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We survey a few minimal scalar extensions of the standard electroweak model that provide a simple
setup for massive neutrinos in connection with an invisible axion. The presence of a chiral Uð1Þ à la
Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical solution
to the strong CP problem and an axion as a dark matter candidate. We paradigmatically apply such a
renormalizable framework to type-II seesaw and to two viable models for neutrino oscillations where the
neutrino masses arise at one and two loops, respectively. We comment on the naturalness of the effective
setups as well as on their implications for vacuum stability and electroweak baryogenesis.
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I. INTRODUCTION

The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SUð2ÞL ⊗ Uð1ÞY electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge
to the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modeling in the last
decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard scenario.
Baryon asymmetry calls for it as well while electroweak
vacuum stability may not be an issue in minimally extended
scenarios [2]. We aim at discussing a class of minimal
extensions of the SM that account for the aforementioned
open issues. To this end we choose to maintain the
fermionic SM content as it stands and consider only
extensions of the scalar sector. Advantages of this choice
will be clear in the following. According to that, the only
tree-level realization of the dimension-five Weinberg oper-
ator ðLLHHÞ=M for Majorana neutrino masses is via the
mediation of an SUð2ÞL scalar triplet of hypercharge one.
This is commonly known as the type-II (TII) seesaw [3–7],
Fig. 1(a).
At the radiative level an elegant and simple realization of

the same was provided long ago by Zee [8]; the Weinberg
operator is there obtained at one loop from the dimension-
seven effective operator ðLLLecHÞ=M3 [9–11] when L
and ec are connected by the H Yukawa coupling (giving

rise to a chiral suppression), as shown in Fig. 1(b). The
model requires one additional weak doublet and a weak
scalar singlet of hypercharge one. In order to avoid Higgs
mediated flavor changing neutral currents a Z2 symmetry is
called for [12]. Such a model, however, is not consistent
with the neutrino oscillation data [13–15]. Recently, Babu
and Julio (BJ) [16] presented a variant of the Zee model
with a Z4 discrete family symmetry that restores consis-
tency with the observed neutrino mixing pattern. The
model yields an inverted neutrino mass hierarchy and is
highly predictive for neutrinoless double beta decay and
lepton flavor violation (LFV).
At two loops, a popular realization of the Weinberg

operator is given by the Zee-Babu (ZB) model [17,18]. In
this setting, the neutrino mass matrix is obtained by dressing
the dimension-nine effective operator ðLLLecLecÞ=M5

[10,19] and it requires two weak scalar singlets with
hypercharge one and two, respectively [Fig. 1(c)]. It is a
very simple extension of the SM that leads to calculable
neutrino masses and mixings in agreement with all present
oscillation and lepton flavor phenomenology (for a recent
reappraisal see [20,21]).
Our interest is to discuss simple renormalizable exten-

sions of the standard scenario that are effective at the TeV
scale and lead to testable signals at the available energy and
foreseen intensity facilities. There is one inherent large
scale involved that is linked to the presence of a sponta-
neously broken Peccei-Quinn (PQ) symmetry [22,23] and
the related axion [24,25]. As we shall discuss, it is note-
worthy that the presence of such a large scale (above
109 GeV) does not endanger the radiative stability of the
setup. While the anomalous Uð1ÞPQ gives an elegant
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solution to the so-called strong CP problem in QCD
[26–30], the axion provides a viable dark matter candidate
(see [31] for a recent review). We find it appealing and
intriguing that a simple renormalizable framework can be
conceived where the origin of neutrino masses and the
solution of the strong CP problem are fundamentally
related and where the requirement of naturalness and
stability of the scalar sector is tightly linked to the light
neutrino scale.
The idea of connecting massive neutrinos with the

presence of a spontaneously broken Uð1ÞPQ comes a long
way [32–46]. Considering only scalar extensions of the
SM, a simple setup based on the Zee model for radiative
neutrino masses was discussed in [39,40]. The model
features a Dine, Fischler, Srednicki, and Zhitnitsky
(DFSZ)1 invisible axion [49,50], with a tiny coupling to
neutrinos. The need for two different Higgs doublets and
the role of the related Z2 symmetry is there a free benefit of
the minimal implementation of the anomalous PQ sym-
metry. Two additional neutral and two singly charged
scalars remain naturally light (TeV scale). In spite of the
presence of the large PQ scale the model is shown to exhibit
a radiatively stable hierarchy. In all analogy with the Zee
model, a simple Majorana neutrino mass matrix with
vanishing diagonal entries arises at one loop, whose
structure is determined by three parameters. As already
mentioned such a structure is shown to exhibit nearly
bimaximal mixing and it is ruled out by oscillation data.
In this paper we show how this setup can work in

general. We discuss three explicit viable schemes: the
paradigmatic low-scale TII seesaw, the one-loop BJ model,
and the two-loop ZB model. In the extended BJ model a
lepton-family-dependent PQ symmetry plays the role of the
original Z4 symmetry. In all cases one obtains a DFSZ
invisible axion with a tiny coupling to neutrinos. In the BJ
case the axion exhibits flavor violating couplings to the
leptons of the same size of the diagonal ones. Such flavor
violating couplings are not directly constrained by astro-
physical processes and future laboratory tests of LFVmight

even provide competitive bounds on the PQ scale [51]. In
addition to a heavy neutral scalar (mainly) singlet the
physical scalar spectrum exhibits in the three models two
singly charged and two additional neutral states. In the case
of TII and ZB a doubly charged scalar is present as well
with a distinctive role in LFV phenomenology.
Stability of the scalar sector demands tiny interactions

between the PQ heavy state and the remaining scalars.
Because of an enhanced symmetry in the vanishing
interaction limit, the smallness of the relevant couplings
is preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale. The possible presence of
an exotic TeV-scale scalar sector is not yet excluded by
collider searches and it is among the priorities in the
coming years.
A fringe benefit of such an extension of the standard

scalar sector is to improve the electroweak vacuum stabil-
ity. On the other hand, the sizable interactions among the
“light” scalar states open a possibility for the realization of
a first-order electroweak phase transition. This is one of the
requirements for electroweak baryogenesis [52]. However,
no new sources of CP violation arise from the minimal
scalar sectors featured in the considered setups. We shall
comment on the possibility of addressing baryogenesis
within such a framework.
In the next three sections we detail the extended TII, BJ,

and ZB setups and discuss their generic features and
shortcomings in Sec. V.

II. PQ-EXTENDED TYPE-II SEESAW

On top of the usual SM field content, the scalar sector of
the PQ-extended type-II seesaw model features two
Higgs doublets, an isospin triplet with hypercharge one
and a SM singlet (cf. Table I). The PQ-charge assignments
are displayed in Table I, where the presence of Yukawa
interactions for quarks is already taken into account. Recall
that the PQ current is axial, thus proportional to the
difference between the charges of the left- and right-handed
(colored) fermions. Hence, without loss of generality,
we can always set Xq ¼ 0. In this way, the color anomaly
of the PQ current is proportional to Xu þ Xd (see,
e.g., [53]).

(a) (b) (c)

FIG. 1. Sample diagrams leading to the ΔL ¼ 2 Weinberg operator at the tree level (a), one loop (b), and two loops (c) in the type-II
seesaw, Zee, and Zee-Babu models, respectively.

1No extension of the matter sector is needed at variance with
the class of invisible axion models proposed by Kim, Shifman,
Vainshtein and Zakharov [47,48] that feature a vectorlike quark.
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A. Lagrangian

The only two sectors which are sensitive to the assign-
ment of the PQ charges are the Yukawa Lagrangian and the
scalar potential that we discuss in turn. The former reads

−LTII
Y ¼ Yuq̄LuRHu þ Ydq̄LdRHd þ Yel̄LeRHd

þ 1

2
YΔlT

LCiτ2ΔlL þ H:c:; ð1Þ

where the flavor contractions are understood (e.g.,
YT
Δ ¼ YΔ), C is the charge conjugation matrix in the spinor

space, and

Δ≡ ~τ · ~Δffiffiffi
2

p ¼
 Δþffiffi

2
p Δþþ

Δ0 − Δþffiffi
2

p

!
: ð2Þ

In Eq. (2), ~τ ¼ ðτ1; τ2; τ3Þ are the Pauli matrices and
~Δ ¼ ðΔ1;Δ2;Δ3Þ are the SUð2ÞL components of the scalar
triplet. The electric charge eigenstates are obtained by the
action of Q ¼ T3 þ Y on Eq. (2).
The scalar potential can be written as [39,54]

VTII ¼ −μ21jHuj2 þ λ1jHuj4 − μ22jHdj2 þ λ2jHdj4 þ λ12jHuj2jHdj2 þ λ4jH†
uHdj2 − μ23jσj2 þ λ3jσj4 þ λ13jσj2jHuj2

þ λ23jσj2jHdj2 þ TrðΔ†ΔÞ½μ2Δ þ λΔ1jHuj2 þ λΔ2jHdj2 þ λΔ3jσj2 þ λΔ4TrðΔ†ΔÞ� þ λ7H
†
uΔΔ†Hu

þ λ8H
†
dΔΔ†Hd þ λ9TrðΔ†ΔÞ2 þ ðλ5σ2 ~H†

uHd þ λ6σH
†
uΔ†Hd þ H:c:Þ; ð3Þ

where we employed the notation ~Hu ¼ iτ2H�
u. Notice

that terms like ~H†
uHdTrðΔ†ΔÞ or ~H†

uΔΔ†Hd are not
allowed since the QCD anomaly of the PQ current
requires Xu þ Xd ≠ 0. Moreover, H†

u;dðΔ†ΔþΔΔ†ÞHu;d¼
jHu;dj2TrðΔ†ΔÞ, so that only two invariants out of three are
linearly independent.
The terms λ5σ

2 ~H†
uHd and λ6σH

†
uΔ†Hd are needed in

order to assign a nonvanishing PQ charge to the singlet σ
and to generate neutrino masses. Notice that the simulta-
neous presence of λ5, λ6, and YΔ is needed to explicitly
break lepton number. If any of the couplings are missing,
either the lepton number is exact and neutrinos are massless
or the lepton number is spontaneously broken and the
vacuum exhibits a Majoron together with a Wilczek-
Weinberg axion [39]. As shown next, the potential in
Eq. (3) corresponds to a unique PQ-charge assignment that
forbids among else the presence of trilinear interaction
terms. The absence of cubic scalar interactions, which
characterizes the three models here discussed, paves the
way to their embedding in a classically scale invariant setup
spontaneously broken à la Coleman-Weinberg. We shall
comment on that in Sec. VI.
Finally, the couplings λ5 and λ6 can be set real by two

independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (1) and Eq. (3) enforce the
following constraints on the PQ charges:

−Xl þ Xe − Xd ¼ 0; ð4Þ

2Xl þ XΔ ¼ 0; ð5Þ

2Xσ − Xu − Xd ¼ 0; ð6Þ

Xσ þ Xu − XΔ − Xd ¼ 0: ð7Þ

Solving in terms of Xu and Xd we get

Xl ¼ −
3Xu

4
þ Xd

4
; Xe ¼ −

3Xu

4
þ 5Xd

4
;

XΔ ¼ 3Xu

2
−
Xd

2
; Xσ ¼

Xu

2
þ Xd

2
: ð8Þ

Following [39,50], we require the orthogonality of the
hypercharge and axion currents. This leads to the relation

Xuv2u ¼ Xdv2d; ð9Þ
where vu ¼ hHui and vd ¼ hHdi. Adding this condition to
Eq. (8), we can determine all the PQ charges up to an
overall normalization. We choose this normalization by the
condition

Xσ ¼ 1: ð10Þ
By defining x≡ vu=vd the remaining charges in Eq. (8)
read

TABLE I. Field content and charge assignment of the
PQ-extended type-II seesaw model.

Field Spin SUð3ÞC SUð2ÞL Uð1ÞY Uð1ÞPQ
qL 1

2
3 2 þ 1

6
0

uR 1
2

3 1 þ 2
3

Xu

dR 1
2

3 1 − 1
3

Xd

lL
1
2

1 2 − 1
2

Xl

eR 1
2

1 1 −1 Xe

Hu 0 1 2 − 1
2

−Xu

Hd 0 1 2 þ 1
2

−Xd

Δ 0 1 3 þ1 XΔ
σ 0 1 1 0 Xσ
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Xu ¼
2

x2 þ 1
; Xd ¼

2x2

x2 þ 1
; Xl ¼ x2 − 3

2ðx2 þ 1Þ ;

Xe ¼
5x2 − 3

2ðx2 þ 1Þ ; XΔ ¼ 3 − x2

x2 þ 1
: ð11Þ

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration

Hu ¼
 
vu þ h0uþiη0uffiffi

2
p

h−u

!
; ð12Þ

Hd ¼
 

hþd

vd þ h0dþiη0dffiffi
2

p

!
; ð13Þ

Δ ¼
 δþffiffi

2
p δþþ

vΔ þ δ0þiη0δffiffi
2

p − δþffiffi
2

p

!
; ð14Þ

σ ¼ Vσ þ
σ0 þ iη0σffiffiffi

2
p ; ð15Þ

with vu, vd, vΔ, and Vσ denoting the relevant (real) vacuum
expectation values (VEVs).2

The scalar spectrum of the model is detailed in the
Appendix and the main features are discussed in Sec. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ-scale mass. By invoking
a technically natural ultraweak limit (see the discussion in
Sec. VA) such a heavy scalar is sufficiently decoupled from
all the other physical scalar states that are requested to live
at the TeV scale, thus preserving the radiative stability of
the light scalar spectrum. At the weak scale the model
allows for a SM-like Higgs boson; this, together with a
brief account of the relevant phenomenological constraints,
shall be discussed in Sec. V C.

D. Neutrino masses

In the TII model, the neutrino masses are generated
through the tree-level diagram in Fig. 2.
Their expression is conveniently obtained by computing

the (induced) VEVof the triplet. Let us hence consider the
projection of the scalar potential along the neutral VEV
components of Eqs. (12)–(15)

hVTIIi ¼ ðμ2Δ þ λΔ3V2
σ þ λΔ1v2u þ ðλΔ2 þ λ8Þv2dÞv2Δ

þ 2λ6VσvuvdvΔ þOðv4ΔÞ þ vΔ-indep: terms:

ð16Þ

Given the phenomenological hierarchy Vσ ≫ vu;d ≫ vΔ,
the stationary condition with respect to vΔ is well approxi-
mated by

2M2
ΔvΔ þ 2λ6Vσvuvd ≈ 0; ð17Þ

where we defined the effective mass parameter

M2
Δ ¼ μ2Δ þ λΔ3V2

σ þ λΔ1v2u þ ðλΔ2 þ λ8Þv2d: ð18Þ

In the decoupling limit vu;d=Vσ → 0, this coincides with
the triplet mass in the PQ-broken phase [cf. Eq. (A4)].
Hence, from Eq. (17), the induced VEV of Δ reads

vΔ ≈
λ6Vσvuvd

M2
Δ

: ð19Þ

Since the triplet VEV breaks the SM custodial symmetry, it
is bounded by the electroweak precision observables to
vΔ ≲ 1 GeV. This, in turn, implies the following bound on
the scalar potential coupling λ6:

λ6 ≲ 10−9
�
109 GeV

Vσ

��
M2

Δ
vuvd

�
: ð20Þ

Finally, from the Yukawa Lagrangian in Eq. (1) we obtain

MTII
ν ¼ YΔvΔ ≈

YΔλ6Vσvuvd
M2

Δ
; ð21Þ

as diagrammatically represented by the graph in Fig. 2, and
the bound on the heaviest neutrino mν3 ≲ 1 eV translates
into the constraint

FIG. 2. The tree-level “hug” diagram responsible for the
Majorana neutrino mass in the PQ-extended type-II
seesaw model.

2While it is assumed that there exists a region of the scalar
potential parameters for which the absolute minimum preserves
the electric charge, it can be shown (see Sec. V D) that the
potential of Eq. (3) does not lead to spontaneous CP violation.
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λ6YΔ ≲ 10−18
�
109 GeV

Vσ

��
M2

Δ
vuvd

�
: ð22Þ

The smallness of the absolute neutrino mass scale may
have different sources. In this paper we take the point of
view of building low-energy renormalizable setups that are
technically natural. In this respect, the lightness of MΔ (in
the vicinity of the electroweak scale) and the smallness of
the couplings of the SM singlet σ with the doublet and
triplet states (among which is λ6) are a required prerequisite
(see Sec. VA). The triplet Yukawa coupling YΔ is also
constrained by tree-level LFV (see Sec. V C).

III. PQ-EXTENDED BABU-JULIO MODEL

We shall here introduce a simple PQ extension of the
model of Ref. [16], which is a special case of the general
Zee model [8]. For convenience, we display the field
content and the relative PQ charges in Table II, where
α ¼ 1; 2; 3 denotes the family index and Xu þ Xd ≠ 0 in
order to obtain a nonvanishing QCD anomaly. The non-
universal assignment of the PQ charges in the leptonic
sector replaces the role of the Z4 symmetry employed
in [16].

A. Lagrangian

The relevant Yukawa Lagrangian reads [16]

−LBJ
Y ¼ Yuq̄LuRHu þ Ydq̄LdRHd þ Yβαl̄

β
Le

α
RHd

þ Y1αl̄1
Le

α
R
~Hu þ f23ðl2

LÞTiτ2Cl3
Lh

þ þ H:c:; ð23Þ

where α ¼ 1; 2; 3 and β ¼ 2; 3 label interaction eigenstates.
The analogous contractions in the quark sector are
understood.
In the scalar potential, the terms σ2 ~H†

uHd and σh−H†
uHd

are required. The former is needed to assign a nonvanishing
PQ charge to the singlet σ, while the latter is needed to
generate neutrino masses at one loop. Notice that the

simultaneous presence of these scalar interactions, together
with f23, breaks the lepton number explicitly.
The remaining part of the scalar potential contains only

moduli terms and coincides with that of Ref. [39], namely,

VBJ ¼ −μ21jHuj2 þ λ1jHuj4 − μ22jHdj2 þ λ2jHdj4
þ λ12jHuj2jHdj2 þ λ4jH†

uHdj2
− μ23jσj2 þ λ3jσj4 þ λ13jσj2jHuj2 þ λ23jσj2jHdj2
þ jhj2ðμ24 þ λ41jHuj2 þ λ42jHdj2 þ λ43jσj2
þ λ44jhj2Þ þ ðλ5σ2 ~H†

uHd þ λ6σh−H
†
uHd þ H:c:Þ:

ð24Þ

The couplings λ5 and λ6 can be set real by two independent
rephasings of the fields. For a detailed discussion of the
symmetry breaking patterns and the scalar spectrum we
refer the reader directly to Sec. 3 of [39].
The Higgs content of the original model is extended by

just the SM singlet σ. The discussion here is rather similar
to that in Sec. II C with the only difference that, given the
lepton family dependence of the PQ symmetry, the axion
here exhibits flavor nondiagonal couplings to leptons; for
more details see Sec. V.

B. PQ charges

The devised Uð1ÞPQ invariance of the Lagrangian leads
to the following constraints on the PQ charges:

−Xl2;3
þ Xe − Xd ¼ 0; ð25Þ

−Xl1
þ Xe þ Xu ¼ 0; ð26Þ

2Xl2;3
þ Xh ¼ 0; ð27Þ

2Xσ − Xu − Xd ¼ 0; ð28Þ

Xσ − Xh þ Xu − Xd ¼ 0: ð29Þ

Solving these in terms of Xu and Xd one obtains

Xl1 ¼
Xu

4
þ 5Xd

4
; Xl2;3 ¼ −

3Xu

4
þ Xd

4
;

Xe ¼ −
3Xu

4
þ 5Xd

4
; Xh ¼

3Xu

2
−
Xd

2
;

Xσ ¼
Xu

2
þ Xd

2
: ð30Þ

As before, cf. Sec. II B, we require the orthogonality of the
hypercharge and axion currents and fix the overall nor-
malization of the charges by the condition Xσ ¼ 1, which
yields

TABLE II. Field content and charge assignment of the
PQ-extended Babu-Julio model.

Field Spin SUð3ÞC SUð2ÞL Uð1ÞY Uð1ÞPQ
qαL 1

2
3 2 þ 1

6
0

uαR 1
2

3 1 þ 2
3

Xu

dαR 1
2

3 1 − 1
3

Xd

l1
L

1
2

1 2 − 1
2

Xl1

l2;3
L

1
2

1 2 − 1
2

Xl2;3
eαR 1

2
1 1 −1 Xe

Hu 0 1 2 − 1
2

−Xu

Hd 0 1 2 þ 1
2

−Xd

hþ 0 1 1 þ1 Xh
σ 0 1 1 0 Xσ
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Xl1 ¼
5x2 þ 1

2ðx2 þ 1Þ ; Xl23 ¼
x2 − 3

2ðx2 þ 1Þ ;

Xe ¼
5x2 − 3

2ðx2 þ 1Þ ; Xh ¼
3 − x2

x2 þ 1
: ð31Þ

The Xu and Xd charges are identical to those of the TII
model and, as such, they are given in Eq. (11).

C. Neutrino masses

The radiatively induced neutrino mass matrix is found
to be [16]

MBJ
ν ¼ κðf̂Mdiag

l ŶT þ ŶMdiag
l f̂TÞ; ð32Þ

whereMdiag
l is the diagonal charged-lepton mass matrix and

f̂ and Ŷ are the Yukawa coupling matrices transformed into
the mass basis of the fields running in the loop (cf. Fig. 3).
The main difference with respect to the Z2-assisted Zee
model [8,12] is that Ŷ is nondiagonal, so that the anti-
symmetric texture of f̂ is not transmitted into the neutrino
mass matrix. This allows for nonvanishing diagonal entries
at the leading order, a key feature for the consistency of the
BJ model with the neutrino oscillation data. The overall
factor κ involves the loop function and is given by [16]

κ ¼ sin 2γ
16π2

log

�
M2

1

M2
2

�
; ð33Þ

where M1;2 are the masses of the physical charged scalar
states and γ denotes the mixing angle between h− and H−

obeying (cf. [39])

sin 2γ ¼
2λ6Vσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2u þ v2d

q
M2

1 −M2
2

: ð34Þ

Interestingly, the structure of the neutrino mass matrix in
Eq. (32) is very constrained. Albeit with nonvanishing

diagonal entries, the mass matrix turns out to be traceless
and real so that all the neutrino oscillation data can be
described in terms of four real parameters [16]. This leads
to several predictions: the neutrino mass hierarchy is
predicted to be inverted, the Dirac CP-violating phase is
fixed to δCP ¼ π and, moreover, there is a relation among
the three mixing angles, namely, jUτ1j ¼ jUτ2j, allowing
one of them to be expressed in terms of the other two. The
consequences for neutrinoless double beta decay and LFV
processes have been systematically worked out in Ref. [16].
As in the TII case, the smallness of neutrino masses

can have different sources. If the charged scalar states are
not far from the electroweak scale, as suggested by the
naturalness arguments, the suppression must come from the
scalar potential coupling λ6 and/or the Yukawa matrices Ŷ
and f̂. Remarkably, the smallness of the coupling λ6 is a
necessary condition for a technically natural spectrum (see
Sec. VA), while the Yukawa couplings Ŷ and f̂ are sharply
constrained by neutrino oscillation data and LFV proc-
esses [16].

IV. PQ-EXTENDED ZEE-BABU MODEL

The last case we are going to consider is the PQ
extension of the ZB model. The field content and the
PQ charges are collected for convenience in Table III.

A. Yukawa interactions

The Yukawa Lagrangian of the ZB model reads [20]

−LZB
Y ¼ Yuq̄LuRHu þ Ydq̄LdRHd þ Yel̄LeRHd

þ flT
LCiτ2lLhþ þ geTRCeRk

þþ þ H:c:; ð35Þ

where Yu, Yd, Ye, f, and g are matrices in the generation
space (flavor indexes are understood). In particular, f is
antisymmetric while g is symmetric. Equation (35) yields
the following relations among the PQ charges of the fields
involved:

FIG. 3. Sample one-loop diagram responsible for the Majorana
neutrino mass in the PQ-extended Babu-Julio model. Because of
the family dependence of the PQ charges, both Higgs doublets
couple to the first leptonic family.

TABLE III. Field content and charge assignment of the
PQ-extended Zee-Babu model.

Field Spin SUð3ÞC SUð2ÞL Uð1ÞY Uð1ÞPQ
qL 1

2
3 2 þ 1

6
0

uR 1
2

3 1 þ 2
3

Xu

dR 1
2

3 1 − 1
3

Xd

lL
1
2

1 2 − 1
2

Xl

eR 1
2

1 1 −1 Xe

Hu 0 1 2 − 1
2

−Xu

Hd 0 1 2 þ 1
2

−Xd

hþ 0 1 1 þ1 Xh
kþþ 0 1 1 þ2 Xk
σ 0 1 1 0 Xσ
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Xe − Xl − Xd ¼ 0;

2Xl þ Xh ¼ 0;

2Xe þ Xk ¼ 0: ð36Þ

B. Scalar potential

As before, the scalar potential is restricted by the
requirement of the Uð1ÞPQ invariance. However, different
assignments of the PQ charges allow for different terms. In
particular, we consider

VZB ¼ −μ21jHuj2 þ λ1jHuj4 − μ22jHdj2 þ λ2jHdj4
þ λ12jHuj2jHdj2 þ λ4jH†

uHdj2
− μ3jσj2 þ λ3jσj4 þ λ13jσj2jHuj2 þ λ23jσj2jHdj2
þ jhj2ðμ24 þ λ41jHuj2 þ λ42jHdj2 þ λ43jσj2 þ λ44jhj2Þ
þ jkj2ðμ25 þ λ51jHuj2 þ λ52jHdj2 þ λ53jσj2
þ λ54jhj2 þ λ55jk2jÞ þ ðVvar þH:c:Þ; ð37Þ

with two different forms of the Vvar part therein:
(i) Vvar ¼ λ5σ

2H†
d
~Hu þ λ6σh−H

†
uHd þ λ7σðhþÞ2k−−

In this case the additional equations restricting the
PQ charges read

2Xσ þ Xu þ Xd ¼ 0;

Xσ − Xh þ Xu − Xd ¼ 0;

Xσ þ 2Xh − Xk ¼ 0: ð38Þ

These, together with Eq. (36), represent a system of
six equations for six variables (letting, e.g., Xd to be
a free parameter): Xσ , Xh, Xk, Xe, Xl, and Xu. Were
these equations linearly independent, there would be
a unique solution (up to the normalization of Xd)
proportional to the SM hypercharge and, hence,
Xσ ¼ 0. Consequently, in order for σ to get a
nontrivial PQ charge, the system of Eqs. (36)
and (38) must be linearly dependent, which is
indeed the case. Hence, we are allowed to set Xσ

nonvanishing and we get

Xh ¼ −2Xd − Xσ; Xk ¼ −4Xd − Xσ;

Xe ¼ 2Xd þ
1

2
Xσ; Xl ¼ Xd þ

1

2
Xσ;

Xu ¼ −Xd − 2Xσ: ð39Þ

Notice that the shape of Vvar in case (i) is, in a
sense, exceptional as it yields a linearly dependent
set of equations for the PQ charges. Were we to
replace σ → σ� in any one (or any two) of the terms
in Vvar above (which is allowed by SM symmetries)

the resulting system of equations would be linearly
independent, leaving as the only solution the one
with the PQ charges proportional to the SM hyper-
charge. In such a case, in order to obtain a nontrivial
assignment of the PQ charges, the number of
conditions must be reduced by setting one of the
couplings λ5;6;7 to zero.
Unlike the term proportional to λ7 which is

required by the two-loop ZB diagram (see Fig. 4)
the term proportional to λ6 is, strictly speaking, not
necessary (as a matter of fact, it induces an addi-
tional one-loop contribution to neutrino masses as in
the Zee model3). Hence, in the following we will
focus on an alternative PQ-charge assignment
where λ6 ¼ 0.

(ii) Vvar ¼ λ5ðσ�Þ2H†
d
~Hu þ λ7σðhþÞ2k−−

In this case the equations relating the PQ charges
read

−2Xσ þ Xu þ Xd ¼ 0;

Xσ þ 2Xh − Xk ¼ 0: ð40Þ

By solving Eqs. (36) and (40) in terms of Xu and Xd
we get

Xl ¼ Xu

4
þ 5Xd

4
; Xe ¼

Xu

4
þ 9Xd

4
;

Xh ¼ −
Xu

2
−
5Xd

2
; Xk ¼ −

Xu

2
−
9Xd

2
;

Xσ ¼
Xu

2
þ Xd

2
: ð41Þ

If we again require the orthogonality of the hyper-
charge and axion currents and choose the normali-
zation Xσ ¼ 1, we obtain the following expressions
in terms of x ¼ vu=vd

FIG. 4. Two-loop diagram responsible for the neutrino Major-
ana mass in the PQ-extended Zee-Babu model.

3Notice that this term is not present in the original ZB model,
which features only one Higgs doublet [17,18].
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Xl ¼ 5x2 þ 1

2ðx2 þ 1Þ ; Xe ¼
9x2 þ 1

2ðx2 þ 1Þ ;

Xh ¼
−5x2 − 1

x2 þ 1
; Xk ¼

−9x2 − 1

x2 þ 1
; ð42Þ

with Xu and Xd given as in Eq. (11).
From now on we will only consider the shape of the scalar
potential in case (ii) (that leads to the extended ZB model),
and wewill briefly comment on the differences with respect
to the case (i) in Sec. IV D.

C. Scalar spectrum

Adopting the notation of Eqs. (12), (13), and (15) for the
relevant fields, the stationarity conditions read

−λ5vdV2
σ þ vuðλ12v2d þ λ13V2

σ þ 2λ1v2u − μ21Þ ¼ 0; ð43Þ

−λ5vuV2
σ þ vdðλ12v2u þ λ23V2

σ þ 2λ2v2d − μ22Þ ¼ 0; ð44Þ

Vσðλ13v2u þ λ23v2d þ 2λ3V2
σ − 2λ5vdvu − μ23Þ ¼ 0: ð45Þ

Using these and expanding around the vacuum configura-
tion, the mass matrix of the neutral scalar fields in the
fh0u; h0d; σ0g basis turns out to be

M2
S ¼V2

σ ×

0
BBB@

λ5
vd
vu
þ4λ1

v2u
V2
σ

−λ5þ2λ12
vdvu
V2
σ

2 λ13vu−λ5vd
Vσ

−λ5þ2λ12
vdvu
V2
σ

λ5
vu
vd
þ4λ2

v2d
V2
σ

2 λ23vd−λ5vu
Vσ

2 λ13vu−λ5vd
Vσ

2 λ23vd−λ5vu
Vσ

4λ3

1
CCCA:

ð46Þ

Assuming Vσ ≫ v≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2u þ v2d

q
and keeping only

OðV2
σÞ terms, the set of eigenvalues of M2

S reads
f0; v2

vdvu
λ5V2

σ; 4λ3V2
σg. The OðvVσÞ perturbations do not

affect this result at the first order and, hence, we conclude
that the eigenvalues of M2

S are

�
Oðv2Þ; v2

vdvu
λ5V2

σ þOðv2Þ; 4λ3V2
σ þOðv2Þ

�
: ð47Þ

Next, the pseudoscalar mass matrix has two eigenvalues
equal to zero: the combination − vu

v η
0
u þ vd

v η
0
d corresponds

to the goldstone boson (GB) “eaten” by the Z, whereas
vu
Vσ

vuvd
v2 η0u þ vd

Vσ

vuvd
v2 η0d þ η0σ is the axion—the GB corre-

sponding to the breaking of the PQ symmetry. The third
pseudoscalar eigenstate − vd

v η
0
u −

vu
v η

0
d þ 2vuvd

vVσ
η0σ acquires

mass

m2
PS ¼ λ5

�
4vuvd þ

v2

vuvd
V2
σ

�
: ð48Þ

Among the singly charged scalars, the GB eaten by the W
corresponds to the combination 1

v ð−vuhþu þ vdh
þ
d Þ,

whereas the orthogonal combination 1
v ðvdhþu þ vuh

þ
d Þ

acquires mass

m2
Hþ ¼ λ4v2 þ λ5

v2

vuvd
V2
σ: ð49Þ

For λ6 ¼ 0 the singlet scalar hþ does not mix with Hþ and
its mass reads

m2
hþ ¼ μ24 þ λ41v2u þ λ42v2d þ λ43V2

σ: ð50Þ

Finally, the mass of the doubly charged scalar kþþ is given
by

m2
kþþ ¼ μ25 þ

1

2
ðλ51v2u þ λ52v2dÞ þ λ53V2

σ: ð51Þ

Let us note that if λi3, λ5 ≲Oðv2V2
σ
Þ (with i running over all

the states but the SM singlet σ), all the scalars besides one
[the σ-dominated state with eigenvalue proportional to λ3 in
Eq. (47)], have tree-level masses of the order of the
electroweak scale. As a matter of fact when λi3, λ5 λ7 ≪
1 the singlet σ is only weakly coupled to the other fields. As
we shall discuss in Sec. VA this is a technically natural
limit associated with the emergence of an extra Poincaré
symmetry in the action. Notice that even though λ7 does not
enter the spectrum at the tree level, it is expected to
contribute at one loop (for instance, to the mass of kþþ).
This effect is estimated to be roughly 1

16π2
λ27V

2
σ and hence,

the requirement that the mass of kþþ is around the
electroweak scale corresponds to λ7 ≲ 4π ×Oð v

Vσ
Þ which

is consistent with the decoupling of the heavy singlet.

D. Neutrino masses

Focusing on the case with λ6 ¼ 0, the only radiative
contribution to the neutrino masses is a two-loop diagram
à la ZB (see Fig. 4), which yields [20]

ðMZB
ν Þij ¼ 16λ7Vσfiamag�abIabmbfjb; ð52Þ

with ma denoting the ath charged-lepton mass. For
ma ≪ mhþ ; mkþþ , the loop function reads

Iab ≃ I ¼ 1

ð16π2Þ2
1

M2

π2

3
~IðrÞ; ð53Þ

with M ≡maxðmhþ ; mkþþÞ and

~IðrÞ ¼
�
1þ 3

π2
ðlog2r − 1Þ r ≫ 1

1 r → 0
; ð54Þ

where r≡m2
kþþ=m2

hþ . For the exact analytic result see [55].
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An important feature of the ZB model is that the lightest
neutrino is predicted to be massless. Indeed, since f is
antisymmetric, det f ¼ 0 (for three generations) and,
hence, detMZB

ν ¼ 0.
As in the previous cases (TII and BJ), the smallness of

neutrino masses can be due to different factors. Taking into
account the strong bounds on the Yukawa couplings f and
g coming from the LFV processes (see Sec. V C), it turns
out that the assumption λ7 ≲ 4π ×Oð v

Vσ
Þ, tailored to keep

the nonsinglet scalars at the electroweak scale, ensures also
the correct absolute neutrino mass scale [20].
Finally, we briefly comment on the case λ6 ≠ 0. In such a

setting there is an extra one-loop contribution to the
neutrino masses, similar to the one in Fig. 3 [the relevant
expression can be found in Eqs. (25) and (26) of [39]]. As
already mentioned, the original Zee model is excluded by
neutrino data and, in order to obtain a viable neutrino
texture, the size of such a one-loop diagram must be
comparable with the two-loop expression in Eq. (52), thus
introducing a fine-tuning in the couplings. Let us also note
that λ6 ≠ 0 introduces a tree-level mixing between the
charged SUð2ÞL-doublet and singlet scalars that affects
Eq. (53). At variance with the ZB model, the lightest

neutrino is no longer massless. In this study, we will not
pursue the analysis of this hybrid model any further.

V. DISCUSSION

The three setups presented in the previous sections share
a number of common features which we shall briefly
summarize here. In particular, all three models contain a
DFSZ invisible axion with a tiny coupling to neutrinos
[39,40]. It is noticeable that, at variance with the TII and ZB
extended models, the axion in the BJ case exhibits flavor
violating couplings to the leptons of the same order of the
flavor-diagonal ones:

Lall ¼ − Xl2;3

∂μa

fa
½ðēiLγμeiLÞ þ ðν̄iLγμνiLÞ�

− Xe
∂μa

fa
½ðēiRγμeiRÞ�

− ðXl1 − Xl2;3Þ
∂μa

fa
½ðēiLγμðUe†

L Þi1ðUe
LÞ1jejLÞ�

þ ðν̄iLγμðUν†
L Þi1ðUν

LÞ1jνjLÞ�; ð55Þ
that, up to a total derivative, can be written as

Lall ¼ i
a
fa

½ðXe − Xl2;3Þme
i ē

iγ5ei − Xl2;3m
ν
i ν̄

iγ5ν
i� − iðXl1 − Xl2;3Þ

a
fa

�
ðUe†

L Þi1ðUe
LÞ1jēi

�
me

j −me
i

2
þme

j þme
i

2
γ5

�
ej

þ ðUν†
L Þi1ðUν

LÞ1jν̄i
�
mν

j −mν
i

2
þmν

j þmν
i

2
γ5

�
νj
�
; ð56Þ

where a denotes the axion field and fa ¼
ffiffiffi
2

p
Vσ . The mass

eigenstates eiL, ν
i
L (i ¼ 1; 2; 3) are connected to the inter-

action basis eαL, ναL (α ¼ 1; 2; 3) via the relations eαL ¼
ðUe

LÞαieiL and ναL ¼ ðUν
LÞαiνiL. The equations of motion for

Weyl fermions with a Majorana mass term are used and the
axion neutrino couplings are written in terms of the
Majorana mass eigenstates [56]. Present laboratory and
astrophysical limits on flavor violating interactions do not
seem to imply any constraints on the PQ scale stronger than
those obtained from the diagonal interactions [51]. On the
other hand, the presence of lepton flavor violating inter-
actions of the axion in the extended BJ model deserves
further detailed scrutiny.
The DFSZ invisible axion framework suffers from the

domain wall problem (the nonperturbative instanton poten-
tial breaks theUð1ÞPQ explicitly to a ZNq

discrete symmetry
where Nq is the number of quark flavors). The standard
cosmological solution is then the assumption of a low
reheating temperature (see [57] for a comprehensive
discussion).

A. Naturalness

An interesting feature of all the models considered in this
study is the fact that the hierarchy between the electroweak

and the PQ scales can be made technically natural and
stable against radiative corrections. Let us consider, for
definiteness, the case of the PQ-extended TII model. At the
tree level, the hierarchy between the PQ and the electro-
weak scale can be obtained without fine-tuning among the
scalar potential parameters of Eq. (3) by requiring the
ultraweak limit

λi3; λ5 ∼O
�
v2

V2
σ

�
and λ6 ∼O

�
vΔ
Vσ

�
; ð57Þ

where the last equation is set by the stationarity condition
(17) and i is running over all the scalar multiplets but the
SM singlet (all nonsinglet mass parameters are taken at
the weak scale). As a matter of fact, this guarantees that
the heavy (PQ-scale) neutral singlet decouples from the rest
of the spectrum (see the Appendix and Sec. IV C). It is
noteworthy that the ultraweak limit λi3, λ5, λ6 ≪ 1 is
associated with the emergence of an additional Poincaré
symmetry of the action [39,58] (see [59] for a recent
discussion) which makes this limit perturbatively stable. It
is readily verified that the renormalization of the couplings
connecting the “light” and “heavy” sectors is as a set
multiplicative (the relevant beta functions exhibit a fixed
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point for vanishing couplings). The hierarchy among the
ultraweak couplings in Eq. (57) is stable since λ26 ≪ λi3.
The couplings λ5 and λ6 are themselves multiplicatively
renormalized since lepton number is restored when one of
them is vanishing. The naturalness requirement, together
with the constraints coming from the LFV phenomenology,
allows us to reproduce in all three setups above the correct
neutrino mass scale together with a number of new scalar
states in the reach of present collider searches.
Beyond the tree level, we can set naturalness bounds on

the mass scale M of the non-SM scalar multiplets by
requiring that the finite two-loop gauge corrections to the
Higgs mass parameter m2 do not exceed the Higgs pole
mass. Adopting the notation of Ref. [1], each complex
scalar multiplet with quantum numbers ðn; YÞ under
SUð2ÞL ⊗ Uð1ÞY contributes by

δm2ðμ̄Þ ¼ −
nM2

ð4πÞ4
�
n2 − 1

4
g42 þ Y2g4Y

�

×

�
3

2
ln2

M2

μ̄2
þ 2 ln

M2

μ̄2
þ 7

2

�
; ð58Þ

where μ̄ is the renormalization scale in the MS scheme, to
be identified with the cutoff of the effective theory ΛUV
(which in our setup is the onset of gravity, since we require
the decoupling of the PQ-scale scalar singlet). The natu-
ralness bounds are shown in Fig. 5, where we display the
constraints on the individual contributions of the scalar
triplet Δ, the extra Higgs doublet H0, the singly charged
scalar hþ, and the doubly charged scalar kþþ, respectively.
For a fully natural spectrum, the new states are expected to
live not too far from the electroweak scale, say below 5 TeV
to 200 GeV depending on the multiplet considered and the
value of ΛUV.
A few comments about gravity are in order. Even

assuming for the time being no massive Planckian states,
one should wonder whether the presence of the heavy SM
singlet might give rise to gravity-mediated radiative cor-
rections that destabilize the light Higgs mass. In

Refs. [1,60] it is pointed out that a finite gravity-mediated
contribution arises at the three-loop order and it is estimated

as δm2 ≈ Y2
t G

2
NM

6

ð4πÞ6 . This yields a naturalness bound on the

singlet mass M ≲ 1014 GeV, which is compatible with the
experimentally allowed range of the PQ scale. On the other
hand, gravity-induced corrections to the Higgs mass are
generally expected to arise at the two-loop level due to the
breaking of the Higgs shift symmetry by SM interactions
(one-loop contributions in the minimally coupled gravity
are derivatively suppressed) and, on purely dimensional

grounds, they can be estimated to be δm2 ≈ GNΛ4
G

ð4πÞ4 . This

raises an issue of naturalness already at ΛG ≈ 1011 GeV,
thus questioning the stability of the simple setups discussed
here (as well as that of the SM). Softened gravity may be
invoked, but still the appearance of Landau poles at trans-
Planckian energies remains, in principle, an issue [61].
The authors of [61] invoke the total asymptotic freedom of
the low-energy setup as a solution.
Another potential issue related to gravity is the possibil-

ity of an explicit breaking of the global Uð1ÞPQ due to
Plank-scale physics. This may induce a shift of the vacuum
of the axion potential and, thus, endanger the PQ solution
of the strong CP problem [62–64]. The authors of [65]
argue that the presence of Majorana neutrinos may provide
a protection for the PQ mechanism, which leads to a
connection between the upper bound on neutrino masses
and the onset of gravitational effects at the scale ΛG. We
plan to systematically address the potential issues related to
gravity in a future work.

B. Electroweak vacuum stability

An added value of the models considered in this study is
the fact that scalar extensions of the SM are tailor made to
improve on the electroweak vacuum stability. This issue has
been discussed at length in the literature (see, for instance,
[2,66]), and we just briefly recall the argument here. The
key effect is the contribution of the new scalars (through,
e.g., the Higgs portal couplings) to the running of the Higgs
quartic coupling λH (see, for example, Refs. [67–69] for
analysis in the context of the type-II seesaw). These
corrections contribute positively to the beta function of
λH and, hence, they tend to stabilize the Higgs potential if
they enter the running below the instability scale.4 Another
interesting possibility for the cases at hand (pointed out in
[2]) is that a heavy SM singlet σ may stabilize the Higgs
potential through a large threshold effect, λH→λH−λ2Hσ=λσ.
In our case, however, we advocate the ultraweak limit λHσ ≲
v2=V2

σ while leaving the σ self-interactions unconstrained.
We are therefore bound to the running effect alone whichLog10 UV GeV
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FIG. 5. Naturalness bounds on the mass of the exotic scalar
multiplets present in the different PQ-extended neutrino mass
models, as a function of the ultraviolet cutoff, see Eq. (58).

4The instability scale of the SM effective potential is a gauge
dependent quantity [70]. A gauge-invariant criterium to include
the effects of new physics can be devised [71].
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suffices in the extended setups here considered. A detailed
analysis of these matters is beyond the scope of the present
paper and will be the subject of a future study.
Let us finally remark that even if the instability of the

electroweak vacuum is, strictly speaking, not an issue as
long as the lifetime of the false vacuum is long enough to
comply with the age of the universe, the fate of the
electroweak vacuum depends on the cosmological history
and there are inflationary setups where the metastability of
the vacuum may be an issue [72].

C. The extended scalar sector

The scalar sectors of the models here discussed are
commonly extended to feature two Higgs doublets and a
complex singlet (in addition to one Y ¼ 1 triplet in the case
of TII, one singly charged singlet in the BJ model and two
singly and doubly charged singlets in the ZB setting). With
the exception of the light axion field and its scalar partner
whose masses are driven by the PQ-breaking scale, all
other physical scalars may live at the TeV scale, yet be
compatible with all the bounds from the low-energy
phenomenology and collider physics.
Because of the hierarchy among the PQ, the electroweak

and the triplet VEVs (following from the constrained form
of the scalar potential), the weak scale neutral Higgs sector
of the three models overlaps to a large extent with that of
the two Higgs doublet extension of the SM (see the
Appendix). Correspondingly, we may obtain one of the
physical neutral scalars to behave as the SM Higgs by
invoking the decoupling limitm2

A ≫ jλijv2 [73] (where A is
the pseudoscalar field and λi are the relevant scalar cou-
plings). On the other hand, a SM-like Higgs does not
necessarily imply the “true” decoupling of A (and the other
physical doublet states), since the extra scalar couplings can
be small enough to allow for a full spectrum at the TeV scale
while retaining the α≃ β − π=2 decoupling relation among
the relevant diagonalization angles [73].
These considerations apply to any of the models dis-

cussed here. Since a detailed phenomenological study of
the different scalar sectors is beyond the scope of the
present work, we shall briefly comment upon some of the
relevant common features focusing mainly on the lepton
flavor phenomenology and collider signatures.

1. Lepton flavor violation

Unlike for the BJ case, in the TII and ZB models the tree-
level flavor violation in neutral currents is forbidden by the
presence of the PQ symmetry. On the other hand, in all three
scenarios, the extended scalar sector allows for the tree-level
flavor violation in the charged currents. In particular, the
couplings of the charged scalars to leptons, closely related to
the structure of the neutrino mass matrix, play a crucial role
in the LFV phenomenology of the models.
In the case of the extended TII model, the LFV

arises from the Yukawa coupling YΔ, which is directly

proportional to the neutrino mass matrix [cf. Eq. (21)].
As an example, in order to avoid the stringent constraints
from the nonobservation of μ− → e−eþe−, the relation
jðYΔÞμej2jðYΔÞeej2ð200 GeV

mΔþþ Þ4 ≲ 10−12 must be satisfied [74].

This, in turn, considerably constrains the shape of the
neutrino mass matrix in the case of our interest, i.e., when
the triplet mass is in the LHC range. Taking into account
these constraints, Ref. [74] predicts branching ratios for τ →
l−i l

þ
i l

−
i and μ → eγ accessible to the upcoming experiments

with implications for neutrino physics. The present bounds
on these processes are weaker than those coming from the
μ− → e−eþe− decay; for instance, the τ decay measure-
ments yield the constraint jðYΔÞτij2jðYΔÞjkj2ð200 GeV

mΔþþ Þ4 ≲
10−7 [74]. Notice, however, that these bounds are, in general,
more relevant for accessing the overall neutrino mass scale
than the bound from μ− → e−eþe− which can be satisfied
by tuning just one of the YΔ entries.
Similarly, in the extended ZB model, one can obtain

strong bounds on the Yukawa couplings f and g in Eq. (35)
from the LFV decays (together with the charged-currents
universality and the lepton anomalous magnetic moments).
The strongest bound is again due to the nonobservation of
μ− → eþe−e− and it requires jgeμg�eejð200 GeV

mkþþ Þ2 ≲ 10−6

[20]. The bounds on the f couplings from other
LFV processes (such as μ → eγ) are somewhat weaker
[20]. The tightest of them, induced by the nonobserva-
tion of μ → eγ decay, reads jf�eτfμτj2ð200 GeV

mhþ
Þ4 þ 16

jg�eegeμ þ g�eμgμμ þ g�eτgτμj2ð200 GeV
mkþþ Þ4 ≲ 3 × 10−9. Because

of the complicated shape of these constraints, the correla-
tions with the structure of the neutrino masses matrix (52) is
not straightforward. On the other hand, a detailed numerical
analysis [20] shows that combining these constraints with
the neutrino oscillation data allows one to predict the shape
of the g matrix and determine the branching ratios for the
kþþ decay. For mkþþ ≤ 400 GeV and normal neutrino
hierarchy the kþþ scalar decays into ee or μμ only, whereas
for the same mass range and inverse hierarchy the decay
channel μτ is non-negligible and k�� → h�h� opens.
Consequently, the discovery of a doubly charged scalar
would either rule out the ZB model or provide a testable
information about the neutrino mass pattern.
The analysis of the extended BJ model must take into

account that both Higgs doublets couple to leptons and,
hence, the tree-level LFV processes can be mediated by the
neutral scalars. On the other hand, this model is highly
predictive and it is sharply constrained by the neutrino data.
Remarkably, a thorough numerical analysis [16] shows that
only two specific solutions for the lepton coupling matrix Ŷ
are possible. We refer the reader to the original paper for a
detailed discussion.

2. Collider physics

The direct production searches at LEP set a lower bound
on the mass of the singly charged scalars (Δþ or hþ in our
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models) of about 90 GeV. For the case of the charged
physical scalar of the two Higgs doublet extension of the
SM the LHC does not add any new stringent constraint
(see, e.g., [75]), while the signal of the charged SUð2ÞL
singlet is expected to be yet weaker. On the other hand, in
the TII case one has an extra constraint jmΔþ −mΔþþj ≲
40 GeV from the electroweak precision data [76] which
slightly tightens the bound.
Searches for doubly charged scalars are performed both

by ATLAS and CMS (see, e.g., [77,78]). These analyses
strongly depend on the assumed branching ratios and
only leptonic decays are considered. If, for instance,
BRðh�� → l�1 l

�
2 Þ ¼ 1 is assumed for different pairs of

l1l2, the bounds vary from 200 to 450 GeV, cf. [78] (note,
however, that only the case of the type-II triplet was
considered there). To this end, Ref. [77] sets a bound of
410 GeV for the triplet case and up to 320 GeV for a doubly
charged SUð2ÞL singlet, again depending on the assump-
tions for the branching ratios.
In the case of the extended TII model, the branching

ratios for the decay of Δþþ into leptons are directly
connected to the entries of the neutrino mass matrix.
However, depending on the shape of YΔ [see Eq. (1)],
the leptonic Δþþ decays can be suppressed in favor of the
decay into a pair of gauge bosons. Moreover, for nonzero
mass splitting among the triplet components (which arises
due to the electroweak symmetry breaking), the cascade
decays Δ�� → Δ�W�� → Δ0W��W�� occur as well. For
a complete “decay phase diagram” in the original TII
model, see Ref. [79].
Recently, the TII model extended by an extra Higgs

doublet has been studied in [80] with the conclusion that
the limit on the mass splittings is relaxed by the mixing and
the dominant decay channel is then Δ�� → h��

1;2W
��. The

argument is that a 5-σ discovery of the doubly charged
scalar is possible at LHC13 with an integrated luminosity
of 40 fb−1 if its mass is lower than 330 GeV. On the other
hand, this conclusion does not apply to our TII model
where the form of the potential is constrained by the PQ
symmetry [see Eq. (3)] and the size of the doublet-triplet
mixing is always driven by the small triplet VEV (see the
Appendix).
As far as the ZB model is concerned, the authors of [20]

studied numerically the branching ratios of the doubly
charged singlet kþþ and they found a lower bound on its
mass of about 310 GeV in the case of the inverse neutrino
hierarchy and 200 GeV for the normal hierarchy.

D. Electroweak baryogenesis

An essential ingredient for the electroweak baryogenesis
(see, e.g., [52] for a review) is a strong-enough first-order
phase transition. The finite-temperature effective potential
must contain a cubic term of the type jϕj3T which is
enhanced with respect to that available in the SM. This may

be achieved if new light scalars with sizeable couplings to
the Higgs doublet are present.
There are two qualitatively different ways the new

scalars can affect the electroweak phase transition: (i) by
contributing directly to the effective potential through the
evolution of their field values in the early universe, (ii) by
enhancing the cubic term in the effective potential at the
one-loop level without developing a VEV. To this end, it is
known, for instance (see, e.g., [81]), that the mechanism
(i) works well when the new scalar developing a VEV is a
gauge singlet S. In particular, for the mechanism to work, a
crucial coupling to be present is the trilinear term jHj2S.
Inspecting the different potentials studied in previous
sections, the only term that satisfies the above conditions
(in the PQ-broken phase) is λ6VσH

†
uΔHd in Eq. (3) of the

extended TII model. On the other hand, this is likely not
enough since the neutrino masses [see Eq. (21)] require this
coupling to be very small. Hence, we are left with option
(ii) for which the role of the inert scalar running in the loop
can be played by any of the two charged scalars hþ and kþþ
present in the radiative neutrino mass models, as well as the
TII triplet, whose VEV is negligeable compared to the
electroweak scale [82].
By denoting the new charged state X and by writing its

interaction with the Higgs doublet as

V ¼ M2
XjX2j þ λXHjXj2jHj2 þ � � � ; ð59Þ

the contribution to the finite-temperature effective potential
due to the so-called daisy resummation takes the form [52]

ΔVeffðϕ;TÞ⊃−
nXT
12π

�
ΠXðTÞþM2

X þ
λXH
2

ϕ2

�
3=2

; ð60Þ

where nX is the number of degrees of freedom and
ΠXðTÞ ¼ κT2 is the thermal mass of X, with κ being a
function of the scalar and gauge couplings. Hence, in order
to maximize the contribution to the cubic term one needs a
significant portal coupling λXH and/or a cancellation
between the thermal mass and the potential mass parameter.
While it is known that a strong first-order phase transition
can be achieved in the case of a second inert scalar doublet
[83] or an additional triplet [82], a detailed study of its
feasibility in the three setups here discussed is left to further
investigation.
Finally, let us comment on the additional sources of CP

violation, another necessary ingredient for a successful
baryogenesis. By taking advantage of the results of
Ref. [84], it is readily shown that none of the potentials
considered in our setups lead to spontaneous CP violation
at the tree level. This statement is verified by a direct
minimization of the relevant scalar potentials in the
presence of complex VEVs. Hence, an extension of the
minimal setups here discussed is required if the new source
of CP violation has to come from the scalar potential.
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The simplest option is adding a SM singlet [85] or to
consider a PQ-extended three-Higgs-doublet model [36].
Another intriguing possibility is to identify the source of
the extra CP violation with the very θ̄QCD-term which, in
the early universe, has not yet relaxed to its minimum. Such
a scenario can be realized in the context of the so-called
cold electroweak baryogenesis where the electroweak
phase transition is delayed to temperatures T ≲ ΛQCD

[86]. Further scrutiny on the matter is called for.

VI. CONCLUSIONS

Inspired by the present-day evidence for physics beyond
the standard electroweak model, we have considered three
simple setups that minimally extend the scalar sector of the
SM. They feature massive Majorana neutrinos together
with an invisible axion, thus interconnecting neutrino
masses, dark matter, and the strong CP problem. In all
cases, the presence of the PQ symmetry strongly constrains
the relevant scalar potentials, replacing the role of the ad
hoc discrete symmetries originally invoked in some of the
models.
The Higgs sectors of the extended setups feature in all

cases two Higgs doublets and one complex scalar singlet.
Two widely different physical scales are connected in these
setups: the PQ and the electroweak scale. It is noteworthy
that the neutrino mass scale is fully compatible with the
requirement of naturalness and stability of the scalar
masses. The needed decoupling (ultraweak) limit of the
PQ singlet scalar is shown to be technically natural and
allows for a plethora of physical scalar states at the TeV
scale, within the reach of the collider searches. We
commented upon the possible destabilizing role of gravity,
but we feel the arguments do not compel us to abandon
such a scenario.
The same extensions of the SM scalar sector allow for an

improvement on the electroweak vacuum stability issue
and, at the same time, they may trigger a strong-enough
first-order electroweak phase transition to support the
electroweak baryogenesis as the origin of the observed
baryon asymmetry. Alas, the minimal scalar potentials
here considered do not allow for additional sources of
CP violation. The matter will be the subject of a further
investigation.
Finally, it is intriguing that the hierarchy between the PQ

and the electroweak scales may naturally arise as a
consequence of the breaking of the classical scale invari-
ance á la Coleman-Weinberg [87,88]. Because of the
absence of scalar trilinear interactions which characterizes
the neutrino-invisible axion models here discussed, they are
naturally and readily embedded into such a context (the
extended Poincaré invariance of the action in the ultraweak
limit is there replaced by a custodial shift symmetry of the
singlet field). Again, this scenario will be scrutinized in a
future work.
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APPENDIX: SCALAR SPECTRUM
OF THE TII MODEL

In this appendix we detail the scalar spectrum of the
extended type-II seesaw model. First, we consider the case
where all the electroweak breaking VEVs are neglected,
thus providing a very simple description of the spectrum in
the PQ-broken phase. Later we discuss the general case by
taking advantage of the large VEVs hierarchies.

1. vu;d ¼ vΔ ¼ 0 case

With all the electroweak VEVs switched off
(vu;d ¼ vΔ ¼ 0), we only retain the PQ-symmetry-breaking
VEV Vσ in Eq. (15), yielding the stationarity equation

0 ¼ ∂hVTIIi
∂Vσ

¼ 2Vσð2λ3V2
σ − μ23Þ: ðA1Þ

Expanding the scalar potential up to the second order in the
dynamical fields and using (A1), we obtain the following
spectrum classified according to the unbroken SM
symmetry:

(i) A real scalar SM singlet σ0:

M2
σ0
¼ 4λ3V2

σ: ðA2Þ

(ii) A real pseudoscalar SM singlet η0σ:

M2
η0σ
¼ 0; ðA3Þ

which is the zero-mass mode of the PQ-breaking
field corresponding to the axion.
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(iii) A complex triplet Δ:

M2
Δ ¼ λΔ3V2

σ þ μ2Δ: ðA4Þ

(iv) Complex doublets Hu and Hd:

M2
H ¼

�
λ13V2

σ − μ21 λ5V2
σ

λ5V2
σ λ23V2

σ − μ22

�
; ðA5Þ

here M2
H is written in the ðH�

u; HdÞ basis (column
indices). Equation (A5) is diagonalized by an
orthogonal transformation

�
Ĥ�

u

Ĥd

�
¼
�

cos α sin α

− sin α cos α

��
H�

u

Hd

�
; ðA6Þ

where

tan 2α ¼ 2λ5V2
σ

ðλ13 − λ23ÞV2
σ − μ21 þ μ22

: ðA7Þ

The corresponding eigenvalues then read

2M2
u;d ¼ ðλ13 þ λ23ÞV2

σ − μ21 − μ22

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððλ13 − λ23ÞV2

σ − μ21 þ μ22Þ2 þ 4λ25V
4
σ

q
:

ðA8Þ

2. vu;d;Δ ≠ 0 case

By plugging Eqs. (12)–(15) into the expression of the
scalar potential in Eq. (3), we obtain the stationarity
equations in the form

0 ¼ ∂hVTIIi
∂vu ¼ 2vuð2λ1v2u þ λ12v2d þ λ13V2

σ þ λΔ1v2Δ − μ21Þ þ 2λ6vΔVσvd − 2λ5vdV2
σ; ðA9Þ

0 ¼ ∂hVTIIi
∂vd ¼ 2vdð2λ2v2d þ λ12v2u þ λ23V2

σ þ ðλΔ2 þ λ8Þv2Δ − μ22Þ þ 2λ6vΔVσvu − 2λ5vuV2
σ; ðA10Þ

0 ¼ ∂hVTIIi
∂Vσ

¼ 2Vσð2λ3V2
σ þ λ13v2u þ λ23v2d − 2λ5vuvd þ λΔ3v2Δ − μ23Þ þ 2λ6vΔvuvd; ðA11Þ

0 ¼ ∂hVTIIi
∂vΔ ¼ 2vΔð2ðλΔ4 þ λ9Þv2Δ þ λΔ1v2u þ ðλΔ2 þ λ8Þv2d þ λΔ3V2

σ þ μ2ΔÞ þ 2λ6Vσvuvd: ðA12Þ

The spectrum is then obtained by expanding the scalar potential up to the second order in the fields of Eqs. (12)–(15),
around the vacuum configuration given by the above stationarity equations. This yields

(i) Neutral scalars ðh0u; h0d; σ0; δ0Þ:

M2
S¼

0
BBBBBB@

4λ1v2uþðλ5Vσ−λ6vΔÞVσvd=vu ðλ6vΔ−λ5VσÞVσþ2λ12vuvd

ðλ6vΔ−λ5VσÞVσþ2λ12vuvd 4λ2v2dþðλ5Vσ−λ6vΔÞVσvu=vd

−2λ5Vσvdþλ6vΔvdþ2λ13Vσvu −2λ5Vσvuþλ6vΔvuþ2λ23Vσvd

λ6Vσvdþ2λΔ1vΔvu λ6Vσvuþ2ðλ8þλΔ2ÞvΔvd

−2λ5Vσvdþλ6vΔvdþ2λ13Vσvu λ6Vσvdþ2λΔ1vΔvu

−2λ5Vσvuþλ6vΔvuþ2λ23Vσvd λ6Vσvuþ2ðλ8þλΔ2ÞvΔvd
4λ3V2

σ−λ6vΔvuvd=Vσ λ6vuvdþ2λΔ3vΔVσ

λ6vuvdþ2λΔ3vΔVσ 4ðλ9þλΔ4Þv2Δ−λ6Vσvdvd=vΔ

1
CCCCCCA
;

ðA13Þ

where rank M2
S ¼ 4. The exact form of the eigenvalues is quite cumbersome. However, the required hierarchy

vΔ ≪ vu, vd ≪ Vσ allows us to compute the eigenvalues perturbatively. Taking into account the scaling of the
couplings in Eq. (57), we define λ6 ≡ c6

vΔ
Vσ
, λ5 ≡ c5

v2

V2
σ
, λi3 ≡ ci3

v2

V2
σ
with c5, c6, ci3 being Oð1Þ coefficients. Hence,

the leading contribution to the neutral scalar mass matrix [given by the terms ≳Oðv2Þ] reads

M2ðLOÞ
S ¼

0
BBBBBB@

4λ1v2u þ c5
vdv2

vu
c5v2 þ 2λ12vuvd 0 0

c5v2 þ 2λ12vuvd 4λ2v2d þ c5
vuv2

vd
0 0

0 0 4λ3V2
σ

0 0 0 −c6vuvd

1
CCCCCCA
:
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It is now clear that, at the leading order in the VEV
ratio expansion, the eigenvalues of the scalar mass
matrix read

fOðv2Þ;Oðv2Þ; 4λ3V2
σ;−vuvdc6g ðA14Þ

and that there is no mixing of the singlet and triplet
fields with the SUð2ÞL doublets. The first next-to-
leading-order corrections to the mass matrix are of
the order of vΔv, which implies, for instance, that
the mixing between the doublet and the triplet

components is of the order of vΔ=v. One further
finds that the first corrections to the eigenvalues are
only of the order of v2Δ and that the mixing with the
singlet component is of the order of v=Vσ. For large
tan β ¼ vu=vd the two doublet eigenvalues are
approximately 4λ1v2 and c5v2 tan β, while for the
mixing angle α one obtains tan α ≈ cot β ≪ 1. In this
limit the lightest doublet scalar behaves as the
standard model Higgs boson.

(ii) Neutral pseudoscalars ðη0u; η0d; η0σ; η0δÞ:

M2
PS ¼

0
BBBBB@

ðλ5Vσ − λ6vΔÞVσvd=vu ðλ5Vσ þ λ6vΔÞVσ ð2λ5Vσ þ λ6vΔÞvd −λ6Vσvd
ðλ5Vσ þ λ6vΔÞVσ ðλ5Vσ − λ6vΔÞVσvu=vd ð2λ5Vσ − λ6vΔÞvu λ6Vσvu
ð2λ5Vσ þ λ6vΔÞvd ð2λ5Vσ − λ6vΔÞvu 4λ5vuvd − λ6vΔvuvd=Vσ λ6vuvd

−λ6Vσvd λ6Vσvu λ6vuvd −λ6Vσvuvd=vΔ

1
CCCCCA

ðA15Þ

is a rank ¼ 2 matrix which implies the existence of two zero modes, one of them being the would-be Goldstone
mode associated with the Z boson and the other corresponding to the axion that acquires mass by nonperturbative
QCD effects. Even though the eigenvalues can be given in a closed form, it is sufficient to report the leading order
(LO) result

�
0;

v4

vuvd
c5; 0;−vuvdc6

�
; ðA16Þ

where the entries correspond, consecutively, to the pair of SUð2ÞL (mostly) doublet components, the singlet and the
triplet. The zeros are exact (at the perturbative level), while the other entries receive corrections at most of the order of
v2Δ. The mixing among the doublet and triplet components is again found to be of the order of vΔ=v.

(iii) Singly charged scalars: ðhþu ; hþd ; δþÞ

M2þ ¼

0
BBB@

λ4v2d þ λ7v2Δ þ ðλ5Vσ − λ6vΔÞVσvd=vu λ5V2
σ þ λ4vuvd

λ7vΔvu−λ6Vσvdffiffi
2

p

λ5V2
σ þ λ4vuvd λ4v2u − λ8v2Δ þ ðλ5Vσ − λ6vΔÞVσvu=vd

λ6Vσvuþλ8vΔvdffiffi
2

p

λ7vΔvu−λ6Vσvdffiffi
2

p λ6Vσvuþλ8vΔvdffiffi
2

p λ7v2u−λ8v2d
2

− λ6Vσvdvu=vΔ

1
CCCA

ðA17Þ

is again of rank 2, which is related to the existence of a would-be Goldstone mode associated to the W boson. In
analogy with the PS case, the eigenvalues read at LO

�
0; λ4v2 þ c5

v4

vuvd
;−c6vuvd þ

1

2
ðλ7v2u þ λ8v2dÞ

�
; ðA18Þ

and the mixing of the doublet and triplet components is suppressed by the vΔ=v ratio.
(iv) Doubly charged scalar δþþ:

M2þþ ¼ λ7v2u − λ8v2d − 2λ9v2Δ − λ6vuvdVσ=vΔ ≈ λ7v2u − λ8v2d − c6vuvd: ðA19Þ

By comparing (A19) with (A14), (A16), and (A18) one recognizes the weak mass splitting among the triplet
components induced, at the leading order, by the λ7 and λ8 terms.
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