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We investigate the properties of S- and P-wave bottomonium states in the vicinity of the deconfinement
transition temperature. The light degrees of freedom are represented by dynamical lattice quantum
chromodynamics (QCD) configurations of the HotQCD collaboration with Nf ¼ 2þ 1 flavors.
Bottomonium correlators are obtained from bottom quark propagators, computed in nonrelativistic
QCD under the background of these gauge field configurations. The spectral functions for the 3S1 (ϒ) and
3P1 (χb1) channel are extracted from the Euclidean time correlators using a novel Bayesian approach in the
temperature region 140 MeV ≤ T ≤ 249 MeV and the results are contrasted to those from the standard
maximum entropy method. We find that the new Bayesian approach is far superior to the maximum entropy
method. It enables us to study reliably the presence or absence of the lowest state signal in the spectral
function of a certain channel, even under the limitations present in the finite temperature setup. We find that
χb1 survives up to T ¼ 249 MeV, the highest temperature considered in our study, and put stringent
constraints on the size of the medium modification of ϒ and χb1 states.
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I. INTRODUCTION

Heavy quarkonium plays an important role in furthering
our quantitative understanding of quantum chromodynam-
ics (QCD) and has been the focus of many experimental
and theoretical studies. In particular the large heavy quark
mass, relative to the intrinsic scales of its environment,
provides a basis for various effective field theory (EFT)
descriptions and allows us to disentangle the short distance
perturbative aspects from the nonperturbative long distance
effects in QCD [1–3].
The in-medium modification of quarkonium properties,

the most dramatic being its melting, has been suggested as a
clean signature of quark-gluon plasma (QGP) formation
in heavy-ion collisions [4–6]. In our current understanding,
the medium screens the interactions between the heavy
quark-antiquark pair (Debye screening) and hence weakens
the binding between them. Scattering of medium partons off
the gluons, which mediate the interquark binding (Landau
damping) [7–9] and absorption of gluons from the medium
(singlet-octet transitions) [9] further disturbs the bound state.
Ultimately the combination of these effects will prevent the
existence of quarkonium states as temperature and/or density
increases. Such mechanisms may experimentally manifest
themselves as reduced production rates of heavy quarko-
nium. Early experiments indeed confirmed J=ψ suppression
[10] but it was soon discovered that the actual charmonium

production in nuclear collision is far more complicated [11]
than a simple screening argument suggests.
There are many competing processes that lead to a

modification of the measured yields: cold nuclear matter
effects, shadowing, gluon saturation and even regeneration
of charmonium (instead of suppression) may occur [12].
Thus, careful understanding of each effect is necessary
before charmonium suppression, seen in experiments,
can be attributed to QGP formation. In this regard, the
bottomonium system may turn out to be a more appropriate
candidate to investigate the physics of melting. The bottom
quark mass is significantly heavier than the charm quark
mass and hence the effects of the medium modification are
expected to be dominant over e.g. regeneration.
Interestingly, the CMS experiment at the LHC discovered

a clear pattern of “sequential suppression” among the ϒ
states: the dimuon distribution around the ϒ mass in lead-
lead collisions, compared to that in proton-proton collisions,
revealed a substantial reduction of ϒð2SÞ=ϒð1SÞ and
ϒð3SÞ=ϒð1SÞ production rates [13,14].
One way of exploring the in-medium modification

of bottomonium from first principles is to use a lattice
regularized form of nonrelativistic QCD (NRQCD)
[15–17], an effective field theory of QCD. It is formulated
using nonrelativistic Pauli spinors, which propagate in the
background of otherwise relativistic medium gauge fields,
defined on a spacetime lattice. Below the heavy quark mass
scale, observables of QCDwhich are dominated by infrared
physics are well reproduced within this effective descrip-
tion. The nonperturbative character of lattice NRQCD is
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well suited for the regime where T is only slightly larger
than the transition temperature (in which the strong
interactions can still be considered strong [18,19]).
Being based on an expansion of the QCD action, the
effective description can be systematically improved to
reproduce more and more closely relativistic QCD itself.
If one further assumes that the inverse size of the

heavy quark bound states is much larger than the binding
energy, another effective theory, namely potential NRQCD
(pNRQCD) can be constructed. The potentials entering in
this EFT can be related to Wilson loops and in the simplest
formulation one encounters a quantummechanical problem
[7–9,20,21]. Depending on the relation between inverse
size and the temperature of the system, the potentials can be
also temperature dependent. However, the scale separation
required for utilizing pNRQCD is more difficult to justify
and in this sense NRQCD is more robust.
Recent lattice studies of in-medium bottomonium on

anisotropic lattices at nonzero temperature concluded that
the ground state ð1SÞ peak of the ϒ spectral function
(obtained from the maximum entropy method (MEM)
[22,23]) survives up to ∼2Tc, and the excited state
ð2S; 3SÞ peaks in this vector channel spectral function
disappear gradually as the temperature increases above Tc
[24–26]. A study of P-wave bottomonium states, such as
χb1, in lattice NRQCD using the MEM furthermore
concluded that the ground state “melts” almost immediately
above Tc [24,26,27]. It has to be kept in mind however that
e.g. the pion mass in these studies remained rather heavy
with Mπ ≃ 400 MeV.
In this work, we report on a lattice NRQCD study of

bottomonium in 2þ 1 flavor QCD below and above the
chiral transition using HotQCD configurations, generated
with highly improved staggered quark (HISQ) action on
isotropic 483 × 12 lattices [28] (see a preliminary report in
[29]). The gauge configurations have been generated for a
physical value of the strangle quark mass ms and light
quark masses ml ¼ ms=20 that in the continuum limit
correspond to the pion mass of Mπ ¼ 161 MeV, only
slightly above the physical pion mass of 140 MeV.
Previous lattice NRQCD studies at nonzero temperature

used a fixed lattice scale approach, where the inverse
temperature is available only at integer steps. Here we
achieve a finer temperature scan by changing the lattice
spacing instead. Note that at each coupling an accompany-
ing zero temperature lattice simulation is required to set the
absolute energy scale.
An accurate and precise extraction of spectral functions

using the standard MEM is difficult, since the number of
lattice points in imaginary time direction is typically small.
More importantly it is the extent of the imaginary time in
physical units that decreases with increasing temperature.
The underlying technical reason is that the small number of
lattice sites in temporal direction ðNτ ¼ 12Þ limits the
number of basis functions available in the MEM search
space, which relies on a singular value decomposition.

Instead, we deploy a new Bayesian method [30,31] and
compare its results with those obtained using conventional
Bryan’s MEM. Based on the same data, the new method
produces in general sharper, i.e. more highly resolved
spectral features for both ϒ and χb1 and allows better
control over most of the systematic errors associated with
the spectral function reconstruction. While systematic
uncertainties resulting from a small Nτ still prevent us
from providing quantitative estimates of the in-medium
mass shifts and widths, the higher precision allows us to put
stringent upper limits on these effects.
Despite the difference, ϒ spectral functions from the

improved Bayesian method and those from MEM both
show a similar qualitative temperature dependence: the
ground state peak of the ϒ channel survives up to the
highest temperature studied (T ¼ 249 MeV). For
the P-wave channel, the difference is more substantial.
The first peak in the χb1 spectral function obtained
from the improved Bayesian method survives to
249 MeV but in the result based on the MEM it
disappears for T ≳ 211 MeV.
In the first part of Sec. II we briefly review the lattice

formulation of NRQCD and specify pertinent technical
details underlying the measurements of the bottomonium
correlators. The second part contains the basics of the novel
Bayesian method, which we deploy in the extraction of the
bottomonium spectra. Section III describes the calibration
of the NRQCD mass scale carried out on low temperature
lattices, while in Sec. IV we present the central results of
our study, the spectral properties of in-medium bottomo-
nium at temperatures around the deconfinement transition
temperature. We end the main part of the manuscript in
Sec. V with concluding remarks. The systematic uncer-
tainties of the spectral reconstructions, as well as depend-
encies on the NRQCD discretization are investigated and
discussed in Appendixes A and B respectively.

II. NUMERICAL METHODS

A pronounced separation of scales invites the use
of effective field theoretical methods for the description
of in-medium bottomonium. Indeed, the heavy quark mass
Mb ≃ 4.6 GeV [32] and the intrinsic scale of QCD
ΛQCD ∼ 200 MeV, as well as the typical momentum
exchange within a possible bound state lie widely apart.
The presence of a thermal medium introduces an additional
scale T, which however also lies well below the bottom
quark rest mass in current heavy-ion collision experiments.
In an EFT, the physics above the energy of interest is

integrated out [2], which requires one to determine the
relevant degrees of freedom within the hierarchy of scales
present in the system. To avoid the intricacies of relative
scale ordering in the presence of finite temperature, we will
deploy here a lattice regularized version of NRQCD, where
only the hard scale Mb, i.e. the bottomonium rest mass is
integrated out. The heavy quarks appear as nonrelativistic
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Pauli spinors, which propagate under the background of the
light medium degrees of freedom (in our case gluons, up,
down and strange quarks), which themselves are in thermal
equilibrium.
The nonperturbative character of the EFT description is

of the essence, since close to the transition temperature
the QGP still remains strongly correlated and temperature
effects on the binding dynamics (∼Mbv), which are our
main interest, will not be perturbative.

A. Lattice NRQCD

In order to investigate the properties of bottomonium
in a thermal medium, we compute the correlators of heavy

quarkonium using a lattice discretization of the Oðv4Þ
NRQCD Lagrangian [16,33,34] for bottom quarks,

L ¼ L0 þ δL; ð1Þ

with

L0 ¼ ψ†
�
Dτ −

D2

2Mb

�
ψ þ χ†

�
Dτ þ

D2

2Mb

�
χ; ð2Þ

and

δL ¼ −
c1
8M3

b

½ψ†ðD2Þ2ψ − χ†ðD2Þ2χ� þ c2
ig

8M2
b

½ψ†ðD ·E −E ·DÞψ þ χ†ðD ·E − E · DÞχ�

− c3
g

8M2
b

½ψ†σ · ðD ×E −E ×DÞψ þ χ†σ · ðD ×E −E × DÞχ� − c4
g

2Mb
½ψ†σ · Bψ − χ†σ ·Bχ�:

Here Dτ and D are gauge covariant temporal and spatial
derivatives, ψ denotes the heavy quark and χ denotes the
heavy antiquark. From the discretized version of Eq. (1),
the lattice NRQCD propagator for the bottom quark is
computed as an initial value problem,

Gðx; τ0Þ ¼ SðxÞ;

Gðx; τ1Þ ¼
�
1 −

H0

2n

�
n
U†

4ðx; 0Þ
�
1 −

H0

2n

�
n
Gðx; 0Þ;

Gðx; τiÞ ¼
�
1 −

H0

2n

�
n
U†

4ðx; τi−1Þ
�
1 −

H0

2n

�
n

× ð1 − δHÞGðx; τi−1Þ: ð3Þ

SðxÞ denotes an appropriate complex valued random point
source, diagonal in spin and color, which is used to improve
the signal-to-noise ratio. In the continuum formulation the
initial condition forGðx; τÞ corresponds to a delta function,
which we approximate on the lattice through averaging
multiple correlators, started from random sources on differ-
ent slices τstart along Euclidean time e.g.

Sϒðx;τstartÞ¼ηðx;τstartÞ; hη†ðxÞηðx0Þiτstart ¼ δxx0 : ð4Þ

The lowest-order Hamiltonian reads

H0 ¼ −
Δð2Þ

2Mb
; ð5Þ

while

δH ¼ −
ðΔð2ÞÞ2
8M3

b

þ ig
8M2

b

ðΔ� · E −E · Δ�Þ

−
g

8M2
b

σ · ðΔ� ×E −E × Δ�Þ

−
g

2Mb
σ ·Bþ a2Δð4Þ

24Mb
−
aðΔð2ÞÞ2
16nM2

b

: ð6Þ

Here, n denotes a parameter, which controls the effective
temporal step size in Euclidean time, when propagating the
Green’s function on the lattice. Choosing an appropriate
value is essential to the stability of the high momentum
behavior of the propagatorG. We use n ¼ 2, in anticipation
of the characteristic values ofMbas, which will arise on the
lattices used in this study. We have checked by varying the
parameter n up to values of four that the choice n ¼ 2
already allows us to capture the bottomonium bound state
physics in a robust manner. A detailed description of these
tests can be found in Appendix B.
The lattice covariant derivative Δ is defined as

aΔþ
i ψðx; τÞ ¼ Uiðx; τÞψðxþ îa; τÞ − ψðx; τÞ

aΔ−
i ψðx; τÞ ¼ ψðx; τÞ − U†

i ðx − îa; τÞψðx − îa; τÞ

Δð2Þ ¼
X3
i¼1

Δþ
i Δ−

i ;

Δð4Þ ¼
X3
i¼1

ðΔþ
i Δ−

i Þ2; ð7Þ

and the chromoelectric ðEÞ and the magnetic field ðBÞ are
defined from clover-leaf plaquettes. The last two terms of
Eq. (6) correct for finite lattice spacing errors. Tadpole
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improvement of the gauge link variable using the fourth
root of a single link plaquette [35] (listed in Table II) is
adopted and ci in Eq. (3) is set to the tree-level value (¼ 1).
The bottom quark mass is not tuned using the NRQCD
dispersion relation. Instead,Mba for each lattice spacing is
set using Mb ¼ 4.65 GeV in the computation (listed in
Table II).
In this work, a partial set of gauge configurations in 2þ1

flavor QCD is used, which is based on the HISQ action
with physical strange quark mass, ms and light quark
masses ml ¼ ms=20 corresponding to a pion mass of
161 MeV in the continuum limit. For the calculations at
nonzero temperature the lattice size amounts to 483 × 12.
These configurations were generated for the study of the
finite temperature QCD phase transition described in [28].
The chiral transition temperature in the continuum limit
was determined to be 154(9) MeV [28]. On Nτ ¼ 12
lattices used in this study, the central value of the transition
temperature is slightly larger, Tc ¼ 159ð3Þ MeV, but still is
compatible with the above number within errors. In the
following discussion we will use the value Tc ¼ 154 MeV
and often quote the temperature in units of Tc. The lattice
parameters are given in Tables I–II. At T > 0 we estimate
the correlators on 400 gauge configurations, while at T ≃ 0
we use 100 configurations at our disposal.

After gauge fixing into Coulomb gauge, we calculate the
bottom quark Green function and subsequently determine
the bottomonium correlators

Dðx; τÞ ¼
X
x0

hOðx; τÞGðx; τÞO†ðx0; τ0ÞG†ðx; τÞimed

for each channel

Oð3S1;x;τÞ¼σi; Oð3P1;x;τÞ¼Δ
↔

s
iσj−Δ

↔
s
jσi; ð8Þ

with χ†Δ
↔

s
iψ ¼ −½1

4
ðΔþ

i þ Δ−
i Þχ�†ψ þ χ†½1

4
ðΔþ

i þ Δ−
i Þψ � as

defined (unfortunately with a typo) in [15]. For example,
the ϒ channel correlator is computed explicitly as

hðχ†aðσxÞabψbðx0ÞÞ†χ†cðσxÞcdψdðxÞi ¼ 2hGþþðx0; xÞ†G−−ðx0; xÞ þGþ−ðx0; xÞ†G−þðx0; xÞi
hðχ†aðσyÞabψbðx0ÞÞ†χ†cðσyÞcdψdðxÞi ¼ 2hGþþðx0; xÞ†G−−ðx0; xÞ −Gþ−ðx0; xÞ†G−þðx0; xÞi
hðχ†aðσzÞabψbðx0ÞÞ†χ†cðσzÞcdψdðxÞi ¼ hGþþðx0; xÞ†Gþþðx0; xÞ þ G−−ðx0; xÞ†G−−ðx0; xÞ

−Gþ−ðx0; xÞ†Gþ−ðx0; xÞ − G−þðx0; xÞ†G−þðx0; xÞi; ð9Þ

where þð−Þ denotes the spin-up (spin-down) component and h� � �i refers to the average over the thermal ensemble.

Similarly by using χ†Δ
↔

iψ ≡ χ†Δiψ − Δiχ
†ψ we have for the χb1 channel

h½χ†aðΔ
↔

iðσjÞab − Δ
↔

jðσiÞabÞψbðx0Þ�
†
χ†cðΔ

↔

iðσjÞcd − Δ
↔

jðσiÞcdÞψdðxÞi
¼ htr½G†ðx0; xÞσiΔjGVðx0; x; jÞσi�i − htr½GV

†ðx0; x; jÞσiΔjGðx0; xÞσi�i þ htr½G†ðx0; xÞσjΔiGVðx0; x; iÞσj�i
− htr½GV

†ðx0; x; iÞσjΔiGðx0; xÞσj�i − htr½G†ðx0; xÞσiΔjGVðx0; x; iÞσj�i þ htr½GV
†ðx0; x; jÞσiΔiGðx0; xÞσj�i

− htr½G†ðx0; xÞσjΔjGVðx0; x; iÞσi�i þ htr½GV
†ðx0; x; jÞσjΔiGðx0; xÞσi�i:

Computational cost is reduced by using point split sources (along the ith direction), from which the propagator GVðx0; x; iÞ
is evolved. “tr” refers to a color and spin trace.

TABLE I. List of parameters for the T ≃ 0 lattice configura-
tions, used to calibrate the NRQCD energy shift.

β Volume T [MeV] a [fm] u0 Mba

6.664 323 × 32 52.7 0.117 0.87025 2.76
6.800 323 × 32 59.9 0.103 0.874849 2.42
6.950 323 × 32 69.0 0.0893 0.879442 2.11
7.280 483 × 64 46.6 0.0660 0.88817 1.56

TABLE II. List of parameters for the T > 0 lattice configura-
tions used in extracting the in-medium bottomonium spectral
functions.

β T T=Tc a (fm) u0 Mba

6.664 140 0.911 0.117 0.87025 2.76
6.700 145 0.944 0.113 0.87151 2.67
6.740 151 0.980 0.109 0.87288 2.57
6.770 155 1.01 0.106 0.87388 2.50
6.800 160 1.04 0.103 0.87485 2.42
6.840 166 1.08 0.0989 0.87612 2.34
6.880 172 1.12 0.0953 0.87736 2.25
6.910 177 1.15 0.0926 0.87827 2.19
6.950 184 1.19 0.0893 0.87945 2.11
6.990 191 1.24 0.086 0.88060 2.03
7.030 198 1.29 0.0829 0.88173 1.96
7.100 211 1.37 0.0777 0.88363 1.84
7.150 221 1.44 0.0743 0.88493 1.75
7.280 249 1.61 0.0660 0.88817 1.56
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B. Bayesian spectral reconstruction

While our goal is to determine the spectral properties of
in-medium bottom quark-antiquark pairs, lattice QCD only
provides us with correlation functions in Euclidean time.
In the particular case of NRQCD bottomonium correlators
DðτÞ, the sought after spectral functions ρðωÞ can be
extracted via the inversion of the following integral
relation:

DðτÞ ¼ Dðp ¼ 0; τÞ ¼
X
x

Dðx; τÞ ¼
Z

∞

−2Mq

dωe−ωτρðωÞ:
ð10Þ

The exponentially damped integral Kernel Kðτ;ωÞ ¼
exp½−ωτ� is temperature independent, which alleviates the
“constant contribution” problem [36–38]. Since NRQCD is
an effective nonrelativistic description of bottomonium
physics, it implicitly contains a shift in energies to the
two-quark threshold 2Mq (up to renormalization).
Obviously the introduction of a spacetime regularization

as the basis for lattice QCD simulations only allows us to
obtain the correlation function at Nτ discrete steps of
Euclidean time. Furthermore the stochastic character of
the Monte Carlo algorithm involved in generating the
lattice configurations entails that only estimates of finite
precision can be calculated for each observable. Hence the
inversion of Eq. (10) becomes inherently ill defined, as we
attempt to extract the spectral features of thermal botto-
monium along Nω ≫ Nτ frequencies from a finite number
of noisy data points.
One possibility to give meaning to the inversion is by

making use of prior knowledge in addition to the measured
data. Bayes theorem

P½ρjD; I� ∝ P½Djρ; I�P½ρjI� ð11Þ

provides the mathematical framework to do so. Here the
likelihood probability P½Djρ; I� ¼ exp½−L� is given by

L½ρ� ¼ 1

2

X
ij

ðDi −Dρ
i ÞCijðDj −Dρ

jÞ ð12Þ

where Cij denotes the covariance matrix of the measured
data and

Dρ
i ¼

XNω

l¼1

exp½−ωlτi�ρlΔωl ð13Þ

denotes the Euclidean correlator, which would result
from our current choice ρ. We also enforce the additional
constraint L ¼ Nτ, since the correct spectral functions lead
to an L value of comparable magnitude. If we were to
attempt a naive χ2 fit, i.e. to maximize the likelihood alone,
one encounters an infinite number of degenerate solutions

that all reproduce the data points Di within their errors.
Taking into account prior knowledge allows us to regularize
the χ2 fit. The particular functional form of the prior
probability P½ρjI� ¼ exp½S� selects from the degenerate
maximum likelihood solutions a single one that represents
the most likely spectrum given the measured data and our
prior information.
In this study we use a prior functional S, which has

recently been proposed, based on the following three
conditions: (1) it enforces that the spectrum is positive
definite, (2) it guarantees that the choice of units for ρðωÞ
remains irrelevant for the end result, and (3) that the
reconstructed spectrum is a smooth function except where
data introduce peaked structures

S½ρ� ¼ α
X
l

�
1 −

ρl
ml

þ log
hρl
ml

i�
Δωl: ð14Þ

Note that this expression differs from the Shannon-Jaynes
entropy used in the maximum entropy method.
The function mðωlÞ ¼ ml residing within S is called the

default model and by definition corresponds to the correct
spectrum in the absence of data. Since we do not assume
any additional knowledge beyond positive definiteness
and smoothness, we will use a constant mðωÞ ¼ const.
in the following. As we also measure the data point at
τ ¼ 0, which encodes the normalization of the spectrum,
we adjust the overall magnitude of the default model
accordingly. The dependence of the results on different
choices of mðωÞ is investigated in Appendix A.
The hyperparameter α, which controls the weighting of

the data versus prior information is taken into account in a
Bayesian fashion. In the new Bayesian method deployed
here, it is integrated out using a flat overall hyperprior.

P½ρjD; I� ¼ P½DjI�
Z

∞

0

dαP½ρjm; α�: ð15Þ

Hence we do not rely on the usually poor Gaussian
approximation entering the α probability estimation of
the MEM (for details see Ref. [30]).
The Bayesian reconstruction (BR), given the measured

data and our prior knowledge, is thus obtained from finding
the most probable solution for the combined likelihood
and prior probability

δ

δρ
P½ρjD; I�j

ρ¼ρBR
¼ 0: ð16Þ

In contrast to the standard MEM, we do not restrict the
search space a priori but allow the full Nω degrees of
freedom to vary. This not only allows us to resolve spectral
peaks with a much smaller width but also removes the
strong dependence of the reconstructed peaks on the choice
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of the starting point of the discretized frequency interval
ωmin as shown in Appendix A.
A crucial qualitative difference to the MEM exists in that

our prior functional does not possess the flat directions
inherent in the Shannon-Jaynes entropy deployed there.
This leads to the optimizer algorithm actually converging to
a unique extremum up to any desired tolerance. Thus we do
not arbitrarily stop the minimizer at a predefined step size
but require convergence to machine precision.
To estimate the statistical uncertainty in our results, we

perform jackknife analyses for each spectrum, by repeating
the reconstruction procedure and excluding successive
blocks of 10 (T ≃ 0) or 40 (T > 0) configurations from
the averaging of the underlying correlators. The variation
between each of these results is then used to estimate a
jackknife error bar which we attach to all quantities plotted
in the following section. As is known from prior work with
the MEM, the reconstruction, especially of the width of
peak structures depends on the amount of available data
points as well as the signal-to-noise ratio. The uncertainty
related to these two factors is explicitly assessed in
Appendix A.
Once a spectral reconstruction is performed, we need

to interpret the outcome in terms of bottomonium physics.
On the one hand we need to ascertain whether peaked
structures arising in the Bayesian result are actually
encoded in the supplied data points and whether such
peaks are indeed an indication of a bound state available to
the heavy quark-antiquark pair. The former question is
related to the limited amount of data points available along
the temporal axis in this study. Indeed even if we discretize
the frequency domain between −2Mq < ωmin < ωmax < ∞
with a large number of Nω ≫ Nτ steps of length Δωl, we
will encounter finite resolution artifacts, as is known from
the closely related inverse-Fourier transform. If the spec-
trum contains a region in which it essentially vanishes
before abruptly changing into either peaked structures or
at high temperatures into a continuum, any reconstruction
based on a finite number of data points will contain some
kind of numerical ringing usually referred to as the Gibbs
phenomenon. The intensity of these artifacts is furthermore
related to the choice of default model, which if incompat-
ible to the encoded spectral structures will exacerbate
ringing. In the following we intentionally use the most
neutral, i.e. a flat default model and hence need to prepare
for the encounter with wiggly structures in the numerical
extraction of spectral functions that do not have a physical
counterpart encoded in the data.
In addition, we need to understand whether a peak

encoded in the data can actually be attributed to the strong
interactions binding together bottom quarks into a bound
state. Both aspects are addressed in this study through a
comparison of the fully interacting spectra to those based
on noninteracting NRQCD correlators (similar in spirit to
[39,40] however without taking the thermodynamic limit).

These free spectra are obviously devoid of bound state
features and hence any peaked structures arising in their
Bayesian reconstruction need to be attributed to numerical
ringing. Our criterion for accepting a peak as a sign of the
presence of a bound state is that it needs to be quantitatively
larger than the corresponding wiggly feature in the recon-
structed free spectral function.1

III. LOW TEMPERATURE CALIBRATION

In NRQCD, the heavy quark mass scale is integrated out
so that the origin of the energy axis is shifted. To retrieve
the physical masses of the bottomonium states from these
binding energies computed in the EFT, it is necessary to
reintroduce the energy shift. In particular we have

Mexp
ϒð1SÞ ¼ Esim

ϒð1SÞ þ 2ðZMb
Mb − E0Þ; ð17Þ

where Esim
ϒð1SÞ is the ð1SÞ energy computed in theϒ channel,

ZMb
is the mass renormalization, Mb denotes the bare

lattice heavy quark mass, while E0 is an additional energy
shift [34]. Mexp

ϒ refers to the experimental value for the
mass of the ϒ state. The energy shift and the renormaliza-
tion factor depend on the lattice cutoff scale. For this reason
we introduce a β-dependent energy shift parameter

CshiftðβÞ ¼ 2ðZMb
Mb − E0Þ ð18Þ

that will be determined numerically by matching the
calculated ϒ mass to its experimental value. Since in this
work the simulation temperature is changed by changing
the lattice spacing, we measure 100 low temperature
correlators using the configurations with parameters listed
in Table I, in order to determine the ground state peak
position of the 3S1 channel Eϒð1SÞ.
Figure 1 (top) shows the typical behavior of S-wave (ϒ)

and P-wave (χb1) channel correlators. They exhibit, as
expected, an exponential falloff at late Euclidean time,
which is manifest in a flattening off of the corresponding
effective mass parameter (bottom). This tells us that at these
low temperatures the ground state only carries a negligible
width and is clearly separated from any other excited state
peaks in the spectrum. Hence we can carry out a standard
exponential fit to determine the NRQCD ground state
masses in each channel.
The Bayesian spectral reconstruction of the T ≃ 0 data

is performed using at each of the β values the same
numerical frequency interval Iω ¼ ½−0.5; 30� discretized
in Nω ¼ 1800 steps. A high precision interval of

1Note that the standard MEM often does not show these
ringing structures, since in Bryan’s implementation it does not
possess enough degrees of freedom to do so. In essence the
singular value decomposition deployed there acts as an additional
low-pass filter that is applied to the Bayesian solution. This in
general however does not mean that the MEM answer resembles
the correct spectrum more closely.
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Nhp ¼ 550 points is chosen around the lowest lying peak
to resolve its narrow width. The values τmax are rescaled,
so that in each case the algorithm uses τnummax ¼ 20. This
reduces systematic uncertainties, since each reconstruction
proceeds based on the same relation between τ and ω. For
β ¼ 7.280 we discard the last 19 data points, as their values
are dominated by noise probably arising from finite round-
ing errors. Taking a constant default model mðωÞ ¼ const,
which is normalized according to Dðτ ¼ 0Þ and enforcing
the condition jL − Nτj < 10−5, we find the optimal solution

according to Eq. (16) using the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) algorithm. We repeat
the reconstruction ten times using in each instance a
different set of 90 of the 100 measured correlators and
determine from the variation between individual results
the jackknife error bars shown in the figures below. The
arithmetic used in the evaluation of the likelihood and prior
probability is taken to be 768 bits. The result of the
Bayesian reconstruction of the ϒ and χb1 spectral functions
are shown in Fig. 2. The ϒð1SÞ is very well determined
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FIG. 1 (color online). The lattice NRQCD correlators (top) and corresponding effective masses (bottom) meffðτÞ¼
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from the reconstruction. The second bump corresponds to
excited states, mostly ϒð2SÞ. The difference between the
position of the first and the second peak is 608,617,640 and
664 MeV for β ¼ 6.664; 6.800; 6.95 and 7.28, respectively.
These values are reasonably close to the experimental value
for the 2S − 1S ϒ mass splitting of 563 MeV, and are
smaller than the 3S − 1Sϒmass splitting, which is equal to
895 MeV [32]. The integral under the peak is proportional
to the wave function at the origin squared, jRð0Þj2. We find
that the ratio of the integral of the first peak to the integral
of the second peak is about one, whereas the corresponding
ratio of jRð0Þj2 is expected to be about half [41]. The area
under the peak is more affected by contamination from
higher states compared to the peak position. This is similar
to the situation in the charmonium sector [42].
In the case of P-wave spectral function the first peak

corresponding to the χb1ð1PÞ state is broader and the
statistical errors on the spectral functions are larger. This is
due to several effects. First, the mass of the χb1ð1PÞ state is
larger than the mass of ϒð1SÞ so the signal-to-noise ratio
is smaller. Second, the amplitude of the ground state is
proportional to jR0ð0Þj2=M2

b and thus is smaller compared
to the S-wave amplitude. In addition the continuum part of
the spectral function scales like ω1=2 for the S-wave, while
it scales like ω3=2 for the P-wave. As the result the relative
contribution of the lowest peak versus the continuum part
of the spectral functions is much smaller for P-waves. This
makes the reconstruction of the P-wave spectral function
more difficult, especially at high temperatures.
Both exponential fitting and the determination of the

ground state peak position in the S-wave spectrum give a
consistent value for Eϒð1SÞ. Hence we are able to determine
the constant, Cshift,

Mϒð1SÞ ¼ Eϒð1SÞ þ CshiftðβÞ ð19Þ

where the experimental valueMϒð1SÞ ¼ 9.46030ð26Þ [32]
is used as input, at each lattice spacing. Figure 3 shows the
obtained values of Cshift, plotted against the lattice coupling
β, where β ¼ 6.664 corresponds to the coupling underlying
the lowest temperature lattices (T ¼ 140 MeV) and β ¼
7.280 that for the highest temperature (T ¼ 249 MeV).
Figure 3 shows that the data points are well described

by a linear fit. Hence we use the linearly interpolated values
for Cshift to calibrate the energy scale in the nonzero
temperature runs of Table II.
With this calibration in place we can check the con-

sistency of our approach by extracting the known vacuum
ground state mass of the P-wave channel. To this end we
fit the lowest lying spectral peaks shown in the right
panel of Fig. 2 with a Lorentzian and shift the obtained
value according to Eq. (19). The jackknifed estimates
for Mχb1 obtained at each individual β are in turn fitted
with a constant, from which we obtain a χb1 mass of
Mχb1 ¼ 9.917ð3Þ GeV. The assigned error is understood

to represent a combination of the statistical errors due to
jackknife variation and systematic errors from variation
between different beta values. This value lies slightly
above the particle data group (PDG) value of Mχb1ð1PÞ ¼
9.89278ð26Þð31Þ GeV [32] but is consistent with the
one obtained in other recent lattice NRQCD studies with
Nf ¼ 2þ 1 flavors [26], i.e. Mχb1 ¼ 9.921ð15Þ GeV.

IV. SPECTRAL FUNCTIONS AT FINITE
TEMPERATURE

At each of the temperatures listed in Table II, we solve
Eq. (3) to obtain 400 estimates of the S-wave and P-wave
lattice NRQCD correlators atNτ ¼ 12 data points. In Fig. 4
the ratio between the finite temperature averaged correla-
tors and their low temperature counterparts is plotted for
the four lattice spacing at which a T ≃ 0 measurement is
available. We observe statistically significant in-medium
modification of both ϒ and χb1 correlators starting at
temperature T1 ¼ 160 MeV. While the medium modifica-
tion for the S-wave leads to changes of at most 1% the
P-wave correlators exhibit a stronger effect, i.e. up to 5%.
This is expected because the larger size of the χb1 state
makes is more susceptible to medium effects. We also
calculated the above ratio for n ¼ 3 and 4 and found that it
is independent of n within the statistical accuracy. Note that
we see a smaller modification of the ratio of the correlators
compared to previous NRQCD studies [25,26]. The ratio of
the finite and zero temperature correlators for ηb and hb
was also determined and their temperature dependence is
shown in Fig. 5. It is similar to that of the ϒ and χb1
correlators, respectively. This is expected since the sign and
the magnitude of the binding energy of ηb and hb are almost
the same as those of ϒ and χb1.
From the measured correlators, we extract the corre-

sponding spectral functions using both the new Bayesian
method and the conventional MEM. The NRQCD energy
shift obtained in Sec. III is used to set the absolute physical
energy scale.
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The Bayesian spectral reconstruction of the T > 0 data is
performed using at each of the β values a common
numerical frequency interval Iω ¼ ½−1; 25� discretized in
Nω ¼ 1200 steps. A high precision interval of Nhp ¼ 550
points is chosen around the lowest lying peak to resolve
its narrow width. The value τmax ¼ 12 is rescaled, so that
in each case the algorithm uses τnummax ¼ 20. Taking a
constant default model mðωÞ ¼ const, which is normalized
according to Dðτ ¼ 0Þ and enforcing the condition
jL − Nτj < 10−5, we find the optimal solution according
to Eq. (16) using the LBFGS algorithm. We repeat the
reconstruction ten times using in each instance a different
set of 360 of the 400 measured correlators and determine
from the variation between individual results the jackknife
error bars shown in the figures below. The arithmetic used
in the evaluation of the likelihood and prior probability is
taken to be 512 bits.
The MEM reconstructions are performed with almost

the same settings, only a different frequency interval Iω ¼
½−0.15; 25� is chosen. The reason is related to the restricted
nature of the search space, due to which the reconstruction
success depends strongly on choosing ωmin close enough to
the relevant spectral features (see also the discussion of the
MEM systematics in Appendix A). We select an α range
that covers the peak in the probability distribution P½α� and

due to the absence of true convergence stop the deployed
Levenberg Marquardt minimizer if it reaches a step size
of 5 × 10−9.

A. The upsilon channel—S-wave

In Fig. 6 we show several different visualizations of
the reconstructed S-wave channel spectra for a qualitative
inspection. The left column contains the results of the
Bayesian reconstruction, while in the right column the
MEM results are presented. To obtain an overview of
the different orders of magnitude between the ground state
peak and higher lying features, the top row figures are given
in logarithmic scale spanning the relevant frequencies
above the 2Mb threshold. All fourteen spectra between
140 (dark violet) and 249 MeV (red) are included. The
middle row compares in linear scale three spectra at
the lowest and the highest temperatures investigated. The
bottom row contains the spectra just above the deconfine-
ment transition.
We find that the new Bayesian approach allows us to

extract the features of the spectral functions with a much
higher resolution than the MEM. Based on exactly the same
data set, we manage to obtain a width of the lowest lying
peak, which is consistently at least an order of magnitude
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smaller than that of the MEM. Furthermore we observe that
the functional form of the ground state peaks in the MEM
resembles a Gaussian. This behavior is qualitatively differ-
ent from the Lorentzian observed with the new approach,
which from general arguments, is expected to be the correct
shape for a particle of finite lifetime.
If we take a look at the ground state peak reconstructed

from the new approach, we see that with increasing
temperature there appears to set in a monotonous, albeit
relatively small shift of the peak position to higher
frequencies as well as a broadening of the width. While

it is tempting to attribute these changes to the in-medium
modification of bottomonium itself we have to first
ascertain how far the systematic uncertainties due to the
limited number of data points underlying the reconstruction
do influence the outcome.
Two different comparisons help us to understand the

limitations of the accuracy of our results. The first is shown
in Fig. 7, where we compare the effect of removing all but
twelve data points from the T ≃ 0 correlator data sets used
in the calibration performed in Sec. III. Since the kernel in
our case is temperature independent this comparison tells
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us how the same spectrum encoded at different temperature
is resolved by our method.2 As we can see the accuracy
differs for different lattice spacing, the change in mass and
width being 2 MeV for β ¼ 6.664 and maximal 31MeV for
the width at β ¼ 7.280.
The second comparison is shown in Fig. 8, where we

remove from the T > 0 correlator data set itself up to four
of the points closest to τmax ¼ 1=T. We find that the result
is a monotonous shift of the reconstructed peak position to
higher frequencies and a significant increase in the broad-
ening of the width. Both the influence on the position and
width go beyond the error bars shown, which represent the
statistical uncertainty and are obtained from the jackknife

variance. The strength of the effects is comparable to that
observed in Fig. 7.
From these two checks we conclude that the size of our

data set does not allow us to make a quantitative statement
about the changes in peak position and width with temper-
ature as the systematic errors dominate our results.3 We
however are in a position, due to the superior resolution of
the new Bayesian approach, to give stringent upper limits
on the size of the in-medium modification of ϒ ranging
between

ΔmTð140MeVÞ<2MeV; ΔΓTð140MeVÞ<5MeV

ΔmTð249MeVÞ<40MeV; ΔΓTð249MeVÞ<21MeV:
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2Since in the new Bayesian approach the dimensionality of the
solution space is not restricted a priori to the number of data
points as in the standard MEM, changing the number of under-
lying data points only affects the amount of information available
and does not change the reconstruction prescription.

3Note that the default model dependence and other systematic
errors are smaller than the dependence on Nτ as can be seen in
Appendix A.
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Another question we can address is to determine an
upper bound for the temperature up to which the ϒ channel
ground state survives. As we have seen in the previous
discussion, the effect of a reduced number of data points is
a monotonous broadening of the ground state peak. If a
well-defined peak is visible in the reconstruction the true
spectrum should also possess such a structure of at least the
same strength. In that sense Fig. 6 allows us to confirm the
qualitative findings of previous lattice NRQCD studies
[25,26] in that the ground state peak retains a narrow width
up to the highest temperature studied (T ¼ 249 MeV).
While the survival of the ground state peak in the S-wave
channel is a robust feature of our analysis, no definite
statements can be made about the fate ofϒð2SÞ state due to
the systematic errors related to the number of data points
and small extent of the time direction. This will become
apparent in the discussions below.
The determination of the actual survival or dissolution

of the ground state from an inspection by eye of the lowest
lying peak shape of the reconstructed spectra however is
highly nontrivial. Indeed it needs to be understood whether
a peak visible in the Bayesian spectra can be attributed to a
bound state held together by the strong interactions.
Uncertainty here arises from the fact that we reconstruct
spectra from a finite number of data points, which will
inevitably lead to the presence of numerical ringing. This in
turn needs to be distinguished from actual physical peak
structures.
Here we propose to give the decision about survival or

melting a solid footing through a comparison of the fully
interacting spectra to those obtained from noninteracting
correlators. To this end we set all links on our lattices to
unity when calculating the Euclidean NRQCD Green’s
function. The same random sources as in the interacting
case enter the initial conditions for Eq. (3). Since the free
correlators are not uniquely defined in lattice NRQCD, it is
our choice of SðxÞ that determines their values at τ ¼ 0.
Their time evolution depends on the NRQCD mass
parameterMba, for which we choose the same β-dependent
values obtained on the interacting lattices we wish to
compare to. To enable a meaningful comparison between
our reconstructed spectra, we normalize in the following
the free correlator at the first time step to the value of the
corresponding interacting spectral function. Since the free
correlators also possess different, i.e. much smaller errors
than the interacting ones, we add Gaussian noise of a
similar strength as their errors to the free data points before
the reconstruction. Note that spectral functions from free
NRQCD correlators do not contain a physical scale. We
introduce the scale in the free theory calculation by using
the lattice spacing that corresponds to the value of β for
which the comparison with free spectral functions is
performed.
In Fig. 9 we present this comparison in the S-wave

channel at the largest (left) lattice spacing β ¼ 6.664

(T ¼ 140 MeV) and the smallest (right) β ¼ 7.280
(T ¼ 249 MeV). The colored solid curves show the
result of the finite T reconstruction from Nτ ¼ 12 data
points, while the dark blue, dashed curve represents the
reconstruction from the first τmax ¼ 12 data points of the
T ≃ 0 correlator. As we discussed before with the limited
number of data points available to us, the reconstructed
spectra at T ≃ 0 and T > 0 are very similar especially
around the lowest lying peak. On the other hand the free
spectra obtained from the same number of data points
do differ. The Bayesian reconstructions of the free spectra
in Fig. 9 show peak structures even though there are no
such features present in the analytic form of free NRQCD
spectral function. This is reminiscent of the Gibbs phe-
nomenon mentioned in Sec. II. Here in the case of ϒ, the
ground state peak at T > 0 is easily distinguished from this
numerical ringing, as it is at least one order of magnitude
larger. From these results we conclude that the ground state
of the ϒ channel survives at least up to T ¼ 249 MeV.
For comparison purposes we show in Fig. 10 the

interacting (colored gray) and free spectra (gray) obtained
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from a MEM reconstruction. As we already saw in Fig. 6,
the lowest lying peaked features are much more shallow
here than in the novel Bayesian approach and their func-
tional form is not Lorentzian, contrary to what is expected
for a particle of finite lifetime. Consistent with the previous
discussion, we find that even at the highest temperature a
ground state peak appears to survive. Note that the smooth-
ness of the MEM free spectra does not necessarily mean
that an accurate reconstruction has been achieved. Indeed
as we increase the number of basis functions to Next ¼ 48,
the number of wiggles, at least for β ¼ 6.664, significantly
increases and the result approaches a similar form as the
Bayesian result obtained by the novel method.

B. The χ b1 channel—P-wave

We continue with the P-wave (χb1 channel) spectral
functions shown in Fig. 11, where again the results of
the new Bayesian approach on the left are contrasted to
the maximum entropy method on the right. The P-wave
spectra, due to the larger ground state mass of χb1, start at
higher frequencies and thus the underlying correlators
suffer more strongly from the finite number of measure-
ments and lead to less reliable reconstructions, which is
reflected in larger error bars. The top row contains the
spectral functions at all temperatures, while the middle row

shows those from the lowest three (all below Tc) and for the
highest three (T ¼ 211; 221; 249 MeV) respectively. The
bottom row features the spectra just above the phase
transition. As for the S-wave, the new Bayesian approach
allows us to obtain much sharper resolved peaks than the
MEM, using the same data set. This difference turns out to
lead to a pronounced qualitative difference in the P-wave
case, as can be seen in the middle row of Fig. 11. The MEM
spectra at the highest temperatures appear almost feature-
less, while the new Bayesian approach manages to resolve a
well-defined ground state peak. Hence, while a naive
inspection by eye in the case of the MEM suggests
P-wave melting at T ≳ 211 MeV ð¼ 1.37TcÞ, i.e. slightly
above the deconfinement temperature (Tc ¼ 154 MeV), no
such conclusion can be drawn from the result of the new
Bayesian approach.
The outcome of the MEM is consistent with the findings

of other MEM based studies that suggested P-wave melting
already at (T ¼ 201 MeV¼ 1.09Tc). However the spectral
functions reconstructed using the new Bayesian approach
at the same temperatures show well-resolved narrow
peak structures and do not hint at melting of the P-wave
bottomonium ground state. Perhaps this is not surprising
since the limited search space of the standard MEM
artificially restricts the resolution of the reconstructed
spectra and thus produces only washed out features while
the new Bayesian method operates directly in the full
search space and hence can produce well-defined peaks.
Before attempting to clarify the fate of the χb1 state, a

look at the systematics for the P-wave is in order. We begin
with Fig. 12, where we compare the effect of removing all
but twelve data points from the T ≃ 0 correlator data sets
presented in Sec. III. The fact that the χb1 state is located at
higher frequencies leads to a stronger exponential falloff in
the correlators and thus leads to a smaller signal-to-noise
ratio than that for S-waves with fixed statistics. Thus we
expect that discarding data points will affect the outcome of
our reconstruction even more strongly in the P-wave case,
which is also what we find. The change in mass and width
is ≃15 MeV at β ¼ 6.664. At β ¼ 7.280 the change in
mass is 171 MeVand the change in width is ≃40 MeV. In
Fig. 13 the second pertinent comparison is shown, where
we remove from the T > 0 correlator data set up to four
of the points closest to τmax ¼ 1=T. Again we find that the
result is a monotonous shift of the reconstructed peak
position to higher frequencies while the width does not
seem to be affected beyond the relatively large jackknife
error bars. We find the strength of these effects to be
stronger than those observed in Fig. 12 for the peak
position but comparable for its width. From these previous
two tests, we conclude that also for the P-wave, the size of
our data set does not allow us to make a quantitative
statement about the changes in peak position and width as
temperature is changed. Even though the modification of
the peak position and width is more pronounced than in the
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S-wave, also our systematic uncertainty is larger. The upper
limits for the in-medium modification of χb1 we can
provide are

jΔmTjð140MeVÞ<60MeV; ΔΓTð140MeVÞ<20MeV

ΔmTð249MeVÞ<200MeV; ΔΓTð249MeVÞ<40MeV:

ð21Þ

Returning to the question of the fate of χb1 at high temper-
atures, the need for a robust criterion to distinguish a melted
state from a bound state is even more evident for the
P-wave. Simply looking at the lowest lying peak in Fig. 11

one might conclude melting of χb1 at T ¼ 249 MeV, since
the second peak structure is as large as the ground state
feature. To reach a judgment on χb1 on a systematic basis,
we deploy the same strategy as laid out for the S-wave,
i.e. comparing the interacting reconstructed spectra to
those from free NRQCD correlators with the same bottom
quark mass parameter. In Fig. 11 we present such a
comparison for the P-wave channel at the lowest temper-
ature (left) T ¼ 140 MeV (β ¼ 6.664) and the highest
(right) T ¼ 249 MeV (β ¼ 7.280). While the colored solid
curves represent the result of the finite T reconstruction
from Nτ ¼ 12 data points, the dark blue, dashed curve
represents the reconstruction from the first τmax ¼ 12 data
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points of the T ≃ 0 correlator. Just as in the S-wave case,
the reconstructed interacting spectra at T ≃ 0 and T > 0
are very similar. Nevertheless at the lowest temperature
T ¼ 140 MeV distinguishing between the ground state

peak and the numerical ringing in the free spectra poses
no difficulty, as their amplitudes differs by almost two
orders of magnitude. At the highest temperature T ¼
249 MeV we find that the reconstructions take on similar
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values at frequencies above ω ¼ 13.5 GeV but a significant
difference (at least a factor of three) remains for the lowest
lying peak. We have checked that another choice of default
model used in the reconstruction of the free spectra does
not change the lowest lying peak significantly, as shown in
Appendix A. Based on the outcome of this systematic
comparison we can establish the survival of the χb1 state up
to at least a temperature of T ¼ 249 MeV.
We close this section with a comparison of the MEM

reconstruction of the interacting (colored gray) and free
spectra (gray) for the P-wave shown on the right-hand
side of Fig. 15. As was already found in Fig. 11, the lowest
lying peak is very shallow even at the lowest temperature
T ¼ 140 MeV and completely absent at T ¼ 249 MeV.
The combination of a lower signal-to-noise ratio together
with the small number of available data points does not
allow the MEM to show oscillating behavior even if the
number of basis functions is increased toNext ¼ 48. Hence,
although there seems to persist a difference at high T
between the free and interacting spectra between 9.5 and
11 GeV, the limited resolution of the MEM for the
interacting spectrum does not allow us to relate it to a
surviving χb1 state.

V. CONCLUSION

The in-medium modification of heavy quark bound
states, elucidated by lattice QCD methods, provides first
principles insight into the physics of the strong interactions
under extreme conditions. Due to the role of bottomonium
as a probe for the QGP in relativistic heavy-ion collisions,
understanding bottomonium behavior in the presence of a
thermal medium is of direct phenomenological relevance.
In this study we investigated the spectral properties of
the ϒ (3S1) as well as the χb1 (3P1) channel at fourteen
different temperatures around the deconfinement transition
140 MeVð¼ 0.911TcÞ ≤ T ≤ 249 MeVð¼ 1.61TcÞ in a
medium with Nf ¼ 2þ 1 light quark flavors.
The underlying 483 × 12 isotropic lattices were provided

by the HotQCD collaboration and are based on the HISQ

action. Since temperature is changed by varying the lattice
spacing, a narrowly spaced temperature scan was achieved.
However, a zero temperature calibration of the absolute
energy scale at each lattice spacing was required and has
been performed. A lattice regularization of the effective
field theory (NRQCD) was deployed to calculate the
bottomonium correlators. This allows us to utilize the full
number of data points in temporal direction, since the
periodic boundary conditions of relativistic field theory are
absent. The relation between correlator and spectrum in this
case reduces to a convolution over a simple exponential
kernel.
We extracted spectral information both with the standard

MEM and a recently developed Bayesian approach. This
novel method differs significantly from the MEM, and
features a prior functional which enforces the positive
definiteness of the spectrum, independence of the end result
from the choice of units for ρ and favors smooth spectra
for the energy region where data do not imprint peaked
structures. As a general observation we find that the spectra
reconstructed using the new Bayesian approach are far
superior to those produced by the MEM as seen in Figs. 6
and 11. Not only are we able to resolve much narrower peak
widths but the functional form of the bound state peaks is
reproduced in Lorentzian form, as expected for a particle of
finite lifetime. We see by systematically investigating the
effect of removing data points in Figs. 7–8 and Figs. 12–13
that our current data set does not allow us to quantitatively
disentangle the effects of the medium from the degradation
of the reconstruction quality due to a smaller extent in τ.
Nevertheless, due to the high resolution of the new
Bayesian approach we are able to give stringent upper
bounds on the in-medium modification of both ϒ and χb1
states.
From a systematic comparison of the reconstructed

spectra from finite temperature correlators to those
reconstructed on noninteracting lattices we furthermore
conclude that the ground state ϒ survives up to at least
T ¼ 249 MeVð¼ 1.61TcÞ, the highest temperature
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investigated. A similar comparison carried out for the
P-wave channel shows that even though the deviation
between interacting ground state peak and numerical
ringing in the free spectra is smaller, even at 249 MeV
at least a factor of three difference between the interacting
spectra and the free spectra remains. This suggests to us the
survival of the (3P1) bottomonium ground state up to this
temperature (well into the QGP phase).
The conclusion on the S-wave ground state survival

agrees qualitatively with those obtained by the MEM.
However the restricted search space of the MEM does not
allow us to find a well-defined peak for the ground state in
the χb1 channel at the highest three temperatures. Since the
new Bayesian approach is not affected by this well-known
deficiency of the standard MEM (i.e. changing ωmin to
larger negative values leads to a systematic broadening and
eventual disappearance of any reconstructed peaked struc-
tures), we are confident that the observed presence of the
P-wave peak up to 249 MeV is not an artifact due to the
spectral reconstruction method.
We have checked that our findings do not suffer from a

possibly inadequate choice of lattice NRQCD discretiza-
tion by repeating the analysis for the values of the
parameter n ¼ 2; 3 and 4 described in Appendix B.
While the high frequency behavior of both the free and
the fully interacting spectra does change as expected, we
confirm that the ground state peak and its features remain
virtually unchanged.
We also investigated additional systematic uncertainties

of the spectral reconstruction itself in Appendix A and find
that they are in general smaller than the errors introduced
due to the finite number of data points. These dependencies
appear stronger than what has been found in previousMEM
studies. This however is related to the fact that the new
Bayesian approach is able to resolve much narrower
structures and thus does not hide the default model
dependency in an artificially broad reconstructed width.
The results obtained here from the combination of

NRQCD correlators and the new Bayesian method are
promising. It appears that deficiencies of the MEM can be
overcome at least in principle, while the small number of
data points still precludes us from a quantitative determi-
nation of possible in-medium mass shifts and a width
broadening. Carrying out dynamical lattice QCD simula-
tions with a larger number of temporal lattice sites, be it in
an isotropic or anisotropic setting, is thus called for.
Incremental progress on the reconstruction of spectra can

be expected within the ongoing programs for gauge
configurations generation, i.e. Nτ ¼ 16 or Nτ ¼ 24. For
a quantitative determination of the in-medium modifica-
tion, especially the width broadening, it will be necessary to
start a dedicated generation program using anisotropic
lattices with Nτ > 64. Once the temporal extend becomes
as large as Nτ > 64 the default model dependence will also
reduce significantly, as the high frequency regime, encoded

in the correlator at small τ is more highly resolved. Due to
the fact that the reconstruction success depends on the
physical temporal extend, what exact number of lattice
points are needed will ultimately be connected to the
melting temperature of the individual state.
We hope that the availability of the new Bayesian

approach for the determination of heavy quarkonium in-
medium spectral features will benefit the understanding of
bottomonium suppression in heavy-ion collision and look
forward to future studies with lattices of larger temporal
extent and higher statistics.
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APPENDIX A: TESTS OF THE BAYESIAN
SPECTRAL RECONSTRUCTION

Any reconstruction ofNω ≫ Nτ parameters from a noisy
set of Nτ data points through an inversion of Eq. (10)
remains an ill-defined problem. Besides the obvious fact
that the results depend on the properties of the measured
data themselves (i.e. the number of available data points
and their signal-to-noise ratio), we have to control how the
inclusion of prior information affects the final outcome.
Prior information enters implicitly e.g. through the choice
of the underlying frequency interval, as it spans only the
region we deem relevant for the spectral function we wish
to reconstruct. Explicit prior information on the other hand
enters through the choice of prior functional S and the
default model mðωÞ it contains. In the following, all of
these factors are considered and are independently varied to
estimate the systematic uncertainties of the reconstructed
spectral function. The main outcomes of these tests are the
following:

(i) The reconstruction of the ground state peak suffers
most from discarding points close to τ ¼ β. We
however do not observe any abrupt changes when
including or discarding the last data point at τ ¼
β − aτ in contrast to other studies.

(ii) The ground state peak of the χb1 spectra in general
suffers more strongly from the systematic uncer-
tainties, as the signal-to-noise ratio of the corre-
sponding correlator is consistently smaller than in
the ϒ case. (Mχb1 > Mϒ).

(iii) The size of the statistical error on the correlator data
limits how well we can reconstruct the width of the
ground state peak. However, with the inclusion of
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more than Nconf ¼ 360 configurations for the aver-
aging, the dependence on Nconf appears to be small.

(iv) The dependence on the choice of ωnum
max ¼ ωmaxa (a

is the lattice spacing) is small as long as the interval
is chosen large enough ωnum

max > 20 to accommodate
all relevant peak structures. The dependence on
ωmina is a bit more pronounced, especially if not
enough frequencies in the negative range are in-
cluded (this dependence is significantly smaller than
that in the case of the MEM, where no stable plateau
is found).

(v) Using different default models gives roughly twice
the jackknife error bar to the first peak position in ϒ
spectral function and ten times uncertainty to the
first peak width. In the χb1 case, due to a worse
signal-to-noise ratio, already the default model effect
on the peak position may be a factor of eight larger
than the statistical errors.

Finally we also take a look at the systematics of the
MEM, specifically the fact that reconstruction success
depends strongly on the choice of frequency interval.
Indeed we find that simply moving ωmin to larger negative
values melts any otherwise visible peaked structures.

1. Dependence on the τ range

Using a relatively small number of data points, Nτ ¼ 12,
we expect the reconstructed spectral function to suffer
significantly from removing even more of them. We find as
elaborated on in the main text that since low frequency
structures dominate late τ times, removing data points close
to τ ¼ Nτ indeed leads to a significant increase in recon-
structed peak width beyond the statistical error bars as well
as a systematic shift of the extracted peak position to larger
values as can be seen in Figs. 16–17. On the other hand it is
also clear that we do not observe any abrupt changes in the
reconstruction if the last data point is included, as has been
reported by previous studies.

2. Dependence on the signal-to-noise ratio

In contrast to the Fourier transform, where the signal-to-
noise ratio strongly affects the highest possible frequency
one can resolve, the inverse Laplace transform reacts to
degrading signal with increasing peak widths. Thus a
systematic trend towards smaller reconstructed widths is
expected if more and more configurations contribute to the
averaged underlying correlator. Such kind of behavior can
be found for the smallest numbers of used configurations
but eventually it seems that a stable plateau is reached at
least for the ϒ channel (we choose a number of jackknife
bins NJ and reconstruct the spectra for each of these with a
corresponding number of Nconf − Nconf=NJ configurations.
The peak positions and widths for each bin are plotted
against the number of configurations in Figs. 18–21). The
reconstruction of the peak position in the ϒ channel is
robust, while in the χb1 channel one can see a slight

dependence on the number of used configurations with a
trend to lower values.

3. Dependence on the default model

The explicit dependence of the finite temperature spec-
tral reconstructions on prior information can be assessed by
changing the default model residing in the prior functional
S. We change either the functional form mðωÞ ∝ ωk with
k ¼ f−1;−2; 0.5; 2g, while leaving the normalization
intact or change the overall magnitude of the previously
normalized constant prior by one of the factors indicated
in Figs. 22 and 24. Note that in the derivation of the prior
functional S the constant prior was singled out as being the
most neutral default model.
We find that there is a significant dependence of the

reconstructed peak position and width on the choice of
default model, by which we mean that the induced changes
go beyond the statistical error bars estimated from the
jackknife. For the ϒ channel peak position this systematic
uncertainty amounts to up to twice the statistical error bars,
while for the width it can be a factor of ten. In the P-wave
channel we have a worse situation, since the lower signal-
to-noise ratio leads to the systematics of the peak width

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 9.46  9.461  9.462  9.463  9.464  9.465  9.466  9.467

w
id

th
 [M

eV
]

position [GeV]

β=6.664, T=140MeV

S-wave

τ=[0,11]
τ=[0,10]

τ=[0,9]
τ=[0,8]

τ=[1,11]
τ=[2,11]
τ=[3,11]
τ=[1,10]

τ=[2,9]

 10

 15

 20

 25

 30

 35

 9.92  9.94  9.96  9.98  10  10.02

w
id

th
 [M

eV
]

position [GeV]

β=6.664, T=140MeV

P-wave

τ=[0,11]
τ=[0,10]

τ=[0,9]
τ=[0,8]

τ=[1,11]
τ=[2,11]
τ=[3,11]
τ=[1,10]

τ=[2,9]

FIG. 16 (color online). At 140 MeV: Dependence of the
reconstructed lowest peak position and peak width on choosing
different subsets of data points along the τ axis. In general the
peak position is less susceptible than the peak width with the ϒ
(top) showing consistently less dependence than the χb1 (bottom).

SEYONG KIM, PETER PETRECZKY, AND ALEXANDER ROTHKOPF PHYSICAL REVIEW D 91, 054511 (2015)

054511-18



being around eight times that of the jackknife errors while
the position only shows a factor of four.
In the case of changing the normalization of the constant

prior, the P-wave shows a sudden change once the artificial
prefactor reaches 0.01 (Figs. 23 and 25). In this case three
rather sharp peaks appear, which are not found with any
other choice of default model. This outcome is the
combined result of the weak constraint of the result by
the data and the corresponding stronger influence of the
prior functional. If the normalization of mðωÞ is changed
away from the correct value more than two orders of
magnitude the prior probability functional S will favor
spectra with much less integrated area as encoded in the
data and the accuracy of the reconstructed peak structure
suffers. In the S-wave case the dominance of the likelihood
due to a better signal-to-noise ratio prevents the incorrect
normalization to distort the final outcome within the
parameter tested here. Note that it is however always
possible to choose numerical parameters for mðωÞ such
that they are highly incompatible with the data and will lead
to a distorted reconstruction.
These systematic dependencies appear stronger than

what was previously found in the MEM. This is not
surprising since the limited number of available degrees

of freedom in theMEMwashes out features that we are able
to resolve with the new method. Consequently the default
model dependence is hidden from the MEM inside e.g. the
larger widths, which make the result appear robust against
changes in mðωÞ but do not allow us to assign a high
accuracy.
For the determination of possible ground state survival or

melting, we compare the interacting spectral functions to
those from free NRQCD correlators. For this test to be
meaningful we also need to understand the default model
dependence of the free spectra. In Fig. 26 we show the
reconstructions of the free S-wave spectra based on a
similar selection of default models deployed in the finite
temperature case above. We find that while the higher lying
wiggly features depend on the form of mðωÞ the lowest
lying peak is quite stable. In the case of the free P-wave
spectra shown in Fig. 27 we see that the lowest peak is
slightly more susceptible to a change in the default model;
its shape is however robust enough for our conclusion
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FIG. 18 (color online). At 140 MeV: The raw ϒ reconstructed
peak positions (top) and peak widths (bottom) for different
choices of the number of jackknife bins and thus of the number
of measurements contributing to the correlator average. Each
plotted point corresponds to one spectral reconstruction for an
individual jackknife bin. Their spread is a direct measure of the
statistical uncertainty and reduces slightly with increasing num-
ber of jackknife bins. No systematic trend appears in recon-
structed peak position, while the peak width seems to move to a
smaller value until a plateau is reached at Nconf ¼ 350.
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FIG. 20 (color online). At 249 MeV: The raw ϒ reconstructed peak positions (left) and peak widths (right) for different choices of the
number of jackknife bins and thus of the number of measurements contributing to the correlator average. No systematic trend appears in
reconstructed peak position and width. In the reconstructed width the reduction of statistical uncertainty with increasing number of used
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FIG. 21 (color online). At 140 MeV: The raw χb1 reconstructed peak positions (left) and peak widths (right) for different choices of the
number of jackknife bins and thus of the number of measurements contributing to the correlator average. A slight trend to smaller values
of the reconstructed peak position is visible, which however lies within the statistical uncertainty. No systematic trend appears for the
peak width.
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FIG. 19 (color online). At 140 MeV: The raw χb1 reconstructed peak positions (left) and peak widths (right) for different choices of the
number of jackknife bins and thus of the number of measurements contributing to the correlator average. A slight trend to smaller values
of the reconstructed peak position is visible, which however lies within the statistical uncertainty. No systematic trend appears for the
peak width.
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about a difference between interacting and free spectrum at
T ¼ 249 MeV to hold.
The fact that the lowest lying artificial ringing structures

are stable against default model changes should not be
disconcerting. Similar to the Fourier transform, the pres-
ence and strength of the Gibbs ringing depends solely on
the number of available data points. Adding noise might
wash out some of these features or make them more
susceptible to the form of the default model but with the
size of the statistical errors used here, the lowest lying
wiggle indeed remains stable.

4. Dependence on the choice of ω interval

A form of implicit prior information lies in the choice of
the discretization interval ω ∈ ½ωmin;ωmax� along the fre-
quency axis. If we choose it to be too small, not all relevant
frequencies encoded in the data are accessible and the
reconstruction fails. In the case of the standard implemen-
tation of the MEM, choosing the lower limit of the interval
to be too low adversely affects the reconstruction result,
as the limited number of basis functions only contain an
oscillatory part close to ωmin before damping away at
higher frequency. This artificial limitation is completely
absent in the new Bayesian method.

We find that a too high choice of ωmin and a too low
choice of ωmax affects the outcome of our reconstruction
significantly beyond the statistical error bars. However
it is evident from Figs. 28–29 that by allowing the
reconstruction to proceed on an increasingly larger interval
one finds that the peak position stabilizes while the peak
width is still weakly affected due to the change in prior
normalization occurring between different choices of the
frequency interval length.

5. Systematics of the MEM

In order to compare our study’s results to previous work
based on the MEM, we have carried out the reconstruction
of spectral information based on the popular implementa-
tion by Bryan. In this approach the search space from which
the spectra are chosen is restricted to have dimension equal
to the number of data points. Furthermore the basis
functions of this search space are constructed from a
singular value decomposition of the convolution kernel.
Again we use Nω ¼ 1200 and a numerical value of

τNummax ¼ 20 but here the frequency interval is taken to span
½−0.15; 25� in order for the oscillatory part of the restricted
search space basis functions to extend into the positive
frequency domain. Our minimizer is set to accept an
extremum of the Q ¼ L − αS functional if the step size
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FIG. 22 (color online). At 140 MeV: Dependence of the
reconstructed peak position and width on different choices of
the default model for the ϒ (top) and χb1 (bottom) channel.
Changing the functional form has a similar effect than moderately
changing the overall normalization.
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FIG. 23 (color online). At 140 MeV: The actual spectral
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which the values in Fig. 22 have been determined. The S-wave is
shown on the left, the P-wave channel on the right.

LATTICE NRQCD STUDY OF S- AND P-WAVE … PHYSICAL REVIEW D 91, 054511 (2015)

054511-21



becomes less than 5 × 10−9. The standard alpha integration
is carried out for each jackknife bin to arrive at the spectral
functions shown in Figs. 6 and 11.
One finds that the reconstruction is not only less stable

but also shows rather washed out spectral features. The
ground state peak is not a Lorentzian but instead appears
more Gaussian with its width roughly an order of magni-
tude larger compared to the new Bayesian reconstruction
method. It is difficult to compare the obtained peak
positions and widths as their values depend crucially on
the choice of the frequency interval.
As shown in Figs. 30–31 the reconstructed position can

be shifted to significantly lower and the width to signifi-
cantly higher values if the frequency interval is extended
further into the negative regime. Essentially it is possible to
melt bottomonium with the MEM from a choice of
frequency interval alone, which is in stark contrast to the
behavior of the new method which clearly shows a plateau
of the reconstructed values for large enough intervals.

APPENDIX B: TESTS OF THE
NRQCD DISCRETIZATION

The applicability of an effective field theoretical
description relies on the presence of a separation of scales.

In the case of heavy quark pairs in continuum NRQCD,
it is characterized by ΛQCD=Mb≪1, T=Mb≪1 and
p2=2Mb≪1. On the lattice the latter translates into a ratio
between the discretized lattice momenta

p̂2 ¼ 4
X3
i¼1

sin2
�
πni
Ns

�
; ni ¼ −

Ns

2
þ 1;…;

Ns

2
ðB1Þ

of the first Brillouin zone and the effective mass parameter
M̂ ¼ 2nξasMb, where ξ denotes the physical lattice
anisotropy and n characterizes the choice of Euclidean
time discretization in the NRQCD propagator equation of
motion (3).
Analyzing noninteracting lattice NRQCD Ref. [43]

showed that for isotropic lattices ðξ¼1Þ the choice n¼1
is sufficient to obtain a stable high momentum behavior,
as long as asMb > 3, respectively asMb > 1.5 for n ¼ 2.
Otherwise the expansion in powers of the velocity (respec-
tively inverse rest mass) breaks down and the high
frequency regime of the theory becomes ill defined. This
is a direct consequence of the EFT not possessing a naive
continuum limit. This constraint on n related to the validity
of the NRQCD expansion is reflected also in the free
dispersion relation
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FIG. 24 (color online). At 248 MeV: Dependence of the
reconstructed peak position and width on different choices of
the default model for the ϒ (top) and χb1 (bottom) channel.
Changing the functional form has a similar effect to moderately
changing the overall normalization.
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which the values in Fig. 24 have been determined. The S-wave is
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FIG. 26 (color online). Free S-wave spectra (gray) for different choices of the default model mðωÞ, reconstructed from noninteracting
NRQCD correlators using the effective mass values from the T ¼ 140 MeV (left) and T ¼ 249 MeV (right) lattices. In addition the
interacting spectrum at the same temperature is shown (colored solid).
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NRQCD correlators using the effective mass values from the T ¼ 140 MeV (left) and T ¼ 249 MeV (right) lattices. In addition the
interacting spectrum at the same temperature is shown (colored solid).
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FIG. 28 (color online). At 140 MeV: Dependence of the reconstructed peak position and peak width on different choices of the
frequency interval for the ϒ (left) and χb1 (right) channel. While a too narrow choice of ½ωmin;ωmax� leads to significant changes in the
reconstructed values, peak positions stabilize to a plateau at large enough interval lengths. The peak width is slightly less stable, since it
depends more strongly on the default model normalization, which changes with each different choice of ½ωmin;ωmax�.
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FIG. 29 (color online). At 248 MeV: Dependence of the reconstructed peak position and peak width on different choices of the
frequency interval for the ϒ (left) and χb1 (right) channel. While a too narrow choice of ½ωmin;ωmax� leads to significant changes in the
reconstructed values, peak positions stabilize to a plateau at large enough interval lengths. The peak width is slightly less stable, since it
depends more strongly on the default model normalization, which changes with each different choice of ½ωmin;ωmax�.
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FIG. 30 (color online). At 140 MeV: The dependence of the maximum entropy reconstructed peak width and position on different
choices for the frequency interval in the ϒ (left) and χb1 (right) channel. We find as expected from the arguments laid out in the
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FIG. 31 (color online). At 249 MeV: The dependence of the maximum entropy reconstructed peak width and position on different
choices for the frequency interval in the ϒ (left) and χb1 (right) channel.
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aτEp̂ ¼ 2nLog

�
1 −

1

2

p̂2

2nξasMb

�
þ Log

�
1þ ðp̂2Þ2

16nξðasMbÞ2
þ ðp̂2Þ2
8ξðasMbÞ3

−
p̂4

24ξðasMbÞ
�

ðB2Þ

that follows from Eq. (3). Here the requirement of a positive
argument in the logarithm leads to e.g. asMb > 1.5 for
n ¼ 2. From Eq. (B2) the free spectra are computed via

ρSðωÞ ¼
4πNc

N3
s

X
p̂

δðω − 2Ep̂Þ;

ρPðωÞ ¼
4πNc

N3
s

X
p̂

p̂2δðω − 2Ep̂Þ; ðB3Þ

as laid out e.g. in the Appendix of [25,26]. We note that a
difference in the overall normalization between the analytic
and lattice regularized free spectra exists, i.e. if we were to
calculate from Eq. (B3) the corresponding Euclidean
correlator its value at τ ¼ 0 is larger than Dð0Þ obtained
from Eq. (3) with unit links. One reason is that the full
dispersion relation that enters Eq. (B3) is only applied to
the lattice propagator from time step τ=a > 1.
Since on the highest temperature lattices deployed in

our study the product asðβ ¼ 7.280ÞMb ¼ 1.559 lies only
slightly above the limiting value derived from noninter-
acting lattice NRQCD, we need to ascertain whether the
results from our choice of n ¼ 2 are good enough to
capture the bound state physics we are interested in. This
question is related to the fact that all reconstructed spectra
shown in this manuscript do contain finite contributions
beyond the inverse lattice spacing, where in a relativistic
description, one would expect a relatively sharp cutoff.
For NRQCD this is indeed not the case and EFT induced
artifacts can populate frequencies up to much larger (but
finite) values, as shown in the analytically determined
free NRQCD lattice spectral functions given in Fig. 32.
Note that in case of a breakdown of the NRQCD

approximation, the spectrum would be essentially
unbounded in ω.
To check whether changes in the high frequency regime

of the theory affect the reconstruction of the ground state
peak investigated in this study, we either need to generate
configurations with different physical anisotropy or change
the NRQCD temporal discretization parameter to larger
values than our standard setting n ¼ 2. We choose the latter
option and present the tests, comparing n ¼ 2; 3; 4 in the
following.
To understand the change induced by increasing n to

four, we inspect the corresponding analytic free spectra
plotted in Fig. 33. The most obvious effect is a significant
reduction of the maximum frequency, up to which the
lattice EFT artifacts populate the spectrum. We find it to
move towards the origin by more than a factor of three.
Interestingly at the same time the amplitude of the kinked
structure is slightly larger than at n ¼ 2. The most
important fact however is that the region of low frequencies
ω < 1 GeV in which the bound state physics is located
does not change appreciably with changing the NRQCD
effective temporal step size.
With this intuition at hand, we proceed to measure the

lattice NRQCD bottomonium correlation functions both
on non- and fully interacting lattices, using the different
settings n ¼ 2; 3; 4 and subsequently perform spectral
reconstructions. We restrict ourselves to β ¼ 7.280, since
here the mass parameter asMb ¼ 1.56 is closest to the free
NRQCD limit and the noninteracting spectra show the most
pronounced changes. Of interest is, in particular, whether
the change in discretization affects the conclusion drawn
about the presence of a well-defined ground state peak in
the P-wave channel at T ¼ 249 MeV.

10-4

10-3

10-2

10-1

100

101

 0  10  20  30  40  50  60  70

ρΥ
-F

R
E

E
 A

na
ly

tic
(ω

)

Δω [GeV]

n=2

S-wave

M(β=6.664)
M(β=6.700)
M(β=6.740)
M(β=6.770)
M(β=6.800)
M(β=6.840)
M(β=6.880)

M(β=6.910)
M(β=6.950)
M(β=6.990)
M(β=7.030)
M(β=7.100)
M(β=7.150)
M(β=7.280)

10-4

10-3

10-2

10-1

100

101

 0  10  20  30  40  50  60  70

ρχ b
1-

F
R

E
E

 A
na

ly
tic

(ω
)

Δω [GeV]

n=2

P-wave

M(β=6.664)
M(β=6.700)
M(β=6.740)
M(β=6.770)
M(β=6.800)
M(β=6.840)
M(β=6.880)

M(β=6.910)
M(β=6.950)
M(β=6.990)
M(β=7.030)
M(β=7.100)
M(β=7.150)
M(β=7.280)

FIG. 32 (color online). The analytic free S-wave (left) and P-wave (right) spectral functions according to Eq. (B3) for n ¼ 2 with the
effectivemassparameter chosen to agreewith thevaluesof the fully interacting lattices (Ns ¼ 384used toobtain smoothcurves).While lattice
artifacts dominate the region above 8 GeV (i.e. above the first kink), the physics of the bound state resides at frequencies below 1 GeV.
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FIG. 33 (color online). The analytic free S-wave (left) and P-wave (right) spectral functions according to Eq. (B3) for n ¼ 4 with the
effective mass parameter chosen to agree with the values of the fully interacting lattices (Ns ¼ 384 used to obtain smooth curves). Note
that in comparison to Fig. 32 the high frequency range is much more limited, while the amplitude of the kink structure is increased. We
also see that the region of relevant frequencies w < 1 GeV does not change appreciably.
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FIG. 34. The free spectra for S-waves (left) and P-waves (right) extracted from the free NRQCD correlators, based on the effective
mass parameters asðβ ¼ 7.280ÞMb ¼ 1.56 and three different values of the parameter n ¼ 2; 3; 4. Consistent with expectations, the
spectra are increasing in amplitude at higher frequencies ω > 1 GeV. In the S-wave channel the number of reconstructed wiggles
remains stable, while there seems to be a slight increase in the amplitude of the ground state peak at n ¼ 4. In the P-wave channel for
n ¼ 4, we obtain an additional wiggle but do not find indications that the strength of the low frequency structures changes.
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FIG. 35 (color online). The interacting spectra for S-waves (left) and P-waves (right) extracted from the NRQCD correlators measured
on the T > 0, β ¼ 7.280 lattices at three different values of the parameter n ¼ 2; 3; 4. Again consistent with expectations the spectra are
increasing in amplitude at higher frequencies ω > 1 GeV. In both channels the ground state peak is virtually unaffected by the changes
in the high frequency behavior of NRQCD.
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The free spectral functions are shown in Fig. 34. We find
that, as hinted at by the analytically calculated free spectra,
the amplitude of ρðωÞ goes up as we increase n at
frequencies above 1 GeV. In the S-wave channel the number
of reconstructed wiggles remains the same between all
choices of n and the lowest lying peak only shows a minute
increase in strength for n ¼ 4, much smaller than the factor
ten separating it from the interacting spectrum as seen in
Fig. 9. In the P-wave channel for n ¼ 4 the reconstruction
shows an additional wiggle; however there are no indications
that the overall strength at small frequencies increases. In
all, these findings indicate that the free spectral functions
obtained numerically with n ¼ 2 at the relevant (unshifted)
frequencies Δω < 1 GeV are robust against changes in the
high frequency behavior of NRQCD.
As final step we need to perform the same comparison

with the spectra based on NRQCD correlators from the

fully interacting lattices, evaluated with n ¼ 2; 3; 4. The
results are shown in Fig. 35. Just as we saw in the case of
the free spectral functions, stepping up the value of n
increases the amplitude of the spectrum at frequencies
above 1 GeV. As is clearly visible, both in the S-wave (left)
and P-wave (right) channel, the lowest lying peak structure
remains virtually unchanged as we vary n. This is a strong
indicator that the spectra obtained at n ¼ 2 are robust
against changes in the high frequency behavior of NRQCD
and thus are a reliable representation of the underlying
QCD bound state physics. Together with the observed
robustness of the free spectral function reconstruction,
these findings reassure us that the observation of a well-
defined peak structure in the P-wave channel at T ¼
249 MeV is not simply an artifact, neither of the
Bayesian reconstruction nor of the discretization prescrip-
tion of the deployed EFT.
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