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We use AdS/QCD to analyze the quark and gluon scalar and pseudoscalar condensates around static
color sources described by a circular Wilson loop. We also derive the static dipole-dipole interactions
between rectangular Wilson loops in AdS/QCD and discuss their relevance for static string interactions in
QCD at strong coupling.
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I. INTRODUCTION

QCD is the fundamental theory of strong interactions. It
has proven challenging in the infrared as its fundamental
constituents are confined. In this regime, the quarks and
gluons interact strongly and form strongly interacting
hadrons. Holographic QCD is an attempt to solve QCD
at a large number of colors Nc and strong t0 Hooft coupling
λ ¼ g2Nc, guided by the gauge/gravity duality observed in
string theory [1].
The gauge/gravity principle states that in the double

limits of a a large number of colors or strong coupling
(Nc ≫ λ ≫ 1) supersymmetric gauge theory is equivalent
to a one-higher dimensional gravity theory coupled to some
bulk fields that are dual to gauge invariant operators of
QCD. The conformal nature of the gauge theory is encoded
in an anti-de Sitter (AdS) space for gravity. Each of the
propagating field in bulk AdS is in one-to-one correspon-
dence with an operator in the field theory. Although the
correspondence is established for type IIB superstring
theory in AdS5 × S5, it is believed to hold for string theory
in a general background.
The string theory in curved backgrounds is in general

difficult to solve. However, at strong coupling the string
theory turns to aweakly coupled classical supergravitywhich
is tractable. The best established gauge/gravity dual corre-
spondence is for N ¼ 4 super-Yang—Mills (YM) theory,
which on the gravity side is described by a stack of Nc D3
branes sourcing an AdS5 metric in bulk. So far, there is no
exact gravity dual candidate of pure Yang—Mills or QCD.
The closest dual proposal from string theory is the Witten—
Sakai—Sugimoto model [2,3] based on a stack of D4 branes
withprobeD8branes using the so-called top-downapproach.
A more phenomenological or bottom-up approach was
originally suggested by Erlich, Katz, Son, and Stephanov
(EKSS) [4] and others [5]. We will refer to it as AdS/QCD.
In this paper we will use the bottom-up approach to

analyze the gluonic and fermionic condensates around
static color sources as circular Wilson loops. We will also

derive an explicit static dipole-dipole interactions between
rectangular Wilson loops. The study of the spatial distri-
bution of the quark condensates around rectangular Wilson
loops has been carried recently on the lattice [6] to under-
stand the faith of the chiral pairing in the vicinity of a flux
tube. These studies aim at probing the interplay between the
spontaneous breaking of chiral symmetry and confinement,
two key aspects of the QCD vacuum. Recent phenomeno-
logical analyses of Ref. [6] suggest the presence of a σ-
meson cloud around the QCD string [7]. A model analysis
in the Schwinger model was also suggested in Ref. [8].
Finally, the nature and strength of two small dipole-

dipole interactions in QCD may shed light on the character
of the static interactions between QCD strings. These
interactions are important in the QCD string-black hole
duality whether in thermal equilibrium or in high-energy
collisions [9] (and references therein). Static dipole-dipole
interactions have been discussed using YM instantons
[10,11] and N ¼ 4 SYM [12].
The outline of this paper is as follows. In Sec. 2, we

formulate the model. In Sec. 3, we define the minimal
circular loops and their coupling to the lowest dimensional
scalar. In Secs. 4 and 5, we analyze the scalar and
pseudoscalar quark condensates, the scalar and pseudoscalar
gluonic condensates around a heavy quark described by a
circular Wilson loop. Some critical remarks regarding our
analysis are given in Sec. 6. In Sec. 7, we construct the static
dipole-dipole potential in the confined phase and discuss its
qualitative structure in the Coulomb phase. Our conclusions
are in Sec. 8.

II. MODEL

The soft-wall version of the EKSS model consists of a
five-dimensional (flavor) gauge theory in a slice of AdS5
space-time. Assuming the gauge/gravity correspondence,
one introduces bulk fields dual to the gauge-singlet
operators in QCD. Specifically [13],
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with the dilaton background ϕ≡ k2z2, DX ¼ dX −
iALX þ iXAR, and the AdS5 gravity background metric

ds2 ¼ 1

z2
ð−dt2 þ dx2 þ dz2Þ ð2Þ

in units where the AdS radius is set to 1. The soft scale k is
set by the rho meson trajectory m2

n ¼ 4ðnþ 1Þk2 after
fitting the rho mass or k ¼ mρ=2 ¼ 385 MeV for n ¼ 1

[14]. Throughout, this scale will be set to 1 and restored
when needed by inspection. The gravity dual of any
confining gauge theory should have a bulk geometry that
caps off at a finite distance in the holographic direction as
first suggested by Polshinski and Strassler [15] in the so-
called hard-wall model. Here, the dilaton background
enforces that softly through a quadratic profile or soft wall.
The bulk fields correspond to the following QCD

operators at the boundary

Xij → q̄LiqRj

Aa
L;Rμ → q̄γμð1� γ5Þτaq; ð3Þ

which are the flavor scalars and left-right vector fields.
A comparison of the correlators on the boundary and in
the bulk shows that the bulk mass is related to the scaling
dimension Δ and spin p of the boundary operators.
Specifically,

m2
5 ¼ ðΔ − pÞðΔþ p − 4Þ: ð4Þ

For the scalar quark operator q̄q in QCD, Δ ¼ 3 and
m2

5 ¼ −3. For both the scalar and pseudoscalar gluon
operators F2 and F ~F in QCD, Δ ¼ 4 and m2

5 ¼ 0 (see
below). We note that the use of a warped background that
accounts for the breaking of conformality in modified
AdS/QCD changes the field strengths anomalous dimen-
sions [16]. It will not be pursued here.

III. HEAVY COLOR SOURCE AS A CIRCULAR
WILSON LOOP

We model a heavy color source on the boundary through
a circular Wilson loop of radius a. In the gauge/gravity
correspondence, the Wilson loop is described by a minimal
Nambu—Goto (NG) string in bulk with a circle as a
boundary. For small a in units of the AdS radius (set to
1 here), the minimal surface is

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − z2

p
cosφ ð5Þ

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − z2

p
sinφ: ð6Þ

The surface area in form notation is

dA ¼ adzdφ
z2

: ð7Þ

The coupling of the NG string as a circular loop of size a
to the flavor scalar is not known in the soft-wall model.
Since operators in QCD are only identified in bulk by their
anomalous dimension Δ and spin p, we suggest that the
bulk scalar-to-Wilson-loop coupling in the soft-wall model
can be borrowed from the analogous coupling in N ¼ 4
SYM. In the latter, various bulk fields follow from the
Kaluza-Klein reduction of type IIB supergravity on
AdS5 × S5. In particular the trace of the graviton (the
dilaton) contributes a scalar X in bulk with the same
dimension and free mass m2

5 ¼ −3 [12]. Since the graviton
couples naturally to the string world sheet, so does its trace
through [12]

1

2παNc

Z
dAð−6XÞ z

2

a2
ð8Þ

with 6 ¼ 2Δðq̄qÞ. Here α ¼ l2s , and the string tension
σT ¼ 1=2πα. The string coupling is gs ≡ 4πλ=Nc with
l4s ≡ λ in (walled) AdS5.

IV. QUARK CONDENSATES AROUND
A HEAVY COLOR SOURCE

The vacuum solution to the soft-wall EKSS model (1)
describes a scalar condensate. For that, we set AL ¼
AR ¼ 0 and choose Δ ¼ 3 and p ¼ 0 to describe the quark
condensate q̄q, so thatm2

5 ¼ −3. The equation of motion is

d
dz

�
e−B

d
dz

X0

�
þ 3

e−B

z2
X0 ¼ 0; ð9Þ

subject to the ultraviolet boundary condition

X�ðzÞ ¼ mzþ hq̄qiz3 þOðz4Þ: ð10Þ

Equation (9) admits a unique solution. The actual form of
X�ðzÞ is not needed for the analysis of (11) since the
fluctuations around it decouple thanks to the quadratic
nature of the action in X in (1).
It is now straightforward to estimate the amount of quark

condensate around a heavy color source represented by the
small circular Wilson loop described in the preceding
section. Specifically, the connected quark condensate is

hq̄qðxÞWðCÞic
hWðCÞi ¼ 1

2παNc

Z
dA

−6z2

a2z3�
Gðx;z;x�;z�Þ; ð11Þ

where ðx�; z� → 0Þ is the position of the quark operator on
the boundary as illustrated by the blob in Fig. 1.
Equation (11) is readily understood as the scalar quark
condensate around the Wilson loop.
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With this in mind, the Green function for the scalar field
X in the bulk admits a Fourier transform,

Gðx; z; x�; z�Þ ¼
Z

d4p
ð2πÞ4 e

−ip·ðx−x�ÞiGðp; z; z�Þ; ð12Þ

owing to space translational invariance, with a mode
decomposition,

Gðp; z; z�Þ ¼
X∞
n¼0

−iXnðzÞXnðz�Þ
p2 þm2

Xn
: ð13Þ

The modes in (13) are solutions to the equation of motion
for the X field in bulk after substituting X → e−ip·xX for
p2 ¼ m2

X or

d
dz

�
e−B

d
dz

X

�
þ 3

e−B

z2
X þm2

Xe
−BX ¼ 0 ð14Þ

with B ¼ z2 þ 3 lnz. Following Ref. [13], we define
X ¼ eB=2ψ and solve for ψ. Thus,

Xn ¼ eB=2ψn ¼ z3
ffiffiffiffiffiffiffiffiffiffiffi
2

1þ n

r
L1
nðz2Þ ð15Þ

with

m2
Xn ¼ 4nþ 9

2
: ð16Þ

Using (13)–(15) in (12), one can undo the p-integration
(12) in terms of Bessel functions. For equal times or
x ¼ ð0;xÞ,Z

d4p
ð2πÞ4

e−ip·x

p2 þm2
Xn

¼ mXn

4π2jxjK1ðmXnjxjÞ: ð17Þ

Thus,

hq̄qðxÞWðCÞic
hWðCÞi ¼ −12

ffiffiffi
λ

p

Nc

X∞
n¼0

Z
a

0

k6z3L1
nðz2k2Þ ×

mXnK1ðmXnk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2 − z2 − 2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − z2

p
cosϕ

q
Þ

ka
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2 − z2 − 2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − z2

p
cosϕ

q dzdϕ: ð18Þ

Assuming that the distance jx − x�j ≈ j0 − x�j≡ L between
the center of the loop and the probing scalar is large, we
may ignore the details of the shape of the loop and set
L1
nðz2Þ ≈ L1

nð0Þ ¼ nþ 1. The result after the z-integration is
(L=a ≫ 1)

hq̄qðxÞWðCÞic
hq̄qihWðCÞi ≈−

6πk6a3

hq̄qi

ffiffiffi
λ

p

Nc

X∞
n¼0

ðnþ1Þ ffiffiffiffiffiffiffiffiffi
mXn

p
Lk

K1ðmXnkLÞ;

ð19Þ

where the soft-wall scale k ¼ mρ=2 was reinstated. The
exponential falloff caused by the confining soft wall in (19)
is to be contrasted with the power falloff as 1=L6 forN ¼ 4
SYM [12] (see also below). The lowest scalar mass in the
exponent is mX0k ¼ 3mρ=2

ffiffiffi
2

p
≈ 817 MeV. Recall that in

AdS/QCD hq̄qi is an input through (10).
The pseudoscalar condensate q̄iγ5q around a Wilson

loop in AdS/QCD involves the dual axion field ξðx; zÞ in
the bulk [17]. This condensate can exist despite the absence
of CP violation around flux tubes. It is supported by the
dipole content generated by the probe Willson loop. The
axion contribution to the bulk action is similar to the action

for the X field above but only 1=N2
c suppressed. Therefore,

we may just assume that in AdS/QCD the bulk action for
the axion field is 1=N2

c that of the scalar in (1). The axion
coupling to the string world sheet is also 1=N2

c suppressed
with respect to (8) or

Sξ ¼
1

2παN3
c

Z
dAð−6ξÞ z

2

a2
: ð20Þ

A rerun of the preceding arguments for the scalar form
factor gives

hq̄iγ5qðxÞWi
hWðCÞi ≈−6πk6a3

ffiffiffi
λ

p

N3
c

X∞
n¼0

ðnþ1Þ ffiffiffiffiffiffiffiffiffi
mXn

p
Lk

K1ðmXnkLÞ;

ð21Þ

which is 1=N2
c suppressed in comparison to (19).

V. GLUON CONDENSATES AROUND A HEAVY
COLOR SOURCE

To probe the scalar gluon condensate around a heavy
quark source, we proceed through similar arguments by

FIG. 1. Circular Wilson loop probed by X ≡ hq̄qi at the
boundary. See the text.
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replacing q̄q with ðgFÞ2 ≡ F2 (Renormalization Group
Invariant). In bulk, the dual of the latter is a dilaton
fluctuation φ. Recall that in the bottom-up approach the
dilaton background is an input and not a solution to the
coupled gravitational equations. This notwithstanding,
the form of the action for φ is analogous to (1) for X
but with m2

5 ¼ 0 as noted earlier,

Sφ ¼
Z

d4xdz
ffiffiffiffi
−

p
ge−ϕð−jDφj2Þ: ð22Þ

The equation of motion for φ proceeds as before for both
the vacuum solution φ�ðzÞ through the ultraviolet-boundary
condition φ�ðzÞ ¼ Cþ hF2iz4 þOðz5Þ and normal modes
in the bulk

φn ¼ z4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð1þ nÞð2þ nÞ

s
L2
nðz2Þ ð23Þ

with

m2
φn ¼ 4nþ 13=2: ð24Þ

The coupling of the gluonic scalar to the string world
sheet in the Einstein frame is analogous to (8),

1

2παNc

Z
dA

1

2
φ; ð25Þ

without the extra minus sign and z-warping. A rerun of the
previous arguments yields for the gluonic condensate of the
Willson loop

hF2ðxÞWic
hF2ihWðCÞi

≈þ πk8a4

3hF2i

ffiffiffi
λ

p

Nc

X∞
n¼0

ðnþ 1Þðnþ 2Þ ffiffiffiffiffiffiffiffimφn
p

Lk
K1ðmφnkLÞ:

ð26Þ

The leading exponential decay is governed by the lowest
mass mφ0k ¼ ffiffiffiffiffiffiffiffiffiffi

13=8
p

mρ ≈ 982 MeV. As indicated earlier,
the gluon condensate hF2i is an input in AdS/QCD. We
note that when rotated to Euclidean space the left-hand side
in (26) does not change sign, while the right-hand side does
since hF2i → hF2iE < 0. This result is in overall agreement
with the results obtained through the field strength corre-
lator method [18] and quenched lattice results [19].
The topological gluonic condensate F ~F of the Wilson

loop in AdS/QCD can be sought along the same arguments
as the pseudoscalar form factor. The dual field χðx; zÞ is
represented by a bulk action that is similar to (22), but with
a coupling,

Sχ ¼
1

2παN3
c

Z
dAð−8χÞ z

2

a2
; ð27Þ

with 8 ¼ 2ΔðFF̄Þ, by analogy with the axion coupling
(20). A rerun of the preceding arguments for the topological
condensate of the circular Wilson loop yields

hF ~FðxÞWi
hWðCÞi

≈ −
4πk8a4

5

ffiffiffi
λ

p

N3
c

X∞
n¼0

ðnþ 1Þðnþ 2Þ ffiffiffiffiffiffiffiffimφn
p

Lk
K1ðmφnkLÞ;

ð28Þ

which is opposite to (26) and 1=N2
c suppressed. The

depletion of the topological charge near the Wilson loop
with a strong flux sheet is plausible, justifying a posteriori
the negative coupling in (27) by analogy with the axion
coupling. This result is also in overall agreement with
calculations using the field strength correlation method [18]
and quenched lattice results [19].

VI. REMARKS

In deriving (19) using the soft-wall model (1), we have
made some assumptions: 1) the dual X of q̄q has no
backreaction on the space-time geometry, and 2) its cou-
pling to the NG world sheet is the same as in N ¼ 4 SYM
[12]. Some of these issues can be overcome by introducing
the backreaction of X on the gravity sector using a more
realistic bottom-up approach to the gauge/gravity dual of
QCD such as Veneziano-QCD [20]. Specifically, the action
is now

S ¼ ðM3N2
cÞ
Z � ffiffiffiffiffiffi

−g
p �

R −
4

3

ð∂λÞ2
λ2

�
þ VgðλÞ

− xVfðλ; TÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgab þ hðλ; TÞ∂aT∂bT

p �
ð29Þ

with R the Ricci curvature for the metric g, λ the dilaton
field, and T the tachyon field. Vg;f are the gluonic and
sermonic potentials respectively with x ¼ Nf=Nc fixed at
large Nc. The ensuing equations of motion naturally couple
T and g. Recall that T is dual to the quark condensate at the
boundary:

Tijðx; zÞ≡mijðxÞzþ σijðxÞz3 þOðz4Þ: ð30Þ

To proceed, we need to solve for T subject to the boundary
condition (30) and find the metric g as a function of the
mass matrix mij. The knowledge of g½mij� allows the
construction of the minimal surface for the circular Wilson
loop or A½mij�. The scalar condensate in the presence of a
Wilson loop follows then through
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hq̄qðxÞWðCÞi ¼ δA½mij�
δmijðxÞ

ð31Þ

after settingmijðxÞ ¼ mδij. The local coupling to the string
world sheet will follow from

δA ¼
Z

dACðx; zÞδTðx; zÞ; ð32Þ

where Cðx; zÞ is a local function on the surface. For
L=a ≫ 1, it is sufficient to take Cð0; zÞ at the center of
the world sheet and use the tachyon-tachyon correlator
hδTð0; z�ÞδTðx; z0Þi for the Green function Gð0; z�; x; z0Þ.
This procedure is numerically involved and will be reported
elsewhere. Overall, we expect the results to be qualitatively
similar to the soft-wall result quoted above.

VII. STATIC DIPOLE-DIPOLE POTENTIAL

The dipole distribution around another dipole of size a is
best captured by the dipole-dipole potential. For simplicity,
consider static and equal size dipoles of spatial extension a
away from each other by a distance L. In QCD this dipole-
dipole potential was analyzed in the random-instanton
vacuum in Refs. [10,21] and more recently in N ¼ 4
SYM in Ref. [12]. We now address it in the context of the
soft-wall model. By definition the dipole-dipole potential
follows from the long time connected correlator

VðLÞ ¼ − lim
T→þ∞

1

T
ln

� hWðLÞWð0Þic
hWðLÞihWð0Þi

�
; ð33Þ

withWð0Þ andWðLÞ two identical and rectangular Willson
loops of width a and infinite time extent T, centered at 0
and L respectively.
In AdS/QCD and for L=a ≫ 1 and small dipole sizes a,

the minimal surface in the x; z plane is unaffected by the
soft wall. Thus, its shape is given by

�
dz
dx

�
2

¼ z4h
z4
−1; jx−xoj<a=2; z< zh;zh ∝ a ð34Þ

with x0 the center of the rectangular loop.
The scalar coupling X to the rectangular Wilson loops

now reads

1

2παNc

Z
dA

z2

z2h
ð−6XÞ ð35Þ

instead of (8). For L=a ≫ 1, we can use arguments similar
to those developed earlier to reexpress the connected
correlation function in (33) in terms of the scalar propagator
(12) folded with the couplings to the respective couplings
(35) on the world sheets. The result for the potential is

VðLÞ ≈ −4πk5a4
λ

N2
c

X∞
n¼1

ðnþ 1ÞmXn

kL
K1ðkmXnLÞ ð36Þ

with k ¼ mρ=2. The overall minus sign follows from (33).
The n ¼ 1 leading contribution asymptotically to (36) is

VðLÞ ≈ −
π

3
2mX1

2

λ

N2
c

ðamρÞ4
L

e−mX1mρL=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mX1mρL

p ð37Þ

with mX1 ¼
ffiffiffiffiffiffiffiffiffiffi
17=2

p
from (16). The scalar exchange is

attractive and exponentially suppressed in the confined
phase. The result (36) is to be compared to −a4=L5 in
N ¼ 4 SYM [12] (see below).
Although we only considered the exchange of the lowest

dimensional scalar X in deriving (36), additional exchanges
in the form of gravitons and B-fields are also expected. In
the soft-wall model considered here, they are characterized
by similar couplings but their boundary squared masses are
all larger than the 9k=2 for the scalar in (16). Indeed, the
squared mass of the dilaton is 13k=2 as in (24), while that
of the graviton is 8k, both of which are heavier.
It is instructive to derive the results in the nonconfin-

ing or Coulomb phase using the qualitative arguments
developed in Refs. [10,21]. Indeed, in N ¼ 4, the
composite coupling for the Δ ¼ 2 operator made of two
adjoint scalars ΦΦ each with coupling gΦ to a heavy quark
or Wilson loop follows from second-order perturbation
theory or j < 0jgΦj1 > j2=ΔE ≈ ða ffiffiffi

λ
p

=NcÞðΦΦÞ with the
energy splitting ΔE ≈

ffiffiffi
λ

p
=a at strong coupling [1].

Inserting these operators between a heavy quark-antiquark
pair at a distance L as shown in Fig. 2 (left) yields the
potential

VΦΦðLÞ ≈ −
�
a

ffiffiffi
λ

p

Nc

�2 Z
dτ

�
1

L2 þ τ2

�
2

≈ −
λa2

N2
cL3

: ð38Þ

The composite coupling for theΔ ¼ 4 operator made of say
two adjoint electric gluons E2 each with coupling gaE is
a3

ffiffiffi
λ

p
=NcE2. From Fig. 2 (right), a rerun of the preceding

arguments yields the potential

VFFðLÞ ≈ −
�
a3

ffiffiffi
λ

p

Nc

�2 Z
dτ

�
1

L2 þ τ2

�
4

≈ −
λa6

N2
cL7

: ð39Þ

FIG. 2. Static dipole-dipole interactions: ΦΦ exchange (left),
ΦF exchange (middle), and FF exchange (right). See the text.
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The composite coupling for Δ ¼ 3 follows from the
cross term arising from the second-order perturbative
expression or jh0jðgΦþ ga · EÞj1ij2=ΔE leading toffiffiffi
λ

p
a2=NcΦE. The dipole-dipole potential is then

VΦFðLÞ ≈ −
�
a2

ffiffiffi
λ

p

Nc

�2 Z
dτ

�
1

L2 þ τ2

�
3

≈ −
λa4

N2
cL5

ð40Þ

(38)–(40) summarize to

VΔðLÞ ¼ −CðΔÞ λa2Δ−2

N2
cL2Δ−1 ð41Þ

in agreement with the result in Ref. [12]. The overall
constant CðΔÞ is beyond the qualitative nature of our
arguments. Its precise value can be found in Ref. [12]
using a more detailed analysis. For completeness, we quote
its value

CðΔÞ ¼ Γð1=4Þ4Δ−4
322Δþ9π3Δ−7=2

×
ðΔ − 1Þ2ðΔ − 2Þ2ðΔ − 3ÞΓðΔ − 1=2ÞΓðΔ−1

4
Þ4

ΓðΔÞΓðΔ−1
2
Þ2 :

ð42Þ

VIII. CONCLUSIONS

To probe flux tubes in QCD is notoriously hard outside
lattice simulations. We have suggested the gauge/gravity
correspondence as a simple framework for addressing this
issue. We have represented static color charges by circular
Wilson loops and shown how to probe the analog of the
chiral and gluon condensate around these charges.
In AdS/QCD, the scale is set by the rho mass mρ. The

quark clouds are dominated by the exchange of a light mass
of order 3mρ=2

ffiffiffi
2

p
, while the gluonic clouds involves a

light mass of order
ffiffiffiffiffiffiffiffiffiffi
13=8

p
mρ. The quark and pseudoscalar

gluon clouds are depleted by the heavy quark source
(negative contribution), while the scalar gluon cloud is
enhanced by the heavy quark source (positive contribu-
tion). Their strong coupling to the heavy quark world sheet
as a loop of radius a is generically ð−am2

ρÞΔ
ffiffiffi
λ

p
=Nc with

Δ ¼ 3; 4 for the scalar quark and gluon insertions respec-
tively. The pseudoscalar gluon coupling is 1=N2

c the scalar
gluon coupling.
The depletion of the scalar quark condensate around a

rectangular Wilson loop was noted in the recent lattice
simulations [6]. The depletion of the scalar and pseudo-
scalar gluon condensates around a confining string was
observed using the field strength correlator method [18]
and also quenched lattice simulations [19]. These is strong
support for our AdS/QCD analysis. It would be interesting
to assess the pseudoscalar quark condensate in the same
simulations for a comparison with our final results.
The interaction between small size and static dipoles in

the present holographic construction provides us with some
insight into the nature of the static interactions between
QCD strings in both the confined and Coulomb phases. In
AdS/QCD, the interaction is attractive and dipolelike in the
Coulomb phase, of the form −λa2Δ−2=N2

cL2Δ−1. In QCD,
the dominance of the Δ ¼ 3 or quark exchange (q̄q) and
Δ ¼ 4 or glueball exchange (F2) is likely to saturate the
dipole-dipole exchange at large distances with an edge for
the light scalar exchange or Δ ¼ 3 [7]. Dynamical strings
involve both static and nonstatic or velocity-dependent
potentials. The latter are outside the scope of this work.

ACKNOWLEDGEMENTS

We would like to thank Ionannis Iatrakis and Edward
Shuryak for discussions. We thank Maxim Chernodub for
bringing Refs. [18,19] to our attention after posting our
paper. This work was supported by the U.S. Department of
Energy under Contract No. DE-FG-88ER40388.

[1] J. M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998).
[2] E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998).
[3] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843

(2005); T. Sakai and S. Sugimoto, Prog. Theor. Phys. 114,
1083 (2005).

[4] J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, Phys.
Rev. Lett. 95, 261602 (2005).

[5] L. Da Rold and A. Pomarol, Nucl. Phys. B721, 79
(2005).

[6] T. Iritani, G. Cossu, and S. Hashimoto, Proc. Sci. Hadron
2013, 159 (2014).

[7] T. Kalaydzhyan and E. Shuryak, Phys. Rev. D 90, 025031
(2014).

[8] D. E. Kharzeev and F. Loshaj, Phys. Rev. D 90, 037501
(2014).

[9] E. Shuryak and I. Zahed, Phys. Rev. D 89, 094001 (2014).
[10] E. V. Shuryak and I. Zahed, Phys. Rev. D 69, 014011

(2004).
[11] M. Giordano and E. Meggiolaro, Phys. Rev. D 81, 074022

(2010).
[12] D. E. Berenstein, R. Corrado, W. Fischler, and J. M.

Maldacena, Phys. Rev. D 59, 105023 (1999).

YIZHUANG LIU AND ISMAIL ZAHED PHYSICAL REVIEW D 91, 055001 (2015)

055001-6

http://dx.doi.org/10.1103/PhysRevLett.80.4859
http://dx.doi.org/10.1143/PTP.113.843
http://dx.doi.org/10.1143/PTP.113.843
http://dx.doi.org/10.1143/PTP.114.1083
http://dx.doi.org/10.1143/PTP.114.1083
http://dx.doi.org/10.1103/PhysRevLett.95.261602
http://dx.doi.org/10.1103/PhysRevLett.95.261602
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.009
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.009
http://dx.doi.org/10.1103/PhysRevD.90.025031
http://dx.doi.org/10.1103/PhysRevD.90.025031
http://dx.doi.org/10.1103/PhysRevD.90.037501
http://dx.doi.org/10.1103/PhysRevD.90.037501
http://dx.doi.org/10.1103/PhysRevD.89.094001
http://dx.doi.org/10.1103/PhysRevD.69.014011
http://dx.doi.org/10.1103/PhysRevD.69.014011
http://dx.doi.org/10.1103/PhysRevD.81.074022
http://dx.doi.org/10.1103/PhysRevD.81.074022
http://dx.doi.org/10.1103/PhysRevD.59.105023


[13] A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, Phys.
Rev. D 74, 015005 (2006).

[14] H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D 76,
095007 (2007).

[15] J. Polchinski and M. J. Strassler, J. High Energy Phys. 05
(2003) 012.

[16] J. W. Powell, Phys. Rev. D 88, 065001 (2013).
[17] U. Gursoy and E. Kiritsis, J. High Energy Phys. 02 (2008)

032.

[18] M. N. Chernodub and I. E. Kozlov, Phys. Lett. B 661, 220
(2008).

[19] F. Bissey, F. G. Cao, A. R. Kitson, A. I. Signal, D. B.
Leinweber, B. G. Lasscock, and A. G. Williams, Phys.
Rev. D 76, 114512 (2007).

[20] M. Jarvinen and E. Kiritsis, J. High Energy Phys. 03
(2012) 002.

[21] E. Shuryak and I. Zahed, Phys. Rev. D 69, 046005
(2004).

PROBING WILSON LOOPS IN ADS/QCD PHYSICAL REVIEW D 91, 055001 (2015)

055001-7

http://dx.doi.org/10.1103/PhysRevD.74.015005
http://dx.doi.org/10.1103/PhysRevD.74.015005
http://dx.doi.org/10.1103/PhysRevD.76.095007
http://dx.doi.org/10.1103/PhysRevD.76.095007
http://dx.doi.org/10.1088/1126-6708/2003/05/012
http://dx.doi.org/10.1088/1126-6708/2003/05/012
http://dx.doi.org/10.1103/PhysRevD.88.065001
http://dx.doi.org/10.1088/1126-6708/2008/02/032
http://dx.doi.org/10.1088/1126-6708/2008/02/032
http://dx.doi.org/10.1016/j.physletb.2008.01.066
http://dx.doi.org/10.1016/j.physletb.2008.01.066
http://dx.doi.org/10.1103/PhysRevD.76.114512
http://dx.doi.org/10.1103/PhysRevD.76.114512
http://dx.doi.org/10.1007/JHEP03(2012)002
http://dx.doi.org/10.1007/JHEP03(2012)002
http://dx.doi.org/10.1103/PhysRevD.69.046005
http://dx.doi.org/10.1103/PhysRevD.69.046005

