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The presence of charged scalars is almost inevitable in most of the beyond standard model scenarios.
They are expected to be detected easily if they are there due to their electromagnetic charge. These charged
scalars can be produced at the LHC and their decays may lead to interesting signals—multilepton final
states, displaced vertices, etc. These charged particles also play crucial roles in low energy rare processes.
Thus apart from the collider searches in low energy rare processes their presence can be smelled. Here, we
have noted the impact of doubly charged scalars in rare meson decays. As the mesons are lighter these
heavy scalars always appear off shell. Due to their off-shell structure the phase space is relatively
complicated to deal with. In this paper we have supplemented a general proposal to compute these decays
that involve off-shell doubly charged scalars. We have argued that our prescription can be used for any
process involving off-shell heavy scalars. Using the prescribed method we have computed two possible
meson decays:M� → l�i l

�
j M

0∓,M� → l�i l
�
j l

∓
ml

∓
n M0�. We have also estimated the numerical values of the

branching ratios in different channels for different charged mesons.
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I. INTRODUCTION

The discovery of Higgs boson at ATLAS [1] and CMS
[2] has validated the standard model (SM) of particle
physics. But there are already several credible experimental
evidences which do not agree with the standard model
predictions. The majority of the theoretical as well as the
experimental community of particle physics is searching
for beyond standard model (BSM) signals to explain many
such issues, namely tiny nonzero masses of active neu-
trinos, gauge hierarchy, stabilization of Higgs boson mass,
vacuum stability, dark matter, dark energy and so on.
Theoretical BSM models are in general constructed by

extending SM by either adding some new particles and
(or) by supplementing the gauge sector which can be
originated from some unified scenario. These newly
proposed particles can be fermions or scalar/gauge
bosons which are expected to be quite heavy or extremely
light and hence have remained elusive in the direct
experimental searches. Thus the prime task for LHC,
after the Higgs discovery, is to find out or at least obtain
hints of this new physics.
While the LHC is trying its best to discover the BSM

particles through their productions and decays, here we
are interested to demonstrate their possible impact in rare
meson decays. More precisely we will concentrate on
lepton number and/or flavor violating decay channels in
meson decays (M� → l�i l

�
j M

0∓ [3–10]), neutrinoless dou-
ble beta decay (2n → 2pþ 2e−) [11–14] etc. These

processes occur in BSM models developed to understand
light neutrino masses. In these models, neutrino masses are
being generated through higher dimensional operators
which appear after integrating out the heavy particles.
Many of these scenarios contain different representations
of SUð2ÞL scalar multiplets [15] or heavy neutrinos. An
important feature of these models is lepton number viola-
tion by two units (ΔL ¼ 2). This nontrivial lepton number
violation along with lepton flavor violations lead to
unique BSM signatures at the collider [16–23].
Phenomenologically, these doubly charged scalars can be
produced at the LHC as a pair or associated with singly
charged scalar. In these rare processes due to mass
differences among mesons, neutrons and protons the
intermediate BSM particles always appear off shell.
Then their presence cannot be justified by invariant mass
reconstruction and on-shell prescriptions also fail. Hence,
in a long cascade decay due to these off-shell particles one
may need to deal with a very complicated phase space.
In this paper, we also evaluate the branching ratios for

the processes,M� → l�i l
�
j M

0∓,M� → l�i l
�
j l

∓
ml

∓
n M0�. Both

of these decays can be possible through the mediation of
Majorana neutrino as well as doubly charged scalars. In this
paper, we have discussed these decays when the inter-
mediate decaying particle is doubly charged scalar. The
decay of a doubly charged scalar to a pair of same sign
lepton is controlled by the Yukawa coupling which is flavor
nonuniversal thus can lead to lepton flavor violating same
sign dileptons. In the SM there is no lepton flavor violation,
thus this feature can be a smoking gun to smell the presence
of new physics. In the case of same sign but opposite
flavor final state which is achieved through the exchange of
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heavy Majorana neutrinos ðNÞ, the effective amplitude is
proportional to jU�

νiNi
UνiNj

j (i ≠ j). Now whether this
process is suppressed or not will depend on specific
neutrino mass models and controlled by the nonunitarity
factors (∝ UνiNj

) allowed by experiments. This argument is
also applicable for the four-lepton final state. In the second
possible decay mode of meson though there are two
different vertices which signify lepton number violation
by two units but in the final state the lepton number is
conserved. Here, also the possibility of lepton violation is
still open like the previous case. We are proposing the
above-mentioned second possibility of meson decay for the
first time in this paper. Here, we also propose an alternate
technique to compute the decays involving off-shell scalar
particles. We have shown our prescription leads to the same
result computed by using the general phase space method.
But the advantage of this new method over the earlier one is
notable: now one does not need to compute the full n-body
amplitude for decay: 1 → n-particles. We have computed
two decay processes to justify the credibility of our method:
M� → l�i l

�
j M

0∓,M� → l�i l
�
j l

∓
ml

∓
n M0�. We have tested our

method for off-shell scalar particles so far. We are con-
vinced that our prescription cannot be used directly when
the intermediate off-shell particles carry nonzero spin. Our
future proposal along side this work is to generalize this
procedure for all particles.

II. PROPOSAL TO DEAL WITH
OFF-SHELL SCALARS

Many rare processes like meson decay and neutrinoless
double beta decay can occur through intermediate heavy
scalars [5,11]. The recent search for doubly charged scalar
at the LHC put severe constraints on its mass. ATLAS
has ruled out the mass of doubly charged scalar from
½200 ÷ 400� GeV depending on its leptonic branching
fraction [24]. We have noted that respecting this exclusion
limit, even the maximum mass difference between any two
mesons ðM;M0Þ is much less than the mass of the doubly
charged scalar. Thus, these charged scalars always appear
off shell in these decays. Given that we cannot simply use
branching ratios in our calculation, we need to deal with
complicated phase factors for all the final state particles.
The full amplitude involves hadronic and leptonic parts
which can be dealt with independently of each other.
The hadronic part will be discussed below Eqs. (5) and
(6). In the existing method more attention is paid on
factorizing the phase space, however in our analysis we
have not followed this method exactly.
The general prescription of obtaining the three body

decay rates in terms of two body decay rates: X1 →
X2X�

3 → X2X4X5 will give us a good understanding of
the basics of our proposal.
The decay width for this process can bewritten, using the

standard phase space method, as

ΓX1

X2X4X5
¼

Z
dm2

45

2π

Z
dPSðX1→X2X�

3
Þ

Z
dPSðX�

3
→X4X5Þ

×
jAðX1 → X2X4X5Þj2

2mX1

; ð1Þ

where m45 is the invariant mass of the intermediate particle
X�
3. We note that this decay width of the parent particle X1

to X2X4X5 where X4X5 is the decay product of off-shell
scalar X�

Δ can also be expressed as

ΓX1

X2X4X5
¼

Z
dm2

45

ðm2
XΔ
Þπ

Z
dPSðX1→X2X�

ΔÞ

×
jAðX1 → X2X�

ΔÞj2
2mX1

~ΓX�
Δ

X4X5

ðmXΔ
Þ ; ð2Þ

where

~ΓX�
Δ

X4X5
¼
�
1−

1

2
δX4X5

�Z
dPSðX�

Δ→X4X5Þ
jAðX�

Δ→X4X5Þj2
2mXΔ

:

ð3Þ

mXΔ
is the on-shell mass of the scalar XΔ, while the phase

space
R
dPSðX�

Δ→X4X5Þ is similar to
R
dPSðX�

3
→X4X5Þ appearing

in Eq. (1). We know that if the particle XΔ is produced
on shell then we can plug in the branching fraction for
decay XΔ → X4X5 in our calculation. We have mimicked
that idea to compute the decay when the particle, XΔ,
is off shell. We have replaced the branching ratio (BR), i.e.,
ΓðXΔ → X4X5Þ=ΓXΔ

total
1 by ~ΓðX�

Δ → X4X5Þ=ðmXΔ
Þ2 to make

this quantity dimensionless. As the off-shell particles might
have a range of momenta depending on the kinematic

availability the dimensionless integration,
R dm2

45

ðm2
XΔ

Þπ, is

added. Thus like the on-shell case, here, also we can cut
the off-shell scalar propagators and add such terms every
time. This will help to avoid the amplitude computation of
1 → n-particles through long cascade decays. After dis-
cussing the details of the calculation for M� → l�i l

�
j M

0∓
in II A, a complete calculation using this prescription can
be found in Appendix A.
We can extend our conjecture for long cascade decays,

like X1 → X2Δ�
1Δ�

2 → X2X4X5X6X7, where X4X5 and
X6X7 are decay products of off-shell scalars Δ�

1 and Δ�
2

respectively. This can be found similarly as in II B followed
by Appendix B 1.
The most general decay width involving multiple

off-shell scalar can be written as

1ΓXΔ
total is the total decay width of XΔ.

2Here, the definition of ~Γ is slightly different than the usual
decay width. As this is an off-shell particle its partial decay width

is defined as ~ΓðX�
Δ → X4X5Þ ¼

R
dPSðX�

Δ→X4X5Þ
jAðX�

Δ→X4X5Þj2
mXΔ

.
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ΓX1

X2ðX4X5ÞðX6X7Þ…ðXiXjÞ

¼
�Z

dm2
45

ðm2
XΔ1

Þπ
Z

dm2
67

ðm2
XΔ2

Þπ � � �

×
Z

dm2
ij

ðm2
XΔn

Þπ ½ΓðX1 → X2X�
Δ1
X�
Δ2
…X�

Δn
Þ�

×

� ~ΓðX�
Δ1

→ X4X5Þ
ðmXΔ1

Þ
�� ~ΓðX�

Δ2
→ X6X7Þ

ðmXΔ2
Þ

�
� � �

×

� ~ΓðX�
Δn

→ XiXjÞ
ðmXΔn

Þ
��

: ð4Þ

ΓðX1 → X2X�
Δ1
X�
Δ2
…X�

Δn
Þ can be computed using the

standard phase space method as has been used to write
down Eq. (1). Here, each X�

Δn
is decaying to ðXiXjÞ. In the

commonly used phase space method one needs to compute
the amplitude of the full process ðX1 → X2X4X5Þ which
might be cumbersome for a very long cascade. But
following our proposal we need to compute only amplitude
and decay of one to two body decays which have very
standard well-known forms.

A. M± → M0∓l±1 l±2
The meson decay, M� → M0∓l�1 l�2 , is mediated

by doubly charged scalars as shown in Fig. 1. This
doubly charged scalar can belong to different representa-
tions3 and that controls the vertex factor. The vertex
factors of couplings W∓

μ Wμ∓Δ��, Δ��l∓1 l
∓
2 , and

Δ��Δ∓∓W�
μ Wμ∓ which are necessary for our analysis

are given as cgvΔg2=2, yl1l2 , and cwwg2=2 respectively.
The group theoretic factors are given as
cg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT3 þ YÞðT3 þ Y − 1ÞðT3 − Y þ 2ÞðT3 − Y þ 1Þp
,

and cww ¼ 2½TðT þ 1Þ − ð2 − YÞ2� (with definition
Q ¼ T3 þ Y). Another coupling yl1l2 is the measure of
interaction of two leptons with the doubly charged scalar,
and is related to the light neutrino masses.
The hadronic contribution for the processes we have

considered in this paper are the same. The hadronic part of

the diagrams, Fig. 1, can be calculated using the Bethe-
Salpeter amplitudemethod formesons as bound states [4,25].
SinceMΔ ≫ mM, the hadronicmatrix element can bewritten
as hM0jq̄3Vq3q4γ

μð1−γ5Þq4q̄2Vq2q1γμð1−γ5Þq1jMi for
the s-channel process4 and hM0jq̄3Vq3q1γ

μð1 − γ5Þ×
q1q̄2Vq2q4γμð1 − γ5Þq4jMi for the t-channel process [4,6].
Using the vacuum saturation approximation, we can replace
the s-channel matrix element by hM0jq̄3γμð1−γ5Þq4j0i×
h0jq̄2γμð1−γ5Þq1jMi. The expression h0jq̄2γμð1 −
γ5Þq1jMi involves long distance QCD and cannot be
calculated explicitly but it can be parametrized in terms of
decay constants (fM; fM0 ) which can be measured exper-
imentally [26]. Eventually we get

hM0jq̄3Vq3q4γ
μð1 − γ5Þq4q̄2Vq2q1γμð1 − γ5Þq1jMi

¼ Vq3q4Vq2q1fM0fMðPM · PM0 Þ: ð5Þ

The t-channel matrix element can be converted to a similar
expression by using Fierz transformation,

hM0jq̄3Vq3q1γ
μð1 − γ5Þq1q̄2Vq2q4γμð1 − γ5Þq4jMi

¼ Vq3q1Vq2q4fM0fMðPM · PM0 Þ=Nc; ð6Þ

where 1=Nc is a result of the different color factors in the
t-channel.
Now combining the hadronic and the leptonic contribu-

tions the partial decay width of the decay M� → M0∓l�1 l�2
in the presence of the doubly charged scalar is given as

ΓM
M0l1l2

¼
�
1−

1

2
δl1l2

�
1

28π3
G4

FK
2
V1f

2
Mf

2
M0

1

m3
M
c2gv2Δ

1

M4
Δ
y2l1l2

×
Z ðmM−mM0 Þ2

ðml1
þml2

Þ2

�
dm2

X1

λ1=2ðm2
M;m

2
M0 ;m2

X1
Þ

m2
X1

× λ1=2ðm2
X1
;m2

l1
;m2

l2
Þðm2

M þm2
M0 −m2

X1
Þ2

× ðm2
X1
−m2

l1
−m2

l2
Þ
�
; ð7Þ

where KV1 ¼ V12V43 þ 1=NcV13V42 with Vij being ele-
ments of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
and Nc ¼ 3.

FIG. 1. Meson decay M� → M0∓l�1 l�2 through the heavy doubly charged scalars: s-channel (left) and t-channel (right) diagrams.

3As the doubly charged scalar and gauge coupling vertex is of
type W − Δ −W, this interaction term is possible iff the Δþþ
belongs to a multiplet which contains a neutral scalar field and
that acquires a vacuum expectation value. 4Here, the considered hadronic process is q1q2 → q3q4.
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Another important and interesting consequence of lepton
number violation is neutrinoless double beta decay ð0νββÞ
which can also be mediated by Majorana neutrino and
doubly charged scalar [11,12,27,28], see Fig. 2. In passing
we would like to mention that this process possesses a
similar leptonic part ðWþWþ → Δþþ� → lþ1 l

þ
2 Þ. But one

needs to keep in mind that the hadronic part in Eq. (7)
should be replaced by the appropriate nuclear matrix
element. While computing this process one must be careful
to incorporate the correction due to the Coulomb attraction
between the final state electrons and the nucleus as
suggested in [27] and references therein, and thus can
not implement this method blindly. We are not discussing
it in detail as this is already discussed in [27]. In general,
our proposal will be meaningful for the processes where
one can deal with the leptonic part containing Δ −W −W,
Δ − Δ −W −W vertices with off-shell Δ separately. But
one needs to modify this proposal if these off-shell particles
have nonzero spin or other quantum numbers, like color.
We are working on that.

B. M± → M0±l±1 l
±
2 l

∓
3 l

∓
4

Here we have calculated an interesting possibility of
meson decay:M� → M0�l�1 l

�
2 l

∓
3 l

∓
4 . We have computed the

decay width for this process when the decay is possible
only through doubly charged scalars. But as we have
mentioned this decay can be mediated by Majorana
neutrinos also, one needs to take care of both contributions

if both particles are present in that model. As we have
mentioned earlier that the doubly charged scalars always
appear off shell, this can be a very good smoking gun to
note their presence. Also unlike the other decay here the
doubly charged scalar can belong to any representation as
the W −W − Δ − Δ vertex is always there as an outcome
of the scalar kinetic term.5 The process M� →
M0�l�1 l

�
2 l

∓
3 l

∓
4 is also possible through Δ� instead of W�

in Fig. 3. However, the strength of interactions Δþþ −
Δ−− − Δþ − Δ− and qq0Δ� is proportional to scalar quartic
and Yukawa couplings respectively. These couplings in
usual scenarios are much smaller than the gauge coupling
and also suppressed by the scalar mixing angles. Thus these
lead to negligible contributions to the actual processes.
Here, we have used our prescription, Appendix B 1, and

also verified the result using the phase space technique B 2.
Both procedures lead to same decay width. This verifies our
proposal.
In passing we would like to note that, because of the

coupling W −W − Z − Z present in the SM, this four-
lepton final state can also be mimicked. But there will be no
possibility of flavor violating signal as the Z boson always
decays to the same flavored charged lepton, like eþeþe−e−

or μþμþμ−μ− or e�e∓μ�μ∓. Thus the asymmetry in lepton
flavors among these four leptons, like e�e�e∓μ∓ or
e�μ�μ∓μ∓ and final states like e�e�μ∓μ∓, will surely
signify the presence of new particles beyond SM, like
doubly charged scalars, heavy Majorana neutrino in theory.
The decay width of the following decay M� →

M0�l�1 l
�
2 l

∓
3 l

∓
4 is given as

ΓM
M0lþ

1
lþ
2
l−
3
l−
4

¼ K2
V2f

2
Mf

2
M0G4

Fc
2
gy2l1l2y

2
l3l4

π7216M4
ΔþþM4

Δ−−mM

�
1 −

1

2
δl3l4

��
1 −

1

2
δl1l2

�Z
dm2

X1

λ1=2ðm2
M;m

2
M0 ; m2

X1
Þ

m2
M

×
Z

dm2
12

Z
dm2

34

λ1=2ðm2
X1
; m2

Δþþ ; m2
Δ−−Þ

m2
X1

λ1=2ðm2
12; m

2
l1
; m2

l2
Þ

m2
12

λ1=2ðm2
34; m

2
l3
; m2

l4
Þ

m2
34

× ðm2
M þm2

M0 −m2
X1
Þ2ðm2

12 −m2
l1
−m2

l2
Þðm2

34 −m2
l3
−m2

l4
Þ; ð8Þ

with KV2 ¼ V12V43.

FIG. 2. Neutrinoless double beta decay (0νββ) diagram medi-
ated by doubly charged scalar.

FIG. 3. Charged meson decay M� → M0�l�1 l
�
2 l

∓
3 l

∓
4 through

the heavy doubly charged scalars.

5Thus if the doubly charged scalar belongs to an SUð2Þ multiplet which does not contain any neutral scalar field, the contribution to
the decay width for M� → M0∓l�1 l�2 vanishes. But the meson decay leading to a four-lepton final state is still present.
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The limits of the above integrals are as follows:

m2
12 ∈ ½ðml1 þml2Þ2; ðmX1

− ðml3 þml4ÞÞ2�;
m2

34 ∈ ½ðml3 þml4Þ2; ðmX1
−m12Þ2�;

m2
X1

∈ ½ðml1 þml2 þml3 þml4Þ2; ðmM −mM0 Þ2�: ð9Þ

This type of meson decay is not only associated with
doubly charged scalar. The heavy non-SM neutral scalar
can have a vertex like W − Δ0 − Δ0 −W. Then these off-
shell neutral scalars might have flavor violating but lepton
number conserving decay to two opposite sign charged
leptons: Δ0 → l�i l

∓
j . Then also the final state consists of

l�1 l
�
2 l

∓
3 l

∓
4 . The decay width involving these neutral scalars

will be the same as Eq. (8) where MΔ will be the mass of
heavy neutral scalar, with appropriate group theoretic
factor cg.

III. NUMERICAL RESULTS

In this paper, we have encapsulated the impact of a
doubly charged scalar in rare meson decays. We have
focused mainly on the charged mesons ðM�Þ and their
decays to l�i l

�
j M

0∓ and l�i l
�
j l

∓
ml

∓
n M0�. Both of these final

states carry the signatures of lepton number violation and/
or lepton flavor violations. More precisely the decay of
doubly charged scalar to a pair of charged leptons is lepton
number violating and in general that coupling is propor-
tional to the light neutrino mass. If these charged leptons
are of different flavor then this decay leads to violation of
lepton flavor also. We have enlisted the form factors ðfMÞ,
mass and the lifetime of the charged mesons that are
involved in our analysis, see Table I [26]. Here we have
taken central values of mass and lifetime from Table I to

compute the decay branching ratios of different charged
mesons. In Tables VI and VII we have provided the decay
BRs of the charged mesons (Kþ; Dþ; Dþ

s ; Bþ) toM0∓l�i l�i ,
where M0∓s are the respectively light mesons. There are
already experimental (Exp.) upper bounds on these decay

BRs, thus we can put some lower bound on M2
Δ

cgvΔyl1l2
in a

model independent way. For specific models depending on
the specific structures of the couplings the mass on doubly

TABLE I. Properties of mesons.

Meson (M) fM (GeV) Mass (GeV) Lifetime τ (Sec)

π� 130.7 × 10−3 ð139.57018� 0.00035Þ × 10−3 ð2.6033� 0.00035Þ × 10−8

K� 159.8 × 10−3 ð493.677� 0.016Þ × 10−3 ð1.238� 0.0021Þ × 10−8

D� 228 × 10−3 ð1869.62� 0.15Þ × 10−3 ð1040� 7Þ × 10−15

D�
s 251 × 10−3 ð1968.50� 0.32Þ × 10−3 ð500� 7Þ × 10−15

B� 200 × 10−3 ð5279.26� 0.17Þ × 10−3 ð1.641� 0.008Þ × 10−12

TABLE II. Decay BR for K� meson decays leading to four-
lepton final state.

Meson decay BR=
�c2gy2l1 l2

y2l3 l4
M8

Δ

�
½GeV8�

K� → π�eþeþe−e− 1.355 × 10−27

K� → π�eþeþe−μ− 4.479 × 10−28

K� → π�eþeþμ−μ− 1.335 × 10−29

K� → π�eþμþe−μ− 5.339 × 10−29

K� → π�μþμþμ−e− 2.360 × 10−32

TABLE III. Decay BR for D� meson decay into four-lepton
final state.

Meson decay BR
�c2gy2l1 l2

y2l3 l4
M8

Δ

�
½GeV8�

D� → K�eþeþe−e− 7.204 × 10−25

D� → K�eþeþe−μ− 1.229 × 10−24

D� → K�eþeþμ−μ− 5.206 × 10−25

D� → K�eþμþe−μ− 2.082 × 10−24

D� → K�μþμþμ−e− 8.745 × 10−25

D� → K�μþμþμ−μ− 3.638 × 10−25

D� → π�eþeþe−e− 2.486 × 10−23

D� → π�eþeþe−μ− 4.412 × 10−23

D� → π�eþeþμ−μ− 1.949 × 10−23

D� → π�eþμþe−μ− 7.797 × 10−23

D� → π�μþμþμ−e− 3.420 × 10−23

D� → π�μþμþμ−μ− 1.502 × 10−23

TABLE IV. Decay BR for Ds� meson decay into four-lepton
final state.

Meson decay BR=
�c2gy2l1 l2

y2l3 l4
M8

Δ

�
½GeV8�

Ds� → K�eþeþe−e− 1.712 × 10−23

Ds� → K�eþeþe−μ− 2.977 × 10−23

Ds� → K�eþeþμ−μ− 1.286 × 10−23

Ds� → K�eþμþe−μ− 5.145 × 10−23

Ds� → K�μþμþμ−e− 2.209 × 10−23

Ds� → K�μþμþμ−μ− 9.417 × 10−24

Ds� → π�eþeþe−e− 5.320 × 10−22

Ds� → π�eþeþe−μ− 9.565 × 10−22

Ds� → π�eþeþμ−μ− 4.278 × 10−22

Ds� → π�eþμþe−μ− 1.711 × 10−21

Ds� → π�μþμþμ−e− 7.625 × 10−22

Ds� → π�μþμþμ−μ− 3.385 × 10−22
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charged scalars can be computed. We have checked that
these bounds are severe only for the very light doubly
charged scalars. We have also explored the possibility of
other types of meson decays and computed their branching
fractions in Tables II, III, IV, and V. These are more
suppressed than the dilepton case mostly due to extended
phase space.

IV. CONCLUSIONS

In this paper, we have discussed the impact of doubly
charged scalars in rare meson decays in a model indepen-
dent way. While computing the decay width for these
processes, we noted that one can deal with the hadronic and
the leptonic part independently. The processes under
consideration are such that the involved doubly charged
scalars appear always off shell. Thus the branching ratio
technique does not work in this analysis. This makes the
computation cumbersome and the phase spaces compli-
cated as one cannot truncate the off-shell particles in
principle. To make the computation easier we come up
with an alternative proposal. Though we do not have a
formal proof for this, we have understood how to achieve
that from the idea of a phase space procedure for three body
decay and then we have generalized that for n-body decay
modes. Then we have shown explicitly that our proposal
and the phase space method lead to the same result for
five body decay. This method can be used for the similar
leptonic parts for other decays, for example neutrinoless
double beta decay via off-shell doubly charged scalar. In
this paper we have estimated the decay branching ratios
for processes like M� → M0∓l�1 l�2 , M� → M0�l�1 l

�
2 l

∓
3 l

∓
4

for different charged mesons ðB�; D�
s ; K�; D�Þ. The decay

TABLE V. Decay BR for B� meson rare decay leading to four
leptons in the final state.

Meson decay BR=
�c2gy2l1 l2

y2l3 l4
M8

Δ

�
½GeV8�

B� → Ds�eþeþe−e− 2.279 × 10−21

B� → Ds�eþeþe−μ− 4.431 × 10−21

B� → Ds�eþeþμ−μ− 2.153 × 10−21

B� → Ds�eþμþe−μ− 8.612 × 10−21

B� → Ds�μþμþμ−e− 4.183 × 10−21

B� → Ds�μþμþμ−μ− 2.031 × 10−21

B� → D�eþeþe−e− 1.261 × 10−22

B� → D�eþeþe−μ− 2.454 × 10−22

B� → D�eþeþμ−μ− 1.194 × 10−22

B� → D�eþμþe−μ− 4.777 × 10−22

B� → D�μþμþμ−e− 2.324 × 10−22

B� → D�μþμþμ−μ− 1.130 × 10−22

B� → K�eþeþe−e− 4.065 × 10−22

B� → K�eþeþe−μ− 7.999 × 10−22

B� → K�eþeþμ−μ− 1.574 × 10−21

B� → K�eþμþe−μ− 4.777 × 10−22

B� → K�μþμþμ−e− 7.740 × 10−22

B� → K�μþμþμ−μ− 3.806 × 10−22

B� → π�eþeþe−e− 5.672 × 10−21

B� → π�eþeþe−μ− 1.117 × 10−20

B� → π�eþeþμ−μ− 5.496 × 10−21

B� → π�eþμþe−μ− 2.199 × 10−20

B� → π�μþμþμ−e− 1.082 × 10−20

B� → π�μþμþμ−μ− 5.324 × 10−21

TABLE VII. Branching ratios for charged meson (Bþ) rare
decays leading to the same sign dileptons. These are signatures
of lepton number violations and lepton flavor violations too in
a few cases. Here, we have taken the central values of mass and
lifetime from Table I.

Meson decay
mode

Exp. upper
bound on BR

BR=
�c2gv2Δy

2
l1 l2

M4
Δ

�
½GeV2�

Lower bound on
M2

Δ
cgvΔyl1 l2

(GeV)

Bþ → π−eþeþ 3.9 × 10−3 2.36 × 10−16 0.2 × 10−6

Bþ → π−μþμþ 9.1 × 10−3 2.34 × 10−16 0.2 × 10−6

Bþ → π−eþμþ 6.4 × 10−3 4.7 × 10−16 0.3 × 10−6

Bþ → π−τþτþ � � � 1.51 × 10−17 � � �
Bþ → π−eþτþ � � � 1.74 × 10−16 � � �
Bþ → π−μþτþ � � � 1.73 × 10−16 � � �
Bþ → K−eþeþ 3.9 × 10−3 1.85 × 10−17 0.07 × 10−6

Bþ → K−μþμþ 9.1 × 10−3 1.84 × 10−17 0.05 × 10−6

Bþ → K−eþμþ 6.4 × 10−3 3.69 × 10−17 0.08 × 10−6

Bþ → K−τþτþ � � � 1.34 × 10−19 � � �
Bþ → K−eþτþ � � � 1.34 × 10−17 � � �
Bþ → K−μþτþ � � � 1.33 × 10−17 � � �

TABLE VI. Branching ratios for charged meson (Kþ; Dþ; Dþ
s )

rare decays leading to same sign dileptons. These are signatures
of lepton number violations and lepton flavor violations too in a
few cases. Here, we have taken the central values of mass and
lifetime from Table I.

Meson decay
mode

Exp. upper
bound on BR

BR=
�c2gv2Δy

2
l1 l2

M4
Δ

�
½GeV2�

Lower bound on
M2

Δ
cgvΔyl1 l2

(GeV)

Kþ → π−eþeþ 6.4 × 10−10 2.21 × 10−16 587.6 × 10−6

Kþ → π−μþμþ 3.0 × 10−9 6.34 × 10−17 145.4 × 10−6

Kþ → π−eþμþ 5.0 × 10−10 2.61 × 10−16 722.5 × 10−6

Dþ → π−eþeþ 9.6 × 10−5 5.53 × 10−16 2.4 × 10−6

Dþ → π−μþμþ 1.7 × 10−5 5.19 × 10−16 5.5 × 10−6

Dþ → π−eþμþ 5.0 × 10−5 1.07 × 10−15 4.6 × 10−6

Dþ → K−eþeþ 1.2 × 10−4 1.18 × 10−16 1.0 × 10−6

Dþ → K−μþμþ 1.2 × 10−4 1.09 × 10−16 1.0 × 10−6

Dþ → K−eþμþ 1.3 × 10−4 2.28 × 10−16 1.3 × 10−6

Dþ
s → π−eþeþ 6.9 × 10−4 5.04 × 10−15 2.7 × 10−6

Dþ
s → π−μþμþ 8.2 × 10−5 4.75 × 10−15 7.6 × 10−6

Dþ
s → π−eþμþ 7.3 × 10−4 9.79 × 10−15 3.7 × 10−6

Dþ
s → K−eþeþ 6.3 × 10−4 5.66 × 10−16 0.9 × 10−6

Dþ
s → K−μþμþ 1.8 × 10−4 5.29 × 10−16 1.7 × 10−6

Dþ
s → K−eþμþ 6.8 × 10−4 1.10 × 10−15 1.3 × 10−6
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branching ratios are very small compared to the present
experimental bounds thus they cannot put significant
constraints on the mass of the doubly charged scalars.
The four-lepton final state is much more suppressed,
mainly due to phase space, compare to the other two-
lepton cases. We have checked that our proposal can be
used for long cascades involving only off-shell scalar
particles. This proposal needs further modifications to deal
with off-shell particles with nonzero spins.
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APPENDIX A: MESON DECAY VIA
HEAVY DOUBLY CHARGED SCALAR:

M± → M0∓Δ±± → M0∓l±1 l±2
The decay width is proposed as

ΓðM� → M0∓l�1 l�2 Þ ¼
Z �

1

π
d
�

m2
12

m2
Δþþ

��
½ΓðM → M0Δþþ�Þ�

×

�
~ΓðΔþþ� → l1l2Þ

ðmΔþþÞ
�
; ðA1Þ

½ΓðMþ → M0−Δþþ�Þ� ¼
Z

dPSðM→M0Δþþ�Þ

×
jA2lðM → M0Δþþ�Þj2

2mM
; ðA2Þ

where m12 is the invariant mass of the intermediate particle
Δþþ� which appears as off shell. Thusm12 is different from
mΔþþ . Here, the hadronic contribution can be recollected
from Fig. 1 and then the amplitude of this decay is given as

A2lðMþ → M0−Δþþ�Þ

¼ 1

22
KV1fMfM0 ðPM:PM0 ÞL0ðpl1 ; pl2Þ; ðA3Þ

where, fM and fM0 are meson decay constants; KV1 ¼
V12V43 þ 1

Nc
V13V42 with Vij being elements of the CKM

matrix and color-factor Nc ¼ 3.
Here, leptonic contribution can be expressed as

L0ðpl1 ; pl2Þ ¼
�

gffiffiffi
2

p
�

2 1

M4
W

cgvΔg2

2
: ðA4Þ

We can write the squared amplitude as

jA2lj2 ¼
1

24
K2

V1f
2
Mf

2
M0 ðPM:PM0 Þ2

��
gffiffiffi
2

p
�

2 1

M4
W

cgvΔg2

2

�
2

:

ðA5Þ

From momentum conservation equations (PM ¼ PM0þ
pl1 þ pl2 , k ¼ pl1 þ pl2), and in rest frame of lepton pair
~pl1 þ ~pl2 ¼ 0 and pl1 þ pl2 ¼ k ¼ ðm12; 0; 0; 0Þ, we find

ðPM:PM0 Þ ¼ 1

2
ðm2

M þm2
M0 −m2

12Þ;

pl2 :pl1 ¼
1

2
ðm2

12 −m2
l1
−m2

l2
Þ;

El2 ¼
m2

12 þm2
l2
−m2

l1

2m12

: ðA6Þ

We also have

j ~pl2 j ¼
1

2m12

λ1=2ðm2
12; m

2
l1
; m2

l2
Þ;

j ~PM0 j ¼ 1

2mM
λ1=2ðm2

M;m
2
M0 ; m2

12Þ: ðA7Þ

The phase space is given as

dPSðM→M0Δþþ�Þ ¼
1

16π2
λ1=2ðm2

M;m
2
M0 ; m2

12Þ
2m2

M
dΩ; ðA8Þ

and the partial decay width is expressed as

~ΓðΔþþ� → l1l2Þ ¼
1

16π2
λ1=2ðm2

12; m
2
l1
; m2

l2
Þ

2m2
12

ð4πÞ

×
1

2mΔþþ
y2l1l2 ½m2

12 −m2
l1
−m2

l2
�: ðA9Þ

Now the decay width, Eq. (A1), can be written as

ΓM
M0l1l2

¼
�
1−

1

2
δl1l2

�
1

28π3
G4

FK
2
V1f

2
Mf

2
M0

1

m3
M
c2gv2Δ

1

M4
Δ
y2l1l2

×
Z ðmM−mM0 Þ2

ðml1
þml2

Þ2
dm2

12

λ1=2ðm2
M;m

2
M0 ;m2

12Þ
m2

12

× λ1=2ðm2
12;m

2
l1
;m2

l2
Þðm2

M þm2
M0 −m2

12Þ2
× ðm2

12 −m2
l1
−m2

l2
Þ: ðA10Þ
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APPENDIX B: DECAY WIDTH FOR MESON
DECAY M± → M0±lþ1 l

þ
2 l

−
3 l

−
4

1. Using our prescription

We have proposed an alternative treatment to compute
the decay width of this process: M� → M0�lþ1 l

þ
2 l

−
3 l

−
4 .

The phase space for the case of five decay products
is complicated. It is possible to simplify this by the

introduction of intermediate particles so that our process
can be written as

M� → M0�X�
1 → M0�X�

2X
�
3 → M0�lþ1 l

þ
2 l

−
3 l

−
4 ;

with X�
2 → lþ1 l

þ
2 and X�

3 → l−3 l
−
4 : ðB1Þ

The decaywidth is proposed by following our prescription:

ΓðM� → M0�lþ1 l
þ
2 l

−
3 l

−
4 Þ ¼

�Z �
1

π
d

�
m2

12

m2
Δþþ

��Z �
1

π
d

�
m2

34

m2
Δ−−

��
½ΓðM → M0Δþþ�Δ−−�Þ�

�
~ΓðΔþþ� → l1l2Þ

ðmΔþþÞ
�

×

�
~ΓðΔ−−� → l3l4Þ

ðmΔ−−Þ
��

ðB2Þ

where ½ΓðM → M0Δþþ�Δ−−�Þ� ¼ R
dPSðM→M0Δþþ�Δ−−�Þ

jA4lðM→M0Δþþ�Δ−−�Þj2
2mM

,

dPSðM→M0Δþþ�Δ−−�Þ ¼
Z

dm2
X1

2π

1

16π2
λ1=2ðm2

M;m
2
M0 ; m2

X1
Þ

2m2
M

ð4πÞ 1

16π2
λ1=2ðm2

X1
; m2

12; m
2
34Þ

2m2
X1

ð4πÞ: ðB3Þ

The amplitude is given as

A4lðM → M0Δþþ�Δ−−�Þ ¼ 1

22
KV2fMfM0 ðPM · PM0 Þ

�
gffiffiffi
2

p
�

2 1

M4
W

cgg2

2
; ðB4Þ

with KV2 ¼ V12V34. Thus we have

jA4lðM → M0Δþþ�Δ−−�Þj2 ¼
�
1

22
KV2fMfM0 ðPM · PM0 Þ

�
gffiffiffi
2

p
�

2 1

M4
W

cgg2

2

�
2

: ðB5Þ

Now Eq. (B2) can be expressed as

ΓM
M0lþ

1
lþ
2
l−
3
l−
4

¼
Z

dm2
12

ðπÞm2
Δþþ

Z
dm2

34

ðπÞm2
Δ−−

�
1 −

1

2
δl1l2

��
1 −

1

2
δl3l4

�

×
Z

dm2
X1

2π

1

16π2
λ1=2ðm2

M;m
2
M0 ; m2

X1
Þ

2m2
M

ð4πÞ 1

16π2
λ1=2ðm2

X1
; m2

12; m
2
34Þ

2m2
X1

ð4πÞ

×
1

2mM

�
1

24
K2

V2f
2
Mf

2
M0

1

4
½m2

M þm2
M0 −m2

X1
�2 g4

4M8
W

c2gg4

4

�

×
1

mΔþþ

�
1

16π2
λ1=2ðm2

12; m
2
l1
; m2

l2
Þ

2m2
12

ð4πÞ 1

2mΔþþ
y2l1l2 ½m2

12 −m2
l1
−m2

l2
�
�

×
1

mΔ−−

�
1

16π2
λ1=2ðm2

34; m
2
l3
; m2

l4
Þ

2m2
34

ð4πÞ 1

2mΔ−−
y2l3l4 ½m2

34 −m2
l3
−m2

l4
�
�
: ðB6Þ

BAMBHANIYA, CHAKRABORTTY, AND DAGAONKAR PHYSICAL REVIEW D 91, 055020 (2015)

055020-8



Simplifying the expression we will get

ΓM
M0lþ

1
lþ
2
l−
3
l−
4

¼ K2
V2f

2
Mf

2
M0G4

Fc
2
gy2l1l2y

2
l3l4

π7216M4
ΔþþM4

Δ−−mM

�
1 −

1

2
δl3l4

��
1 −

1

2
δl1l2

�Z
dm2

X1

λ1=2ðm2
M;m

2
M0 ; m2

X1
Þ

m2
M

Z
dm2

12

Z
dm2

34

×
λ1=2ðm2

X1
; m2

12; m
2
34Þ

m2
X1

λ1=2ðm2
12; m

2
l1
; m2

l2
Þ

m2
12

λ1=2ðm2
34; m

2
l3
; m2

l4
Þ

m2
34

× ðm2
M þm2

M0 −m2
X1
Þ2ðm2

12 −m2
l1
−m2

l2
Þðm2

34 −m2
l3
−m2

l4
Þ: ðB7Þ

The limits of the above integrals are as follows:

m2
12 ∈ ½ðml1 þml2Þ2; ðmX1

− ðml3 þml4ÞÞ2�;
m2

34 ∈ ½ðml3 þml4Þ2; ðmX1
−m12Þ2�;

m2
X1

∈ ½ðml1 þml2 þml3 þml4Þ2; ðmM −mM0 Þ2�: ðB8Þ

2. Using phase space method

The decay width for the process depicted in Eq. (B1) can also be computed using the phase space method. The expression
for the decay width is then given by

ΓM
M0lþ

1
lþ
2
l−
3
l−
4

¼
Z

dm2
X1

2π

Z
dPSðM→M0X�

1
Þ

Z
dm2

X2

2π

Z dm2
X3

2π

Z
dPSðX�

1
→X�

2
X�
3
Þ

×
Z

dPSðX�
2
→lþ

1
lþ
2
Þ

Z
dPSðX�

3
→l−

3
l−
4
Þ
jAðM → M0l1l2l3l4Þj2

2mM
: ðB9Þ

In order to evaluate this expression, we need to express everything in terms of the masses. The phase space can be
plugged into the above expression.
The amplitude for the case of meson decaying to four leptons is depicted as

AðM → M0l1l2l3l4Þ ¼
1

22
KV2fMfM0 ðPM:PM0 ÞL00ðpl1 ; pl2 ; pl3 ; pl4Þ: ðB10Þ

The leptonic part is given as

L00ðpl1 ; pl2Þ ¼
�

gffiffiffi
2

p
�

2 1

M4
W

cgg2

2

1

M2
Δþþ

1

M2
Δ−−

yl1l2yl3l4 ½l1Lðpl1Þl2Rðpl2Þ�½l3Lðpl3Þl4Rðpl4Þ�: ðB11Þ

The amplitude squared becomes

jAðM → M0l1l2l3l4Þj2 ¼
�
1

22
KV2fMfM0 ðPM:PM0 Þ

�
2
��

gffiffiffi
2

p
�

2 1

M4
W

cgg2

2

1

M2
Δþþ

1

M2
Δ−−

yl1l2yl3l4

�
2

2ðpl1 · pl2Þ2ðpl3 · pl4Þ:

ðB12Þ

The dot products ðPM · PM0 Þ, ðpl1 · pl2Þ and ðpl3 · pl4Þ can be expressed in terms of masses using the same technique
used in Eqs. (A6) and (A7) and using the momentum conservation equations pM ¼ pM0 þ pX1

; pX2
¼ pl1 þ pl2 and

pX3
¼ pl3 þ pl4 .
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The final expression for the decay width is

ΓM
M0lþ

1
lþ
2
l−
3
l−
4

¼ K2
V2f

2
Mf

2
M0G4

Fc
2
gy2l1l2y

2
l3l4

π7216M4
ΔþþM4

Δ−−mM

�
1 −

1

2
δl1l2

��
1 −

1

2
δl3l4

�

×
Z

dm2
X1

λ1=2ðm2
M;m

2
M0 ; m2

X1
Þ

m2
M

Z
dm2

X2

Z
dm2

X3

λ1=2ðm2
X1
; m2

X2
; m2

X3
Þ

m2
X1

λ1=2ðm2
X2
; m2

l1
; m2

l2
Þ

m2
X2

λ1=2ðm2
X3
; m2

l3
; m2

l4
Þ

m2
X3

× ðm2
M þm2

M0 −m2
X1
Þ2ðm2

X2
−m2

l1
−m2

l2
Þðm2

X3
−m2

l3
−m2

l4
Þ: ðB13Þ

The limits of the above integrals are as follows:

m2
X1

∈ ½ðml1 þml2 þml3 þml4Þ2; ðmM −mM0 Þ2�;
m2

X2
∈ ½ðml1 þml2Þ2; ðmX1

−mX3
Þ2�;

m2
X3

∈ ½ðml3 þml4Þ2; ðmX1
−ml1 −ml2Þ2�: ðB14Þ

We find that both procedures lead to the same results for ΓM
M0lþ

1
lþ
2
l−
3
l−
4

. To compare Eqs. (B13) and (B7), make the following

replacements mX2
↔ m12 and mX3

↔ m34.
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