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We consider the finite temperature phase diagram of holographic QCD in the Veneziano limit (Nc → ∞,
Nf → ∞ with xf ¼ Nf=Nc fixed) and calculate one string loop corrections to the free energy in certain
approximations. Such corrections, especially due to the pion modes, are unsuppressed in the Veneziano
limit. We find that under some extra assumptions the first order transition following from classical gravity
solutions can become second order. If stringy asymptotics are of a special form and there are residual
interactions, it may even become of third order. Operationally these computations imply modeling the low
temperature chiral symmetry breaking phase with a hadron gas containing N2

f massless Goldstone bosons

and an exponential spectrum of massive hadrons. A third order transition is possible only if repulsive
hadron interactions via the excluded volume effect are included.

DOI: 10.1103/PhysRevD.91.055017 PACS numbers: 05.70.Ce, 11.25.Tq, 12.38.Mh

I. INTRODUCTION

In this paper we consider thermodynamics of QCD at
finite temperature in a noncritical holographic model [1]
and show how one can effectively compute quantum one-
loop and even stringy corrections by phenomenological
considerations relating to the hadronic phase. We will then
have thermodynamics at all temperatures together with an
analysis of possible phase transitions.
Holographic models of QCD (V-QCD) in the Veneziano

limit,

Nc → ∞; Nf → ∞; xf ≡ Nf

Nc
fixed; ð1Þ

have been proposed and studied in [1–4], based on earlier
proposals for pure Yang-Mills [5] and the identification
of the chiral condensate as the tachyon of string theory [6].
In such theories for a small enough number of flavors,
xf < xc ≃ 4, the low energy theory is QCD-like: it has
chiral symmetry breaking, N2

f − 1 massless pions (when
quarks are massless) and confinement.
The finite temperature study of V-QCD at zero baryon

density and for massless quarks [2] revealed the possibility
of one or two possible phase transitions, depending on the
asymptotics of scalar potentials:
(a) One phase transition.—In this case the theory at a

specific critical temperature Tc jumps to a black hole
solution with restored chiral symmetry. The transition

is a first order one and is at the same time a
deconfinement and a chiral restoration transition.

(b) Two phase transitions.—In this case the theory at a
specific critical temperature Tc jumps to a black hole
solution which breaks chiral symmetry. The transition
is first order and the theory is in a deconfined plasma
phase with broken chiral symmetry. At a higher
temperature there is a second transition, second order
this time, and the system is described by a black hole
solution with unbroken chiral symmetry.

The chiral phase transition above can be characterized by
a chiral condensate which is an exact order parameter for
massless quarks. Although in the presence of quarks there
is no order parameter for confinement, at large Nc, one can
use the scaling of the free energy F with Nc. A phase in
which F ∼OðN2

cÞ is a deconfined phase while a phase
where F ∼Oð1Þ is a confinement phase. In a holographic
theory therefore, any phase transition in which the system
jumps from the T ¼ 0 saddle point (or the “thermal gas
solution” as it is known) to a black hole saddle point is a
deconfinement transition.1

In [3] a finite temperature and finite density study was
made for a V-QCD model with two phase transitions [in
case (b) above]. Since then further analysis has indicated
that case (a) above is preferred when generic properties of

1Of course, this structure of two transitions is not specific to
holography, but a similar structure emerges in conventional
effective model approaches to QCD matter thermodynamics;
see e.g., [7–9].

PHYSICAL REVIEW D 91, 055017 (2015)

1550-7998=2015=91(5)=055017(15) 055017-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.055017
http://dx.doi.org/10.1103/PhysRevD.91.055017
http://dx.doi.org/10.1103/PhysRevD.91.055017
http://dx.doi.org/10.1103/PhysRevD.91.055017


the mesonic radial trajectories are imposed [10,11]. This is
the version of the theory we will use in this work.
As it was already stressed in [1], holographic theories in

the Veneziano limit have more uncontrolled phenomena
compared to theories in the standard ’t Hooft limit. The
reason is that in the open string theory sector where the
fundamental degrees of freedom arise (quarks) as end
points of open strings, the effective coupling constant is
gsNf where gs is the closed string coupling gs ∼ 1

Nc
.

In the ’t Hooft limit where Nf is kept fixed and of order
one, gsNf ∼ 1

Nc
and contributions from open string loops are

suppressed. This is equivalent to the fact that quark loops
are suppressed in field theory. In the Veneziano limit,
however, gsNf ∼ xf ∼Oð1Þ and open string loops are
unsuppressed. This can easily be checked in a simple
one-loop diagram that corrects a propagator and pions (or
in general nonsinglet mesons) go around the loop: the
diagram for a single meson is suppressed by 1

N2
c
but there are

N2
f − 1 nonsinglet mesons going around the loop, bringing

back this contribution to become of Oð1Þ.
In this paper we will start an investigation of such

corrections. The brute-force method is to compute the one-
loop corrections to the free energy in the dual string theory,
something that is in principle possible in string theory [12].
In our case, however, we are limited by the fact that we do
not know the full string theory, and even if known it
requires a compete solution at tree level in order for the full
one-loop contribution to be computed. For comparison this
is not yet known even in the best known case of holog-
raphy: that of N ¼ 4 super Yang-Mills.
We will therefore have to be more modest, and we will

use physical arguments to isolate and compute the most
important contributions in the domain 0 < xf < xc to the
free energy of the confined saddle point: the thermal gas
solution. The reason is that at tree level the free energy of
the thermal gas solution is Oð1Þ and therefore is neglected
compared to the deconfined free energy that is OðN2

cÞ. At
one loop, however, the correction, being proportional to the
meson multiplicities, is ofOðN2

fÞ and therefore of the same
order as the deconfined free energy in the Veneziano limit.
The string one-loop calculation to the free energy in the

confined phase can be divided into an infinite number of
one-loop calculations where each of the string states goes
around the loop. It depends only on the quadratic part of
the tree level action and not on interactions. If one can
diagonalize the tree-level action, then the result can be
given in terms of one-loop finite temperature diagrams of
particles with given tree level masses. For the important
meson trajectories and the present holographic theory, this
was done in [10,11].
For practical purposes we will split the nonsinglet

spectrum of the string theory in question (this is the one
that gives the dominant contribution; the singlet spectrum
contribution is down by a factor of N−2

f ) as follows:

1. The massless sector.—This includes the N2
f − 1

massless pions.
2. The massive meson sector of the four main meson

trajectories.—This includes the fields generated out
of the vacuum by the three important low dimension
operators in the meson sector: the quark mass term
(massive pseudoscalars and massive scalars), the
vector current (massive vector mesons, starting
with the ρ), and the axial current (massive axial
vector mesons). The masses and widths of these
mesons were computed in [10,11], where it was
shown that after the lightest 2–3 mesons the rest of
the masses are described by linear radial trajectories
of the form m2

n ≃ an with a a universal computable
constant.

3. The full string spectrum that includes an infinite
number of extra fields.—Such fields correspond to
higher spin mesons that appear at higher levels in the
string spectrum, and therefore the lightest mass of
their trajectory is higher than the four basic trajec-
tories. As the detailed string theory spectrum for
V-QCD is not known, we will parametrize such a
spectrum by a density of states in order to estimate
their impact on the thermodynamics.

Concretely, the above is implemented as follows in this
holographic setup. To begin with, the free energy −f ¼
pqðT; μ ¼ 0;Nc; Nf;mq ¼ 0Þ in the QCD plasma phase is
computed so that it is normalized to the Stefan-Boltzmann
limit at T → ∞. It is valid for Tmin < T < ∞, where Tmin is
the temperature where the gravity solution corresponding
to the QCD plasma phase becomes thermodynamically
unstable.
The computation of the pressure phðTÞ down to T ¼ 0

involves the stages 1–3 outlined above. First, at stage 1
Goldstone bosons with

ph;idðTÞ=T4 ¼ π2

90
ðN2

f − 1Þ ð2Þ

are included. They arise as zero modes of the one-loop
computation. Comparing with pq shows that a first order
deconfining transition takes place. Second, at stage 2 some
states from the lower trajectories are included to give us
phðTÞ. A numerical analysis shows that they only have a
small effect and the transition still remains first order.
Finally, at stage 3 the entire mass spectrum including lower
Regge trajectories and mesonic interactions is needed.
We shall model this by an exponential Hagedorn mass

spectrum [13–30]; see Eq. (19) below. Effectively, one has
a mesonic string model for hadrons; these are less well
developed for baryons but here we address the case of the
zero net baryon number, μ ¼ 0. The mass spectrum
contains a number of parameters that are strongly con-
strained by how phðTÞ and pqðTÞ connect at Tc. We shall
see that in this model it is easy to enforce constancy of
both p̂≡ p=T4 and of its logarithmic T derivative, the
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interaction measure ðϵ − 3pÞ=T4. The chiral transition
would then be of second order. However, the second
logarithmic T derivative thereof would then be discontinu-
ous and the interaction measure would exhibit a sharp
peak at Tc.
Our goal is to proceed one step further and demand also

the continuity of the second logarithmic derivative. This is
actually quite complicated to achieve, as the second
logarithmic derivatives are naturally of opposite signs.
We find that to change the sign of the second derivative
of the hadronic pressure and to accomplish the required
equality one has to include interactions in the hadron gas
phase. It is enough to include repulsive van der Waals–type
interactions caused by the finite size of hadrons. The
transition then is of third order [as in two-dimensional
lattice SUðN → ∞Þ gauge theory [31,32]] and actually the
shape of the interaction measure resembles that of a Tracy-
Widom distribution [33,34]. With increasing xf one sees
concretely how the thermodynamics approaches that in the
conformal region xf > xc.
Our analysis does not prove that the transition is of third

order, but just analyzes a possible framework. Universality
arguments based on the epsilon expansion [35] indicate a
first order transition for Nf ≥ 3 at fixed Nc. In [3] we
discuss why this conclusion might not be valid for the case
studied here. If the transition is continuous, pðTÞ is analytic
at all T. How the hadronic and plasma phases then should
be connected for massive quarks is discussed in [28]. This
is excluded in the holographic approach in which the
plasma pressure pqðTÞ is valid only for T > Tmin. Notice
also that the analysis of QCD in the Veneziano limit by
using weak coupling expansion on S1 × S3 suggests that
the transition is a crossover or of very high order [36] (see
also [37]).
One obvious extension of the above is explicit chiral

symmetry breaking induced by quark masses. Then the
massless Goldstone bosons would entirely disappear.
Section II outlines the numerical computation of pqðTÞ

from holography [38] and summarizes hadron gas formu-
las. Section III discusses a second order connection and the
difficulties of a third order connection. The formalism of
including hadronic interactions via the excluded volume
correction is presented in Sec. IV, and results computed
from this are presented in Sec. V where also the xf
dependence of the results is discussed. A simple modeling
of what happens if quarks are massive is contained
in Sec. VI.

II. THE PRESSURE IN HIGH AND LOW
TEMPERATURE PHASES

A. High temperature pressure and vacuum spectrum
from a holographic model

To compute the pressure at temperatures above the phase
transition, we apply a model for a five-dimensional gravity
dual of QCD matter with large Nc and Nf ¼ xfNc
originally proposed in [1] and studied in [2,3] (thermody-
namics) and [11] (mass spectrum). The details of the model
have been thoroughly exposed in [2,3], and here we only
briefly recall some of the general details.
The model builds on asymptotically AdS5 metric gμν,

specified by ds2 ¼ b2ðzÞð−fðzÞdt2 þ dx2 þ dz2=fðzÞÞ. In
addition to gravity, the model contains bulk scalars, a
dilaton λðzÞ, a tachyon τðzÞ, and the scalar potential (the
zeroth component of the gauge field) ΦðzÞ. The scalar 1=λ
sources the field theory operator TrF2

μν. The vacuum
solution λðzÞ is therefore identified with the gauge theory
coupling Ncg2ðμÞ=ð8π2Þ.
Furthermore, the dependence of the fields on the

coordinate z in this model is constrained to reproduce
the renormalization group flow of the dual gauge theory in
the UV (i.e., for z → 0). For the field λ this means that
1=λðzÞ ≈ b0 logðΛzÞ as z → 0, where b0 ¼ 1

3
ð11 − 2NfÞ is

the one-loop coefficient of the beta function.2 Here we also
see that Λ is analogous to the scale ΛQCD. For the tachyon τ,
the UV behavior is constrained by

τðzÞ
L

≈ mqzð− logΛzÞ−
γ0
b0 þ σz3ð− logΛzÞ

γ0
b0 ; ð3Þ

where γ0 ¼ 3
2
, the one-loop coefficient of the anomalous

dimension of the mass operator in the dual field theory.
Also, L is the UVAdS radius, i.e., bðzÞ ≈ L=z as z → 0,
and σ is proportional to the chiral condensate hq̄qi with a
known proportionality constant [39]. Finally, the boundary
value of the scalar potential equals the chemical potential,
Φð0Þ ¼ μ, which we set to zero here.
In the far IR, the model is required to lead to confine-

ment. The modeling of the UV and IR behaviors listed
above is parametrized in terms of potentials VgðλÞ, Vf0ðλÞ,
κðλÞ, and wðλÞ which appear in the action of the five-
dimensional gravity coupled with the scalars discussed
above. To determine the high temperature pressure and the
vacuum spectrum, we apply the results of [2,3] with the
following set of potentials3:

VgðλÞ ¼ 12

�
1þ 88λ

27
þ 4619λ2

729ð1þ 2λÞ þ 3e−1=ð2λÞð2λÞ4=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ logð1þ 2λÞ

p �
; ð4Þ

2The constraint is imposed so that the scheme independent two-loop running is reproduced; see [2,3] for details.
3Notice that the chosen normalization of the potentials also fixes the UV AdS radius through L2 ¼ 12=ð12 − xW0Þ.
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Vf0ðλÞ ¼ W0 þ
8

27
½24þ ð11 − 2xfÞW0�λþ

1

729
½24ð857 − 46xfÞ þ ð4619 − 1714xf þ 92x2fÞW0�λ2 þ

120λ3

ð1þ 2λÞ2=3 ; ð5Þ

κðλÞ ¼ 1

ð1þ 115−16xf
18

λþ 20λ2Þ2=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

200
logð1þ λ2Þ

r
; ð6Þ

wðλÞ ¼
ffiffiffiffiffiffiffiffi
2=3

p
L2

ð1þ 115−16xf
18

λþ 20λ2Þ2=3
�
1þ 1

200
logð1þ λ2Þ

�
: ð7Þ

The Oð1Þ, OðλÞ, and Oðλ2Þ terms are tuned so that the
solutions lead to the QCD beta function and mass anoma-
lous dimension satisfying the standard UV expansions.
The asymptotic value of Vf0 in the UV, W0, remains a
parameter. Its range is 0 < W0 < 12=xf, and we have
chosen W0 ¼ 3=11.
In the IR, at large λ, confinement (area law) and linearity

of the asymptotic glueball trajectories at high excitation
numbers require that Vg ∼ λ4=3

ffiffiffiffiffiffiffiffiffiffi
log λ

p
[5]. Moreover we

have chosen the remaining parameters in (4) such that a
good fit to Yang-Mills thermodynamics is obtained, and
the form of Vf0, κ, and w at large λ (as well as the value of
W0) such that the phase diagram as a function of xf is
reasonable and the asymptotics of the meson spectra is
linear with equal slopes in all sectors [2,11].
To obtain thermodynamics, one searches for black hole

solutions with a horizon at z ¼ zh:

fðzhÞ ¼ 0; −f0ðzhÞ ¼ 4πT; s ¼ A
4G5

¼ b3ðzhÞ
4G5

:

ð8Þ

Using the code in [38] thermodynamics can be computed
for a given set of model functions. As an example, Fig. 1
shows for xf ¼ 2 the scaled pressure pq=T4 and its first and
second derivatives with respect to logT. Note that the
second derivative is negative. The pressure is Stefan-
Boltzmann normalized, i.e., pq=ðN2

cT4Þ→ ð2þ 7
2
xfÞπ2=90

as T → ∞. It is this set of curves (and similar ones for
xf ¼ 1; 2.5) that we take as the equation of state in the
plasma phase.
As discussed in the Introduction, this holographic set-

ting, in addition to the thermodynamics, allows also the
vacuum spectrum to be determined [11]. The computation
involves linearizing the equations of motion around the
extremal solutions of the action of the model and solving
these linearized equations of motion. In this sense it is the
one-loop computation discussed in the Introduction. For
the potentials of Eqs. (4)–(7), the lowest vector masses are
computed to be

2.815; 4.731; 6.076; 7.188; ðxf ¼ 1Þ; ð9Þ

0.707; 1.156; 1.477; 1.744; ðxf ¼ 2Þ; ð10Þ

0.0795; 0.1270; 0.1612; 0.1897; ðxf¼2.5Þ; ð11Þ
while the lowest scalar masses are

2.640; 4.568; 5.857; 6.958; ðxf ¼ 1Þ; ð12Þ

0.599; 1.102; 1.405; 1.670; ðxf ¼ 2Þ; ð13Þ

0.06224; 0.1198; 0.1519; 0.1802; ðxf¼2.5Þ; ð14Þ
all in units of Λ. The axial vector and pseudoscalar masses
are less relevant since they are larger; the lowest axial
vector masses are 4.289, 1.092, 0.1249 and the lowest
pseudoscalar masses are 4.863, 1.173, 0.1279 for
xf ¼ 1; 2; 2.5, respectively. Including these states and their
radial recurrences using formulas in the following section

FIG. 1 (color online). The scaled plasma phase pressure and its
first and second logT derivatives, plotted for xf ¼ 2 and for small
T (for the relations to energy density ϵ and sound velocity c2s, see
(21) and (22). The potentials used are those in Eqs. (4)–(6). At
T → ∞ the 3pq curve approaches 3π2=10 ¼ 2.96, and the zero of
the pressure is at T=Λ ¼ 0.0925. At T → 0 the Goldstone bosons
have 3ph=ðN2

cT4Þ ¼ x2fπ
2=30. Without massive hadrons there

would be a first order transition at T ¼ 0.125Λ. Including the
massive hadrons in 10 and 13 gives only a marginal effect in the
curve marked “gb.”
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gives the pressure marked “gb” in Fig. 1. In the relevant
transition region they have a marginal effect; the temper-
ature in the quark phase is so low that these massive
hadronic states are hardly excited.

B. The pressure at low temperature modeled
as a hadron gas

At T → 0 the relevant degrees of freedom are the
Goldstone bosons spanning the coset space SUðNfÞ×
SUðNfÞ=SUðNfÞ. The pressure of these massless bosons is

3p
N2

cT4
¼ x2f

π2

30
; ð15Þ

which is also shown in Fig. 1. This contribution alone, when
matched with the high temperature contribution determined
in the previous section, would lead to strong first order chiral
transition at T ¼ 0.125Λ at xf ¼ 2. However, also the
massive hadrons are expected to contribute to thermody-
namics for temperatures around or higher than their masses.
Above we saw that the calculable low-spin masses with their
radial excitations have a negligible effect in the T range
relevant for phase transitions, and a complete mass spectrum,
possibly also with mesonic interactions, is needed.
Generally, the ideal boson gas pressure per degree of

freedom is

phðT; μ; mÞ ¼
Z

d3p
ð2πÞ3

p2

3E
1

eðE−μÞ=T − 1

¼ T2m2

2π2
X∞
k¼1

1

k2
ekμ=TK2

�
k
m
T

�
: ð16Þ

Wewill set μ ¼ 0 for the rest of this paper, but we will need
formulas with μ to impose interactions via the excluded
volume effect [see Eq. (28) below]. From here one derives
further

T
∂
∂T

phðT;mÞ
T4

¼ 1

2π2
X∞
k¼1

1

k
m3

T3
K1

�
k
m
T

�
ð17Þ

and

�
T

∂
∂T

�
2 phðT;mÞ

T4

¼ 1

2π2
X∞
k¼1

�
m4

T4
K0

�
k
m
T

�
−
2

k
m3

T3
K1

�
k
m
T

��
: ð18Þ

We want to fold the pressure with the mass spectrum

ρðm; b; a;m0Þ ¼ δðmÞ þ ρ0
m0

�
m
m0

�
a
ebmθðm −m0Þ; ð19Þ

where ρ0 is a dimensionless number. The degeneracy
factor N2

f of the m ¼ 0 Goldstone bosons and the massive
flavor nonsinglet states was factored out from (19).
For the massive states with m > m0, we assume an
exponential Hagedorn spectrum together with a power of
m. Using this spectrum we get for the scaled hadron gas
pressure

p̂hðT; b; a; ρ0; m0Þ

≡ ph

N2
cT4

¼ π2

90
x2f

þ ρ0
m0

x2f

Z
∞

m0

dm
ma

ma
0

ebm
m2

2π2T2
K2

�
m
T

�
; ð20Þ

where we approximated4 the sum over k by the first term
k ¼ 1 in the contribution from massive states. Note that
the dimensionless quantity p=T4 can only depend on the
dimensionless combinations T=m0 and bm0.
We will aim at matching the first and second logarithmic

derivatives of the pressure with those of the high temper-
ature phase, so we compute their expressions here. By
using (17) and (18) we find that

p̂0
hðT; b; aÞ≡ T

∂
∂T

ph

N2
cT4

¼ ϵ − 3p
N2

cT4

¼ ρ0
m0

x2f

Z
∞

m0

dm
ma

ma
0

ebm
m3

2π2T3
K1

�
m
T

�
ð21Þ

and

p̂00
hðT; b; aÞ≡

�
T

∂
∂T

�
2 ph

N2
cT4

¼ ðc−2s − 3Þðϵþ pÞ − 4ðϵ − 3pÞ
N2

cT4

¼ ρ0
m0

x2f

Z
∞

m0

dm
ma

ma
0

ebm
m3

2π2T3

�
m
T
K0

�
m
T

�
− 2K1

�
m
T

��
: ð22Þ

4Note that including only the k ¼ 1 term provides a very good approximation: even at m ¼ 0 the exact result p̂hðT; 0Þ ¼ π2=90 ¼
0.10966 deviates just a little from the approximate one, 1=π2 ¼ 0.1013.
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Note how both of these vanish in the conformal case
ϵ ¼ 3p and c2s ¼ 1=3.
So far we have not specified the physical value of the

unit of energy Λ. It is the same for thermodynamics (Fig. 1)
and the hadron masses [Eqs. (9)–(14)]. It could be fixed in
GeV units if one knew, e.g., Tc in GeV units for xf ¼ 1. Its
xf dependence requires further study.
The integrals in (20)–(22), of course, blow up for

T > THagedorn ¼ 1=b. However, exactly at T ¼ 1=b the
integrand at large m is ∼maþ3=2þi, where i is the order
of the derivative, so that the m integral converges for
sufficiently negative a. The hadron gas pressure then does
not diverge but approaches a constant as T → 1=b from
below. This will be the case in practice.
To further elaborate on the functional form of the spectral

weight ρðmÞ, we note first that experimental hadron data
cannot fix the form of the spectral weight. Simply, the
available range of masses is too small to, e.g., separate a
power from an exponential. For example, over the range
1 < m=GeV < 2 numerically [22,25]

4.52 expð2.76m=GeVÞ

≈
0.48

ððm=GeVÞ2 þ 0.25Þ5=2 expð5.75m=GeVÞ: ð23Þ

We also note that a large number of papers have been
written on ρðmÞ, starting from the classics by Hagedorn
[13], Huang and Weinberg [14], and Frautschi [15]. Some
examples are as follows: Ref. [16] computes ρðmÞ in the
bag model; Ref. [17] writes “confining phase is consistent
with effective string theory in which conformal symmetry
and modular invariance play a significant role”; Ref. [18]
for the first time discusses a separate density for mesons
and baryons, but believes that they should be equal to
exponential accuracy; Ref. [19] tries to connect hadronic
and plasma phases like here; Refs. [20–22] believe that the
mesonic and baryonic densities should be different and fit
both of them; Ref. [24] doubts the empirical validity of the
exponential mass spectrum; and Ref. [25] updates mass
spectrum fits and includes the chemical potential in the
hadron gas discussion. From all the work on ρðmÞ it is
obvious that there is no unique parametrization for it.

III. CONNECTING HADRON GAS WITH PLASMA

We now keep fixed the plasma phase thermodynamics,
plotted in Fig. 1 for xf ¼ 2. The solution is chirally
symmetric, i.e., corresponds to the zero value of the bulk
tachyon τ. The pressure of the plasma phase vanishes at
T=Λ ¼ 0.0925 for xf ¼ 2. In the hadron phase the pressure
is given in (20) and depends on a number of parameters.
The question then is how QCD dynamics connects these
two curves and what this implies for the properties of the
hadron phase.

We shall attempt to make the transition as continuous
as possible. For this one needs to satisfy the matching
conditions, in increasing order:

(i) first order transition: only p̂ continuous,
(ii) second order transition: both p̂ and p̂0 continuous,
(iii) third order transition: p̂, p̂0, and p̂00 continuous.
To begin with, in the hadronic phase at low T one at least

has massless Goldstone bosons, which concretely arise due
to chiral symmetry breaking. Their T → 0 contribution to
3p̂h, x2fπ

2=30, is also plotted in Fig. 1, together with a
marginal effect of the lowest calculable masses. The curve
denoted by “gb” in the figure simply continues to the
plasma line and gives a first order chiral (and deconfining)
transition when one moves from one pressure curve to
the other. The transition temperature would be at
Tgb ¼ 0.125Λ, somewhat higher than 0.0925Λ (where
the pressure of the plasma phase goes to zero).
The model formally has five parameters: m0; b; a; ρ0,

and5 the value of Tc. The minimum mass m0 can be
determined holographically by a separate computation;
see Eqs. (9)–(14). This is conceivably possible also for
the Hagedorn temperature 1=b, but this has not yet been
done. Further, a is expected to be negative and Tc has to be
somewhat above the point at which pq vanishes in Fig. 1.
Even though the number of parameters is in principle high
enough to match all conditions, it is not clear that a solution
exists. In fact, we shall see that a third order solution is
found only if interactions in the hadron gas are taken into
account. This happens à la van der Waals by including the
effects of the finite size of hadrons.
Even if we ultimately determine the parameters a, ρ0,

and Tc by numerical fitting, it is useful to have a simple toy
model to estimate their values. To obtain the functional
form of Eq. (19), consider the eigenvaluesN of the operatorP∞

n¼1

P
d−2
μ¼1 nNμn. The degeneracy of the eigenvalue is

(d − 2 is the number of transverse dimensions) [12]

PðN; dÞ ¼ 1ffiffiffi
2

p
�
d − 2

24

�ðd−1Þ=4
N−dþ1

4 exp

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d − 2

6
N

r �
:

ð24Þ

We change this to mass density by PðN; dÞdN ¼ ρðmÞdm,
N ¼ α0m2:

ρðmÞ ¼
ffiffiffi
2

p ffiffiffiffi
α0

p �
d − 2

24

�d−1
4 ð

ffiffiffiffi
α0

p
mÞ−d−1

2

× exp

�
2

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

6

r
π

ffiffiffiffi
α0

p
m

�
: ð25Þ

5With the understanding that also the continuity of pressure is a
constraint for the parameters. Then also the critical temperature,
i.e., the temperature where the constraints are evaluated, is a free
parameter.
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Choosing d ¼ 5 and m0 ¼ 1=
ffiffiffiffi
α0

p
this is of the form (19)

with

ρ0¼
ffiffiffi
2

p

8
≈ 0.177; a¼−2; bm0¼π

ffiffiffi
2

p
≈ 4.44: ð26Þ

Our final third order numbers will not agree with this
toy model.

A. Second order transition

A second order transition, i.e., a transition where p̂ and
p̂0 are continuous, is very easy to obtain. As an example,
consider the model (26). Then one has two quantities to
determine: the minimum mass m0 and the transition
temperature Tc. One first determines m0 ¼ m0ðTÞ numeri-
cally by requiring continuity of p̂0. Then inserting this to
the continuity condition for p̂, one determines the value6 of
Tc ¼ 0.5987, giving finally m0 ¼ m0ðTcÞ ¼ 3.158. The
thermodynamics so obtained is plotted in Fig. 2. One
observes that the minimum mass obtained from the thermal
fit is close to the directly determined one in (9) but
somewhat bigger.
To have an idea of the range of acceptable parameter

values, take the computed value m0 ¼ 2.8 from (9).
Assume a has some fixed value. Then we have three
parameters to determine, Tc; b; ρ0, but only two equations,
equality of p=T4 and its logT derivative. By demanding
that the derivatives coincide one first determines
b¼bðTc;ρ0Þ. The equation phðTc;bðTc;ρ0Þ;ρ0Þ¼pqðTcÞ
then gives Tc ¼ Tcðρ0Þ and finally b ¼ bðTcðρ0Þ; ρ0Þ ¼
bðρ0Þ. The outcomes for Tc and b are plotted in Fig. 3 as

functions of the normalization of mass spectrum ρ0 and for
various fixed values of a.

B. Third order transition with pointlike mesons

The next stage is to also require that the second
derivatives be equal when we move from ph to pq.
Since pressure in the plasma phase is taken to be fixed
and p̂00

q < 0, one also has to change the sign of p̂00
h from

positive to negative; see the right hand plot in Fig. 2. If the
second derivatives are equal and negative at some Tc, p̂00

h
must have a zero somewhere. At the same point the
interaction measure p̂0

h will have an extremum and the
sharp peak has disappeared.
To see the sign of p̂00

hðT; b; aÞ in (22) one can write it in
the form

p̂00
hðT; b; aÞ

¼ ρ0
2π2

Taþ1

maþ1
0

Z
∞

m0=T
dyyaþ3ebTyy3½yK0ðyÞ − 2K1ðyÞ�:

ð27Þ

The sign is determined by the combination yK0ðyÞ −
2K1ðyÞ which has a zero at y ¼ 2.3864. At small y this
combination is negative and behaves approximately as
−2=y − 2y logðyÞ, while at large y it is positive and behaves
approximately as e−y

ffiffiffiffiffiffiffiffiffiffi
πy=2

p
. Thus the lower limit m0=T

allows only positive values if T=m0 < 1=2.3864 ¼ 0.419.
To have a desired negative value the integral must probe the
negative region below y ¼ 2.3864 by having T > 0.419m0.
Not much of it is needed as seen from the numerical plots in
Fig. 4 (where m0 ¼ 1), p̂00

hðT; b; aÞ < 0 for T ≳ 0.5 almost
independent of the values of b and a. At this temperature

FIG. 2 (color online). Left: Thermodynamics at xf ¼ 1 with the toy model parameters in (26) and the fitted values Tc ¼ 0.5987,
m0 ≡mmin ¼ 3.158. Right: The second derivatives as functions of T. Note the opposite signs, corresponding to the sharp peak in the
interaction measure in the left panel.

6The numerical values of dimensionful quantities here and
below are given in units of Λ, unless stated otherwise.
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then first derivative, i.e., scaled ϵ − 3p has a maximum and
the sharp peak in the interaction measure has disappeared.
For xf ¼ 1 one has m0 ≈ 2.8 and one can expect p̂00

h to
become negative only for T > 0.5m0 ≈ 1.4. This would
push the maximum of the interaction measure to values of
T much larger than those encountered earlier, which are
about 0.6. It is physically obvious that the hadron gas
phase cannot be thermodynamically stable up to such
large T. One concludes that with the present hadron gas
model, pointlike hadrons, the sign of p̂00

h cannot be changed,
the cusp in the interaction measure cannot be removed,
and the transition cannot be made of higher than second
order.

IV. THIRD ORDER TRANSITION WITH
EXCLUDED VOLUME CORRECTIONS

Let us then check if including hadron interactions via
the excluded volume correction [26–28] would make it
possible to make the transition of third order and to get
rid of the cusp in the interaction measure. One replaces
V → V − v0N where v0 ≡ 1=T3

0 is the volume of a single
meson and N the number of mesons. What is the new
pressure pðT; μÞ, given the pointlike boson pressure

p0ðT; μÞ in (16)? Here μ is the chemical potential asso-
ciated with the meson number N; i.e., n ¼ N=V ¼ ∂p=∂μ.
The chemical potential associated with the conserved
baryon number is taken to be zero.
According to a related model in [28] the effective hadron

volume is 16
3
πr3h ¼ ð7.93=GeVÞ3 ¼ 1=T3

0 so that T0 ¼
0.126 GeV. In QCD Tc ≈ 0.15 GeV while in our units
Tc=Λ ≈ 0.5 (where we reinstated the unit of energy Λ).
Thus Λ ≈ 2Tc ≈ 0.3 GeV so that an expected magnitude
at xf ¼ 1 is T0=Λ ≈ 0.42. We shall find below by
matching the pressures of the two phases for xf ¼ 1 that
Tc=T0 ≈ 3, T0=Λ ≈ 0.25.
As shown in detail in [27], Sec. II, pðT; μÞ is obtained7 as

a solution of the transcendental equation

pðT; μÞ ¼ p0

�
T; μ −

1

T3
0

pðT; μÞ
�
: ð28Þ

Taking the partial derivative with respect to μ of (28) one
obtains for the number density

FIG. 3 (color online). Fitted values of Tcðρ0; aÞ (left) and bðρ0; aÞ (right) for xf ¼ 1 and m0 ¼ 2.8.

FIG. 4 (color online). The second derivative in (22) with m0 ¼ ρ0 ¼ xf ¼ 1, evaluated for a ¼ −10 and a ¼ −6 and (curves from
bottom) b ¼ 0.5; 1; 1.5; 2. For b ≳ 2 the negative part disappears. The curves end at T ¼ 1=b. The zero of p̂00

hðT; b; aÞ, if any, is at
T ≈ 0.5 largely independent of the values of b; a.

7In this section, p0 is the pressure of pointlike hadron gas, and
p is the pressure when excluded volume effects are included.
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nðT; μÞ ¼
n0ðT; μ − 1

T3
0

pðT; μÞÞ
1þ 1

T3
0

n0ðT; μ − 1
T3
0

pðT; μÞÞ : ð29Þ

Thus, to apply this, one has to solve pðT; μÞ from (28).
In the Maxwell-Boltzmann (MB) approximation

eβðE−μÞ ≫ 1, and only the k ¼ 1 term in the series (16)
contributes,

p0ðT; μÞ ¼
m2T2

2π2
K2

�
m
T

�
eμ=T ¼ Tn0ðT; μÞ: ð30Þ

The μ dependence is a simple exponential and (28)
becomes

pðT; μÞ
p0ðT; μÞ

¼ exp

�
−
p0ðT; μÞ
TT3

0

pðT; μÞ
p0ðT; μÞ

�

¼ exp

�
−
n0ðT; μÞ

T3
0

pðT; μÞ
p0ðT; μÞ

�
: ð31Þ

In our case μ ¼ 0, and inserting this in (31) we see that all
quantities are just functions of T. The equation is of the
general form q ¼ e−aq which is trivial to solve numerically.
More formally, the solution is

qðaÞ ¼ 1

a
WðaÞ; ð32Þ

where WðaÞ is the Lambert’s function, PRODUCTLOG in
MATHEMATICA parlance. At small a

qðaÞ ¼ 1

a
WðaÞ ¼

X∞
k¼0

ð−1Þk ðkþ 1Þk−1
k!

ak

¼ 1 − aþ 3

2
a2 −

8

3
a3 þ � � � ; ð33Þ

and at large a

qðaÞ ¼ 1

a
WðaÞ ¼ 1

a
ðlog a − log log aþOð1ÞÞ: ð34Þ

Thus the pressure after excluded volume corrections is

pðTÞ≡ pðT;m; T0Þ ¼ TT3
0W

�
p0ðTÞ
TT3

0

�

¼ TT3
0W

�
m2T
2π2T3

0

K2

�
m
T

��
: ð35Þ

At small T=m, n0ðTÞ ∼ expð−m=TÞ is small and

pðTÞ ¼ p0ðTÞ
�
1 −

n0ðTÞ
T3
0

þ � � �
�
; ð36Þ

and at large T

pðTÞ ¼ TT3
0

�
3 log

T
T0

− log log
T
T0

þOð1Þ
�
: ð37Þ

It is also illuminating to evaluate the effect of volume
exclusion on the number density at large T. In (29) there
is an additional suppression factor expð−p=ðTT3

0ÞÞ ¼
Oð1ÞT3

0=T
3, where we used (31) and (37) to obtain the

estimate. Therefore the excluded volume density at large T
is simply n ¼ Oð1ÞT3

0; the hadrons are densely packed
but do not overlap. Related to this, in the excluded volume
model the effective chemical potential −pðT; 0Þ=T3

0 is
always negative and one does not get to the Bose-
Einstein condensation domain μ → m where meson wave
functions overlap.
As a first step toward understanding the effects of an

excluded volume, the left panel of Fig. 5 shows numerical
results for the second logT derivative of the scaled pressure
solution (35) of (28) for m ¼ 3. There the red curve
corresponds to the pointlike pressure, the k ¼ 1 term in
(18). As discussed above, the second derivative is negative
for T > m=2.386 ¼ 1.257. The two excluded volume

FIG. 5 (color online). Left: The second derivative ðT∂TÞ2p=T4 of the excluded volume solution (35) for m ¼ 3 and two values of the
meson volume parameter T0. The pointlike curve (18) (with k ¼ 1) is also shown. Right: The ρðmÞ integral of the second derivative of
the excluded volume solution (35) of (31) with ρ0 ¼ xf ¼ 1, a ¼ −10, m0 ≡mmin ¼ 3, T0 ¼ 0.5, and (curves from bottom)
b ¼ 0.5; 2=3; 1.
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curves correspond to meson volume parameter values
T0 ¼ 0.2 and 0.5. Here 0.5 is chosen so that the hadron
volume is of the order of 1=T3

c with Tc as in previous
figures. The small T behavior is always as in the pointlike
case, the large T behavior shows the positive second
derivative following from (37), and in between there is a
negative region. Increasing T0 would extend the negative
region to the right so that it asymptotically approaches the
pointlike curve. In any case the meson finite size enhances
the negative region.
As a second step, the right panel of Fig. 5 shows

numerical results for the second logT derivative of the
scaled pressure solution (35) of (28) at T0 ¼ 0.5 but now
integrated over the exponential mass spectrum (19)
ρðm; b; a;m0Þ. A large negative value of a is needed,
and here a ¼ −10. Since we have an exponential mass
spectrum, the computation can only be valid up to
T ¼ 1=b. Since plasma extends down to T ¼ 0.5, we
certainly must have b < 2.
Comparing with Fig. 4 one sees that indeed excluded

volume based interactions increase the magnitude of the
negative second derivative even when integrated over an
exponential mass spectrum. The parameter ρ0 can be used
to increase the magnitude further.
Above in (30) we used the Maxwell-Boltzmann approxi-

mation which, due to its explicit μ dependence, led to
simplified computations. Without invoking the MB approxi-
mation, instead of q ¼ e−aq, one has to solve the equation

q ¼
P∞

1
1
k2 e

−kaqK2ðk m
TÞP∞

1
1
k2 K2ðk m

TÞ
ð38Þ

for q ¼ qða;m=TÞ. One can numerically check that this
improvement has only a marginal effect. The physics reason

for this is that, as discussed above, in the excluded volume
model the meson wave packets are densely packed but do
not overlap, and one is never close to Bose-Einstein
condensation.
Another calculable interaction term is that among

Goldstone bosons. Including terms of order two and four
in the chiral Lagrangian and to three loops [23,40] one has

pgbðTÞ ¼ N2
f
π2

90
T4

�
1þ N2

fT
4

144f4π
log

Λp

T
þOðT6Þ

�
; ð39Þ

where the scale Λp depends on the higher order couplings
of the bosons. For the interaction measure we find

ϵgb − 3pgb

N2
cT4

¼ π2

30
x2f

N2
fT

4

108f4π

�
log

Λp

T
−
1

4

�
: ð40Þ

In the Gell-Mann-Oakes-Renner relation (for a theory with
all quark masses equal) m2

πf2π ¼ − 2
Nf

mqhq̄qi, and one has

hq̄qi ∼ NfNc so that fπ scales as f2π ∼ Nc. Thus in the
interaction measure above N2

f=f
4
π ∼ x2f, and it seems that

this term will be dominated by effects from the massive
states. As a side remark, it is also repulsive for T ≲ Λp, as it
increases pgb there.

V. FIT OF PARAMETERS AND THEIR xf
DEPENDENCE

We shall now analyze the QCD equation of state (EoS)
at xf ¼ 1; 2; 2.5 by requiring continuity of the logarithmic
derivatives ðT∂=∂TÞnðp=T4Þ, with n ¼ 0; 1; 2. We use pq

computed from holography and the hadronic phase EoS

p̂hðT; b; a; ρ0; m0Þ≡ ph

N2
cT4

¼ π2

90
x2f þ

ρ0
m0

x2f

Z
∞

m0

dm
ma

ma
0

ebm
T3
0

T3
W

�
m2T
2π2T3

0

K2

�
m
T

��
; ð41Þ

where WðaÞ is as discussed above in (32). The first and
second logT derivatives can be computed analytically but
lead to lengthy expressions.
Of particular interest is to see what happens at larger xf,

for values approaching the lower limit of the conformal
region. The naive argument comparing the number of
degrees of freedom in the conformal limits at T ¼ 0 and
T ¼ ∞ gives the estimate xc ¼ 4. The precise value for the
potentials of the bulk action used here can be obtained
numerically as explained in [1] and is xc ¼ 3.187. The
value 2.5 is already rather close to this, but not yet in the
Miransky scaling region xc − xf ≪ 1, where the bound
state masses and critical temperatures are expected to
decrease as ∼ expð−const= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixc − xf

p Þ.

The outcome of a numerical application of the excluded
volume model for xf ¼ 1 is shown in Figs. 6 and 7. One
plots p̂, its first and second derivatives, and the sound
velocity, related to the second derivative as in Eq. (22).
Thus indeed a connection between hadron gas in the
plasma phase with a third order transition can be estab-
lished. Not surprisingly, for a wide range of T,
0.7≲ T ≲ 0.9, the pressures of the hadron and plasma
phases are very close to each other. The role of the repulsive
interactions in the hadron gas phase was to bend down the
second derivative to negative values. It vanishes when the
interaction measure has a maximum. The sound velocity
approaches the conformal limit 1=

ffiffiffi
3

p
when both T → 0

and T → ∞. With broken chiral symmetry and massive
Goldstone bosons, cs → 0 at T → 0.
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The outcome at xf ¼ 2 is shown in Figs. 8 and 9 and that
for xf ¼ 2.5 in Fig. 10 (where only p and the sound
velocity are plotted, and first and second derivatives are
qualitatively as in Figs. 8 and 9). The fit parameters
with mass dimension are summarized in Table I. Here

m0 ≡mmin is the smallest vector mass, Tðpq ¼ 0Þ is the
temperature at which the plasma pressure vanishes (this
is the transition temperature for pure Yang-Mills theory),
Tðpq ¼ pgbÞ is the temperature at which the plasma
pressure is pgb ¼ N2

fπ
2T4=90, the interaction measure

FIG. 7 (color online). Second logT derivative of p=T4 and the sound velocity squared with a third order phase transition at xf ¼ 1.
One sees concretely how the second derivative is continuous at Tc ¼ 0.771 but the third derivative jumps. The sound velocity squared is
continuous at Tc but not its derivative.

FIG. 6 (color online). Pressure and interaction measure with a third order phase transition at xf ¼ 1, i.e., with N2
f ¼ N2

c massless
Goldstone bosons. Stable phases are continuous curves, and metastable ones are dashed curves. The maximum of the interaction
measure is at T ¼ 0.672 in the hadron gas phase, and hadron gas is the stable phase for T < 0.771 and ends at T ¼ 1.0.

FIG. 8 (color online). As Fig. 6 but for xf ¼ 2. Hadron gas ends at T ¼ 0.22 and is the stable phase for T < 0.173; the maximum of
interaction measure is at T ¼ 0.147. Note that if we fix the critical temperature to the QCD value Tc ≈ 0.15 GeV, we have here
Λ ≈ 1 GeV; i.e., the numerical values for the temperatures are close to their physical values measured in units of GeV.
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has a maximum at Tmax, chiral symmetry is restored at Tc

(the plasma phase becomes the stable phase), T0 is the
meson volume parameter (v0 ≡ 1=T3

0), and 1=b is the
Hagedorn temperature (the metastable hadron gas phase
ends there).
Although m0 varies by more than a factor of 35, the

expectation that parameters with mass dimension scale with
m0 is borne out to a 10% accuracy. An exception is the
meson size parameter T0 which decreases by more than
expected by mass scaling. Comparing with Tc we have
Tc=T0 ¼ 3.1; 4.3; 4.6 for xf ¼ 1; 2; 2.5, respectively. One
may note that even at xf ¼ 1 the value of T0 ¼ 0.25 was
smaller that the expected value 0.42. Thus with increasing
xf the mesons have to appear effectively larger, and the
interactions stronger, to bend the hadron gas EoS nearly
continuously to the plasma one.
The numerical value of the mass exponent in ρðmÞ ∼ ebm

can be understood by noting that physically the hadron
gas as a metastable phase cannot be expected to extend far
into the plasma phase. The end point is the Hagedorn

temperature TH ¼ 1=b so that 1=b≳ Tc ≈ 0.3m0, in
agreement with the observation bm0 ≈ 3.
The dimensionless parameters vary on a similar level:

(a; ρ0) = (−9.61; 6.25) for xf ¼ 1 is changed to (−8.5; 5.67)
for xf ¼ 2 and to (−8.1; 6.27) for xf ¼ 2.5. It is not
excluded that constant xf independent values could be
found for these. Anyway it seems that the exponent of the
powerlike mass dependence is stably close to −8 and the
weight of the massive part of the mass spectrum is about 6.
Note the small range of variation in c2s , which gets

monotonically smaller when xf increases: one is approach-

ing the conformal region where everywhere cs ¼ 1=
ffiffiffi
3

p
.

One may convert the above temperatures to GeV units
by, for example, demanding that Tcðxf ¼ 1Þ ¼ 0.15 GeV
and by assuming that Λ is independent of xf. Then Λ ¼
0.194 GeV and Tc ¼ 150; 34; 4.9 MeV at xf ¼ 1; 2; 2.5,
respectively. For the determination of scales at largeNf and
estimates of the Nf dependence of the critical temperature
by using other methods, see, for example, [41–43].

FIG. 9 (color online). As Fig. 7 but for xf ¼ 2. The second derivative is continuous at Tc ¼ 0.173 but the third derivative jumps. The
sound velocity squared is continuous at Tc but its derivative has a discontinuity.

FIG. 10 (color online). Left: Fit with a third order phase transition for xf ¼ 2.5: the second derivative of p is continuous at Tc ¼ 0.025
but the third derivative jumps. The maximum of the interaction measure (not shown) is Tmax ¼ 0.0209. Right: The sound velocity
squared. It is continuous at Tc but not its derivative.
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VI. SECOND ORDER TRANSITION WITH
MASSIVE GOLDSTONE BOSONS

If quark masses are nonzero, they break explicitly chiral
symmetry and Goldstone bosons are massive. The hadronic
pressure will then vanish at T ¼ 0. To see what this implies
quantitatively, take the hadron mass spectrum in (19), use
the toy model parameters in (26), and replace δðmÞ →
δðm −mgbÞ with mgb ¼ 0.5 ≈ Tc. The argument here is
that for physical QCD Tc is close to mπ. Also the holo-
graphic plasma part will, in principle, change; there are
only tachyonic chiral symmetry breaking solutions even
though the quark mass is very small. We do not yet have
these solutions available and stick to the mq ¼ 0 plasma
curves. The thermodynamics computed with these assump-
tions is shown in Fig. 11.
At small T the effect, of course, is striking. One observes

further that the minimum mass obtained from thermody-
namics is now almost equal to the one from direct
computation in (19) and that Tc is only 10% above the

temperature at which p ¼ 0. Because of this closeness the
derivatives are also larger and the peak in the interaction
measure even sharper.

VII. CONCLUSIONS

We have in this paper shown concretely how a high T,
μ ¼ 0, QCD plasma equation of state, computed from
holography at vanishing quark mass, can be connected with
a low T hadron gas phase with N2

f Goldstone bosons and
massive mesons obeying a Hagedorn spectrum with a
minimum mass. In the language of holography, the leading
holographic computation has been improved by quantum
one-loop and stringy corrections. The holographic compu-
tation implies that there is a minimum temperature for
the plasma phase and, accordingly, a phase transition is
needed. It is very simple to connect the phases with a first
or second order transition, and we have shown how a
more continuous third order transition can be achieved.
The motivation for this is that for physical nonzero
quark masses lattice Monte Carlo results suggest that the
transition is continuous.
Quantitatively a determining role in the hadron gas phase

is played by the minimum mass of the hadrons (mesons in
our case). We emphasize that here these minimum masses
have also been computed from the same holographic model
at T ¼ 0 and at various values of xf ¼ Nf=Nc. The entire
spectrum obviously cannot be computed. We have seen
here how it and its interactions are constrained by the
requirement of as continuous a transition as possible.
An outcome of the computations here is that the thermal

parameters with mass dimension scale with the minimum
mass when xf is varied. This is expected to also be true in
the Miransky scaling region, i.e., very close to the start of
the conformal region at xf ¼ xc ≈ 4.
Our computation, of course, does not prove that the

transition is of third order, it just indicates what phenomena
are encountered if this is the case. Conceivably one could
also impose continuity of the third derivative. Completely
analytic expression [28] would, however, require that the
plasma EoS extend to T ¼ 0 and the hadron gas one to
T ¼ ∞, which is not possible in our model.
Ultimately, of course, these theoretical ideas should be

tested by numerical lattice Monte Carlo simulations, say,
at Nc ¼ 3 and Nf ¼ 3; 6; 9;…, as approximations to
Nc; Nf → ∞. Much work has been devoted to this at
T ¼ 0. The figures above should give a good idea of what
can be expected to happen to thermodynamics when xf is
increased. The overriding difficulty is the imposition of
vanishing or small quark mass. This holographic compu-
tation can also be extended to nonzero μ.
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TABLE I. Top: Dependence of mass scales on xf . Here m0 is
the minimum vector mass. All quantities are in units of Λ.
Bottom: Dependence of mass scales on xf if scaled with m0:
T̂ ≡ T=m0.

xf m0 Tðpq ¼ 0Þ Tðpq ¼ pgbÞ Tmax Tc T0 b

1 2.82 0.480 0.542 0.672 0.771 0.25 1
2 0.707 0.0925 0.125 0.147 0.173 0.04 4.5
2.5 0.0795 0.0124 0.0179 0.0209 0.025 0.0054 30.3

xf m0 T̂ðpq ¼ 0Þ T̂ðpq ¼ pgbÞ T̂max T̂c T̂0
bm0

1 2.82 0.170 0.194 0.238 0.273 0.0887 2.8
2 0.707 0.131 0.177 0.208 0.244 0.0566 3.2
2.5 0.0795 0.156 0.225 0.263 0.314 0.0679 3.0

FIG. 11 (color online). Left: Thermodynamics with toy
model parameters in (26) but with massive Goldstone
bosons, mgb ¼ 0.5 ≈ Tc. The fitted values are Tc ¼ 0.5348,
m0 ¼ 2.754.
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