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We study the stability constraints on the parameter space of a triplet extension of the Minimal
Supersymmetric Standard Model (MSSM). Existence of unbounded-from-below directions in the potential
can spoil successful electroweak (EW) symmetry breaking by making the corresponding minimum
unstable, and hence the model should be free from those directions. Avoiding those directions restricts the
parameter space of the model. We derive four stability constraints, of which only three are independent
from each other. After scanning the parameter space of the model for phenomenologically viable data
points, we impose the stability constraints and find that only about a quarter of the data points features a
stable EW minimum. At those data points featuring stability, μ and the up Higgs soft mass turn out to be
smaller than about a TeV in absolute value, which makes the mass of the lightest chargino and neutralino
smaller than about 700 GeV. Two relevant phenomenological consequences of lifting the unbounded-from-
below directions are that the lightest Higgs boson decay rate to diphoton predicted by the triplet extension
of MSSM generally features larger deviations from MSSM, and fine-tuning is actually higher than what
each of the two would be without imposing stability constraints.
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I. INTRODUCTION

The Triplet Extended Supersymmetric Standard Model
(TESSM) was introduced mainly to enhance the tree-level
Higgs boson mass while satisfying the top-quark mass
bound [1,2]. The authors have shown there [1,2] that
electroweak (EW) symmetry breaking is successfully
realized in this model, and they have studied constraints
on the parameter space, which must be satisfied for the
potential to be stable. The lightest Higgs boson mass
has been calculated in Refs. [1–3] for the Minimal
Supersymmetric Standard Model (MSSM) with extra
triplet chiral superfields with hypercharge, respectively,
Y ¼ 0;�1. The one-loop correction to the Higgs boson
mass was calculated for MSSM with a Y ¼ 0 scalar triplet
also in Ref. [4]. The authors there pointed out that a light
Higgs boson mass of Oð100Þ GeV can be generated
already at tree level, if the triplet coupling to a pair of
Higgs bosons is large and comparable to the top-quark
Yukawa coupling. More recently it has been shown that the
triplet charged states in TESSM can comfortably enhance
the diphoton decay rate of the Higgs boson to match the
value observed at LHC [5,6]. Further phenomenological
studies of TESSM explored neutrino mass generation and
leptogenesis [7], charged Higgs production at colliders
[8,9], spontaneous CP violation [10], etc.

In this paper, we are interested in studying the stability of
the EWminimum of the TESSM scalar potential. If the EW
minimum is not a global minimum, correct EW symmetry
breaking is not realized and its viability spoiled.1 It is
therefore important to determine the constraints on the
parameter space that ensure that the EWminimum is stable.
For MSSM, there are a few directions possible along which
the potential becomes unbounded from below (UFB), as
has been shown in Ref. [11]. The authors there also
discussed the charge- and color-breaking (CCB) minima
for MSSM. Other relevant studies on unstable and meta-
stable minima of the supersymmetric scalar potential can be
found in Refs. [12–18]. The problems associated with this
kind of minima were addressed in Ref. [19]. The study of
unrealistic vacua or CCB minima in different supersym-
metric models has already been discussed in Ref. [20] for
MSSM with neutrino mass operators, in Refs. [21,22] for
NMSSM, in Ref. [23] for νSSM, etc.
For TESSM, conditions for the stability of the potential

have been derived in Ref. [1]. Indeed, as we have pointed
out above, there may be a few unaccounted-for UFB
directions in the field space. Hence, we would like to
perform a full analysis of the UFB directions of the TESSM
potential. We shall show that stability constraints that lift
these directions allow one to constrain severely the param-
eter space of TESSM, with observable consequences for
the mass spectrum and TESSM phenomenology.
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1We assume throughout this paper the age of the Universe to be
infinite.
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This paper is structured as follows: In Sec. II we
introduce the model, define the EW minimum of the
potential, and discuss the present theoretical constraints.
Next, we present the main results of this paper, which are
the UFB directions of the TESSM potential and the
corresponding stability constraints on the EW mininum,
in Sec. III. In the subsequent Sec. IV we impose the
stability constraints on a large set of data points, satisfying
the present experimental constraints, and show how various
relevant quantities are affected by the new constraints.
Finally, we draw our conclusions in Sec. V.

II. THE MODEL

The field content of TESSM is equal to that of MSSM
extended by a Y ¼ 0 SUð2Þ triplet chiral superfield, whose
scalar component can be written in matrix form as

T ¼
 1ffiffi

2
p T0 Tþ

T− − 1ffiffi
2

p T0

!
: ð1Þ

The renormalizable superpontential of TESSM includes
only two extra terms as compared to MSSM,2 given that the
cubic triplet term is zero:

WTESSM ¼ μTTrðT̂ T̂Þ þ μDĤd · Ĥu þ λĤd · T̂Ĥu

þ ytÛĤu · Q̂ − ybD̂Ĥd · Q̂ − yτÊĤd · L̂; ð2Þ

where “·” represents a contraction with the Levi-Cività
symbol ϵij, with ϵ12 ¼ −1, and a hatted letter denotes a
superfield. For later convenience, we write explicitly the
potential D and (quartic) F terms derived from the super-
potential above:

VD ¼ g23
2

�
~Q†
LT

a
3
~QL − ~uRT �a

3 ~u�R − ~dRT �a
3
~d�R�

2

þ g2Y
2
½ϕ†

jYϕj�2

þ g2L
2
½H†

uT b
2Hu þH†

dT
b
2Hd þ TrðT†T b

2T − TT b
2T

†Þ þ ~Q†
LT

b
2
~QL þ ~L†

LT
b
2
~LL�2; ð3Þ

VF ¼
���� ∂WTESSM

∂ϕc
j

����2; ð4Þ

where T are group generators with gauge indices a and b, and ϕc
j runs over the scalar components of all the TESSM chiral

superfields.3 Also, g3, gL, and gY are the SUð3ÞC, SUð2ÞL, and Uð1ÞY gauge couplings, respectively. The full potential is
then given by

V ¼ VD þ VF þ VS; ð5Þ

where VS represents the soft supersymmetry-breaking terms corresponding to the superpotential in Eq. (2), as well as the
soft squared masses associated with each scalar field:

VS ¼ ½μTBTTrðTTÞ þ μDBDHd ·Hu þ λATHd · THu þ ytAt~t�RHu · ~QL þ H:c:�
þm2

TTrðT†TÞ þm2
Hu
jHuj2 þm2

Hd
jHdj2 þ � � � : ð6Þ

To break correctly the EW symmetry, SUð2ÞL ×Uð1ÞY → Uð1ÞEM, we assign nonzero vacuum expectation values
(VEVs) only to the neutral scalar components and impose the usual minimization conditions on the potential in Eq. (5):

H0
u ≡ 1ffiffiffi

2
p ðau þ ibuÞ; H0

d ≡ 1ffiffiffi
2

p ðad þ ibdÞ; T0 ≡ 1ffiffiffi
2

p ðaT þ ibTÞ; ∂aiVjvev ¼ 0; haii ¼ vi; i ¼ u; d; T; ð7Þ

where ai and bi are both defined to be real. The conditions above allow one to determine three of the Lagrangian free
parameters in terms of the other ones:

2To simplify the phenomenology of the model, we neglect the first- and second-generation Yukawas, as well as R-parity-breaking
terms.

3In Eqs. (2) and (3) as usual, we dropped all the gauge and family indices that can be contracted, implied summation over repeated
indices, and denoted with a tilde the scalar superpartner of a SM fermion field.
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m2
Hu

¼ −μ2D −
g2Y þ g2L

8
ðv2u − v2dÞ þ BDμD

vd
vu

−
λ2

4
ðv2d þ v2TÞ þ λvT

�
μD −

�
AT

2
þ μT

�
vd
vu

�
;

m2
Hd

¼ −μ2D þ g2Y þ g2L
8

ðv2u − v2dÞ þ BDμD
vu
vd

−
λ2

4
ðv2u þ v2TÞ þ λvT

�
μD −

�
AT

2
þ μT

�
vu
vd

�
;

m2
T ¼ −

λ2

4
ðv2d þ v2uÞ − 2μTðBT þ 2μTÞ þ λ

�
μD

v2d þ v2u
2vT

−
�
AT

2
þ μT

�
vdvu
vT

�
: ð8Þ

By plugging Eq. (8) into Eq. (5), one derives the expression for the potential at the EW minimum:

VEW ¼ −
g2Y þ g2L

32
ðv2d − v2uÞ2 −

λ2

8
½v2dv2u þ v2Tðv2d þ v2uÞ� −

λvT
4

½vdvuðAT þ 2μTÞ − ðv2d þ v2uÞμD�: ð9Þ

The EW potential given above receives relevant corrections
at one loop, which can in principle be minimized by
choosing a suitable renormalization scale close to the
heaviest masses in the particle spectrum. Contrarily to
MSSM, though, it is not possible to solve the EW VEVs in
terms of the couplings and dimensional parameters of
TESSM, and therefore in principle one should run the
VEVs by using the Callan Symanzik equation for the
effective potential of a softly broken supersymmetric theory
[24]. Analogously to the NMSSM case [20,21], though, we
choose to simplify our analysis by evaluating VEW at the
EW scale vw ¼ 246 GeV. In Sec. IV we find that the
stability constraints obtained by comparing unrealistic
vacua with VEWðvwÞ are generally conservative.
The first stability condition for successful EW symmetry

breaking is obtained by requiring the trivial vacuum at the
origin to be unstable. By taking all the VEVs to be zero, the
requirement that one of the eigenvalues of the neutral scalar
squared mass matrix be negative is equivalent to imposing
the condition

B2
D > μ2D

�
m2

Hd

μ2D
þ 1

��
m2

Hu

μ2D
þ 1

�
: ð10Þ

When the condition above is satisfied, one can derive an
important bound on the mass of the lightest neutral Higgs
[1,2]:

m2
h0
1

≤ m2
Z

�
cos22β þ λ2

g2Y þ g2L
sin22β

�
; tan β ¼ vu

vd
:

ð11Þ

The result in Eq. (11) shows the main advantage and
motivation of TESSM over MSSM: for tan β close to 1 and
a large λ coupling, it is in principle possible in TESSM to
generate the experimentally measured light Higgs mass
already at tree level [4], which would imply no or negligible
fine-tuning (FT) of the model.
Even when the constraint in Eq. (11) is satisfied, for any

given values of the free parameters there can be color and

electromagnetic charge breaking minima that are deeper
than the EW one or even unbounded-from-below (UFB)
directions in the potential: given that the latter possibility
gives the tightest constraints on the MSSM parameter space
[11], by analogy in this work we focus our attention on
UFB directions in the TESSM potential and the corre-
sponding stability constraints, which we derive in the next
section.

III. UNBOUNDED-FROM-BELOW DIRECTIONS

In softly broken supersymmetric models the potential is
generally stable, given that the quartic terms are generated
by the superpotential as well as by the gauge interactions
(D terms), and the supersymmetric tree-level potential is
semidefinite positive. If the quartic terms cancel, though,
the soft mass-squared terms can eventually drive the
potential to negative infinite values. Our aim in this section
is to perform first a complete analysis of the possible UFB
directions in the TESSM tree-level potential, Eq. (5), and
then to derive the corresponding stability constraints on the
parameter space.
In general, to find the deepest UFB direction of a

supersymmetric theory in an N-field subspace, one solves
the minimization conditions with respect to N − 1 fields
and then substitutes the solutions in the potential which turn
out not to have quartic terms. The combinations of VEVs
that can do the trick are those that can cancel separately
each D and F quartic term [Eqs. (3) and (4)], given that each
of these terms is semidefinite positive. A straightforward
way to cancel the SUð3Þ D terms is to take the VEVs of the
left-handed (LH) and right-handed (RH) squarks to be the
same. Analogously, we take the positive and negative
charged triplet component VEVs to be equal to each other,
which cancels their SUð2Þ D terms, and we do the same for
the charged doublet components of Hu and Hd, which
cancels their Uð1ÞY D terms. To simplify our analysis, we
define also the LH and RH charged slepton VEVs to be
equal to each other. Finally, the cubic F terms, being
supersymmetric, should be zero when the quartic terms
involving the same fields are zero. We avoid cubic F terms
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from the outset by choosing sneutrino and slepton nonzero
VEVs to belong to different generations. In such a case, the
surviving terms in the potential involving a stau VEV can
be readily obtained by simply relabeling those involving a
sbottom VEV,4 and for this reason in the present analysis
we simply neglect the stau VEV and derive results
involving it directly from those involving the sbottom
VEV. The remaining cubic terms, breaking supersymmetry
softly, give constraints that are less tight than those
obtained from UFB directions [11]: for this reason in this
paper we focus on the latter constraints.
In summary, the set of nonzero charged real VEVs we

work with is defined by

h~tLi ¼ h~tRi ¼
v~tffiffiffi
2

p ; h ~bLi ¼ αh ~bRi ¼
v ~bffiffiffi
2

p ;

hHþ
u i ¼ hH−

d i ¼
vH�ffiffiffi
2

p ; hTþi ¼ hT−i ¼ vT�ffiffiffi
2

p ; ð12Þ

where we have introduced a phase α ¼ �1 for later
convenience, while the neutral ones are

h~νLi ¼
v~νffiffiffi
2

p ; hH0
ui ¼

vH0
uffiffiffi
2

p ;

hH0
di ¼

vH0
dffiffiffi
2

p ; hT0i ¼ vT0ffiffiffi
2

p ; ð13Þ

where we used a labeling for the neutral VEVs different
from that in Eq. (9) to distinguish the VEVs associated with
the EW minimum from the unrealistic ones. Moreover, to
simplify our following results without loss of generality, in
the rest of the paper we assume vH0

u
and all the Yukawa

couplings to be positive.
In the next subsection, we determine which sets of

VEVs, among those defined in Eqs. (12) and (13), allow for
a UFB direction in the potential.

A. Relevant VEVs

To determine the sets of nonzero VEVs which allow for
UFB directions, we look for those VEV combinations that
can cancel all the D and quartic F terms. Assuming all the
masses and couplings in Eq. (2) to be nonzero, and
requiring the superpotential derivative with respect to the
triplet components in Eq. (4) to cancel, we obtain

∂WTESSM

∂ϕc
j

¼ 0;

ϕc
j ¼ T0;Tþ;T− ⇒ vH� ¼ 0∧ ðvH0

d
¼ 0∨ vH0

u
¼ 0Þ:
ð14Þ

Besides vH� , Eq. (14) requires either vH0
u
or vH0

d
to be zero.

Indeed, it can be shown that there is no VEV combination
canceling all the quartic terms for nonzero vH0

d
, and

therefore we impose

vH0
d
¼ 0: ð15Þ

Having defined vH0
u
to be nonzero, we notice that m2

H0
u
,

being large and negative at the EW scale for data points that
feature a viable EW minimum, can generate a deep UFB
direction.
After imposing Eq. (15) and requiring the cancellation of

the quartic F terms corresponding to the H0
u and H−

d fields,
also the stop and charged triplet VEVs turn out to be zero:

∂WTESSM

∂ϕc
j

¼ 0; ϕc
j ¼ H0

u; H−
d ⇒ v~t ¼ vT� ¼ 0:

ð16Þ

Having set to zero the charged doublet and triplet Higgs
VEVs as well as the stop and the neutral down Higgs ones
according to Eqs. (14)–(16), the only nonzero D and quartic
F terms left are, respectively,

VD ⊃
g2Y þ g2L

32
ðv2~b − v2~ν þ v2H0

u
Þ2;

VF ⊃
1

4

�
y2bv

4
~b
þ

ffiffiffi
2

p
ybαλv2~bvH0

u
vT0 þ λ2

2
v2H0

u
v2T0

�
: ð17Þ

Assuming a nonzero neutral up Higgs VEV, we find
therefore that it is possible to cancel all the quartic terms
for the following sets of nonzero VEVs:

vH0
u
≠ 0∧ v~ν ≠ 0∧ ððvT0 ¼ 0∧ v ~b ¼ 0Þ

∨ ðvT0 ¼ 0∧ v ~b ∝
ffiffiffiffiffiffiffi
vH0

u

p Þ∨ ðvT0 ≠ 0∧ v ~b ≠ 0ÞÞ; ð18Þ

with the other VEVs being all identically zero. The only
other possible set of nontrivial VEVs canceling all the
quartic terms is

vT0 ≠ 0 ∨ vT� ≠ 0; ð19Þ

with the other VEVs, including vH0
u
, being all identically

zero. Evidently the potential in the UFB directions iden-
tified by Eq. (19) has the same form for either of the two
VEVs, and one can work just with vT0 .
In the following subsection, we work out the expressions

for the potential along the four UFB directions expressed
by Eqs. (18) and (19) and define the stability constraints
associated with each of them.

4The stop VEV turns out to be zero along UFB directions
because of its Yukawa coupling, and therefore indeed only the
sbottom labels need to be changed.
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B. Stability constraints

We start with the simplest case, the UFB direction
defined by Eq. (19): by setting to zero every VEV but
vT0 in the potential (the corresponding result for vT� is the
same), Eq. (5), we get

VUFB-1 ¼
v2T0

2
½m2

T þ 2μTðBT þ 2μTÞ�: ð20Þ

We evaluate Eq. (20) at a renormalization scale Λ of the
order of the heaviest mass in the physical particle spectrum
[11], so as to minimize the contribution of quantum
corrections, which we neglect entirely. For the potential
above, the largest mass is roughly equal to vT0 multiplied
by the largest of its couplings, generally either gL or λ.
Rather than simply requiring the coefficient of the squared
VEV to be positive, a given point in parameter space is
stable against tunneling5 to UFB-1 if

VEWðvwÞ < VUFB-1ðΛÞ; vw ≤ Λ ≤ ΛUV;

v2T0 ∼ 2max ½g2L; λ2�−1Λ2; ð21Þ

where all the couplings and dimensionful parameters are
evaluated at Λ. For this purpose we calculated the full set of
beta functions, including those of the dimensionful param-
eters which, to the best of our knowledge, were not given in
the literature and that we present in the Appendix. In Sec. IV
we elucidate how to implement in practice the stability
constraint in Eq. (21) and those that follow in this section.
Next, we take up the slightly more complicated case with

only two nonzero VEVs, the first one in Eq. (18):

VjvH0
u
≠0;v~ν≠0 ¼

1

2

�
m2

Lv
2
~ν þ ðm2

H0
u
þ μ2DÞv2H0

u

þ g2Y þ g2L
16

ðv2~ν − v2H0
u
Þ2
�
; ð22Þ

wherem2
L is the soft mass squared of the slepton doublet L.

By requiring the potential above to be flat along the v~ν

direction, we find

∂v~νVjvH0
u
≠0;v~ν≠0 ¼ 0 ⇒ v2~ν ¼ v2H0

u
−

8m2
L

g2Y þ g2L
; ð23Þ

which, upon substitution in Eq. (22), gives the deepest UFB
direction corresponding to our choice of nonzero vacua:

VUFB-2 ¼
v2H0

u

2
ðm2

L þm2
H0

u
þ μ2DÞ −

2m4
L

g2Y þ g2L
: ð24Þ

Analogously to the stability constraint derived from the
UFB-1 direction, a point in the TESSM parameter space
may feature a stable EW minimum only if

VEWðvwÞ < VUFB-2ðΛÞ; vw ≤ Λ ≤ ΛUV;

v2~ν > 0; v2H0
u
∼ 2max ½g2L; λ2; y2t �−1Λ2; ð25Þ

where all the couplings and dimensionful parameters are
evaluated at Λ.
The case with three nonzero VEVs, the second one in

Eq. (18), is a little more complicated, but the potential can
be readily simplified by imposing its derivative with respect
to v~ν to be zero:

∂v~νVjvH0
u
≠0;v ~b≠0;v~ν≠0

¼ 0 ⇒ v2~ν ¼ v2H0
u
þ v2~b −

8m2
L

g2Y þ g2L
;

VjvH0
u
≠0;v ~b≠0;v~ν≠0

¼ y2b
4
v4~b þ

v2~b
2
ðm2

L þm2
Q þm2

~b

−
ffiffiffi
2

p
ybαvH0

u
μDÞ

þ
v2H0

u

2
ðm2

L þm2
H0

u
þ μ2DÞ

−
2m4

L

g2Y þ g2L
: ð26Þ

By requiring the potential above to be flat along the v ~b
direction and solving for v ~b, we find

v2~b ¼
ffiffiffi
2

p
vH0

u
ybjμDj −m2

L −m2
Q −m2

~b

y2b
; ð27Þ

where, with our assumption that vH0
u
and all the Yukawa

couplings are positive, we simply took α to be equal to the
sign of μD. In turns, the VEVs in Eqs. (26) and (27) identify
the deepest UFB direction corresponding to our choice of
nonzero vacua:

VUFB-3 ¼ ðm2
L þm2

H0
u
Þ
v2H0

u

2
þ jμDjðm2

L þm2
Q þm2

~b
ÞvH0

uffiffiffi
2

p
yb

−
ðm2

L þm2
Q þm2

~b
Þ2

4y2b
−

2m4
L

g2Y þ g2L
; ð28Þ

wherem2
Q is the soft mass squared of the squark doubletQ.

The corresponding stability constraint that any point in the
TESSM parameter space has to satisfy is

VEWðvwÞ < VUFB-3ðΛÞ; vw ≤ Λ ≤ ΛUV;

v2~ν; v
2
~b
> 0; v2H0

u
∼ 2max ½g2L; λ2; y2t �−1Λ2: ð29Þ

Notice that VUFB-3 is equal to the corresponding result in
Ref. [11], plus the second-from-last term in Eq. (28), which

5In this analysis we simplify the stability constraints by
assuming the age of the Universe to be infinite. The numerical
factor in Eq. (21) agrees with Ref. [11], though for the numerical
analysis it has little relevance.
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is large and negative: this is because the authors in Ref. [11]
determined v ~b by requiring theH

0
d quartic F term to cancel,

rather than by solving a minimization condition. In case
vH0

u
is small, v ~b turns out to be imaginary, and so we can

require the potential in Eq. (26) to be flat along the vH0
u

direction instead, which implies

v2~b ¼
ffiffiffi
2

p
vH0

u

yb

����m
2
L þm2

H0
u
þ μ2D

μD

����: ð30Þ

In this case the potential along the deepest UFB direction is

V 0
UFB-3 ¼

ðm2
L þm2

H0
u
Þðm2

L þm2
H0

u
þ μ2DÞ

2μ2D
v2H0

u

þ
����m

2
L þm2

H0
u
þ μ2D

μD

����m
2
L þm2

Q þm2
~bffiffiffi

2
p

yb
vH0

u

−
2m4

L

g2Y þ g2L
; ð31Þ

and the corresponding stability constraint reads the same as
that in Eq. (29) but with V 0

UFB-3 replacing VUFB-3. Notice
that, contrarily to the VEV in Eq. (27), the one in Eq. (30) is
not generally smaller than vH0

u
, and so one might be

underestimating the heaviest mass, which is of the same
order of the renormalization scale. For viable points,
though, m2

H0
u
is generally negative, in which case v ~b turns

out to be of the order of vH0
u
or smaller. For this reason we

still determine vH0
u
according to the last one in Eq. (29) and

then v ~b by Eq. (27).
Finally, we take up the last scenario in Eq. (18): for

vH0
u
≠ 0 ∧ v~ν ≠ 0 ∧ vT0 ≠ 0 ∧ v ~b ≠ 0, the requirement for

the potential to be flat along the ν direction determines v~ν as
given by Eq. (26). The remaining minimization conditions
produce rather involved solutions, which turn out to be
complex on a large and disconnected region of field space.
For this reason, we choose simply to cancel the quartic F
terms, which is achieved by setting

v2~b ¼
jλvT0 jvH0

uffiffiffi
2

p
yb

: ð32Þ

The potential along the plane identified by Eqs. (26) and
(32) expressed in terms of the remaining two VEVs is

VUFB-4 ¼
v2T0

2
½m2

T þ 2μTðBT þ 2μTÞ�

þ
v2H0

u

2
ðm2

L þm2
H0

u
þ μ2DÞ −

2m4
L

g2Y þ g2L

þ jλvT jvH0
u

2
ffiffiffi
2

p
yb

ðm2
L þm2

Q þm2
~b
Þ: ð33Þ

By comparing the first two lines in the equation above with
the first two UFB directions, in Eqs. (20) and (24), and then

realizing that the term in the last line is generally positive
for phenomenologically viable data points, it is clear that
any viable data point satisfying the first two stability
constraints, Eqs. (21) and (25), is stable against tunneling
to a vacuum along the plane defined by Eq. (33).6 For this
reason in this analysis, we disregard the UFB-4 stability
constraint.
In the next section, we test the stability of TESSM at data

points that satisfy the most relevant phenomenological
constraints from experiment.

IV. PHENOMENOLOGICALLY VIABLE
PARAMETER SPACE

The first relevant phenomenological constraint is given
by the T parameter [25], which in TESSM receives a
nonzero contribution already at tree level [1,2]:

αeT ¼ δm2
W

m2
W

¼ 4v2T
v2

≤ 0.2; v2 ¼ v2u þ v2d;

v2w ¼ v2 þ 4v2T ¼ 2462 GeV2; ð34Þ
where αe is the fine structure constant, the experimental
constraint is at 95% C.L. [26], and the VEVs appearing in
the expression above are those defined in Eq. (7). To satisfy
the constraint above, we take a small but nonzero fixed
value for vT :

vT ¼ 3
ffiffiffi
2

p
GeV: ð35Þ

We then scan a large region of the TESSM parameter space,
defined by

1 ≤ tβ ≤ 10;

5 GeV ≤ jμD; μT j ≤ 2 TeV;

50 GeV ≤ jM1;M2j ≤ 1 TeV;

jAt; AT; BD; BT j ≤ 2 TeV;

500 GeV ≤ mQ;m~t; m ~b ≤ 2 TeV; ð36Þ
for data points producing the observed mass spectrum for
SM fermions and gauge bosons and satisfying the direct
search constraints defined below:

mh0
1
¼ 125.5� 0.1 GeV;

mA1;2
; mχ0

1;2;3;4;5
≥ 65 GeV;

mh0
2;3
; mh�

1;2;3
; mχ�

1;2;3
≥ 100 GeV;

m~t1;2 ; m ~b1;2
≥ 650 GeV; ð37Þ

6Notice that the last term in Eq. (33) is not allowed to turn large
and negative upon renormalization for points featuring a viable
EW vacuum, because otherwise the stability constraint in Eq. (29)
would not be satisfied.
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where the neutral scalar masses are calculated by using the
TESSM complete one-loop effective potential [4], while
the others are tree-level masses. The above bounds on the
mass of pseudoscalars and neutralinos are actually tighter
than the experimental ones [26], as to avoid the phenom-
enological complications of invisible decays of the light
Higgs, which are though relevant for dark matter [27]. For
each of the scanned data points, the couplings retain
perturbativity at least up to 104 TeV, where we define a
coupling constant to be perturbative if its renormalized
value (obtained by running the given coupling by two-loop
beta functions [28]) is smaller than 2π.7 Moreover, the
experimental constraint on a heavy neutral Higgs mass is
imposed by rescaling the CMS bound on the mass of a SM-
like heavy Higgs decaying to ZZ, mH0 > 770 GeV [29].
After collecting 10,957 viable data points satisfying the

constraints outlined above, we test further their viability by
imposing the stability constraints derived in Sec. III.
To perform the stability test, we pick 100 energies

equally spaced on a logarithmic scale between the EW
scale, 246 GeV, and the chosen UV scale, ΛUV ¼ 104 TeV,
and run all the couplings and dimensional parameters to the
100 renormalization scales, with initial conditions defined
by the given viable data point in the TESSM parameter
space. For each of the 10,957 viable data points we then
evaluate the potential at the EW vacuum, Eq. (9), as well as
at each of the 100 values along each of the UFB-1,2,3
directions, plus the one obtained from UFB-3 by replacing
sbottom masses and couplings with the corresponding
slepton quantities, which we call UFB-30. The (real)
VEVs are automatically determined as functions of the
given scale for each UFB direction. It turns out that only
24% of the 10,957 viable data points satisfy the stability
constraints defined in Eqs. (21), (25), and (29). By applying
each stability constraint individually, one can assess the
tightness of the constraints relative to each other: 58% of
points are stable against tunneling to vacua along the UFB-
1 direction, 95% against UFB-2, 67% against UFB-3, and
just 41% of the scanned data points feature an EW
minimum deeper than vacua along the UFB-30 direction,
for scales up to 104 TeV. Evidently the UFB-30 constraint,
defined by Eq. (29) with slepton masses and couplings
replacing the corresponding sbottom quantities, is by far
the tightest among the 3þ 1 constraints we imposed. This
result is analogous to the one obtained for the MSSM [11].
We also calculated the one-loop potential evaluated at the
EW minimum, and found it to be shallower than the tree-
level potential in Eq. (9) for 76% of data points, which
makes the stability constraints defined by Eqs. (21), (25),
and (29) generally conservative.

In Figs. 1 and 2 we plot all the 10,957 scanned data
points projected on two slices of the TESSM parameter
space, the m2

Hd
-m2

Hu
plane (Fig. 1 left panel) and the μD-BD

plane (Fig. 2 left panel), with grey points being unstable
against at least one among the UFB-1,2,3,30 directions,
while the colored ones satisfy all the stability constraints,
Eqs. (21), (25), and (29). The color code, shown in Fig. 1
(right panel), represents the value of the triplet coupling λ at
the given data point. Besides the requirements for an
unstable trivial vacuum state and positive scalar squared
masses, which make large regions of parameter space
inaccessible, the stability constraints evidently rule out
the region featuring a large negative soft squared massm2

Hd

as well as a large jμDj, with both parameters in absolute
terms being smaller than 1 TeV2 and TeV, respectively, for
stable data points. This in turn limits the mass of the lightest
chargino and neutralino.
In Fig. 2, right panel, we plot the TESSM cross section

relative to its SM value for a light Higgs boson, produced at
LHC and then decaying into a diphoton, as a function of the
lightest chargino mass. Also shown are the average value
(solid line) measured by ATLAS and CMS [30,31], and the
lower 1σ bound (dashed line). The ratio of cross sections
for the lightest Higgs boson, produced at LHC, decaying
into ij particles is defined by

μ̂ij ¼
σtotBrij
σSMtot Br

SM
ij

;

σtot ¼
X

Ω¼h;qqh;…

ϵΩσΩ; ð38Þ

where Brij is the lightest Higgs boson branching ratio into
the ij particles, σΩ is the production cross section of the
given final state Ω, and ϵΩ is the corresponding efficiency.
The details of the calculation of the branching ratio to
diphoton and Higgs production total cross section in

FIG. 1 (color online). Scanned TESSM data points satisfying
all phenomenological constraints elucidated in Sec. IV, projected
on the m2

Hd
-m2

Hu
plane (left panel). The grey points do not satisfy

at least one of the stability constraints in Eqs. (21), (25), and (29),
while the viable data points are colored according to the value of
the triplet coupling λ, as shown in the right panel.

7We choose 2π because at larger values the couplings reach a
fixed point, which is an artifact of the series being truncated after
the two-loop contribution.
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TESSM are given in Ref. [28], and we do not repeat them
here. From Fig. 2 it is apparent that the stability constraints
require the mass of the lightest chargino (and neutralino) to
be lighter than about 700 GeV, for the scanned data points.
As a consequence, within TESSM, a large deviation from
the SM prediction is likely to be observed.
Since a lighter mass spectrum is usually associated in

supersymmetric theories with lower fine-tuning (FT), it is
interesting to look also at the effect of the stability
constraints on the heavier stop mass together with the
fine-tuning at each scanned data point. A simple estimate of
FT in supersymmetry is given by the logarithmic derivative
of the EWVEV vw with respect to a given model parameter
μp [32,33]: this represents the change of vw for a 100%
change in the given parameter, as defined below:

fμp ≡
∂ log v2w

∂ log μ2pðΛÞ ;

μ2pðΛÞ ¼ μ2pðMZÞ þ
βμ2p
16π2

log

�
Λ
MZ

�
;

βμ2p ¼ 16π2
dμ2p
dlogQ

; ð39Þ

where in parenthesis is the renormalization scale of μp. The
FT inm2

Hu
, defined to be equal to fmHu

, is then given by [28]

FT ¼ log ðΛ=MZÞ
16π∂v2wm

2
Hu

ð6y2t A2
t þ 3λ2A2

T þ 3λ2m2
Hd

þ 3λ2m2
T þ 3λ2m2

Hu
− 2g2YM

2
1 − 6g2LM

2
2 þ 6m2

Qy
2
t

þ 6m2
~t y

2
t þ 6m2

Hu
y2t þ g2Yð3m2

~b
−m2

Hd
− 3m2

L

þ 3m2
Q − 6m2

~t þm2
Hu

þ 3m2
~τÞÞ; ð40Þ

where the derivative in the denominator acts on the
expression of m2

Hu
, Eq. (8). In Fig. 3, we plot the scanned

data points as a function of the heavier stop mass (left
panel) and tan β (right panel). The grey points do not satisfy
at least one of the stability constraints in Eqs. (21), (25), and
(29), while the viable data points are colored according to
the value of the triplet coupling λ as shown in Fig. 1 (right
panel). An interesting (and unwelcome) effect of the
stability constraints is that the points with the least amount
of FTare actually ruled out, and as a result FT is on average
26% higher after imposing the stability constraints, some-
what offsetting the advantage for naturality of the tree-level
triplet contribution to the MSSM Higgs boson mass. With

FIG. 2 (color online). Scanned TESSM data points satisfying all phenomenological constraints elucidated in Sec. IV, projected on the
μD-BD plane (right panel), and Higgs decay rate to diphoton as a function of the mass of the lightest chargino (right panel). The grey
points do not satisfy at least one of the stability constraints in Eqs. (21), (25), and (29), while the viable data points are colored according
to the value of the triplet coupling λ as shown in Fig. 1 (right panel).

FIG. 3 (color online). FTas a function of the heavier stop mass (left panel) and tan β (right panel). The grey points do not satisfy at least
one of the stability constraints in Eqs. (21), (25), and (29), while the viable data points are colored according to the value of the triplet
coupling λ as shown in Fig. 1 (right panel).
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increasing heavier stop mass, the amount of FT on average
increases as well, as expected, and a larger portion of data
points satisfy the stability constraints. Indeed, also for small
values of tan β, or equivalently large values of the triplet
coupling λ, data points featuring a very low amount of FT
are unstable against tunneling from the EW potential
minimum to a vacuum along (at least one of) the UFB-
1,2,3,30 directions.

V. CONCLUSIONS

In this paper we studied the unbounded from below
(UFB) directions in the potential of a Y ¼ 0 SUð2Þ triplet
chiral superfield extension of MSSM, also called triplet
extended supersymmetric Standard Model (TESSM), and
the associated stability constraints on the model’s param-
eter space. After introducing the model, we systematically
looked for sets of nonzero VEVs that can cancel the quartic
terms belonging to the D and F sectors of the TESSM tree-
level potential, under some rather general and reasonable
simplifying assumptions, like chiral and charge symmetry
of the VEVs. We found four inequivalent sets of VEVs that
allow for UFB directions in the tree-level potential, which
we labeled UFB-1,2,3,4, respectively. One more UFB
direction (UFB-30) is obtained by simply switching the
sbottom couplings and masses in the potential, defined
along UFB-3, with the corresponding stau quantities.
Among those directions, UFB-2,3,30 turn out to be entirely
equivalent to those already found in the MSSM potential
[11], in the sense that they do not contain any triplet
contribution. For viable points in the TESSM parameter
space, moreover, UFB-4 is lifted if UFB-1,2,3 are lifted as
well, which makes the UFB-4 stability constraint irrelevant.
The relevant stability constraints require the tree-level
potential evaluated at the EW minimum to be deeper than
at any point along UFB-1,2,3,4,30, with couplings and
masses renormalized at a suitable scale minimizing the
(neglected) one-loop contributions. To carry out renorm-
alization, we furthermore derived the one-loop beta func-
tions for the TESSM dimensional parameters, which were
not given in past literature.
To assess the relevance of the stability constraints for

TESSM, we first scanned the TESSM parameter space and
collected 10,957 data points which produce the observed
SM mass spectrum and satisfy direct search constraints on
their superpartners and heavy Higgses, as well as EW
precision parameter and perturbativity constraints. We then
further tested the viability of these data points by checking
how many of them satisfy the UFB-1,2,3,30 stability
constraints: among the (otherwise viable) 10,957 data
points, only 24% turned out to be actually stable, with
UFB-30 giving the tighter constraint, which rules out 59%
of the scanned data points. Two of the parameters that get
constrained the most by stability are the soft up (Higgs
mass, mHd

) and the Higgs doublets supersymmetric mass,
μD, both generally smaller than about 1 TeV for the data

points featuring a stable EW minimum. As a consequence,
both the lightest chargino and neutralino turn out to be
lighter than about 700 GeV for the same set of viable data
points. While these are eventually too heavy for detection at
LHC, one observable effect is that TESSM stable points
feature on average a larger deviation from the SM predicted
Higgs decay rate to diphoton than unstable points. We have
shown furthermore that fine-tuning within TESSM is on
average 26% higher after imposing the stability constraints,
somewhat offsetting the advantage for naturality of the tree-
level triplet contribution to the MSSM Higgs boson mass.
Finally, we conclude by highlighting the fact that the

stability constraints described in this paper, by ruling out a
large portion of the model’s parameter space and affecting
the superpartners mass spectrum, should be taken into
account in any phenomenological study of the triplet
extension of MSSM.
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APPENDIX: BETA FUNCTIONS

The beta functions at two loops in TESSM for the
Yukawa couplings yt, yb, yτ, λ, as well as for the gauge
couplings g3; g2 ¼ gL; g1 ¼

ffiffiffiffiffiffiffiffi
5=3

p
gY were already given in

Ref. [28], using the same superpotential and soft terms as in
Eqs. (2) and (6), so there is no need to write them again
here. The dimensionful couplings are μT , μH, M1, M2, M3,
bT , bH, hT , ht, hb, hτ, as well as the squared soft mass
parameters m2

T̂
, m2

Ĥu
, m2

Ĥd
, m2

Q̂
, m2

û, m
2
d̂
, m2

L̂
, m2

ê. Their beta

functions at one loop are defined by

dzx
dt

¼ βð1Þzx

16π2

for zx ¼ μT; μH;M1;M2;M3; bT; bH; hT; ht; hb; hτ;

t ¼ log
Λ

ΛEW
; ðA1Þ

and by

dzx
dt

¼ βð1Þx

16π2

for zx ¼ m2
T̂
; m2

Ĥu
; m2

Ĥd
; m2

Q̂
; m2

û; m
2
d̂
; m2

L̂
; m2

ê: ðA2Þ

In the renormalization scheme using dimensional reduction
(see Ref. [34] and references therein) with modified
minimal subtraction (DR), we find
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βð1ÞhT
¼ −

3

5
g21hT − 7g22hT þ 3hTy2b þ 3hTy2t þ hTy2τ þ

6

5
g21M1λT þ 14g22M2λT þ 6hbybλT þ 6htytλT þ 2hτyτλT þ 24hTλ2T;

ðA3Þ

βð1Þht
¼ −

13

15
g21ht − 3g22ht −

16

3
g23ht þ hty2b þ

26

15
g21M1yt þ 6g22M2yt þ

32

3
g23M3yt þ 2hbybyt þ 18hty2t þ 6hTytλT þ 3htλ2T;

ðA4Þ

βð1Þhb
¼ −

7

15
g21hb − 3g22hb −

16

3
g23hb þ

14

15
g21M1yb þ 6g22M2yb þ

32

3
g23M3yb þ 18hby2b þ 2htybyt þ hby2t

þ 2hτybyτ þ hby2τ þ 6hTybλT þ 3hbλ2T; ðA5Þ

βð1Þhτ
¼ −

9

5
g21hτ − 3g22hτ þ 3hτy2b þ

18

5
g21M1yτ þ 6g22M2yτ þ 6hbybyτ þ 12hτy2τ þ 6hTyτλT þ 3hτλ2T; ðA6Þ

βð1ÞμT ¼ μTð−8g22 þ 4λ2TÞ; βð1ÞμH ¼ μH

�
−
3

5
g21 − 3g22 þ 3y2b þ 3y2t þ y2τ þ 6λ2T

�
; ðA7Þ

βð1ÞM1
¼ 66

5
g21M1; βð1ÞM2

¼ 6g22M2; βð1ÞM3
¼ −6g23M3; ðA8Þ

βð1ÞbT
¼ −8g22bT þ 4bTλ2T þ 16g22M2μT þ 8hTλTμT; ðA9Þ

βð1ÞbH
¼ −

3

5
g21bH − 3g22bH þ 6hbybμH þ 3bHy2t þ 6bHλ2T þ bHy2τ þ 3bHy2b þ

6

5
g21M1μH þ 6g22M2μH þ 6htμHyt

þ 12hTμHλT þ 2hτμHyτ: ðA10Þ
By defining the quantity

S ¼ m2
Ĥu

−m2
Ĥd

þ 3m2
Q̂
− 6m2

û þ 3m2
d̂
− 3m2

L̂
þ 3m2

ê; ðA11Þ

we can write the square mass parameters’ beta functions as

βð1Þ
T̂

¼ 4λ2Tm
2
Ĥd

− 16g22M
2
2 þ 4hTλTμT þ 4h2T þ 4λ2Tm

2
Ĥu

þ 4m2
T̂
λ2T; ðA12Þ

βð1Þ
Ĥu

¼ 3

5
g21Sþ 6λ2Tm

2
Ĥd

−
6

5
g21M

2
1 − 6g22M

2
2 þ 6h2t þ 6h2T þ 6y2t m2

Ĥu
þ 6λ2Tm

2
Ĥu

þ 6m2
Q̂
y2t þ 6m2

ûy
2
t þ 2m2

T̂
λ2T; ðA13Þ

βð1Þ
Ĥd

¼ 6y2bm
2
Ĥd

þ 6y2bm
2
d̂
þ 6h2b þ 6y2bm

2
Q̂
þ 6λ2Tm

2
Ĥd

þ 2y2τm2
Ĥd

þ 2m2
êy

2
τ −

6

5
g21M

2
1 − 6g22M

2
2 −

3

5
g21S

þ 2h2τ þ 6h2T þ 6λ2Tm
2
Ĥu

þ 2m2
L̂
y2τ þ 2m2

T̂
λ2T; ðA14Þ

βð1Þ
Q̂

¼ 2y2bm
2
Ĥd

þ 2y2bm
2
d̂
þ 2h2b þ 2y2bm

2
Q̂
−

2

15
g21M

2
1 − 6g22M

2
2 −

32

3
g23M

2
3 þ

1

5
g21Sþ 2h2t þ 2y2t m2

Ĥu

þ 2m2
Q̂
y2t þ 2m2

ûy
2
t ; ðA15Þ

βð1Þû ¼ −
32

15
g21M

2
1 −

32

3
g23M

2
3 −

4

5
g21Sþ 4h2t þ 4y2t m2

Ĥu
þ 4m2

Q̂
y2t þ 4m2

ûy
2
t ; ðA16Þ

βð1Þ
d̂

¼ 4y2bm
2
Ĥd

þ 4y2bm
2
d̂
þ 4h2b þ 4y2bm

2
Q̂
−

8

15
g21M

2
1 −

32

3
g23M

2
3 þ

2

5
g21S; ðA17Þ

βð1Þ
L̂

¼ 2y2τm2
Ĥd

þ 2m2
êy

2
τ −

6

5
g21M

2
1 − 6g22M

2
2 −

3

5
g21Sþ 2h2τ þ 2m2

L̂
y2τ ; ðA18Þ

βð1Þê ¼ 4y2τm2
Ĥd

þ 4m2
êy

2
τ −

24

5
g21M

2
1 þ

6

5
g21Sþ 4h2τ þ 4m2

L̂
y2τ : ðA19Þ
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