the LET model.
The values v ¼ 246 GeV, M ¼ 1010 GeV, β1 ¼ 0.0166 are kept
fixed.

2HDM-3 2HDM-4 VLF-3 Twin-3 Twin-4

sin α 0.93 0.43 0.50 0.72 0.33
sin β2 0.17 0.65 0.17 0.16 0.11
λ1 1.0 0.20 0.13 0.34 0.17
λ2 1.0 0.18 0.13 0.35 0.16
λ3 0.50 0.50 0.50 0.50 0.42
λ4 0.010 0.12 0.13 0.27 0.12
λ5 0.20 0.50 0.20 0.20 0.50

~λ1 0.40 1.3 0.27 0.34 1.3
~λ2 0.40 1.3 0.27 0.34 1.2
~λ3 0.27 0.20 0.27 0.27 0.19
~λ4 0.20 0.10 0.20 0.20 1.0
~λ5 0.20 0.046 0.54 0.32 0.060
~λ6 −0.40 −0.50 −0.43 −0.42 −0.30
~λ7 −0.24 −0.20 −0.24 −0.24 −0.30
~λ8 0.84 0.95 0.83 0.84 1.0
~λ9 −0.050 −0.10 −0.04 −0.053 −0.10
~λ10 −0.30 −0.30 −0.30 −0.30 −0.30
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47% a02;11 (h
�
2;21), and 35% a02;22 (h

�
2;12). In both cases, the

2HDM-like scalars have suppressed couplings to fermions
with respect to the type-II 2HDM.
We also define the VLF-3 scenario, in which H0

1 has a
mass of only a few GeV. The states A0

1, H
�
1 have masses

within experimental reach. The scalar mixing is significant:
h0 is 65% h01;11, 34% h02;11, and 1% h02;22, so we expect
reduced fermion couplings. The stateH0

1 is 35% h01;11, 63%
h02;11, and 2% h02;22. Since it is light and mainly fermio-
phobic, it could have evaded the LEP searches. The state
A0
1 (H�

1 ) is 25% a01;11 (h�1;21), 73% a02;11 (h�2;21), and 2%
a02;22 (h�2;12).
Furthermore, we define two Twin benchmarks with

different amounts of scalar mixing. For Twin-3, the state
h0 is 87% h01;11 and 13% h02;11, whereas H

0
1 is 13% h01;11,

85% h02;11, and 2% h02;22. The lightest CP-odd and charged
states are almost 50-50 mixtures of fermiophilic and
fermiophobic states: A0

1 (H�
1 ) is 51% a01;11 (h�1;21), 47%

a02;11 (h
�
2;21), and 1% a02;22 (h

�
2;12). For Twin-4, h

0 is almost
purely h01;11, whereas H0

1 is 99% h02;11 and 1% h02;22. The
lightest CP-odd and charged states are mostly fermiopho-
bic: A0

1 (H
�
1 ) is 11% a01;11 (h

�
1;21), 88% a02;11 (h

�
2;21), and 1%

a02;22 (h�2;12).

V. HIGGS-COUPLING MODIFICATIONS

In the SM, the Higgs couplings are fixed in terms of the
particle masses and the VEVof the Higgs field. Hence, an
independent measurement of these couplings provides an
important test of the SM. These couplings are generally
modified in the presence of an extended Higgs sector [39].
The Higgs-coupling modifications Δx are defined as the
deviations of the Higgs couplings gx ≡ gh0xx from their SM
values, where x is any SM particle and gh0xx is the
coefficient of the operator h0xx in the Lagrangian:

gx ¼ ð1þ ΔxÞgSMx : ð12Þ
The loop-induced Higgs coupling to photons can be written
as follows:

gγ ¼ ð1þ ΔSM
γ þ ΔγÞgSMγ : ð13Þ

Here ΔSM
γ is the coupling modification that is induced by

coupling modifications of the Standard Model particles
generating the coupling. The term Δγ represents contribu-
tions from non-SM particles running in the loops. The
Higgs-coupling modifications have been extracted from
LHC data using the tool SFitter [39–42] (see Fig. 1).

A. The SB model

The Higgs-coupling modifications of the SB model are
given in Sec. C. In order to see whether our benchmark
scenarios could be distinguished from the SM in experi-
ment, we calculate the Higgs-coupling modifications
numerically for each benchmark point. The results are
listed in Table V.
For the SLH benchmarks, the modification of the quartic

Higgs self-coupling is as large as 83%, whereas the other
couplings have negligible deviations from their SM values.
Hence, if we could measure both Higgs self-couplings, a
SB model with a large hierarchy could be distinguished
from the SM by the strength of the quartic Higgs self-
coupling, even if M is large. Like in the 2HDM [43], the
self-couplings are generally modified due to the more
complicated structure of the scalar potential, although these
modifications may also vanish along some directions of the
parameter space (see Sec. C).

FIG. 1 (color online). Most recent fit of the Higgs-coupling
modifications to LHC data. The red points correspond to the
expected SM result Δx ¼ 0, whereas the dark blue points give the
results from the data if the photon coupling is assumed to be
determined by the W and t loops only. The light blue points give
the results if a free coupling shift in Δγ due to new physics is
allowed. Figure taken from Ref. [39].

TABLE IV. Scalar masses for each of the benchmark points
defined in Table III. All masses are in GeV.

2HDM-3 2HDM-4 VLF-3 Twin-3 Twin-4

mh0 126 126 126 126 126
mH0

1
182 148 3.9 126 126

mH0
2

3.2 × 109 5.0 × 109 3.2 × 109 3.2 × 109 5.0 × 109

mH0
3

3.3 × 109 5.8 × 109 3.3 × 109 3.2 × 109 7.2 × 109

mH0
4

7.1 × 109 7.1 × 109 7.1 × 109 7.1 × 109 6.5 × 109

mA0
1

179 134 179 179 190
mA0

2
3.2 × 109 5.0 × 109 3.2 × 109 3.2 × 109 5.0 × 109

mA0
3

3.3 × 109 5.8 × 109 3.3 × 109 3.2 × 109 7.2 × 109

mH�
1

171 135 173 173 173
mH�

2
3.2 × 109 5.0 × 109 3.2 × 109 3.2 × 109 5.0 × 109

mH�
3

3.3 × 109 5.8 × 109 3.3 × 109 3.2 × 109 7.2 × 109
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For the 2HDM-like benchmarks, there is an 11%
increase of the Higgs coupling to b quarks. The reason
is that the main contribution to Δb in this scenario is
proportional to ξ2=λ5 ∼ 0.1. The W;Z and t couplings
obtain similar modifications, but these are suppressed
by factors s2ð4β1Þ ∼ 10−3 and s2β1 ∼ 10−4, respectively.

Hence, the 2HDM-like hierarchy is characterized by an
increase in only the b coupling. The quartic Higgs self-
coupling is enhanced by a factor 3.
The LF, Compressed, and VLF benchmarks have cou-

pling modifications at or below the percent level. These
scenarios would not be distinguishable from the SM via the
Higgs-coupling modifications. The Twin-1 benchmark has
very small coupling modifications as well, but the Twin-2
benchmark shows 20% reductions of all tree-level Higgs
couplings and 50%–60% decreases of both self-couplings.
Currently, the errors on the Higgs couplings are still large
enough to allow a 20% deviation (see Fig. 1). If the errors
can be reduced after the 14 TeV run, the Twin-2 benchmark
can be put to the test.

B. The LET model

Because of the large number of free parameters and
scalar mixing angles, we restrict ourselves to a numerical
analysis of the Higgs-coupling modifications for the bench-
mark points defined in Sec. IV B. The resulting coupling
modifications have been summarized in table VI. Note that
contrary to the SB model, the photon-coupling modifica-
tion is not negligibly small any more: the charged scalar
H�

1 has a mass of order v and, hence, yields a sizable
contribution to the effective photon coupling.
The 2HDM-3 benchmark has large coupling modifica-

tions: the couplings to V ¼ W;Z are suppressed by a factor
0.3, whereas the couplings to t, b are enhanced by almost a
factor 3. This is not surprising: the W, Z couplings of the
SB model are proportional to v, whereas the t, b couplings

are proportional to mt;b=v. In the LET model, we have to
substitute v → v cos α [see Eq. (7)]. Since h0 is almost
purely h01;11 in the 2HDM-3 benchmark, theW, Z couplings
are suppressed by cosα ¼ 0.36 whereas the t, b couplings
are enhanced by 1= cos α ¼ 2.8. This benchmark point is
clearly incompatible with the measured coupling modifi-
cations in Fig. 1. In contrast, the 2HDM-4 benchmark has
smaller but still sizable coupling modifications. The V
couplings are suppressed by cos α ¼ 0.90, but the total
coupling is a few percent higher because of the contribution
from the second bidoublet. On the other hand, the quark
couplings are enhanced by a factor 1= cos α ¼ 1.11, but the
total coupling modifications are negative: since h0 contains
a significant admixture of the fermiophobic Φ2, the t, b
couplings are reduced. The coupling modifications for
2HDM-4 are consistent with the measured coupling
modifications.
The VLF-3 scenario has large mixing between the

fermiophilic and fermiophobic scalar gauge eigenstates.
As such, there is again a tension between cosα andΦ1 − Φ2

mixing. The resulting coupling modifications are at the
percent level, all compatible with the measured values.
Like the 2HDM-3 benchmark, the Twin-3 scenario has

large coupling modifications. The W, Z couplings are
reduced by about 60%, mostly due to interference between
the contributions of the fermiophobic and fermiophilic

TABLE V. Numerical results for the Higgs-coupling modifications for the benchmark points defined in Table I.

Benchmark point ΔW ΔZ Δt Δb Δγ Δλ3h Δλ4h

SLH-1 −1.4 × 10−16 0.0 −1.4 × 10−16 0.0 −5.0 × 10−17 0.0 0.83
SLH-2 −1.4 × 10−4 −4.1 × 10−4 −1.4 × 10−4 2.1 × 10−3 −5.0 × 10−5 −4.2 × 10−4 0.83

2HDM-1 −1.6 × 10−6 −1.6 × 10−6 −3.2 × 10−5 0.11 −1.7 × 10−3 −9.7 × 10−5 2.1
2HDM-2 −3.8 × 10−4 −6.4 × 10−4 −4.1 × 10−4 0.11 −1.6 × 10−3 −1.2 × 10−3 2.1

LF-1 −6.2 × 10−7 −6.2 × 10−7 −6.2 × 10−7 −6.2 × 10−7 −2.6 × 10−11 −1.9 × 10−6 1.2 × 10−5

LF-2 −2.9 × 10−3 −3.1 × 10−3 −2.9 × 10−3 1.1 × 10−3 5.1 × 10−5 −8.6 × 10−3 5.5 × 10−2

Compressed-1 −1.6 × 10−7 −1.6 × 10−7 −9.6 × 10−6 3.4 × 10−2 −1.6 × 10−3 −9.6 × 10−6 −1.4 × 10−5

Compressed-2 −9.1 × 10−3 −9.4 × 10−3 −9.1 × 10−3 3.5 × 10−2 −1.5 × 10−3 −2.7 × 10−2 7.1 × 10−2

VLF-1 −3.6 × 10−7 −3.6 × 10−7 −3.6 × 10−7 −3.6 × 10−7 −4.1 × 10−10 −1.1 × 10−6 −2.2 × 10−6

VLF-2 −6.6 × 10−4 −9.3 × 10−4 −6.6 × 10−4 −2.2 × 10−3 −8.8 × 10−5 −2.0 × 10−3 −4.0 × 10−3

Twin-1 −1.9 × 10−7 −1.9 × 10−7 −1.9 × 10−7 1.4 × 10−6 −8.1 × 10−8 −5.6 × 10−7 −7.5 × 10−7

Twin-2 −0.21 −0.21 −0.21 −0.18 6.9 × 10−4 −0.52 −0.61

TABLE VI. Higgs-coupling modifications for the benchmark
points of the LET model, defined in Table III.

2HDM-3 2HDM-4 VLF-3 Twin-3 Twin-4

ΔW −0.69 −0.01 −0.01 −0.61 −0.06
ΔZ −0.69 −0.001 −0.001 −0.60 −0.05
Δt 1.8 −0.05 −0.07 0.34 0.06
Δb 1.8 −0.05 −0.07 0.34 0.06
Δγ −0.05 −0.09 −0.07 −0.03 −0.05
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scalar components. The t, b couplings are enhanced by
34%: the factor 1= cos α ¼ 1.4 is slightly reduced by
Φ1 − Φ2 mixing. This benchmark point is incompatible
with the data. However, the Twin-4 scenario has percent-
level coupling modifications, compatible with the measured
values. This is because the V couplings are suppressed by
cos α ¼ 0.94 and the fermion couplings are enhanced by
1= cos α ¼ 1.06, and Φ1 − Φ2 mixing is negligible.
We have illustrated that the LET model is predictive and

allows for various interesting phenomenological scenarios.
The model allows for large coupling modifications as well
as moderate ones that can be expected to be measurable;
hence, the model is testable. A more thorough analysis of
the parameter space is required to see which parameter
values are preferred by experiment.

VI. VERY LIGHT FERMIOPHOBIC SCALARS

The VLF scenario contains a fermiophobic scalar par-
ticle with a mass of Oð1 GeVÞ in addition to the SM-like
Higgs. Such a particle would only decay into pairs of
photons, and is not necessarily ruled out since it could have
escaped detection so far. We now review the experimental
bounds that are relevant to this scenario.
Fermiophobic Higgs particles are not unique to the SB

model: they also appear in a type-I 2HDM with α ¼ π=2
[44] and in models with SUð2ÞL-triplet Higgs fields
[45,46]. Mass bounds from direct searches are readily
available in the literature [47]. Assuming SM cross sec-
tions, the four LEP experiments [48–51] have placed a
lower limit mH > 107 GeV on the mass of a fermiophobic
Higgs by looking for decays into pairs of photons. More
recent searches by ATLAS [52] and CMS [53] in the
diphoton channel as well as the WW, ZZ channels [54]
extend this lower limit to mH > 194 GeV. However, the
cuts on the energy of the photon pair in the LEP analyses
make these searches insensitive to fermiophobic Higgs
particles with masses below 10 GeV.
In order to see to what extent the lower mass bound

applies to the fermiophobic Higgs H0
2 of the SB model, we

need to examine its couplings to SM particles. The field ΦR
has no tree-level couplings to fermions, and its neutral
component is a SM singlet. Hence, H0

2 only couples to the
SM through W −W0 mixing, Z − Z0 mixing and scalar
mixing. The former two are negligible since they are of
order ξ2. Scalar mixing can become substantial in the Twin
scenario, but it is negligible in the VLF scenario. Hence,H0

2

has only Oðξ2Þ couplings to the SM in the SB model, and,
therefore, the experimental bounds are evaded trivially.
This may change in the LET model. We have seen that a

very light fermiophobic Higgs with a mass of a few GeV
becomes a natural possibility. Since it is Φ2-like, it has
significant couplings to W, Z, distinguishing it from the
very light fermiophobic Higgs of the SB model. Hence,
such a state could have significant production rates at the

LHC. A more thorough analysis of the production cross
section is necessary in order to predict the signal strength,
which is beyond the scope of this work.

VII. A TWIN HIGGS SCENARIO

The Higgs signal strength in each channel has been
measured at the LHC [2,55,56]. These measurements
constrain the Twin scenario. In order to compare the
Twin benchmarks to these experimental results, we have
to consider the production cross sections and branching
ratios for both h0 and H0

2.
We parametrize the twin states S0 ¼ h0; H0

2 in terms of
the gauge eigenstates as

h0 ¼ a1h01;11 þ a2h01;22 þ a3h0R;

H0
2 ¼ aFP1 h01;11 þ aFP2 h01;22 þ aFP3 h0R; ð14Þ

where FP stands for fermiophobic. The coefficients for the
Twin-1 benchmark are given by

ða1; a2; a3Þ ¼ ð0.9999; 0.0166; 0.0006Þ; ðTwin-1Þ
ðaFP1 ; aFP2 ; aFP3 Þ ¼ ð−0.0006;−0.00001; 0.9999Þ; ð15Þ

whereas for the Twin-2 benchmark they are

ða1; a2; a3Þ ¼ ð0.7874; 0.0136;−0.6162Þ; ðTwin-2Þ
ðaFP1 ; aFP2 ; aFP3 Þ ¼ ð0.6162; 0.0096; 0.7876Þ: ð16Þ

We need to find the signal strengths μxðS0Þ for each decay
channel S0 → xx:

μxðS0Þ ¼
σðpp → S0Þ × BRðS0 → xxÞ

σðpp → h0ÞSM × BRðh0 → xxÞSM
; ð17Þ

where σðpp → S0Þ is the production cross section for S0.
Then we need to add the signal strengths of h0 and H0

2. In
order to estimate the magnitude of the deviations from their
SM values, we neglect loop corrections in the following
discussion.
At the LHC, the Higgs can be produced in vector-boson

fusion, VH associated production, gluon fusion, and
production in association with tt̄ pairs [57]. The former
two processes are proportional to the Higgs coupling to
vector bosons, whereas the latter two scale with the top
coupling (the main contribution to gluon fusion comes
from a top-quark loop). For h0, we have Δ1 ≡ ΔW ¼ ΔZ ¼
Δt ¼ a1 − 1 (see Sec. C, we neglect Oðξ2Þ and Oðβ1Þ
corrections). Hence, as a tree-level approximation we have

σðpp → h0Þ
σðpp → h0ÞSM

¼ a21: ð18Þ
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Similarly, ΔFP
1 ≡ ΔFP

W ¼ ΔFP
Z ¼ ΔFP

t ¼ aFP1 − 1, up to
Oðξ2Þ and Oðβ1Þ corrections. Hence, at tree level we have

σðpp → H0
2Þ

σðpp → h0ÞSM
¼ ðaFP1 Þ2: ð19Þ

For the Twin-1 benchmark we have a21 ¼ 1, ðaFP1 Þ2 ¼ 4 ×
10−7 [see Eq. (15)]. That is, h0 is produced at the same rate
as the SM Higgs, whereas H0

2 production is suppressed. In
the Twin-2 benchmark, however, both states have a
significant production rate since a21 ¼ 0.62, ðaFP1 Þ2 ¼ 0.38.
As for the branching ratios, we only take into account the

decay channels listed in Table VII; all other channels have
negligibly small branching ratios. The given SM values
were calculated with HDecay [58] using mh ¼ 126 GeV.
We estimate the corresponding branching ratios of the SB
model using the Higgs-coupling modifications. According
to Eq. (10) the b quark and the τ couple to the same scalar
gauge eigenstate, namely h01;22. We thus assume that Δτ ¼
Δb ≡ Δ2 and ΔFP

τ ¼ ΔFP
b ≡ ΔFP

2 .
Now we are ready to calculate the branching ratios of the

SB model. The partial decay widths for the h0 and H0
2

decays into y1y1 ¼ WW, ZZ, gg, γγ, cc scale with,
respectively, ð1þ Δ1Þ2 and ð1þ ΔFP

1 Þ2, whereas they scale
with, respectively, ð1þ Δ2Þ2 and ð1þ ΔFP

2 Þ2 for the
y2y2 ¼ bb, ττ decay channels. Thus the branching ratios
for the SB model are given by

BRðh0 → xxÞ ¼ ð1þ ΔxÞ2BRðh0 → xxÞSM
ð1þ Δ1Þ2fBR1 þ ð1þ Δ2Þ2fBR2

;

BRðH0
2 → xxÞ ¼ ð1þ ΔFP

x Þ2BRðh0 → xxÞSM
ð1þ ΔFP

1 Þ2fBR1 þ ð1þ ΔFP
2 Þ2fBR2

;

fBR1 ≡
X

y1¼W;Z;g;γ;c

BRðh0 → y1y1ÞSM;

fBR2 ≡
X
y2¼b;τ

BRðh0 → y2y2ÞSM: ð20Þ

In the Twin-1 benchmark we have jΔ1;2j ≪ 1 (see Table V);
hence, the branching ratios for h0 barely deviate from their
SM values. The branching ratios for H0

2 are small, since
j1þ ΔFP

1;2j ¼ jaFP1;2j ≪ 1. The branching ratios for the Twin-
2 benchmark are listed in Table VII.
The total signal strength is given by the sum of the

contributions from h0 and H0
2. Combining Eqs. (18), (19),

and (20), we find

μx;tot ¼
a21ð1þ ΔxÞ2

ð1þ Δ1Þ2fBR1 þ ð1þ Δ2Þ2fBR2

þ ðaFP1 Þ2ð1þ ΔFP
x Þ2

ð1þ ΔFP
1 Þ2fBR1 þ ð1þ ΔFP

2 Þ2fBR2

: ð21Þ

We find μx;tot ¼ 1 for the Twin-1 benchmark: h0 contrib-
utes with the SM strength whereas H0

2, despite its identical
mass, is hardly produced and cannot show itself by decays
to SM final states. The signal strengths for the Twin-2
benchmark have been summarized in Table VII. In this case
two states with the same mass but different decay properties
are present. Still, none of the decay channels has a total
signal strength that deviates significantly from 1. The
reason is that the SM contributions to the signal strength
are simply divided among the two scalars.
The situation may change in the LET model, in which

the fermiophobic scalar H0
1 can be the twin partner of h0.

The stateH0
1 is a mixture of components of bothΦ1 andΦ2.

Since the latter is an SUð2ÞL-antidoublet, it couples to W,
Z. After scalar mixing, these additional contributions can
give the twin Higgs a total signal strength that differs from
the SM prediction. Note that the Higgs-coupling modifi-
cations of the LET model are not universal (see Table VI).
This means that the Higgs production cross sections do not
scale trivially, as they did in the SB model. Hence, a
prediction of the twin-Higgs signal strength requires a more
detailed analysis of the production cross section.

VIII. CONCLUSIONS

In this work we have studied the low-energy phenom-
enology of the trinification model as described in
Refs. [7,19–23]. It is based on the trinification group
SUð3ÞC × SUð3ÞL × SUð3ÞR. In order to simplify our
study, we have integrated out the fields that obtain masses
of the order of the trinification scale. This resulted in a left-
right-symmetric model with two scalar bidoublets Φ1, Φ2

and one right-handed doublet ΦR. While the bidoublets
obtain VEVs of the order of the weak scale, the right-
handed doublet has a VEV M that describes the scale at
which the left-right symmetry is broken. It may be as low as
a few TeV but could also be much higher. Only Φ1 couples
to fermions. We call this effective model the low-energy
trinification (LET) model. As an intermediate step towards
a better understanding of the LET model, we have studied

TABLE VII. Branching ratios and signal strengths of h0 andH0
2

decays in the Twin-2 benchmark of the SB model. The SM values
of the branching ratios were calculated with HDecay [58] for
mh ¼ 126 GeV. We neglect the branching ratios for the μμ, ss, tt,
Zγ decay channels.

WW ZZ gg γγ cc bb ττ

BRðh0 → xxÞSM 0.216 0.027 0.077 0.002 0.026 0.594 0.057

BRðh0 → xxÞ 0.206 0.026 0.073 0.002 0.025 0.610 0.059
BRðH0

2 → xxÞ 0.235 0.029 0.084 0.002 0.028 0.566 0.054

μxðh0Þ 0.59 0.59 0.59 0.59 0.59 0.64 0.64
μxðH0

2Þ 0.41 0.41 0.41 0.41 0.41 0.36 0.36

μxðh0Þ þ μxðH0
2Þ 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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the single-bidoublet (SB) model, a simplified model in
which Φ2 has been set to zero.
Our ansatz for the Yukawa sector was based on the

Yukawa Lagrangian of the trinification model. The free
parameters were used to fix the masses of the top and
bottom quarks, which are the most important for compari-
son to experimental searches. We left out a discussion of the
first and second fermion generations. An improved version
of the LET model containing these lighter fermions would
require the introduction of new Higgs fields, mixings with
heavy states, and the consideration of renormalization-
group effects.
In order to showcase the possible phenomenological

scenarios of our model, we have defined a set of benchmark
points for both the SB model and the LET model. In the SB
model, all new scalars decouple from the SM unless we
tune some of the dimensionless scalar-coupling constants
to Oðv2=M2Þ values. For such small coupling constants,
interesting phenomenological scenarios are possible at low
energies, like a fermiophobic scalar particle with an
Oð1 GeVÞ mass in addition to a SM-like Higgs, higher-
mass states with fermiophobic components, or a degenerate
state (“twin Higgs”) at 126 GeV. On the other hand, the full
LET model always has at least one other CP-even scalar,
one CP-odd scalar, and a pair of charged scalars with
masses in the Oð100 GeVÞ range. They appear without
tuning the coupling constants to very small values. The
aforementioned phenomenological scenarios, therefore,
become natural possibilities.
To show to what extent these scenarios can be distin-

guished from the SM in experiment, we have calculated
the Higgs-coupling modifications for the benchmarks. For
the SB model, they are negligibly small in most cases.
However, the benchmarks of the LET model lead to sizable
effects on the Higgs couplings. Parts of the parameter space
can already be excluded using the known limits given in the
literature.
Subsequently, we have studied the scenario with a very

light fermiophobic (VLF) Higgs in more detail. Such a
particle decays only into pairs of photons and escapes the
currently available bounds from direct searches. For the
VLF Higgs of the SB model, the signal strength is very
small since it has only Oðv2=M2Þ couplings to the SM. We
argued that the VLF Higgs of the LET model may have
significant production rates at the LHC. We also studied the
twin Higgs scenario (degenerate Higgs state) in more detail.
For the SB model, we expect no significant deviations from
the SM prediction even though each of the two degenerate
states has different decay properties. On the other hand, the
twin Higgs of the LET model may lead to significant
deviations, because the bidoublet Φ2 can introduce direct
couplings of the new state to SM particles. A more detailed
analysis of the production cross section appears necessary
for a detailed comparison with the measured signal
strengths.

We have calculated the phenomenological scenarios of
the LET model at several benchmark points and found
interesting consequences for the properties of the Higgs
bosons. Because of the number of coupling constants in the
potential a systematic investigation of all regions of the
parameter space is still missing. Nevertheless, the examples
given show the large variety of possibilities still not
excluded by experiment. The LET model turned out to
be an interesting extension of the SM. It is predictive and
most properties can be tested or constrained using forth-
coming LHC data.
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APPENDIX A: GAUGE SECTOR
OF THE LET MODEL

The gauge-boson sector consists of seven fields: W1;2;3
L;R

for SUð2ÞL;R and B for Uð1ÞB−L. The fieldsW3
L,W

3
R, and B

are neutral, whereas the remaining fields mix to form the
charge eigenstates W�

L;R ≡ ðW1
L;R ∓ iW2

L;RÞ=
ffiffiffi
2

p
. These

charged states are rotated by an angle ζ into two pairs
of charged mass eigenstates W� and W0�:

�
W�

W0�

�
¼
�

cos ζ sin ζ

− sin ζ cos ζ

��
W�

L

W�
R

�
: ðA1Þ

Here the W� correspond to the charged vector bosons of
the SM. The W0� bosons are new massive vector bosons.
The mixing angle is very small (we define sx ≡ sin x, cx ≡
cos x for the sake of brevity):

ζ ¼ gL
gR

ξ2ðc2αsð2β1Þ þ s2αsð2β2ÞÞ þOðξ4Þ: ðA2Þ

The masses of the charged mass eigenstates are given by

mW ¼ gLv
2

�
1 −

ξ2

2
ðc2αsð2β1Þ þ s2αsð2β2ÞÞ2 þOðξ4Þ

�
;

mW0 ¼ gRM
2

ð1þ ξ2 þOðξ4ÞÞ: ðA3Þ

The three neutral gauge fields mix into a massless photon
A, a massive Z as in the SM, and a new massive state Z0.
These states are obtained through a rotation over three
mixing angles θW , θ0W , η:
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A ¼ sθWW
3
L þ cθW ðsθ0WW3

R þ cθ0WBÞ;
Z ¼ cθWcηW

3
L þ ðcθ0Wsη − sθWsθ0WcηÞW3

R

− ðsθWcθ0Wcη þ sθ0WsηÞB;
Z0 ¼ −cθWsηW

3
L þ ðcθ0Wcη þ sθWsθ0WsηÞW3

R

þ ðsθWcθ0Wsη − sθ0WcηÞB: ðA4Þ

The angle θW is the Weinberg angle; θ0W is an analogon of
θW for the breaking of the left-right symmetry; and η is the
Z − Z0 mixing angle. These angles are given in terms of the
gauge couplings by

sin θW ¼ 2g0gRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g02ðg2L þ g2RÞ þ g2Lg

2
R

p ;

sin θ0W ¼ 2g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2R þ 4g02

p ;

tan η ¼ g2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g02ðg2L þ g2RÞ þ g2Lg

2
R

p
ðg2R þ 4g02Þ2 ξ2 þOðξ4Þ: ðA5Þ

The masses of the states Z, Z0 are given by

mZ ¼ gLv
2 cos θW

�
1 −

ξ2cos4θ0W
2

þOðξ4Þ
�
;

mZ0 ¼ gRM
2 cos θ0W

�
1þ ξ2cos4θ0W

2
þOðξ4Þ

�
: ðA6Þ

The electromagnetic coupling constant is found to be

e≡ 2g0gLgRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g02ðg2L þ g2RÞ þ g2Lg

2
R

p ¼ gL sin θW: ðA7Þ

Constraints on theW0 and Z0 masses as well as their mixing
angles are widely available in the literature and allow us to
constrain the new parameters gR, g0, andM. Direct searches
for W0 and Z0 have been performed in various decay
channels [59], but mass bounds are only given under the
assumption that the new vector bosons have the same
couplings to fermions as W and Z, respectively. Hence,

they do not apply to the LET model. More general
constraints come from fits to electroweak precision data
[60,61] and high-precision measurements [62–64]. The
right-handed coupling gR is constrained by the bound
gR=gL ¼ 0.94� 0.09 from Ref. [62]. Combining this
bound with Eq. (A7) and the experimental values
gL ¼ 0.65170� 0.00008, e ¼ 0.313402� 0.000017 gives
a constraint on g0 as well:

gR ¼ 0.61� 0.06;

g0 ¼ 0.22� 0.01: ðA8Þ

The strongest constraint on M comes from the bound
−0.00040 < η < 0.0026 from Ref. [60] on the Z − Z0
mixing angle. Combining it with Eqs. (A5) and (A8),
we find

M > 3.6 TeV: ðA9Þ

APPENDIX B: SCALAR MASS EIGENSTATES

The scalar fields Φj (j ¼ 1; 2), ΦR can be parametrized
in terms of gauge eigenstates as

Φj ¼

0B@ vjþh0j;11þia0j;11ffiffi
2

p h−j;12

hþj;21
bjþh0j;22þia0j;22ffiffi

2
p

1CA;

ΦR ¼
�
hþR

Mþh0Rþia0Rffiffi
2

p
�
: ðB1Þ

After spontaneous symmetry breaking, they are mixed into
eigenstates of the mass matrix.

1. Single-bidoublet model

In the SB model, only Φ1 and ΦR are present, containing
twelve real scalar components in total. They are mixed
into six Goldstone bosons and six massive particles.
The scalar masses are given in terms of the model
parameters by

m2
h0

v2
¼ λ1 þ λ2c2β1 −

ðλ4 þ λ5s2β1Þ2
λ3

þOðξ2Þ;
m2

H0
1

M2
¼ λ5

2cð2β1Þ
−
ξ2

2

�
λ2c2ð2β1Þ −

λ25s
2
ð2β1Þcð2β1Þ

λ5 − 2λ3cð2β1Þ
þOðξ2Þ

�
;

m2
H0

2

M2
¼ λ3 þ ξ2

�ðλ4 þ λ5s2β1Þ2
λ3

−
λ25s

2
ð2β1Þcð2β1Þ

λ5 − 2λ3cð2β1Þ
þOðξ2Þ

�
;

m2
A0

M2
¼ λ5

2cð2β1Þ
−
λ2
2
ξ2;

m2
H�

M2
¼ λ5

2cð2β1Þ
ð1þ ξ2c2ð2β1ÞÞ:

ðB2Þ

Here we define h0 as the scalar that is the most h01;11-like and H
0
2 as the scalar that is the most h0R-like. The massive CP-odd

state A0 is a mixture of a01;11 and a01;22, and the charged states H� are a mixture of h�1;21 and h�1;12 with an OðξÞ admixture
of h�R .
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2. Complete LET model

If we include Φ2 into the scalar sector, we have 20 real scalar components. These are mixed into six Goldstone bosons,
five massive CP-even states, three massive CP-odd states, and three pairs of massive charged scalars. We define the CP-
even mass eigenstates h0,H0

1,H
0
2,H

0
3,H

0
4, respectively, as the most h01;11-, h

0
2;11-, h

0
1;22-, h

0
2;22-, h

0
R-like scalars. The massive

CP-odd states A0
1, A

0
2, A

0
3 are defined, respectively, as the most a01;22-, a

0
2;11-, a

0
R-like scalars, and the charged statesH

�
1 ,H

�
2 ,

H�
3 are defined, respectively, as the most h�2;21-, h

�
1;12-, h

�
2;12-like scalars. Their masses are found to be

m2
h0;H0

1

v2
¼ 1

2

�
Λ1c2α þ Λ2s2α �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΛ1c2α − Λ2s2αÞ2 þ Λ2

3s
2
ð2αÞ

q
þOðξ2Þ

�
m2

H0
2

M2
¼ λ5

2cð2β1Þ
þOðξ2Þ;

m2
H0

3

M2
¼

~λ4
2cð2β2Þ

þOðξ2Þ;
m2

H0
4

M2
¼ λ3 þOðξ2Þ;

m2
A0
1

v2
¼ −ð~λ7 þ ~λ10Þðc2β1c2β2 þ s2β1s

2
β2
Þ −

~λ6
2
sð2β1Þsð2β2Þ þOðξ2Þ;

m2
A0
2

M2
¼ λ5

2cð2β1Þ
þOðξ2Þ;

m2
A0
3

M2
¼

~λ4
2cð2β2Þ

þOðξ2Þ;

m2
H�

1

v2
¼ −

1

2
ð~λ6 þ ~λ7 þ ~λ10Þc2ðβ1−β2Þ −

~λ9
2
cð2β1Þcð2β2Þ þOðξ2Þ;

m2
H�

2

M2
¼ λ5

2cð2β1Þ
þOðξ2Þ;

m2
H�

3

M2
¼

~λ4
2cð2β2Þ

þOðξ2Þ: ðB3Þ

Here we have defined the parameter combinations

Λ1 ≡ λ1 þ λ2c2β1 −
ðλ4 þ λ5s2β1Þ2

λ3
; Λ2 ≡ ~λ1 þ ~λ2c2β2 −

ð~λ3 þ ~λ4s2β2Þ2
λ3

;

Λ3 ≡ −
ðλ4 þ λ5s2β1Þð~λ3 þ ~λ4s2β2Þ

λ3
þ ~λ5 þ ð~λ6 þ ~λ7Þc2ðβ1−β2Þ þ ð~λ8 þ ~λ9 þ ~λ10Þðc2β1c2β2 þ s2β1s

2
β2
Þ: ðB4Þ

APPENDIX C: HIGGS-COUPLING MODIFICATIONS OF THE SB MODEL

The SB model has a larger Higgs sector than the SM. Since the SM-like scalar h0 is a mixture of the various Higgs fields,
its couplings generally differ from those of the SM. These couplings depend on the scalar mixings, which in turn depend on
the VEVs and scalar-potential parameters. We give the resulting Higgs-coupling modificationsΔx, as defined in Eq. (12), in
the limit of small ξ. The modifications of the tree-level couplings to W, Z, t, b are given by

ΔW

ξ2
¼ −s2ð2β1Þ þ

λ2s2ð4β1Þ
8λ5

þ sð4β1Þsð2β1Þλ453
4

−
s2β1λ

2
453

2
þOðξÞ;

ΔZ

ξ2
¼ −c4θ0W þ

λ2s2ð4β1Þ
8λ5

þ sð4β1Þsð2β1Þλ453
4

−
s2β1λ

2
453

2
þOðξÞ;

Δt

ξ2
¼ −

2λ2s2β1c
2
ð2β1Þ

λ5
− 2s2β1cð2β1Þλ453 −

λ2453
2

þOðξ2Þ;

Δb

ξ2
¼

2λ2c2β1c
2
ð2β1Þ

λ5
þ 2c2β1cð2β1Þλ453 −

λ2453
2

þOðξ2Þ: ðC1Þ

Here we defined λ453 ¼ ðλ4 þ λ5s2β1Þ=λ3. The main contributions to the loop-induced photon coupling of the SM come from
the W and t loops. In the SB model, there is an additional contribution from the H� loop:
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Δγ ¼
ξ2A0ðτH�Þcð2β1Þ

ASMλ5

�
λ1 þ λ2

�
1þ 1

2
s2ð2β1Þ

�
þ λ5cð2β1Þ

−
λ4ðλ4 þ λ5c2β1Þ

λ3
þOðξ2Þ

�
: ðC2Þ

Here AsðxÞ are the scalar loop functions, τx ≡ 4m2
x=m2

h0 ,
and we defined the constant ASM ≡ A1ðτWÞ þ
NcQ2

t A1=2ðτtÞ ¼ −6.5. The trilinear and quartic Higgs
self-couplings are modified as well:

Δλ3h ¼
−λ2λ3s2β1cð2β1Þ

λ3ðλ1 þ λ2c2β1Þ − ðλ4 þ λ5s2β1Þ2
þOðξ2Þ;

Δλ4h ¼
−λ2λ3s2β1cð2β1Þ þ ðλ4 þ λ5s2β1Þ2
λ3ðλ1 þ λ2c2β1Þ − ðλ4 þ λ5s2β1Þ2

þOðξ2Þ: ðC3Þ

Note that the coupling modifications for vector bosons and
fermions vanish in the small-ξ limit, that is, the new physics

decouples from the SM. However, the modifications of the
Higgs self-couplings only vanish for the region of param-
eter space where λ2 ¼ 0 and λ4 ¼ −λ5s2β1 . In general, the
self-couplings are modified due to the more complicated
structure of the scalar potential.
If we look for regions of parameter space where the

coupling modifications become substantial, it is more
useful to write the coupling modifications in terms of
the scalar mixing coefficients ai, as defined in Eq. (14):

ΔW;Z ¼ cβ1a1 þ sβ1a2 − 1þOðξ2Þ;
Δt ¼ a1=cβ1 − 1;

Δb ¼ a2=sβ1 − 1: ðC4Þ

The analogous coupling modifications ΔFP
x of H0

2 are
obtained by substituting each ai by aFPi . Since β1 ¼
0.0166 is small, we can write ΔW ¼ ΔZ ¼ Δt ≡ Δ1 and
ΔFP

W;Z ¼ ΔFP
t ≡ ΔFP

1 , up to Oðξ2Þ and Oðβ1Þ corrections.

[1] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1
(2012).

[2] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
716, 30 (2012).

[3] M. Baak and R. Kogler, arXiv:1306.0571.
[4] H. Georgi and S. Glashow, Phys. Rev. Lett. 32, 438 (1974).
[5] H. Fritzsch and P. Minkowski, Ann. Phys. (N.Y.) 93, 193

(1975).
[6] F. Gursey, P. Ramond, and P. Sikivie, Phys. Lett. B 60, 177

(1976).
[7] Y. Achiman and B. Stech, Phys. Lett. B 77, 389 (1978).
[8] Q. Shafi, Phys. Lett. B 79, 301 (1978).
[9] P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten,

Nucl. Phys. B258, 46 (1985).
[10] E. Witten, Nucl. Phys. B258, 75 (1985).
[11] E. Cremmer, J. Scherk, and J. H. Schwarz, Phys. Lett. B 84,

83 (1979).
[12] K. S. Babu, X.-G. He, and S. Pakvasa, Phys. Rev. D 33, 763

(1986).
[13] X.-G. He and S. Pakvasa, Phys. Lett. B 173, 159 (1986).
[14] G. Lazarides and C. Panagiotakopoulos, Phys. Lett. B 336,

190 (1994).
[15] G. Lazarides and C. Panagiotakopoulos, Phys. Rev. D 51,

2486 (1995).
[16] A. Demaria and R. R. Volkas, Phys. Rev. D 71, 105011

(2005).
[17] C. Cauet, H. Päs, and S. Wiesenfeldt, Phys. Rev. D 83,

093008 (2011).
[18] J. Sayre, S. Wiesenfeldt, and S. Willenbrock, Phys. Rev. D

73, 035013 (2006).
[19] B. Stech and Z. Tavartkiladze, Phys. Rev. D 70, 035002

(2004).

[20] B. Stech and Z. Tavartkiladze, Phys. Rev. D 77, 076009
(2008).

[21] B. Stech, arXiv:1012.6028.
[22] B. Stech, Phys. Rev. D 86, 055003 (2012).
[23] B. Stech, J. High Energy Phys. 08 (2014) 139.
[24] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974).
[25] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566

(1975).
[26] G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502

(1975).
[27] T. Lee, Phys. Rev. D 8, 1226 (1973).
[28] The matricesGαβ and Aαβ can be viewed, respectively, as the

real and imaginary components of the VEVof a flavon field
(see Ref. [20]). In this picture, the Yukawa interactions are
effective interactions arising from dimension-five operators,
which in turn arise from interactions with gauge-singlet
fermions. However, the components of these matrices are
simply considered as free parameters of the trinification
model.

[29] G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher, and
J. P. Silva, Phys. Rep. 516, 1 (2012).

[30] S. P. Martin, Adv. Ser. Dir. High Energy Phys. 21, 1 (2010).
[31] D. B. Kaplan, H. Georgi, and S. Dimopoulos, Phys. Lett. B

136, 187 (1984).
[32] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys. Lett.

B 513, 232 (2001).
[33] Note that other models allow for the existence of a light

fermiophobic Higgs as well, such as the type-I 2HDM and
models with SUð2ÞL-triplet Higgs fields [44–46]. However,
in those scenarios the light Higgs h0 is fermiophobic,
whereas we consider benchmark scenarios with a fermio-
phobic light Higgs in addition to the SM-like Higgs.

LOW-ENERGY PHENOMENOLOGY OF TRINIFICATION: AN … PHYSICAL REVIEW D 91, 055026 (2015)

055026-15

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arXiv.org/abs/1306.0571
http://dx.doi.org/10.1103/PhysRevLett.32.438
http://dx.doi.org/10.1016/0003-4916(75)90211-0
http://dx.doi.org/10.1016/0003-4916(75)90211-0
http://dx.doi.org/10.1016/0370-2693(76)90417-2
http://dx.doi.org/10.1016/0370-2693(76)90417-2
http://dx.doi.org/10.1016/0370-2693(78)90584-1
http://dx.doi.org/10.1016/0370-2693(78)90248-4
http://dx.doi.org/10.1016/0550-3213(85)90602-9
http://dx.doi.org/10.1016/0550-3213(85)90603-0
http://dx.doi.org/10.1016/0370-2693(79)90654-3
http://dx.doi.org/10.1016/0370-2693(79)90654-3
http://dx.doi.org/10.1103/PhysRevD.33.763
http://dx.doi.org/10.1103/PhysRevD.33.763
http://dx.doi.org/10.1016/0370-2693(86)90238-8
http://dx.doi.org/10.1016/0370-2693(94)00925-2
http://dx.doi.org/10.1016/0370-2693(94)00925-2
http://dx.doi.org/10.1103/PhysRevD.51.2486
http://dx.doi.org/10.1103/PhysRevD.51.2486
http://dx.doi.org/10.1103/PhysRevD.71.105011
http://dx.doi.org/10.1103/PhysRevD.71.105011
http://dx.doi.org/10.1103/PhysRevD.83.093008
http://dx.doi.org/10.1103/PhysRevD.83.093008
http://dx.doi.org/10.1103/PhysRevD.73.035013
http://dx.doi.org/10.1103/PhysRevD.73.035013
http://dx.doi.org/10.1103/PhysRevD.70.035002
http://dx.doi.org/10.1103/PhysRevD.70.035002
http://dx.doi.org/10.1103/PhysRevD.77.076009
http://dx.doi.org/10.1103/PhysRevD.77.076009
http://arXiv.org/abs/1012.6028
http://dx.doi.org/10.1103/PhysRevD.86.055003
http://dx.doi.org/10.1007/JHEP08(2014)139
http://dx.doi.org/10.1103/PhysRevD.10.275
http://dx.doi.org/10.1103/PhysRevD.11.566
http://dx.doi.org/10.1103/PhysRevD.11.566
http://dx.doi.org/10.1103/PhysRevD.12.1502
http://dx.doi.org/10.1103/PhysRevD.12.1502
http://dx.doi.org/10.1103/PhysRevD.8.1226
http://dx.doi.org/10.1016/j.physrep.2012.02.002
http://dx.doi.org/10.1142/9789814307505_0001
http://dx.doi.org/10.1016/0370-2693(84)91178-X
http://dx.doi.org/10.1016/0370-2693(84)91178-X
http://dx.doi.org/10.1016/S0370-2693(01)00741-9
http://dx.doi.org/10.1016/S0370-2693(01)00741-9


[34] Our use of the term “twin Higgs” is not to be confused with
“twin Higgs models” in the literature. In those models, each
Standard Model particle has a corresponding particle that
transforms under a mirror copy of the SM gauge group (see
e.g. Refs. [65,66]). The copies are related by a Z2 symmetry
called “twin parity,” and the twin Higgs is the partner of the
Standard Model Higgs.

[35] B. Stech, arXiv:1303.6931.
[36] M. Heikinheimo, A. Racioppi, M. Raidal, and C.

Spethmann, Phys. Lett. B 726, 781 (2013).
[37] A. Barroso, P. Ferreira, and R. Santos, Phys. Lett. B 652,

181 (2007).
[38] Wolfram Research, Inc., Mathematica, Version 10.0,

Champaign, Illinois, 2014.
[39] D. López-Val, T. Plehn, and M. Rauch, J. High Energy Phys.

10 (2013) 134.
[40] R. Lafaye, T. Plehn, M. Rauch, D. Zerwas, and M.

Duhrssen, J. High Energy Phys. 08 (2009) 009.
[41] M. Klute, R. Lafaye, T. Plehn, M. Rauch, and D. Zerwas,

Phys. Rev. Lett. 109, 101801 (2012).
[42] T. Plehn and M. Rauch, Europhys. Lett. 100, 11002

(2012).
[43] P. Osland, P. N. Pandita, and L. Selbuz, Phys. Rev. D 78,

015003 (2008).
[44] A. Akeroyd, Phys. Lett. B 368, 89 (1996).
[45] J. F. Gunion, R. Vega, and J. Wudka, Phys. Rev. D 42, 1673

(1990).
[46] P. Bamert and Z. Kunszt, Phys. Lett. B 306, 335

(1993).
[47] K. Olive et al. (Particle Data Group), Chin. Phys. C 38,

090001 (2014).
[48] P. Abreu et al. (DELPHI Collaboration), Phys. Lett. B 507,

89 (2001).
[49] A. Heister et al. (ALEPH Collaboration), Phys. Lett. B 544,

16 (2002).
[50] P. Achard et al. (L3 Collaboration), Phys. Lett. B 534, 28

(2002).
[51] G. Abbiendi et al. (OPAL Collaboration), Phys. Lett. B 544,

44 (2002).
[52] G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 72,

2157 (2012).

[53] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
725, 36 (2013).

[54] S. Chatrchyan et al. (CMS Collaboration), J. High Energy
Phys. 09 (2012) 111.

[55] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 726, 88
(2013).

[56] S. Chatrchyan et al. (CMS Collaboration), J. High Energy
Phys. 05 (2014) 104.

[57] S. Dittmaier et al. (LHC Higgs Cross Section Working
Group), Report No. CERN-2011-002.

[58] A. Djouadi, J. Kalinowski, and M. Spira, Comput. Phys.
Commun. 108, 56 (1998).

[59] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 79, 2192
(1997); G. Abbiendi et al. (OPAL Collaboration), Eur. Phys.
J. Spec. Top. C33, 173 (2004); J. Abdallah et al. (DELPHI
Collaboration), Eur. Phys. J. C 45, 589 (2006); S. Schael
et al. (ALEPH Collaboration), Eur. Phys. J. C 49, 411
(2007); G. Aad et al. (ATLAS Collaboration), Eur. Phys. J.
C 72, 2241 (2012); Phys. Rev. Lett. 109, 081801 (2012);
Phys. Lett. B 719, 242 (2013); J. High Energy Phys. 11
(2012) 138; Phys. Rev. D 85, 112012 (2012); S. Chatrchyan
et al. (CMS Collaboration), Phys. Lett. B 718, 1229 (2013);
Phys. Rev. Lett. 109, 141801 (2012); Phys. Lett. B 720, 63
(2013); J. High Energy Phys. 02 (2013) 036; 01 (2013) 013;
G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 87,
112006 (2013); S. Chatrchyan et al. (CMS Collaboration),
Phys. Rev. D 87, 072005 (2013).

[60] J. Chay, K. Y. Lee, and S.-h. Nam, Phys. Rev. D 61, 035002
(1999).

[61] F. del Aguila, J. de Blas, and M. Perez-Victoria, J. High
Energy Phys. 09 (2010) 033.

[62] G. Barenboim, J. Bernabeu, J. Prades, and M. Raidal, Phys.
Rev. D 55, 4213 (1997).

[63] J. Bueno et al. (TWIST Collaboration), Phys. Rev. D 84,
032005 (2011).

[64] A. Hillairet et al. (TWIST Collaboration), Phys. Rev. D 85,
092013 (2012).

[65] Z. Chacko, H.-S. Goh, and R. Harnik, Phys. Rev. Lett. 96,
231802 (2006).

[66] Z. Chacko, Y. Nomura, M. Papucci, and G. Perez, J. High
Energy Phys. 01 (2006) 126.

JAMIL HETZEL AND BERTHOLD STECH PHYSICAL REVIEW D 91, 055026 (2015)

055026-16

http://arXiv.org/abs/1303.6931
http://dx.doi.org/10.1016/j.physletb.2013.10.002
http://dx.doi.org/10.1016/j.physletb.2007.07.010
http://dx.doi.org/10.1016/j.physletb.2007.07.010
http://dx.doi.org/10.1007/JHEP10(2013)134
http://dx.doi.org/10.1007/JHEP10(2013)134
http://dx.doi.org/10.1088/1126-6708/2009/08/009
http://dx.doi.org/10.1103/PhysRevLett.109.101801
http://dx.doi.org/10.1209/0295-5075/100/11002
http://dx.doi.org/10.1209/0295-5075/100/11002
http://dx.doi.org/10.1103/PhysRevD.78.015003
http://dx.doi.org/10.1103/PhysRevD.78.015003
http://dx.doi.org/10.1016/0370-2693(95)01478-0
http://dx.doi.org/10.1103/PhysRevD.42.1673
http://dx.doi.org/10.1103/PhysRevD.42.1673
http://dx.doi.org/10.1016/0370-2693(93)90088-Y
http://dx.doi.org/10.1016/0370-2693(93)90088-Y
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1016/S0370-2693(01)00449-X
http://dx.doi.org/10.1016/S0370-2693(01)00449-X
http://dx.doi.org/10.1016/S0370-2693(02)02242-6
http://dx.doi.org/10.1016/S0370-2693(02)02242-6
http://dx.doi.org/10.1016/S0370-2693(02)01572-1
http://dx.doi.org/10.1016/S0370-2693(02)01572-1
http://dx.doi.org/10.1016/S0370-2693(02)02472-3
http://dx.doi.org/10.1016/S0370-2693(02)02472-3
http://dx.doi.org/10.1140/epjc/s10052-012-2157-0
http://dx.doi.org/10.1140/epjc/s10052-012-2157-0
http://dx.doi.org/10.1016/j.physletb.2013.06.043
http://dx.doi.org/10.1016/j.physletb.2013.06.043
http://dx.doi.org/10.1007/JHEP09(2012)111
http://dx.doi.org/10.1007/JHEP09(2012)111
http://dx.doi.org/10.1016/j.physletb.2013.08.010
http://dx.doi.org/10.1016/j.physletb.2013.08.010
http://dx.doi.org/10.1007/JHEP05(2014)104
http://dx.doi.org/10.1007/JHEP05(2014)104
http://dx.doi.org/10.1016/S0010-4655(97)00123-9
http://dx.doi.org/10.1016/S0010-4655(97)00123-9
http://dx.doi.org/10.1103/PhysRevLett.79.2192
http://dx.doi.org/10.1103/PhysRevLett.79.2192
http://dx.doi.org/10.1140/epjc/s2005-02461-0
http://dx.doi.org/10.1140/epjc/s10052-006-0156-8
http://dx.doi.org/10.1140/epjc/s10052-006-0156-8
http://dx.doi.org/10.1140/epjc/s10052-012-2241-5
http://dx.doi.org/10.1140/epjc/s10052-012-2241-5
http://dx.doi.org/10.1103/PhysRevLett.109.081801
http://dx.doi.org/10.1016/j.physletb.2013.01.040
http://dx.doi.org/10.1007/JHEP11(2012)138
http://dx.doi.org/10.1007/JHEP11(2012)138
http://dx.doi.org/10.1103/PhysRevD.85.112012
http://dx.doi.org/10.1016/j.physletb.2012.12.008
http://dx.doi.org/10.1103/PhysRevLett.109.141801
http://dx.doi.org/10.1016/j.physletb.2013.02.003
http://dx.doi.org/10.1016/j.physletb.2013.02.003
http://dx.doi.org/10.1007/JHEP02(2013)036
http://dx.doi.org/10.1007/JHEP01(2013)013
http://dx.doi.org/10.1103/PhysRevD.87.112006
http://dx.doi.org/10.1103/PhysRevD.87.112006
http://dx.doi.org/10.1103/PhysRevD.87.072005
http://dx.doi.org/10.1103/PhysRevD.61.035002
http://dx.doi.org/10.1103/PhysRevD.61.035002
http://dx.doi.org/10.1007/JHEP09(2010)033
http://dx.doi.org/10.1007/JHEP09(2010)033
http://dx.doi.org/10.1103/PhysRevD.55.4213
http://dx.doi.org/10.1103/PhysRevD.55.4213
http://dx.doi.org/10.1103/PhysRevD.84.032005
http://dx.doi.org/10.1103/PhysRevD.84.032005
http://dx.doi.org/10.1103/PhysRevD.85.092013
http://dx.doi.org/10.1103/PhysRevD.85.092013
http://dx.doi.org/10.1103/PhysRevLett.96.231802
http://dx.doi.org/10.1103/PhysRevLett.96.231802
http://dx.doi.org/10.1088/1126-6708/2006/01/126
http://dx.doi.org/10.1088/1126-6708/2006/01/126

