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We present the first direct lattice calculation of the isovector sea-quark distributions in the nucleon within
the framework of the large-momentum effective field theory proposed recently. We use Nf ¼ 2þ 1þ 1

highly improved staggered quarks lattice gauge ensembles (generated by the MILC Collaboration) and
clover valence fermions with pion mass 310 MeV. We establish the convergence of the result as the nucleon
momentum increases within the uncertainty of the calculation. Although the lattice systematics are not
yet fully under control, we obtain some qualitative features of the flavor structure of the nucleon sea:
d̄ðxÞ > ūðxÞ leading to the violation of the Gottfried sum rule, ΔūðxÞ > Δd̄ðxÞ as indicated by the STAR
data at large and small leptonic pseudorapidity.
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I. INTRODUCTION

The proton has the quantum numbers of two up and one
down quarks. The fundamental theory for the proton
structure, quantum chromodynamics (QCD), predicts that
in addition to these valence quarks, there is also a sea of
quark-antiquark pairs. The antiquarks in the proton can be
probed in high-energy scattering, particularly through the
Drell-Yan process and similar processes such as W produc-
tion. They can also be extracted through semi-inclusive
processes by tagging the fragmentations of the antiquarks. In
recent years, much progress has beenmade in understanding
the flavor structure of the nucleon sea (see Ref. [1] for a
recent review), for the unpolarized sea in Drell-Yan [2,3],
and for the polarized sea in semi-inclusive deep-inelastic
scattering [4,5]. Theoretical understanding of the nucleon
sea has mostly been from nucleon models [6,7]. Although
the models provide a qualitative physical understanding of
the sea, they are not expected to make reliable quantitative
predictions. The only fundamental approach to nucleon
structure so far is lattice QCD. Unfortunately, the traditional
lattice-QCD approach does not allow one to compute the sea
directly: one can only calculate lower moments of the parton
distributions, which involve quark as well as antiquark
contributions, making isolation of the antiquarks difficult.

In a recent paper by one of us [8], a new approach to
calculating the full x dependence of parton physics, such as
the parton distributions and other parton observables, has
been proposed. The method is based on the observation
that, while in the rest frame of the nucleon, parton physics
corresponds to light-cone correlations, and the same
physics can be obtained through time-independent spatial
correlations in the infinite-momentum frame. For finite but
large momenta feasible in lattice simulations, a large-
momentum effective field theory (LaMET) can be used
to relate Euclidean quasidistributions to physical ones
through a factorization theorem [9].
In this paper, we report the first attempt to make a

lattice calculation of polarized and unpolarized quark
distributions using the LaMET formalism. To simplify
the computation, we consider only the isovector u − d
combination so that the disconnected diagrams do not
contribute. We first compute the Euclidean lattice quasi-
distribution ~qlatðx;Λ; PzÞ at increasing nucleon momentum
Pz from 0.43 to 1.29 GeV and then extract the physical
light-cone distribution qðx; μÞ by taking into account both
one-loop logarithmic and power corrections. The leading
power correction arises from the nucleon-mass effect in the
expansion with respect to ðMN=4PzÞ2. We observe the
convergence of the result at the largest two nucleon
momenta, with small residual corrections coming from
dynamical higher-twist effects. Although the final result is
not yet entirely physical because of the large light-quark
masses, coarse lattice spacing, and lack of complete one-
loop matching condition, we nonetheless find a qualitative
agreement with experimental data on the unpolarized and
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polarized sea. This demonstrates the feasibility of the
approach and will motivate lattice-QCD studies with
improved systematics in the future.

II. PUTTING PARTON DISTRIBUTIONS
ON A LATTICE

For the quark distributions, the starting point is the
momentum-dependent nonlocal static correlation

~qðx;Λ; PzÞ ¼
Z

dz
4π

e−izk

× h~Pjψ̄ðzÞγzeig
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0
Azðz0Þdz0ψð0Þj~Pi; ð1Þ

where x ¼ k=Pz, Λ is an ultraviolet (UV) cutoff scale such
as 1=a on a lattice with a as lattice spacing, and ~P is the
momentum of the nucleon moving in the z direction. All
fields and couplings are bare and depend on Λ. When the
nucleon momentum approaches infinity, the quasidistribu-
tion becomes the physical parton distribution when Λ is
fixed. At large but finite Pz, one has an effective field
theory expansion [10]
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where μ is the renormalization scale for the physical
parton distribution qðyÞ, usually in the MS scheme. The
Z function is a perturbation series in αs, depending among
others on the UV properties of the quasidistribution. Z
has been calculated to one-loop order in the transverse-
momentum cutoff scheme, but is not yet available in a
lattice regularization. As observed in Ref. [11], the above
relation can be inverted, since it is perturbative.
In this study, we use clover valence fermions on an

ensemble of 243 × 64 gauge configurations with
a ≈ 0.12 fm, box size L ≈ 3 fm, and pion mass Mπ ≈
310 MeV with Nf ¼ 2þ 1þ 1 flavors of highly improved
staggered quarks generated by the MILC Collaboration
[12] and apply hypercubic (HYP) smearing [13] to the
gauge links. HYP smearing has been shown to significantly
improve the discretization effects on operators and shift
their corresponding renormalizations toward their tree-
level values (near unity for quark bilinear operators)
[14]. We calculate the quasidistributions with long straight
gauge-link products between the quark and antiquark in the
inserted current,

~qlatðx;Λ; PzÞ ¼
R

dz
4π e

−izkhðz;Λ; PzÞ;

hðz;Λ; PzÞ ¼ h~Pjψ̄ðzÞγz
�Q

n
UzðnẑÞ

�
ψð0Þj~Pi; ð3Þ

where Uμ is a discrete gauge link in the μ direction.

We generate the results using 1383 measurements
(among 461 lattice configurations). We extract the matrix
elements hðz;Λ; PzÞ for various z for our lattice setup with
Pz (in units of 2π=L)1, 2, 3. The statistical error becomes
noticeably bigger as the nucleon momentum becomes
larger, as typically seen in lattice hadron calculations.
The correlation vanishes beyond about 1 fm, as is typical
in nonperturbative QCD. This is in strong contrast to the
correlation in the light-cone coordinates, as seen from the
Fourier transformation of the parton distribution in
Feynman variable x, where the correlation length increases
with the nucleon momentum. In the present formalism,
the small x partons arise from the spatial correlation of
order 1 fm, whereas the valence parton correlation is
Lorentz contracted along the z direction, as discussed
in Ref. [9].
We Fourier transform the z coordinate into momentum k

to obtain the quasidistribution ~qlatðx; μ; PzÞ, which is shown
in Fig. 1. It is quite striking that the peak at the lowest
momentum is around x ¼ 1, where the physical parton
distribution vanishes. However, as the nucleon momentum
doubles, the peak shifts to x ≈ 0.5 and the value of the
quasidistribution at x ¼ 1 reduces to half that of the peak.
At the highest momentum, the peak is further shifted to
x ≈ 0.4 and the value at x ¼ 1 is now about a third that of
the peak. This is consistent with the expectation that as
momentum becomes asymptotically large, the quasidistri-
bution becomes more similar to the physical parton dis-
tribution. However, there is a limitation to the size of the
momentum available on the lattice for nucleons. Therefore,
LaMET must be used to extract the asymptotic distribution
from the finite-Pz quasidistributions. If we account for all
the corrections, any quasidistribution at a reasonably large
Pz should yield the same physical prediction.
To take into account the one-loop corrections, we use the

Zðξ ¼ x
y ;

μ
Pz
; ΛPz

Þ factor from Ref. [10]. To make the com-

putation easier, we use the inverted Eq. (2) between the

FIG. 1 (color online). The isovector quark quasidistribution
~uðxÞ − ~dðxÞ as defined in Eq. (1) computed on a lattice with the
nucleon momentum Pz ðin units of 2π=LÞ ¼ 1 (red), 2 (green),
3 (cyan). The Pz ¼ 1ð3Þ curve has the lowest(highest) value
among the curves at x ¼ 0.4.
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quasi- and physical distributions, expanded to linear order
in αs [11]. We take the UV cutoff Λ to be the largest lattice
momentum π=a, and MS μ ¼ 2 GeV, which sets the scale
of the parton distribution. The choice of the strong coupling
is somewhat subtle.1 Again, the Z factor from the cutoff
scheme is correct to the leading logarithm but not for the
numerical constant. This is a compromise that we make at
the moment and will be rectified in the future.
At low nucleon momenta, the nucleon-mass corrections

are as important as the one-loop correction, if not more.
Using the operator product expansion, the nonlocal oper-
ator in Eq. (1) can be expanded as

P∞
n¼1 CnðzÞOnð0Þ,

where the tree-level Wilson coefficient CnðzÞ ¼ ðizÞn−1=
ðn − 1Þ!þOðαsÞ and Onð0Þ ¼ ψ̄ð0ÞγzðiDzÞn−1ψð0Þ. The
tensor On is symmetric but not traceless, so it is a mixture
of a twist-2 and higher-twist operators with the matrix
element

h~PjOnð0Þj~Pi ¼ 2anPn
zKn þOðΛ2

QCD=P
2
zÞ ð4Þ

entirely expressible in terms of an ¼
R
dxxn−1qðxÞ, the

nth moment of the desired parton distribution, and Kn ¼
1þPimax

i¼1 C
n−i
i ðM2

N=4P
2
zÞi where C is the binomial func-

tion, and imax ¼ n−ðnmod2Þ
2

. The OðΛ2
QCD=P

2
zÞ term is the

dynamical higher-twist correction. As one can see, the
actual nucleon-mass correction parameter is M2

N=4P
2
z .

After one-loop and nucleon-mass corrections, the result-
ing distributions are shown in Fig. 2. For the nuclear
momenta under consideration, both types of corrections are
important. As one can see, the corrected distributions have
much reduced Pz dependence, particularly for the two
largest momenta. This suggests that the corrections to the
quasidistributions will generate a Pz-independent physical
distribution. The remaining small difference between the
two large-momenta results could be due to the dynamical
higher-twist correctionsOðΛ2

QCD=P
2
zÞ, which is expected to

be smaller than the nucleon-mass effect. As for the lowest
nucleon momentum (430 MeV) result, the LaMET expan-
sion might not be very effective, although the peak after
corrections has been shifted to near 0.8.
Finally, we find a Pz-independent distribution by taking

into account the OðΛ2
QCD=P

2
zÞ correction by extrapolating

using the form aþ b=P2
z . The final unpolarized distribution

uðxÞ − dðxÞ is shown in Fig. 3. The distribution for the
jxj > 1 region is within 2σ of zero; thus, we recover the
correct support for the physical distribution within error.
Our result cannot be directly compared with the exper-

imental data because other lattice systematics are not yet

under control. To obtain the physical parton distributions,
we need to make a number of improvements, including
reducing the quark masses to physical ones, increasing the
number of configurations to reduce statistical errors, using
finer lattice spacing to accommodate larger boosted
momenta and improve the resolution, and using larger
lattice volumes to access smaller x. Nonetheless, we hope
that the present results do provide some insight into the
qualitative features of the parton physics.
Also shown in Fig. 3 are the parton distributions from the

global analyses by CTEQ-JLab (CJ12) [17] and NLO
MSTW08 [16] at μ ≈ 1.3 GeV. Note that the lattice results
are not yet close to the physical pion mass, and the
comparison with the global analysis here is mainly to

FIG. 2 (color online). The physical quark distribution
uðxÞ − dðxÞ extracted fromFig. 1 after makingMn

N=P
n
z corrections

and one-loop corrections. The red, green, and cyan bands corre-
spond to Pz (in units of 2π=L) ¼ 1 (red), 2 (green), 3 (cyan). The
Pz ¼ 1ð3Þ curve has the highest(lowest) value among the curves at
x ¼ 0.6. The two higher-momentum distributions are now
almost identical.

FIG. 3 (color online). The unpolarized isovector quark distri-
bution uðxÞ − dðxÞ computed on the lattice after extrapolation in
Pz is shown as the purple band, compared with the global
analyses by MSTW [16] (brown dotted line), and CTEQ-JLab
(CJ12, green dashed line) [17] with medium nuclear correction
near ð1.3 GeVÞ2. The negative x region is the sea-quark dis-
tribution with q̄ðxÞ ¼ −qð−xÞ. The lattice uncertainty band in the
plot reflects the 68% C.L. The global fit uncertainty is not shown
in the figure.

1In principle, one should use 6=ð4πβÞ on the lattice; however,
it is well known that this omits important tadpole contributions
[15]. As a compromise, we take αs ¼ 0.20� 0.04, with the
central value determined by the prescription of Ref. [15] and the
uncertainty included as a part of the theoretical systematics.
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demonstrate the magnitude of the quantity, rather than to
attempt to make a detailed comparison. The distribution in
the mid-x region between two difference scales 1.3 and
2 GeV is small, comparing with the changes we anticipate
in the future calculation at physical pion mass. In Fig. 3, the
lattice distribution weighs more at larger jxj. And since the
total u − d quarks are conserved, a reduction in small jxj
means an increase in larger jxj. This is also consistent with
that the lattice first moment of the momentum fraction
(hxiu−d) and helicity (hxiΔu−Δd) above pion mass 250 MeV
is roughly double the integrated values derived from global
analyses [18,19]. It would be very interesting to observe
how the distribution changes when the lattice systematics
improve.
The sea-quark distribution can be read from the negative-

x contribution: q̄ðxÞ ¼ −qð−xÞ. Our result favors a large
asymmetry in the distributions of sea up and down
antiquarks in the nucleon. There is a violation of the
Gottfried sum rule with

R
∞
0 dxðūðxÞ − d̄ðxÞÞ ¼ 0.14ð5Þ,

which was first observed by the New Muon
Collaboration (NMC) through the cross-section ratio for
deep-inelastic scattering of muons from hydrogen and
deuterium [20], and later confirmed by other experiments
using different processes, such as Drell-Yan at E665 [2] and
E866/NuSea [3]. This is the first time we can demonstrate
this directly from lattice QCD. Our result is close to the
experimental one obtained by NMC in their deep inelastic
scattering (DIS) measurement, 0.147(39) at Q2 ¼ 4 GeV2

and by HERMES in their semi-inclusive DIS result, 0.16(3)
at Q2 ¼ 2.3 GeV2 [21].
The study of the isovector helicity distribution follows

the same procedure with γz in Eq. (3) replaced by γzγ5. Our
result for antiquark helicity favors more polarized up quark
than down flavor, while the total polarized sea asymmetry
estimated by DSSV09 is consistent with zero within 2σ. We
see a bigger polarized sea asymmetry, Δū − Δd̄ ¼ 0.24ð6Þ,
than the unpolarized case, as predicted in the large-Nc
theory. We also see more weight distributed near the x ¼ 1
regions, which could shift as we lower the light-quark
masses in the future. In the near term, experiments in

longitudinal single-spin asymmetry and parity-violating W
production at the RHIC might shed more light on the
polarized sea distribution [4].

III. SUMMARY

To summarize, we have presented a direct lattice-QCD
calculation of the x dependence of parton distribution
functions. By doing calculations with a large-momentum
nucleon, we have been able to connect light-cone quantities
to lattice-QCD nonlocal but time-independent matrix ele-
ments. Since the largest attainable momentum is limited,
we have corrected for the sizable finite-momentum depend-
ence systematically. Our final result has shown very
encouraging signal for the isospin sea asymmetry in the
unpolarized quark and helicity distributions. It is the first
time these are directly calculated with a first-principles
nonperturbative QCD approach. There is no fundamental
difficulty in performing the calculation at the physical pion
mass, and improving the statistical error to a level where we
can compare with experiments quantitatively.
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