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We present a new lattice QCD analysis of heavy-quark pseudoscalar-pseudoscalar correlators, using
gluon configurations from the MILC Collaboration that include vacuum polarization from u, d, s, and c
quarks (nf ¼ 4). We extract new values for the QCD coupling and for the c quark’s MS mass:
αMSðMZ; nf ¼ 5Þ ¼ 0.11822ð74Þ and mcð3 GeV; nf ¼ 4Þ ¼ 0.9851ð63Þ GeV. These agree well with
our earlier simulations using nf ¼ 3 sea quarks, vindicating the perturbative treatment of c quarks in
that analysis. We also obtain a new nonperturbative result for the ratio of c and s quark masses:
mc=ms ¼ 11.652ð65Þ. This ratio implies msð2 GeV; nf ¼ 3Þ ¼ 93.6ð8Þ MeV when it is combined with
our new c mass. Combining mc=ms with our earlier mb=mc gives mb=ms ¼ 52.55ð55Þ, which is several
standard deviations (but only 4%) away from the Georgi-Jarlskop prediction from certain grand unified
theories. Finally we obtain an nf ¼ 4 estimate for mb=mc ¼ 4.528ð54Þ which agrees well with our earlier
nf ¼ 3 result. The new ratio implies mbðmb; nf ¼ 5Þ ¼ 4.162ð48Þ GeV.
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I. INTRODUCTION

The precision of lattice QCD simulations has increased
dramatically over the past decade, with many calculations
now delivering results with 1%–2% errors or less. Such
precision requires increasingly accurate values for the
fundamental QCD parameters: the quark masses and the
QCD coupling. Accurate QCD parameters are important
for non-QCD phenomenology as well. For example,
theoretical uncertainties in several of the most important
Higgs branching fractions are currently dominated by
uncertainties in the heavy-quark masses (especially mb
and mc) and the QCD coupling [1].
In this paper we present new lattice results for mc,

mc=ms, ms, mb=mc, mb, and αs. In a previous paper [2] we
obtained 0.6% accurate results for the masses and coupling
by comparing continuum perturbation theory with non-
perturbative lattice-QCD evaluations of current-current
correlators for heavy-quark currents. Current-current cor-
relators are particularly well suited to a perturbative
analysis because nonperturbative effects are suppressed
by four powers of ΛQCD=2mh where mh is the heavy-quark
mass. Our earlier simulations treated u, d, and s sea quarks

nonperturbatively (nf ¼ 3), while assuming that contribu-
tions from c and heavier quarks can be computed using
perturbation theory. Here we test the assumption that
heavy-quark contributions are perturbative by repeating
our analysis with lattice simulations that treat the c quark
nonperturbatively (nf ¼ 4 in the simulation).
In Sec. II we present our new nf ¼ 4 lattice-QCD

analysis of current-current correlators, leading to new
results for the heavy-quark masses and the QCD coupling.
We introduce an improved procedure that gives smaller
errors and simplifies the analysis. We also demonstrate
how our Monte Carlo data correctly reproduce the running
of the MS masses and coupling. In Sec. III, we use the same
simulations to calculate a new nonperturbative result for the
ratio of the c to s quark masses, mc=ms. In Sec. IV, we use
these simulations to calculate the mass ratio mh=mc for
heavy quarks with masses mh between mc and mb. We
express the ratio as a function of the heavy quark’s
pseudoscalar mass mηh . We extrapolate our result to
mηh ¼ mηb to obtain a new nonperturbative estimate for
mb=mc. In Sec. V, we summarize our conclusions, derive
new values for the s and bmasses, and present our thoughts
about further work in this area. We also include, in
Appendix A, a detailed discussion about how the coupling
constant, quark masses, and the lattice spacing depend*g.p.lepage@cornell.edu
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upon sea-quark masses in our approach. Our current
analysis includes u=d sea-quark masses down to physical
values, so we are able to analyze this in far more detail
than before. Finally, Appendix B briefly summarizes
nf ¼ 4 results obtained using our previous methods [2].

II. LATTICE RESULTS

Our new analysis follows our earlier work [2], but with a
simpler and more accurate method for connecting current
correlators to MS masses. In particular, this method allows
us to determine the MS c mass at multiple scales, from
correlators with different heavy-quark masses, providing a
new test of our use of continuum perturbation theory. While
the lattice spacings are not as small as before, our new
analysis treats c quarks in the quark sea nonperturbatively.
We also use the substantially more accurate HISQ discre-
tization for the sea-quark action [3], in place of the
ASQTAD discretization in our earlier analysis, and a more
accurate method for setting the lattice spacing. The gluon
action is also improved over our earlier analysis, as it
now includes Oðnfαsa2Þ corrections [4]. Our new results
also have more statistics and include ensembles with u=d
masses very close to the physical value.

A. Heavy-quark correlator moments

As before, we compute (temporal) moments,

Gn ≡
X
t

ðt=aÞnGðtÞ; ð1Þ

of correlators formed from the pseudoscalar density oper-
ator of a heavy quark, j5 ≡ ψ̄hγ5ψh:

GðtÞ ¼ a6
X
x

ðam0hÞ2h0jj5ðx; tÞj5ð0; 0Þj0i: ð2Þ

Here m0h is the heavy quark’s bare mass (from the lattice
QCD lagrangian), a is the lattice spacing, time t is
Euclidean and periodic with period T, and the sum over
spatial positions x sets the total three-momentum to zero.
We again reduce finite-lattice spacing, tuning, and pertur-
bative errors by replacing the moments in our analysis with
reduced moments,

~Rn ≡
8<
:

G4=G
ð0Þ
4 for n ¼ 4;

1
m0c

ðGn=G
ð0Þ
n Þ1=ðn−4Þ for n ≥ 6;

ð3Þ

where Gð0Þ
n is the moment in lowest-order weak-coupling

perturbation theory using the lattice regulator, and m0c is
the bare mass of the c quark.
Low-n moments are dominated by short-distance phys-

ics because the correlator is evaluated at zero total energy,

which is well below the threshold for on-shell hadronic
states: the threshold is at Ethreshold ¼ mηh where

2.9 GeV ≤ mηh < 6.6 GeV ð4Þ

for our range of massesm0h. Furthermore, the moments are
independent of the ultraviolet cutoff when n ≥ 4. Applying
the Operator Product Expansion (OPE) to the product of
currents in the correlator, we can therefore write our n ¼ 4
reduced moment in terms of continuum quantities,

~R4 → r4ðαMS; μÞ
�
1þ dcond4 ðαMS; μÞ

hαsG2=πieff
ð2mhÞ4

þ ~dcond4 ðαMS; μÞ
X

q¼u;d;s

hmqψ̄qψqieff
ð2mhÞ4

þ � � �
�
; ð5Þ

in the continuum limit (a → 0). Here αMS is the MS
coupling at scale μ, and mh is the MS h-quark mass.
Heavy-quark condensates are absorbed into the gluon
condensate [5]. We will retain terms only through the
gluon condensate in what follows since its contribution is
already very small and contributions from other conden-
sates will be much smaller. We discuss the precise meaning
of hαsG2=πieff below. Reduced moments with n ≥ 6 can
be written

~Rn →
rnðαMS; μÞ
mcðμÞ

�
1þ dcondn ðαMS; μÞ

hαsG2=πieff
ð2mhÞ4

þ � � �
�
;

ð6Þ

wheremcðμÞ is the MS mass of the c quark. The continuum
expressions for ~Rn should agree with tuned lattice simu-
lations up to finite-lattice-spacing errors of OððamhÞ2αsÞ.
The perturbative expansions for the coefficient functions rn
are known through third order: see Table I and [6–10]. The
expansions for dcondn are known through first order [11].
Parameter μ sets the scale formc and for αMS in rn. As in

our previous paper, we take

μ ¼ 3mhðμÞ ð7Þ

TABLE I. Perturbation theory coefficients for rn with nf ¼ 4
sea quarks, where the heaviest sea quark has the same massmh as
the valence quark (that is, the quark used to make the currents in
the current-current correlator). Coefficients are defined by rn ¼
1þP

jrnjα
j
MS

ðμÞ where μ ¼ mhðμÞ. These coefficients are
derived in [6–10].

n rn1 rn2 rn3

4 0.7427 0.0088 −0.0296
6 0.6160 0.4976 −0.0929
8 0.3164 0.3485 0.0233
10 0.1861 0.2681 0.0817
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in order to improve the convergence of perturbation theory.
In fact, however, our method is almost completely inde-
pendent of the choice of μ, by design. We can reexpress μ in
terms of the MS mass of the c quark,

μ ¼ 3mcðμÞ
m0h

m0c
; ð8Þ

since the ratios of quark masses are regulator independent,
that is,

m0h

m0c
¼ mhðμÞ

mcðμÞ
ð9Þ

up to a2 errors (for any μ).
Our reduced moments differ for n ≥ 6 from our earlier

work; here, we multiply by 1=m0c in Eq. (3) instead of
mηh=2m0h. The ratio of Gs in ~Rn≥6 introduces a factor of
m0h=mhðμÞ. This becomes 1=mcðμÞ when multiplied by
1=m0c [by Eq. (9)]. Consequently we can use moments
calculated with any heavy-quark mass m0h to estimate
the MS c mass [at μ ¼ 3mhðμÞ�. Consistency among mcs
coming from differentm0h values is an important test of the
formalism.
We could have used the baremass of any quark, in place of

m0c, inEq.(3).Thenthen ≥ 6momentswouldgivevaluesfor
theMSmass of that quark. Alternatively, we could leave the
quark mass factor out, in which case these moments give
the factorsZmðμÞ that convert anybare latticequarkmass into
the corresponding MS mass at scale μ. Heavy-quark
current-current correlators, as used here, provide an alter-
native to RI-mom [12] and similar methods for determining
both light and heavy quark masses.
The new definition for the reduced moments simplifies

our analysis since the variation of factor mcðμÞ with μ is

well known from perturbative QCD. The mηh dependence
of the analogous factor (mηh=2mh) in the old analysis is
unknown a priori and so must be modeled in the fit. We
analyzed our data using the old definitions; the results,
which agree with the results we find with the new methods,
are described briefly in Appendix B.

B. Lattice simulations

To extract the coupling constant and c mass from
simulations, we use the simulations to compute nonper-
turbative values for the reduced moments ~Rn with small
n ≥ 4 and a range of heavy-quark masses m0h. We vary the
lattice spacing, so we can extrapolate to zero lattice
spacing, and the sea-quark masses, so we can tune the
masses to their physical values.
The gluon-field ensembles we use come from the MILC

Collaboration and include u, d, s, and c quarks in the quark
sea [13,14]. The parameters that characterize these ensem-
bles are given in Table II. The highly accurate HISQ
discretization [3] is used here for both the sea quarks and
the heavy quarks in the currents used to create the
correlators. This discretization was designed to minimize
ðamhÞ2 errors for large mh. Our previous work used HISQ
quarks in the currents, but a less accurate discretization
(ASQTAD) for the sea quarks.
We also quote tuned values for the bare s and c quark

masses in Table II. These are the quark masses that give the
physical values for the ηs and ηc masses, as discussed in
Appendix A 1. This is the bare c mass we use in Eq. (3)
for ~Rn.
In Table III we list our simulation results for the ηh mass

and the reduced moments for various bare quark masses
am0h on various ensembles. Results from different values
of am0h on the same ensemble are correlated; we include

TABLE II. Simulation parameters for the gluon ensembles used in this paper [13,14], with lattice spacings of approximately 0.15,
0.12, 0.09, and 0.06 fm, and various combinations of sea-quark masses. The parameters for each simulation are the inverse lattice
spacing in units of w0 ¼ 0.1715ð9Þ fm, the spatial L and temporal T lattice lengths, the number of gluon configurations Ncf (each with
multiple time sources), the bare sea-quark masses in lattice units (am0l; am0s; am0c), and the tuned bare s and c quark masses in GeV.
The tuned s and c masses give physical values for the ηs and ηc mesons, respectively. The l mass is the average of the u and d masses,
which are set equal in our simulations. ZmðμÞ is the ratio of the MS quark mass mqðμ; nf ¼ 4Þ to the corresponding bare (lattice) mass
m0q (see Sec. II D). The last two entries for each ensemble indicate the degree to which the sea-quark masses are detuned (see
Appendix A).

Ensemble w0=a L=a T=a Ncf am0l am0s am0c mtuned
0s mtuned

0c Zmð3 GeVÞ δmsea
uds=ms δmsea

c =mc

1 1.1119(10) 16 48 1020 0.01300 0.0650 0.838 0.0895(7) 1.138(4) 0.866(5) 0.228(16) −0.058ð8Þ
2 1.1272(7) 24 48 1000 0.00640 0.0640 0.828 0.0890(7) 1.130(4) 0.872(6) 0.046(14) −0.050ð8Þ
3 1.1367(5) 36 48 1000 0.00235 0.0647 0.831 0.0885(7) 1.125(4) 0.876(5) −0.048ð13Þ −0.034ð8Þ
4 1.3826(11) 24 64 300 0.01020 0.0509 0.635 0.0866(7) 1.057(3) 0.933(6) 0.236(16) −0.044ð8Þ
5 1.4029(9) 32 64 300 0.00507 0.0507 0.628 0.0861(7) 1.051(3) 0.938(6) 0.067(14) −0.035ð8Þ
6 1.4149(6) 48 64 200 0.00184 0.0507 0.628 0.0857(7) 1.047(3) 0.941(6) −0.040ð13Þ −0.024ð8Þ
7 1.9330(20) 48 96 300 0.00363 0.0363 0.430 0.0823(9) 0.977(3) 1.009(6) 0.104(11) −0.021ð8Þ
8 1.9518(7) 64 96 304 0.00120 0.0363 0.432 0.0818(7) 0.973(3) 1.013(6) −0.011ð13Þ −0.003ð8Þ
9 2.8960(60) 48 144 333 0.00480 0.0240 0.286 0.0778(7) 0.912(3) 1.080(7) 0.365(19) 0.045(9)
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these correlations in our analysis. The amηh values are
computed from Bayesian fits of multistate function,

X10
j¼1

bjðe−mjt þ e−mjðT−tÞÞ; ð10Þ

to the correlators GðtÞ for t ≥ 8, where T is the temporal
length of the lattice [15]. The fitting errors are small for
amηh and have minimal impact on our final results.
The fractional errors in the ~Rn for n ≥ 6 are 20–40 times

larger than those for ~R4. This is because of the factor of
1=mtuned

0c used in Eq. (3) to define these moments. As
mentioned above, we could have used bare masses for other
quarks in this definition to obtain values for their MS
masses. Heavy-quark masses like m0c, however, can
usually be tuned more accurately than light-quark masses,
as discussed in Appendix A. Masses for other quarks can be
obtained from the cmass and nonperturbatively determined

quark mass ratios, as we show for the s and b masses in the
next two sections.
As in our previous paper, we limit the maximum size of

amh in our analysis: we require amh ≤ 0.8. This keeps a2

errors smaller than 10%.
We determine the lattice spacing by measuring the

Wilson flow parameter w0=a on the lattice (Table II)
[16]. From previous simulations [17], we know that

w0 ¼ 0.1715ð9Þ fm; ð11Þ

which we combine with our measured values of w0=a to
obtain the lattice spacing for each ensemble (Appendix A).
This approach is far more accurate than that used in our
earlier paper, which relied upon the r1 parameter from the
static-quark potential.

C. Fitting lattice data

Our goal is to find values for αMSðμÞ and mcðμÞ that
make the theoretical results (from perturbation theory) for
the reduced moments ~Rn [Eqs. (5)–(6)] agree with the
nonperturbative results from our simulations. We do this by
simultaneously fitting results from all of our lattice spac-
ings and quark masses for moments with 4 ≤ n ≤ 10. To
get good fits, we must correct the continuum formulas in
Eqs. (5)–(6) for several systematic errors in the simulation.
We fit the lattice data using the following corrected form:

~Rn ¼
�
1 for n ¼ 4

1=ξmmcðξαμÞ for n ≥ 6

�
ð12Þ

× rnðαM̄SðξαμÞ; μÞ ð13Þ

×

�
1þ dcondn

hαsG2=πi
ð2mhÞ4

�
ð14Þ

×

�
1þ dh;cn

m2
0h −m2

0c

m2
0h

�
ð15Þ

þ
�
amηh

2.26

�
2 XN

i¼0

ciðmηh ; nÞ
�
amηh

2.26

�
2i
: ð16Þ

We use a Bayesian fit with priors for every fit parameter
[15]. The priors are a priori estimates for the parameters
based upon theoretical expectations and previous experience,
especially from our earlier, very similar nf ¼ 3 analysis. In
each case we test our choice of prior width against the
Empirical Bayes Criterion [15], which in effect uses fluc-
tuations in the data to suggest natural widths for priors. None
of our priors is narrower than this optimal width, and most
are wider, which leads to more conservative errors.
We now explain each part of the lattice formula in turn.

TABLE III. Simulation results for ηh masses and reduced
moments with various bare heavy-quark masses am0h and gluon
ensembles (first column, see Table II). Only data for am0h ≤ 0.8
are used in fits to the correlators. The ~Rn for n ≥ 6 are in units
of GeV−1.

am0h amηh
~R4

~R6
~R8

~R10

1 0.826 2.22510(10) 1.1627(1) 0.937(3) 0.885(3) 0.856(3)
0.888 2.33188(9) 1.1477(1) 0.937(3) 0.893(3) 0.867(3)

2 0.818 2.21032(6) 1.1643(0) 0.943(3) 0.890(3) 0.860(3)
3 0.863 2.28770(4) 1.1528(0) 0.947(3) 0.900(3) 0.872(3)
4 0.645 1.83976(11) 1.1842(2) 0.986(3) 0.915(3) 0.874(2)

0.663 1.87456(12) 1.1783(2) 0.988(3) 0.919(3) 0.880(2)
5 0.627 1.80318(8) 1.1896(1) 0.989(3) 0.915(3) 0.874(2)

0.650 1.84797(8) 1.1819(1) 0.992(3) 0.921(3) 0.881(2)
0.800 2.13055(7) 1.1409(1) 1.001(3) 0.951(3) 0.920(3)

6 0.637 1.82225(5) 1.1860(1) 0.994(3) 0.921(3) 0.880(2)
7 0.439 1.34246(4) 1.2134(1) 1.013(3) 0.921(3) 0.877(2)

0.500 1.47051(4) 1.1886(1) 1.029(3) 0.946(3) 0.903(3)
0.600 1.67455(4) 1.1565(1) 1.048(3) 0.978(3) 0.939(3)
0.700 1.87210(4) 1.1315(0) 1.059(3) 1.002(3) 0.968(3)
0.800 2.06328(3) 1.1118(0) 1.064(3) 1.019(3) 0.991(3)

8 0.433 1.32929(3) 1.2160(1) 1.015(3) 0.922(3) 0.877(2)
0.500 1.47012(3) 1.1885(0) 1.033(3) 0.950(3) 0.906(2)
0.600 1.67418(3) 1.1564(0) 1.052(3) 0.982(3) 0.943(3)
0.700 1.87177(2) 1.1315(0) 1.063(3) 1.006(3) 0.972(3)
0.800 2.06297(2) 1.1117(0) 1.068(3) 1.023(3) 0.995(3)

9 0.269 0.88525(5) 1.2401(4) 1.011(3) 0.913(3) 0.869(2)
0.274 0.89669(5) 1.2368(4) 1.014(3) 0.917(3) 0.873(2)
0.400 1.17560(5) 1.1752(2) 1.068(3) 0.985(3) 0.944(3)
0.500 1.38750(4) 1.1440(2) 1.094(3) 1.023(3) 0.985(3)
0.600 1.59311(4) 1.1204(1) 1.112(3) 1.051(3) 1.017(3)
0.700 1.79313(4) 1.1018(1) 1.122(3) 1.073(3) 1.043(3)
0.800 1.98751(3) 1.0867(1) 1.127(3) 1.088(3) 1.063(3)
0.900 2.17582(3) 1.0823(0) 1.399(4) 1.246(3) 1.169(3)
1.000 2.35773(3) 1.0284(0) 1.442(4) 1.295(4) 1.215(3)
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1. Detuned sea-quark masses

The terms αMSðξαμÞ and ξmmhðξαμÞ in ~Rn are the MS
coupling and heavy-quark mass for detuned sea-quark
masses; see Eqs. (A9) and (A19) in Appendix A. Scale
μ is chosen so that

μ ¼ 3ξmmcðξαμÞ
m0h

m0c
¼ 3mhðμ; δmseaÞ: ð17Þ

Scale factors ξα and ξm are defined in Appendix A,
which discusses howMS couplings and masses are affected
by sea-quark masses. The coefficients gα, gm… in ξα and ξm
are treated as fit parameters, with priors taken from the
output of the fits described in the appendix.
The light sea-quark masses enter linearly in ξα and ξm,

because of (nonperturbative) chiral symmetry breaking.
Quark mass dependence also enters through the perturba-
tion theory for the moments (rn) but is quadratic in the mass
and, therefore, negligible for light quarks.

2. μ dependence

The scale μ enters Eqs. (12)–(16) through the coupling
constant αMSðξαμÞ and the cmassmcðξαμÞ. We parametrize
the coupling and mass in the fit by specifying their values at
μ ¼ 5 GeV with fit parameters α0 and m0,

αMSð5 GeV; nf ¼ 4Þ ¼ α0

mcð5 GeV; nf ¼ 4Þ ¼ m0; ð18Þ

whose priors are

α0 ¼ 0.21� 0.02; m0 ¼ 0.90� 0.10: ð19Þ

Our previous analysis [2], converted from nf ¼ 3 to
nf ¼ 4, gives 0.2134(24) and 0.8911(56) for these param-
eters; so the priors are broad. The coupling and mass for
other values of μ are obtained by integrating (numerically)
their evolution equations from perturbative QCD, starting
from the values at μ ¼ 5 GeV:

μ2
dαMSðμÞ
dμ2

¼ − β0α
2

MS
ðμÞ − β1α

3

MS
− β2α

4

MS

− β3α
5

MS
− β4α

6

MS
; ð20Þ

d logmhðμÞ
d log μ2

¼ − γ0αMSðμÞ − γ1α
2

MS
− γ2α

3

MS

− γ3α
4

MS
− γ4α

5

MS
: ð21Þ

The first four coefficients on the right-hand sides of these
equations are known from perturbation theory [18–21]. In
each case, we treat the fifth coefficient as a fit parameter
whose prior’s width equals the root-mean-square average of
the first four parameters:

β4 ¼ 0� σβ; γ4 ¼ 0� σγ: ð22Þ

Neither β4 nor γ4 has signficant impact on our final results.

3. Truncated perturbation theory

The Wilson coefficient function rn [Eq. (13)] has a
perturbative expansion of the form

rnðαMS; μÞ≡ 1þ
XNpth

j¼1

rnjðμÞαjMS
: ð23Þ

The perturbative coefficients rnj are known through third
order and are given for μ ¼ mhðμÞ in Table I.
The lack of perturbative coefficients beyond third order

is our largest single source of systematic error. Our data
are sufficiently precise that higher-order terms are relevant.
Furthermore, the relative importance of the higher-
order terms varies with quark mass, as αMS varies with
μ ¼ 3mh. Therefore, we include the higher-order terms in
our analysis with coefficients that we fit to account for
variations with quark mass. As in our earlier analysis, we
note that the known perturbative coefficients are small and
relatively uncorrelated from moment to moment and order
to order for μ ¼ mh, leading us to adopt fit priors,

rnjðμ ¼ mhÞ ¼ 0� 1; ð24Þ

for the n > 3 coefficients at μ ¼ mh. We double the width
of these priors relative to our previous analysis because the
fit suggested that some higher-order coefficients are larger
here (especially for n ¼ 4).
We set Npth ¼ 15 terms in the expansion, although our

results are essentially unchanged once eight or more terms
are included (or five with μ ¼ mh). As before, we use
renormalization group equations to express the coefficients
rnjðμ ¼ 3mhÞ in terms of the coefficients rnjðμ ¼ mhÞ from
Table I and Eq. (24). This procedure generates (correlated)
priors for the unknown coefficients at μ ¼ 3mh that account
for renormalization-group logarithms. The procedure
makes our results largely independent of μ: our results
change by less than a third of a standard deviation as μ is
varied over the interval 2mh ≤ μ ≤ 10mh.

4. Nonperturbative effects: Finite-volume corrections

We use the Operator Product Expansion (OPE) in
Eqs. (5)–(6) to separate short-distance from long-distance
physics. In principle, the perturbative coefficients in
rnðαMS; μÞ above should have subtractions coming from
the higher-order terms in the OPE expansion:

rn → rn

�
1 − dcondn

hαsG2=πiðλÞpth

ð2mhÞ4
− � � �

�
; ð25Þ
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where λ is a fixed cutoff scale in the perturbative regime,

say λ ¼ 1 GeV, and hαsG2=πiðλÞpth and d
cond
n are computed in

perturbation theory to the same order as rn. These sub-
tractions come from perturbative matching and remove
contributions to rn due to low-momentum gluons (q ≤ λ),
thereby also removing infrared renormalons order by order
in perturbation theory. The size of the subtraction depends
upon the detailed definition of αsðGðλÞÞ2. This procedure is
completely unambiguous given a specific definition for this
operator, but we have not included the subtraction in rn
since it is negligible for any reasonable definition at our
low orders of perturbation theory. For example, a simple
momentum-space cutoff, that keeps q2 < λ2, gives [22]

hαsG2iðλÞpth ¼
3αs
2π3

λ4; ð26Þ

which ranges from 0.001 to 0.019 GeV4 for λs between
500Mev and 1 GeV. This would change rn by no more than
0.1%–0.4% at mh ¼ mc and much less at our higher mhs.
Not surprisingly, perturbative estimates of the conden-

sate value [Eq. (26)] are similar in size to nonperturbative
estimates of the condensate value. So it is simpler for us
to combine the subtraction in Eq. (25) with the condensate
itself to form an effective condensate value [23]:

hαsG2ieff ≡ hαsG2iðλÞ − hαsG2iðλÞpth: ð27Þ

In our fits we take hαsG2ieff as a fit parameter with prior

hαsG2ieff ¼ 0.0� 0.012; ð28Þ
and we approximate mh ≈mηh=2.26 in the condensate
correction (because mbðmbÞ ≈mηb=2.26). Our results are
completely unchanged if the width of this prior is 10 times
larger. In either case, we obtain a value for the effective
condensate of order 0.002 with errors of a similar size. This
is completely consistent with expectations, and it reduces
condensate contributions to the moments to 0.01–0.05%
at mh ¼ mc, and much less at higher mh—negligible at our
level of precision.
This procedure is sensible at our level of precision. As

precision increases, however, there is a point where it
becomes important to remove renormalon corrections
from the coefficients in rn. Otherwise, j! factors in jth
order, coming from infrared renormalons, cause perturba-
tion theory to diverge. A simple analysis [24] indicates that
perturbation theory starts to diverge at order j ∼ 2=ðβ0αMSÞ,
which is around the eighth order for our analysis.
Consequently we expect the impact of infrared renormalons
to be negligible at third order.
Perturbation theory is not the whole story even if infrared

renormalons are removed. The OPE separates short dis-
tances from long distances, but the short-distance coeffi-
cients rn, dcondn … have nonperturbative contributions, for

example, from small instantons [22]. It is also possible that
the OPE is an asymptotic expansion and does not converge
ultimately, although recent results suggest it might con-
verge [25,26]. Whatever the case, such effects are expected
to appear at even higher orders than infrared renormalons,
and so are completely negligible at our level of precision.
Condensates, renormalons, small instantons, etc., afflict

all perturbative analyses at some level of precision. Our
analysis is particularly insensitive to such effects because
the leading nonperturbative contributions are suppressed by
four powers of ΛQCD=ð2mhÞ.
Note finally that the coefficient functions, being short-

distance, are insensitive to errors caused by the finite
volume of the lattice. While the finite volume can affect
the value of hαsG2ieff , the impact on our results is
negligible since the condensate itself is negligible. We
verified this by recalculating the reduced moments for
emsemble 5 in Table II with spatial lattice sizes of
L=a ¼ 24 and 40 (ensemble 5 uses 32). The moments
for different volumes agree to within statistical errors of
order 0.01%. The same is true for the measured values of
mηc from these ensembles; finite volume effects will be
smaller still for mηh.

5. m0h −m0c correction

Our results are also affected by the difference between
the c mass m0c used in the sea and the mass of the heavy
quark m0h used to make the currents in the current-current
correlator. The perturbative calculations we use assume
m0c ¼ m0h, but wewant to study a range ofm0h values with
fixed m0c. The correction enters in Oðα2sÞ, is quadratic in
the mass difference for small differences, and goes to a
(small) constant as m0h → ∞. Therefore, we correct for it
using [Eq. (15)]

~Rn → ~Rn

�
1þ dh;cn

m2
0h −m2

0c

m2
0h

�
; ð29Þ

where hn is a fit parameter with a prior of 0� 0.03. The
width 0.03 is 10 times larger than the correct value (from
perturbation theory) in the m0h → ∞ limit. It is twice as
wide as the width indicated by the Empirical Bayes
Criterion [15]. We also tried fits where dh;cn was replaced
by a spline function of mηh . These give similar results but
with larger errors (especially for αMS).

6. Finite lattice spacing errors

The final modification in our formula for ~Rn corrects
for errors caused by the finite lattice spacings used in the
simulations. We write

~Rn → ~Rn þ δ ~Rn; ð30Þ
where
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δ ~Rn ≡
�
amηh

2.26

�
2 XN

i¼0

cðnÞi ðmηhÞ
�
amηh

2.26

�
2i
; ð31Þ

and again mηh=2.26 is a proxy for the quark mass. We

parametrize the mηh dependence of the cðnÞi ðmηhÞ using
cubic splines with knots at

mknots ≡ f2.9; 3.6; 4.6; 7.9g GeV ð32Þ

that come from the analysis in Sec. IV. We set

cðnÞi ðmÞ ¼ cðnÞ0i þ δcðnÞi ðmÞ ð33Þ

with the following fit parameters and priors:

cðnÞ0i ¼ 0� 1=n

δcðnÞi ðmÞ ¼ 0� 0.10=n m ∈ mknots

δcðnÞ0i ðmÞ ¼ 0� 0.10=n m ¼ 2.9 GeV: ð34Þ

These priors are again conservative since the Empirical
Bayes Criterion [15] suggests priors that are half as
wide. We take N ¼ 20, but our results are insensitive to
any N ≥ 10.

D. nf ¼ 4 lattice results

We fit all of the reduced moments from our simulation
data—with lattice spacings from 0.12 fm to 0.06 fm, and
n ¼ 4, 6, 8, and 10 in Table III—simultaneously to formula
(12)–(16) by adjusting fit parameters described in the
previous sections. The fit is excellent with a χ2 per degree
of freedom of 0.51 for 92 pieces of data (p value is 1.0).
The fit has two key physics outputs. One is a new result

for the running coupling constant:

αMSð5 GeV; nf ¼ 4Þ ¼ 0.2128ð25Þ: ð35Þ

To compare with our old determination and other deter-
minations, we use perturbation theory to add b quarks to the
sea [27], withmbðmbÞ ¼ 4.164ð23Þ GeV [2], and evolve to
the Z mass (91.19 GeV) to get

αMSðMZ; nf ¼ 5Þ ¼ 0.11822ð74Þ: ð36Þ

This agrees well with 0.1183(7) from our nf ¼ 3 analysis
[2]. It also agrees well with the current world average
0.1185(6) from the Particle Data Group [28].
The second important physics output is the c quark’s

mass, whose value at μ ¼ 5 GeV is a fit parameter:

mcðμ; nf ¼ 4Þ ¼
8<
:

0.8905ð56Þ GeV μ ¼ 5 GeV

0.9851ð63Þ GeV μ ¼ 3 GeV

1.2715ð95Þ GeV μ ¼ mcðμÞ;
ð37Þ

where we have used Eq. (21) to evolve our result to other
scales for comparison with other determinations. These
again agree well with our previous nf ¼ 3 analysis [2],
which gave 0.986(6) GeV for the mass at 3 GeV. The errors
for mcð3 GeVÞ and αMSðMZÞ are correlated, with correla-
tion coefficient 0.19.
We use our result from mc to calculate the mass

renormalization factors,

ZmðμÞ≡mcðμÞ
m0c

; ð38Þ

that relate MS masses to bare lattice masses for each
configuration. These factors can be used to convert the bare
mass for any quark to its MS equivalent. We tabulate these
results, with μ ¼ 3 GeV, for our configurations in Table II.
These Zm values are much more accurate than can be
obtained from order αs lattice QCD perturbation theory
[29], but they agree qualitatively and suggest that higher-
order corrections from lattice perturbation theory are small.
Our results confirm that a perturbative treatment of c

quarks in the sea, as in our previous paper, is correct, at
least to our current level of precision.
Our result at μ ¼ mc has a larger error because αMS in the

mass evolution equation [Eq. (21)] becomes fairly large at
that scale (αMS ≈ 0.4) and quite sensitive to uncertainties
in its value. We use the coupling from our fit for this
evolution. Were we instead to use the Particle Data Group’s
(more accurate) αMS, our value for mcðmcÞ would be

mcðmc; nf ¼ 4Þ ¼ 1.2733ð76Þ GeV: ð39Þ

In any case, it is probably better to avoid such low scales, if
possible.
Note that our cmass comes frommoments whose heavy-

quark mass varies from mh ¼ mc to mh ¼ 3mc. Each
(nonperturbative) ~Rn with n ≥ 6, for each heavy-quark
mass mh, gives an independent estimate of the c mass:

mcð3mhÞ ¼
rnðαMSð3mhÞ; μ ¼ 3mhÞ

~Rn

: ð40Þ

The extent to which these estimates agree with each other
is shown in Fig. 1, where the nonperturbative results (data
points) are compared with our best-fit result formcð5 GeVÞ
evolved perturbatively to other scales using Eq. (21) (gray
band). As expected, finite a2 errors are larger for smaller
values of n and larger values of mh [2,30]. Taking account
of these errors, agreement between different determinations
of the mass is excellent.
The dominant sources of error for our results are listed in

Table IV. The most important systematics are due to the
truncation of perturbation theory and our extrapolation to
a2 ¼ 0. As in our previous analysis, the a2 extrapolations
are not large, as is clear from Fig. 1 and also Fig. 2. Also the
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dependence of our results on the light sea-quark masses is
quite small and independent of the lattice spacing, as
illustrated by Fig. 3.
Our results change by σ=3 if we fit only the n ¼ 4 and 6

moments, but the errors are 35% larger. Leaving out n ¼ 4,
instead, leaves the c mass almost unchanged, but increases
the error in the coupling by 60% (with the same central
value). We limit our analysis to heavy quark masses with
am0h ≤ 0.8, as in our previous analysis. Reducing that
limit to 0.7, for example, has no impact on the central
values of results and increases our errors only slightly (less
than 10%).
We tested the reliability of our error estimates for the

perturbation theory by refitting our data using only a subset
of the known perturbative coefficients. The results are
presented in Fig. 4, which shows values formcð3 GeVÞ and
αMSðMZÞ from fits that treat perturbative coefficients
beyond order N as fit parameters, with priors as in
Eq. (24). Results from different orders agree with each
other, providing evidence that our estimates of truncation

errors are reliable. This plot also shows the steady con-
vergence of perturbation theory as additional orders
are added.
As a further test of perturbation theory, we refit our

nonperturbative data treating the leading perturbative coef-
ficients, γ0 and β0, in the evolution equations for the mass
[Eq. (21)] and coupling [Eq. (20)] as fit parameters with
priors of 0� 1. The fit gives

γ0 ¼ 0.292ð19Þ β0 ¼ 0.675ð54Þ; ð41Þ

in good agreement with the exact results of 0.318 and
0.663, respectively. So our nonperturbative results for the
correlators show clear evidence for the evolution of mcðμÞ
and αMSðμÞ as μ ¼ 3mh varies from 3mc to 9mc.
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FIG. 1 (color online). The c quark mass mcðμ ¼ 3mhÞ as
determined from moments with heavy-quark masses ranging
from mc to 2.9mc. The data points show results obtained by
substituting nonperturbative simulation values for ~Rn into
Eq. (40), after correcting for mistunings of the sea-quark masses
(using the fit). Errors are about the size of the plot symbols, or
smaller. Results are shown for three lattices spacings: 0.12 fm
(green points, through mh=mc ¼ 1.2), 0.09 fm (blue points,
through mh=mc ¼ 1.8), and 0.06 fm (red points, through
mh=mc ¼ 2.9). The dotted lines show our fits to these data
points. The gray band shows the values expected from our best-
value mcð5 GeVÞ ¼ 0.8905ð56Þ GeV evolved perturbatively to
the other scales.
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FIG. 2 (color online). Lattice-spacing dependence of reduced
moments ~Rn for ηh masses within 5% of mηc , and n ¼ 4, 6, 8, 10.
The dashed lines show our fit, and the points at a ¼ 0 are the
continuum extrapolations of the lattice data.

TABLE IV. Error budget [31] for the c mass, QCD coupling,
and the ratios of quark masses mc=ms and mb=mc from the
nf ¼ 4 simulations described in this paper. Each uncertainty is
given as a percentage of the final value. The different uncertain-
ties are added in quadrature to give the total uncertainty. Only
sources of uncertainty larger than 0.05% have been listed.

mcð3Þ αMSðMZÞ mc=ms mb=mc

Perturbation theory 0.3 0.5 0.0 0.0
Statistical errors 0.2 0.2 0.3 0.3
a2 → 0 0.3 0.3 0.0 1.0
δmsea

uds → 0 0.2 0.1 0.0 0.0
δmsea

c → 0 0.3 0.1 0.0 0.0
mh ≠ mc [Eq. (15)] 0.1 0.1 0.0 0.0
Uncertainty in w0, w0=a 0.2 0.0 0.1 0.4
α0 prior 0.0 0.1 0.0 0.0
Uncertainty in mηs 0.0 0.0 0.4 0.0
mh=mc → mb=mc 0.0 0.0 0.0 0.4
δmηc : electromag., annih. 0.1 0.0 0.1 0.1
δmηb : electromag., annih. 0.0 0.0 0.0 0.1
Total: 0.64% 0.63% 0.55% 1.20%
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III. mc=ms FROM nf ¼ 4

As discussed above (Sec. II A), we can use lattice QCD
to extract ratios of MS quark masses completely non-
perturbatively [32], since ratios of quark masses are scheme
and scale independent, for example,

m0c

m0s

����
lat

¼ mcðμ; nfÞ
msðμ; nfÞ

����
MS

þOððamcÞ2αsÞ: ð42Þ

While ratios of light-quark masses can be obtained from
chiral perturbation theory, only lattice QCD can produce
nonperturbative ratios involving heavy quarks. These ratios
are very useful for checking mass determinations that rely
upon perturbation theory, as illustrated in [2]. They also
allow us to leverage precise values of light-quark masses
from very accurately determined heavy-quark masses.
In [32] we used nonperturbative simulations, with nf¼3

sea quarks, to determine the s quark’s mass from the c
quark’s mass and the ratio mc=ms. We repeat that analysis
here, but now for nf ¼ 4 sea quarks, using the tuned values

of the bare s and cmasses for each of our lattice ensembles:
amtuned

0s and amtuned
0c in Table II, respectively. We expect

amtuned
0c

amtuned
0s

¼mc

ms

�
1þhm

δmsea
uds

ms
þha2;m

δmsea
uds

ms

�
mc

π=a

�
2

þh1αsðπ=aÞ
�
mc

π=a

�
2

þ
XNa2

j¼2

hj

�
mc

π=a

�
2j
�
; ð43Þ

where again we ignore δmsea
c and δm2 dependence since

they are negligible. We fit the data from Table II using this
formula with the following fit parameters and priors:

hm ¼ 0� 0.1; ha2;m ¼ 0� 0.1; ð44Þ

h1 ¼ 0� 6; hj ¼ 0� 2 ðj > 1Þ: ð45Þ

The extrapolated value mc=ms is also a fit parameter. We
set Na2 ¼ 5, but get identical results for any Na2 ≥ 2.
The result of this fit is presented in Fig. 5, which shows

the a2 dependence of the lattice results. The sensitivity
of our new results to a2 is about half what we saw in our
previous analysis. Our new fit is excellent and gives a final
result for the mass ratio of

mcðμ; nfÞ
msðμ; nfÞ

¼ 11.652ð65Þ: ð46Þ

The leading sources of error in this result are listed in
Table IV. These are dominated by statistical errors and
uncertainty in the ηs mass. Many other potential sources of

1 18

1 19

1 20

1 21

1 22

R̃
4

0 98

0 99

1 00

1 01

1 02

R̃
6

0 91

0 92

0 93

0 94

0 95

R̃
8

0 0 0 1 0 2 0 3
δmsea

uds ms

0 86

0 87

0 88

0 89

0 90

R̃
10

FIG. 3 (color online). Light sea-quark mass dependence of
reduced moments ~Rn for mh ¼ mc, and n ¼ 4, 6, 8, 10. Results
are shown for our two coarsest lattices: a ¼ 0.12 fm (three points
in blue) and a ¼ 0.09 fm (two points in red). The dashed lines
show the corresponding results from our fit. Note that the slopes
of the lines are independent of the lattice spacing, as expected.
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FIG. 4 (color online). Results for the MS c mass and coupling
from nf ¼ 4 fits that treat perturbative coefficients beyond order
N as fit parameters, with priors specified by Eq. (24). The gray
bands and dashed lines indicate the means and standard devia-
tions of our final results, which correspond to N ¼ 3.
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error, such as uncertainties in the lattice spacing, largely
cancel in the ratio.
Note that the discussion in Appendix A and Eq. (A19), in

particular, imply that the leading effect of mistuned sea-
quark masses cancels in ratios of quark masses. This is
substantiated by our fit which makes parameter hm neg-
ligibly small [−0.0080ð34Þ]. Setting hm ¼ 0 shifts our
result for mc=ms by only σ=7.
Our result is a little more than a standard deviation lower

than the recent result, 11.747ð19Þðþ59

−43 Þ, computed by the

Fermilab/MILC Collaboration (using many of the same
configurations we use) [33]. Our analysis uses a different
scheme for tuning the lattice spacing and quark masses,
which leads to the lack of sea-quark mass dependence in
mc=ms discussed just above. The absence of sea-mass
dependence is apparent from Fig. 5, where the clusters of
data points correspond to ensembles with the same bare
lattice coupling but different sea-quark masses. This figure
can be compared with Fig. 6 in [33], which shows much
larger sea-mass dependence. Both approaches should agree
when extrapolated to zero lattice spacing and the physical
sea-quark masses.

IV. mh=mc FROM mηh

An analysis similar to that in the previous section allows
us to relate heavy-quark masses mh to the hh̄ pseudoscalar
mass mηh with data from Table III. This can be used, for
example, to estimate the b mass by extrapolating to mηb .

Here we fit the lattice mass ratios m0h=mtuned
0c to the

following function of mηh from the simulation,

mh

mc
¼ mηh

mηc

XN
n¼0

fnðmηhÞ
�
amηh

4

�
2n

þ fseaðηhÞ
mηh

mηc

δmsea
uds

ms

�
amηh

4

�
2

; ð47Þ

where N ¼ 20, although any N > 3 gives the same result.
Here fnðmηhÞ and fseaðmηhÞ are cubic splines with knots at

mknots ¼ f2.9; 3.6; 4.6; 7.9g GeV: ð48Þ

The maximum and minimum knots correspond to the
maximum and minimum values of mηh , while the locations
of the internal knots were obtained by treating those
locations as fit parameters. Each f is parametrized by

fðmÞ ¼ f0 þ δfðmÞ ð49Þ

and fit parameters

f0 ¼ 0� 1

δfðmÞ ¼ 0� 0.15 m ∈ mknots

δf0ðmÞ ¼ 0.15� 0.15 m ¼ 2.9 GeV: ð50Þ

We reduce the priors for the leading a2 errors by a factor of
1=3 since these errors are suppressed by αs in the HISQ
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FIG. 5 (color online). The ratio of the c and s quark masses as a
function of the squared lattice spacing (in units of the bare c
mass). The data come from simulations at lattice spacings of 0.15,
0.12, 0.09, and 0.06 fm, after tuning the s and c masses to
reproduce physical values for the ηs and ηc masses on each
ensemble. The errors for the data points are highly correlated, as
they come primarily from uncertainties in w0, mηs , and mηc . The
red dashed line shows our fit, which has a χ2 per degree of
freedom of 0.21 for 9 degrees of freedom (p value of 0.99). The
black dashed line and gray band show the mean value and
standard deviation for our result extrapolated to zero lattice
spacing.
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FIG. 6 (color online). The ratio of the h and c quark masses as a
function of the mass of hh̄ pseudoscalar meson mass. The data
come from simulations at lattice spacings of 0.15, 0.12, 0.09,
and 0.06 fm; the data points are colored magenta, blue, green,
and red, respectively. The gray band and dashed line in the top
panel show function Eq. (47) with the best fit parameters,
extrapolated to zero lattice spacing and the correct sea-quark
masses. The bottom panel compares the nf ¼ 4 data with
extrapolated results obtained in [2] from current-current corre-
lators in nf ¼ 3 simulations.
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discretization. The choice of priors for the spline param-
eters is motivated by results from [2] (see Fig. 4 in
that paper).
The fit is excellent with a χ2 per degree of freedom of

0.44 for 29 pieces of data: see the top panel in Fig. 6. Finite
lattice spacing errors are much smaller for this quantity than
for the moments, and it is again largely independent of
mistunings in the sea-quark masses. Extrapolating to
mηb gives

mb=mc ¼ 4.528ð54Þ; ð51Þ

which agrees with our nf ¼ 3 result of 4.51(4), but with
larger errors [2]. Our new nf ¼ 4 data go down to lattice
spacings of 0.06 fm; our earlier analysis also had results at
0.045 fm.
The bottom panel of Fig. 6 compares our new nf ¼ 4

data with nf ¼ 3 results obtained from fits to the current-
current correlators [2]. The agreement is excellent, showing
again that nf ¼ 3 and nf ¼ 4 are consistent with
each other.

V. CONCLUSIONS AND OUTLOOK

The initial extractions of quark masses from heavy-quark
current-current correlators relied upon experimental data
from eē annihilation [34,35]. Our analysis here, like the
two that preceded it [2,30], replaces experimental data with
nonperturbative results from tuned lattice simulations.
Lattice simulations offer several advantages over experi-

ment for this kind of calculation [1]. For one thing,
simulations are easier to instrument than experiments and
much more flexible. Thus, we can generate lattice “data” not
just for vector-current correlators but for any heavy-quark
current or density; we optimize our simulations by using
the pseudoscalar density instead of the vector current.
Experiment provides results for only two heavy-quark
masses—mc and mb—but we can produce lattice data for
a whole range of masses between mc and mb. This means
that αMSðμÞ varies continuously, by almost a factor of 2, in
our analysis since μ ∝ mh. Here we use this variation to
estimate and bound uncalculated terms in perturbation
theory, providing much more reliable estimates of perturba-
tive errors than the standard procedure of replacing μ by μ=2
and 2μ. (Our analysis is essentially independent of μ.)
Nonperturbative contributions are also strongly dependent
upon mh and, therefore, more readily bound if a range of
masses is available; they are negligible in our analysis.
In this paper, we have redone our earlier nf ¼ 3 analysis

[2] using simulations with nf ¼ 4 sea quarks: u, d, s, and c.
Our new results,

mcð3 GeV; nf ¼ 4Þ ¼ 0.9851ð63Þ GeV ð52Þ

αMSðMZ; nf ¼ 5Þ ¼ 0.11822ð74Þ; ð53Þ

agree well with our earlier results of 0.986(6) GeV and
0.1183(7), suggesting that contributions from c quarks in
the sea are reliably estimated using perturbation theory (as
expected). Our c mass is about 1.8σ lower than the recent
result from the ETMC Collaboration, also using nf ¼ 4

simulations but with a different method [36]: they get
mcðmcÞ ¼ 1.348ð42Þ GeV, compared with our nf ¼ 4

result of 1.2715(95) GeV.
Our new result for the coupling [Eq. (53)] agrees with

results from most other collaborations, who use different
methods from us (and each other). Recent results (nf ¼ 3
or 4) are summarized in Fig. 7.
We updated our earlier nf ¼ 3 analysis [32] of the ratio

mc=ms of quark masses using our nf ¼ 4 data. This is a
relatively simple analysis of data from Table II. Our new
value is

mcðμ; nfÞ
msðμ; nfÞ

¼ 11.652ð65Þ: ð54Þ

It agrees well with our previous result 11.85(16), but is
much more accurate. We compare our new result with
others in Fig. 8.
We obtain a new estimate for the s mass by combining

our new result for mc=ms with our new estimate of the c
mass (Eq. (52), converted from nf ¼ 4):

msðμ; nf ¼ 3Þ ¼
�
93.6ð8Þ MeV μ ¼ 2 GeV

84.7ð7Þ MeV μ ¼ 3 GeV:
ð55Þ

This brings the error below 1% for the first time. Values for
msðμ; nf ¼ 4Þ are smaller by about 0.2 MeV. Our new
result agrees with our previous analysis and also with other
recent nf ¼ 3 or 4 analyses:

FIG. 7 (color online). Recent lattice QCD determinations of the
QCD coupling (nf ¼ 5) evaluated at scale MZ. The gray band is
the weighted average of the results: 0.1182(4). We include our jj
result for nf ¼ 3 in the average, but not our new nf ¼ 4 result
since systematic errors are correlated between the two results.
The results shown here come from this paper and [37–41].
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msð2 GeVÞ ¼
8<
:

92.4ð1.5Þ MeV HPQCD ½32�;
99.6ð4.3Þ MeV ETMC ½36�;
95.5ð1.9Þ MeV Durr et al. ½44�;

msð3 GeVÞ ¼ 81.64ð1.17Þ MeV RBC=UKQCD ½45�:
ð56Þ

We compare these nonperturbative results in Fig. 9, together
with an earlier perturbative determination from [44].
Finally, we have also updated our previous (nf ¼ 3)

nonperturbative analysis of mb=mc using our new nf ¼ 4

data. We obtain

mbðμ; nfÞ
mcðμ; nfÞ

¼ 4.528ð54Þ; ð57Þ

which agrees with our previous result of 4.51(4) [2].
Combining this result with our new value for mc
[Eq. (52)] gives

mbðmb; nf ¼ 5Þ ¼ 4.162ð48Þ: ð58Þ

This again agrees with our earlier result of 4.164(23) GeV,
but with larger errors. We can also multiply our results for
mb=mc and mc=ms to obtain

mbðμ; nfÞ
msðμ; nfÞ

¼ 52.55ð55Þ: ð59Þ

This is almost four standard deviations (but only 4%) away
from the result predicted by the Georgi-Jarlskog relation-
ship [47] for certain classes of grand unified theory: the
Georgi-Jarlskog relationship says that mb=ms should
equal 3mτ=mμ ¼ 50.45.
The prospects for improving our results over the next

decade are good. Detailed meta-simulations, described in
[1], indicate that errors from our analysis can be pushed
below 0.25% by a combination of higher-order perturbation
theory, and, especially, smaller lattice spacings (0.045,
0.03, and 0.023 fm)—both improvements that are quite
feasible over a decade [1]. There are also many other
promising approaches within lattice QCD. Several exist
already for extracting the QCD coupling; see, for example,
[37–41,48,49]. One can also use simulations of other
renormalized quantities, such as the mhψ̄hγ5ψ vertex
function, to compute quark masses [12].
Small lattice spacings are particularly important for the b

mass, because lattice spacing errors are typically of order
ðambÞ2. One approach is to use highly improved relativistic
actions for the b quarks, like the HISQ action used here. As
shown in [3], all but one of theOða; a2Þ operators that arise
in the Symanzik improvement of a quark action are
suppressed by extra factors of the heavy-quark velocity:
factors of ðv=cÞ2 for mesons made of heavy quarks and v=c
for mesons made of a combination of heavy and light
quarks. The one operator that does not have extra sup-
pression is

P
μ ψ̄ γμðDμÞ3ψ , which violates Lorentz invari-

ance and so is easily tuned nonperturbatively using the
meson dispersion relation. This is the strategy adopted in
the HISQ discretization we use here. The extra factors of
v=c suppress ðambÞ2 errors by an extra order of magnitude,
beyond the suppression, by a power of αs, coming from
tree-level corrections for a2 errors in HISQ.
ðambÞ2 errors can be avoided completely by using

effective field theories like NRQCD [50] or the Fermilab
formalism [51] for b dynamics. Such approaches should
be sufficiently accurate provided they are corrected to
sufficiently high order in ðvb=cÞ2. Our recent NRQCD
analysis of mb, using current-current correlators, is
encouraging [52].

10 5 11 0 11 5 12 0 12 5
mc ms

HPQCD 0910.3102

ETMC 1010.3659

ETMC 1403.4504

MILC 1407.3772

HPQCD this paper

Durr 1108.1650

u,d,s,c sea

u,d,s sea

u,d sea

FIG. 8 (color online). Lattice QCD determinations of the ratio
of the c and s quarks’ masses. The ratios come from this paper
and references [32,33,36,42,43]. The gray band is the weighted
average of the three nf ¼ 4 results: 11.700(46).

75 80 85 90 95
ms 3GeV n f 3

HPQCD this paper

ETMC 1403.4504

u d s c sea
u d s sea

RBC/UKQCD 1411.7017

Durr et al 1011.2403

HPQCD 0910.3102

HPQCD (pert) 0511160

FIG. 9 (color online). Lattice QCD determinations of the MS
s-quark mass msð3 GeV; nf ¼ 3Þ in MeV. These masses come
this paper and references [32,36,44–46] The gray band is the
weighted average of these results: 84.1(5) MeV.
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Overall, the prospects are excellent for continued
improvement.
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APPENDIX A: SEA-QUARK MASS DEPENDENCE

In this appendix we discuss the dependence of the MS
coupling and heavy-quark masses on the sea-quark masses.
We vary the u=d sea-quark mass in our simulations to help
us assess systematic errors associated with tuning that
mass. In addition, the precision with which the s and c sea-
quark masses have been tuned varies by several percent
over the various ensembles we use. These detunings shift
the MS coupling and masses. We need to understand how
they are shifted in order to extract results for αMS and mh

with physical sea-quark masses.
It is essential when discussing detuned sea-quark masses

to be specific about what is held fixed as the quark masses
are shifted from their physical values. An obvious choice is
to fix both the lattice spacing a and the bare coupling αlat in
the lattice lagrangian, while varying the quark masses. We
find it more convenient, however, to explore a slightly
different manifold in theory space by fixing αlat and the
value of the Wilson-flow parameter w0.
Lattice simulations are done for particular values of the

bare coupling constant (and bare quark masses) but with all
dimensional quantities expressed in units of the lattice
spacing (lattice units). This removes explicit dependence
on the lattice spacing from the simulation, so we can run the
simulation without knowing the lattice spacing. To extract
physics, however, we must determine the lattice spacing
(from the simulation) and convert all simulation results
from lattice units to physical units. In our simulations, we
calculate the lattice spacing by measuring the value of a=w0

in the simulation and multiplying it by the known value of
w0 for physical sea-quark masses (that is, 0.1715(9) fm). As
a result, the lattice spacing becomes (weakly) dependent
upon the sea-quark masses since w0 is affected by
sea quarks.
This procedure is convenient because the lattice spacing

for a given ensemble is determined using information from
only that ensemble, thereby decoupling the analyses of
different ensembles to a considerable extent. As we discuss
below, there is an added benefit when vacuum polarization
from c (or heavier) quarks is included in the simulation, as

we do here: heavy quarks automatically decouple from
low-energy physics (like w0 [53]). With our procedure,
physical quantities that probe energy scales smaller than
2mc—that is, almost everything studied with lattice QCD
today—are essentially independent of mc, which means
that they are completely unaffected by tuning errors in mc.
This would not be the case if we fixed the lattice spacing
instead of w0, since it is small variations in the lattice
spacing that correct for mistuning in mc.
It is also very convenient that we set the lattice spacing

using a flavor-singlet quantity. Because w0 is a flavor
singlet, the leading sea-mass dependence induced in the
lattice spacing is analytic (linear) in the quark mass and
small; in particular, there are no chiral logarithms [54]. One
consequence is that leading-order chiral perturbation theory
for physical quantities (fπ; fDs

…) is unchanged from
standard treatments except for shifts (that are easily
accommodated) in the coefficients of certain analytic terms.
In this appendix we show how the MS coupling and

heavy-quark mass depend upon the sea-quark masses in our
simulations. This dependence implies sea-quark mass
dependence in the lattice spacing and the heavy quark’s
bare mass, which we then use to determine some of the
parameters involved. Finally, we review heavy-quark
decoupling and estimate the parameters for c-mass depend-
ence using first-order perturbation theory.

1. Tuning bare quark masses

We define tuned values for the bare c and s masses on
each ensemble by adjusting those masses to give physical
values in simulations for the ηc and ηs masses. The tuned
values are listed in Table II.
The current experimental value for the ηc mass is

2.9836(7) GeV [28]. In our analysis, we remove electro-
magnetic corrections from this value and adjust its error to
account for cc̄ annihilation, since neither effect is in our
simulations [55,56]. We use

mphys
ηc ¼ 2.9863ð27Þ GeV: ðA1Þ

We compute the tuned c mass mtuned
0c by linear interpolation

using ηh masses from the simulation (Table III) for heavy-
quark masses m0h in the vicinity of m0c. In a few cases, we
have results for only a single value ofm0h; then we compute
the tuned c mass using estimates of dmηc=dm0c from other
ensembles with (almost) the same lattice spacing.
Note that the uncertainty inmtuned

0c is usually smaller than
that in amtuned

0c . This is a peculiar feature of heavy-quark
masses in lattice simulations (see, for example, [57]). It
follows from the formula for the linear interpolation that
defines the tuned mass in terms of a nearby mass,

mtuned
0c ¼ ðam0cÞa−1 þ

dm0c

dmηc

ðmphys
ηc − ðamηcÞa−1Þ;

ðA2Þ
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where amηc is the simulation result for the ηc mass (in
lattice units) when the c quark has mass am0c. Here
dm0c=dmηc is obtained from simulation results for a few
nearby c masses. The uncertainty in a−1 is usually larger
than the uncertainties in the other lattice quantities, but here
a−1 is multiplied by

ðam0cÞ − ðamηcÞ
dm0c

dmηc

; ðA3Þ

which would vanish if mηc ¼ 2m0c. This cancellation is
only partial for real masses, but it doesn’t occur at all if
Eq. (A2) is multiplied on both sides by a to give a formula
for amtuned

0c . As a result, fractional errors are roughly
3× smaller for mtuned

0c .
The ηs is an ss̄ pseudoscalar particle where the valence

quarks are (artificially) not allowed to annihilate; its
physical mass is determined in lattice simulations from
the masses of the pion and kaon [17]:

mphys
ηs ¼ 0.6885ð22Þ GeV: ðA4Þ

This mass is defined for use in lattice simulations and needs
no further corrections for electromagnetism. We tune the s
mass by simulating with a nearby bare mass m0s to obtain
the corresponding ηs mass and then extracting the tuned
mass using

mtuned
0s ¼ m0s

�
mphys

ηs

mηs

�2

: ðA5Þ

Our ηs data are presented in Table V, which shows that the
tuned mass is quite insensitive to small variations in m0s.
We do not have ηs results for ensemble 7; there, the tuned s
mass is based on an interpolation between results from
ensemble 8 and another ensemble that has similar param-
eters but with am0l ¼ 0.0074.
Table II shows that mtuned

0c is more accurate than mtuned
0s .

This is because the uncertainties in the value of the lattice
spacing have a smaller impact on the c mass because
the cancellation described above only happens for heavy
quarks (where mηh ≈ 2m0h).
We set the u and d masses equal to their average,

ml ≡mu þmd

2
; ðA6Þ

and setml equal to the tuned smass (above) divided by the
physical value of the quark mass ratio [33]

ms

ml
¼ 27.35ð11Þ: ðA7Þ

2. αMSðμ;δmseaÞ and aðδmseaÞ
The beta function in the MS scheme is, by definition,

independent of sea-quark masses. Thus the coupling’s
evolution is unchanged by detuned sea-quark masses,

dαMSðμ; δmseaÞ
d log μ2

¼ βðαMSðμ; δmseaÞÞ; ðA8Þ

but mass dependence enters through the low-energy start-
ing point for that evolution implied by the scale-setting
procedure used in the lattice simulation. Such mass
dependence can enter only through an overall renormali-
zation of the scale parameter μ,

αMSðμ; δmseaÞ ¼ αMSðξαμÞ; ðA9Þ

where

αMSðμÞ≡ αMSðμ; δmsea ¼ 0Þ ðA10Þ

is the MS coupling for physical sea-quark masses. The
scale factor,

ξα ≡ 1þ gα
δmsea

uds

ms
þ ga2;α

δmsea
uds

ms

�
mc

π=a

�
2

þ gc;α
δmsea

c

mc
þOðδm2Þ; ðA11Þ

depends upon the differences between the masses mq used
in the simulation and the tuned values of those masses
mtuned

q (Table II and Sec. A 1):

TABLE V. Simulation results for the ηs mass amηs correspond-
ing to different values of the bare smass am0s and different gluon
ensembles. The ensembles are described in Table II, although we
use many more configurations for our ηs analysis than are
indicated there. Estimates for the tuned bare s mass [Eq. (A5)]
are also given.

Ensemble am0s amηs amtuned
0s

1 0.0705 0.54024(15) 0.0700(9)
0.0688 0.53350(17) 0.0700(9)
0.0641 0.51511(16) 0.0700(9)

2 0.0679 0.52798(9) 0.0686(8)
0.0636 0.51080(9) 0.0687(8)

3 0.0678 0.52680(8) 0.0677(8)
4 0.0541 0.43138(12) 0.0545(7)

0.0522 0.42358(11) 0.0545(7)
5 0.0533 0.42637(6) 0.0533(7)

0.0507 0.41572(14) 0.0534(7)
0.0505 0.41474(8) 0.0534(7)

6 0.0527 0.42310(3) 0.0527(6)
0.0507 0.41478(4) 0.0527(6)

8 0.0360 0.30480(4) 0.0364(4)
9 0.0231 0.20549(8) 0.0234(3)
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δmsea
uds ≡

X
q¼u;d;s

ðmq −mtuned
q Þ ðA12Þ

δmsea
c ≡mc −mtuned

c : ðA13Þ

Function αMSðξαμÞ satisfies the standard evolution equation
[Eq. (A8)] because ξα is independent of μ.
We work to first order in δmsea because higher-order

terms are negligible in our simulations. As suggested
above, the leading-order dependence is particularly simple
because we use iso-singlet mesons (ηc and ηs) to set the c
and smasses; in particular, there are no chiral logarithms of
the u=d mass in leading order.
We expect coefficients gα and ga2;α in ξα to be of order

1=10 since corrections linear in light-quark masses must be
due to chiral symmetry breaking and so should be of order
δmsea=Λ where Λ ≈ 10ms. As we discuss below, gc;α can be
estimated from perturbation theory and is again of order
1=10. We treat these coefficients as fit parameters in our
analysis, with the following priors:

gα ¼ 0� 0.1; ga2;α ¼ 0� 0.1; gc;α ¼ 0� 0.1:

ðA14Þ

The rescaling factor ξα is closely related to the depend-
ence of the lattice spacing on the sea-quark masses used in
the simulation. The lattice spacing is primarily a function of
the bare coupling αlat used in the lattice action, but it also
varies with the sea-quark masses, in our scheme, when the
bare coupling is held constant. As discussed above, this is
because of sea-mass dependence in the quantity used to
define the lattice spacing, a=w0 in our case. The relation-
ship with ξα can be understood by examining the MS
coupling at scale μ ¼ π=a. There it is related to the bare
coupling by a perturbative expansion,

αMSðπ=a; δmseaÞ ¼ αMSðξαπ=aÞ

¼ αlat þ
X∞
n¼2

cMS
n αnlat; ðA15Þ

that is mass independent up to corrections ofOððamcÞ2αsÞ,
which are negligible in our analysis. This formula implies
that αMSðξαπ=aÞ is constant if αlat is and, therefore, that
ξα=a must be constant as well. Consequently, the lattice
spacing must vary with δmsea like

aðδmseaÞ ≈ ξαaphys ðA16Þ

if the bare coupling is held constant, where aphys is the
lattice spacing when the sea-quark masses are tuned to their
physical values, that is, aphys ≡ aðδmsea ¼ 0Þ.
We use this variation in the lattice spacing to read off

the parameters in ξα. Our simulation results fall into four
groups of gluon ensembles, with lattice spacings around

0.15 fm, 0.12 fm, 0.09 fm, and 0.06 fm. Each group
corresponds to a single value of the bare lattice coupling
αlat, and several different values of light sea-quark mass.
Within a single group, then, the values we obtain for a=w0

from our simulations should vary as

ða=w0Þsim ¼ ξα × ða=w0Þphys; ðA17Þ

where the parameters gα, ga2;α, and gc;α in ξα [Eq. (A11)] are
the same for all four groups of data.
We fit our simulation results for a=w0, simultaneously

for all four groups, as functions of gα, ga2;α, and gc;α. We
also treat the value of ða=w0Þphys for each group as a fit
parameter. The resulting fit is shown in Fig. 10 where
we plot

ða=w0Þsim
ða=w0Þphys

versus δmsea
uds=ms.

The fit is excellent and shows that gα ¼ 0.082ð8Þ. Our fit
is not very sensitive to ga2;α and gc;α—their impact on ξα is
too small—and gives results for these that are essentially
the same as the prior values.

3. mhðμ;δmseaÞ and m0cðδmseaÞ
The evolution equations for the heavy quark’s MS mass

are unchanged by sea-mass detunings:

0 1 0 0 0 1 0 2 0 3 0 4

δmsea
uds ms

0 99

1 00

1 01

1 02

1 03

1 04

a
w

0
si

m
a

w
0

ph
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FIG. 10 (color online). The ratio of the simulation lattice
spacing with detuned sea-quark masses to the lattice spacing
with physical sea-quark masses as a function of the light-quark
mass detuning (in units of the s quark mass). Results are shown
for four different sets of data, each corresponding to a different
bare lattice coupling. The approximate lattice spacings for these
sets are: 0.15 fm (red points), 0.12 fm (cyan), 0.09 fm (green),
and 0.06 fm (blue). The dashed line and gray band show the mean
and standard deviation of our best fit to these data. The fit has a χ2

per degree of freedom of 0.23 for 9 degrees of freedom (p value
of 0.99).
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d logðmhðμ; δmseaÞÞ
d log μ2

¼ γmðαMSðμ; δmseaÞÞ: ðA18Þ

Consequently any sea-mass dependence must enter through
rescalings,

mhðμ; δmseaÞ ¼ ξmmhðξαμÞ; ðA19Þ

where ξα is defined above [Eq. (A11)], ξm is independent
of μ, and

mhðμÞ≡mhðμ; δmsea ¼ 0Þ ðA20Þ

is the MS mass for physical sea-quark masses. We para-
metrize ξm similarly to ξα but allowing for the coefficients
to depend upon the heavy-quark mass:

ξm ¼ 1þ gm
ðmηh=mηcÞζ

δmsea
uds

ms

þ ga2;m
ðmηh=mηcÞζ

δmsea
uds

ms

�
mc

π=a

�
2

þ � � � : ðA21Þ

Again we expect gm and ga2;m to be of order 1=10, and we
treat them as fit parameters with the following priors:

gm ¼ 0� 0.1; ga2;m ¼ 0� 0.1: ðA22Þ

We parametrize the dependence on heavy-quark mass with
the factors ðmηh=mηcÞζ where ζ is a fit parameter with prior

ζ ¼ 0� 1: ðA23Þ

The sea-mass dependence in ξm comes from the quantity
used to tune the heavy-quark mass in simulations. We tune
these masses to give the correct physical mass for ηh—that
is, the mass obtained when the sea-quark masses are tuned
to their physical values and the lattice spacing is set to zero.
This means that any sea-mass dependence in mηh is pushed
into the rescaling factor ξm in Eq. (A19). The physical size
of ηh mesons decreases asmηh increases, and this decreases
the coupling with light sea-quarks. Thus we expect ζ > 0 in
Eq. (A21); our fit finds ζ ¼ 0.3ð1Þ.
In principle, ξm should depend upon δmsea

c , as well as
δmsea

uds. Perturbation theory, however, indicates that this
dependence is negligible in our simulations. Thus we have
omitted such terms from ξm. We have verified that they are
negligible by comparing fits that include δmsea

c terms with
the fit without them.
The rescaling factor ξm is closely related to the sea-mass

dependence of the heavy quark’s bare mass, in much the
same way as ξα is related to the lattice spacing. The bare
mass m0h is proportional to the MS mass evaluated at
μ ¼ π=a:

m0h ∝ mhðπ=a; δmseaÞ
∝ ξmmhðξαπ=aÞ: ðA24Þ

Since ξα=a is sea-mass independent, we see that mh0 is
proportional to ξm,

m0hðδmseaÞ ¼ ξmm
phys
0h ; ðA25Þ

when the sea-quark masses are varied while holding the
bare coupling fixed.
This variation can be used to determine the parameters in

ξm, again in analogy to the previous section. As discussed
in the previous section, our ensembles fall into four groups
each corresponding to a different value of the bare coupling
constant αlat. The masses amtuned

0c for each ensemble in
Table II are tuned to give the physical ηc mass for that
ensemble. Therefore, within each group of ensembles,
we expect

amtuned
0c ¼ ξαξm × ðam0cÞphys; ðA26Þ

where ðam0cÞphys is the value for properly tuned sea-quark
masses.
We fit our simulation results for amtuned

0c as functions
of gm, ga2;m, gα, ga2;α, and gc;α. We use best-fit values from
the fit in the previous section as priors for the last three
of these fit parameters. The values of ðam0cÞphys for the
different groups of ensembles are also fit parameters.
The resulting fit is shown in Fig. 11, where we plot

amtuned
0c =ðam0cÞphys as a function of δmsea

uds=ms. The fit is

0 1 0 0 0 1 0 2 0 3 0 4
δmsea
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FIG. 11 (color online). The ratio of the bare c mass in lattice
units used in the simulations to the bare mass with physical sea-
quark masses as a function of the light-quark mass detuning (in
units of the s quark mass). Results are shown for four different sets
of data, each corresponding to a different bare lattice coupling. The
approximate lattice spacings for these sets are: 0.15 fm (red points),
0.12 fm (cyan), 0.09 fm (green), and 0.06 fm (blue). The dashed
line and gray band show the mean and standard deviation of our
best fit to these data. The fit has a χ2 per degree of freedom of 0.15
for 9 degrees of freedom (p value of 1.0).
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excellent and shows that gm ¼ 0.035ð5Þ, while ga2;m is
essentially unchanged from its prior value (because our
data are not sufficiently accurate).

4. c quarks and decoupling

Heavy quarks decouple from low-energy physics, and
therefore variations in δmsea

c should have no impact on
physics (likew0) that probes momentum scales smaller than
mc. We can, however, introduce (apparent) violations of the
decoupling theorem through the scheme used to set the
lattice spacing. In particular, decoupling is violated by any
scheme that holds the lattice spacing fixed (together with
the bare coupling αlat) as δmsea

c is varied. On the contrary,
decoupling is preserved by schemes that hold a low-energy
(< 2mc) quantity like w0 fixed, instead of the lattice
spacing [58].
The difference between these schemes arises because the

running of the QCD coupling is modified in a detuned
theory for scales between msea

c and msea
c þ δmsea

c , resulting
in a mismatch between low and high energy values of the
coupling. Physics below mc is determined by the nf ¼ 3

coupling constant, which, by decoupling, should be inde-
pendent of δmsea

c .
To see how this works, we examine lowest-order

perturbation theory where

α
ðnfÞ
s ðμÞ ¼ 2π

βðnfÞ logðμ=ΛðnfÞÞ ðA27Þ

with βðnfÞ≡ 11 − 2nf=3, and

αð3Þs ðμÞ ¼ αð4Þs ðμ; δmsea
c Þ ðA28Þ

at μ ¼ mc þ δmsea
c . Here Λð3Þ must be independent of

δmsea
c , by decoupling, while Λð4Þ must vary with δmsea

c
to cancel the effect of the shift in the match point
μ ¼ mc þ δmsea

c . It is straightforward to show that

Λð4Þðδmsea
c Þ ≈mc

�
Λð3Þ

mc

�βð3Þ=βð4Þ�
1 −

2

25

δmsea
c

mc

�

≈ Λð4Þ
phys ×

�
1 −

2

25

δmsea
c

mc

�
; ðA29Þ

where Λð4Þ
phys is the value for physical sea-quark masses.

Thus, the decoupling theorem requires that

αð4Þs ðμ; δmsea
c Þ ¼ αð4Þs

�
μ ×

�
1þ 2

25

δmsea
c

mc

��
: ðA30Þ

By comparing with Eqs. (A9) and (A11), we see that

gc;α ¼
2

25
þOðαsÞ; ðA31Þ

and, therefore, that the lattice spacing varies with
δmsea

c [Eq. (A16)].
There is an analogous effect in the heavy-quark mass, but

the mass dependence in ξm is suppressed by α2s and so is
negligible in our analysis.
This analysis shows that a constant lattice spacing is

incompatible with the decoupling theorem. The scheme we
use avoids this problem by allowing the lattice spacing to
vary with δmsea

c , while holding the value of w0 constant (as
required by the decoupling theorem applied to w0 itself).
The violation of the decoupling theorem in the former
case is only apparent; results from all schemes should agree
when the sea-quark masses are tuned to their physical
values.

APPENDIX B: PREVIOUS METHOD

The analysis in our previous (nf ¼ 3) paper used a
different definition for the reduced moments with n ≥ 6:

Rn≥6 ¼
mηh

2m0h
ðGn=G

ð0Þ
n Þ1=ðn−4Þ ðB1Þ

instead of Eq. (3). As a result, these moments equal
zðmηh ; μÞrnðαMS; μÞ in perturbation theory, where

TABLE VI. Simulation results for ηh masses and reduced
moments Rn (old definition) with various bare heavy-quark
masses am0h and gluon ensembles (first column, see Table II).
Data from gluon ensembles 1–3 are not listed because they were
not used in the analysis in Appendix B.

am0h amηh R4 R6 R8 R10

4 0.645 1.83976(11) 1.1842(2) 1.4857(2) 1.3785(1) 1.3179(1)
0.663 1.87456(12) 1.1783(2) 1.4755(2) 1.3732(1) 1.3148(1)

5 0.627 1.80318(8) 1.1896(1) 1.4944(1) 1.3825(1) 1.3201(1)
0.650 1.84797(8) 1.1819(1) 1.4813(1) 1.3759(1) 1.3162(1)
0.800 2.13055(7) 1.1409(1) 1.4012(1) 1.3304(1) 1.2880(1)

6 0.637 1.82225(5) 1.1860(1) 1.4882(1) 1.3793(1) 1.3181(0)
7 0.439 1.34246(4) 1.2134(1) 1.5122(1) 1.3758(1) 1.3089(0)
0.500 1.47051(4) 1.1886(1) 1.4782(1) 1.3586(1) 1.2968(0)
0.600 1.67455(4) 1.1565(1) 1.4282(1) 1.3334(0) 1.2801(0)
0.700 1.87210(4) 1.1315(0) 1.3827(0) 1.3089(0) 1.2647(0)
0.800 2.06328(3) 1.1118(0) 1.3401(0) 1.2834(0) 1.2482(0)

8 0.433 1.32929(3) 1.2160(1) 1.5153(1) 1.3772(0) 1.3099(0)
0.500 1.47012(3) 1.1885(0) 1.4777(1) 1.3582(0) 1.2965(0)
0.600 1.67418(3) 1.1564(0) 1.4279(0) 1.3331(0) 1.2799(0)
0.700 1.87177(2) 1.1315(0) 1.3824(0) 1.3087(0) 1.2645(0)
0.800 2.06297(2) 1.1117(0) 1.3399(0) 1.2832(0) 1.2480(0)

9 0.269 0.88525(5) 1.2401(4) 1.5182(4) 1.3711(2) 1.3046(2)
0.274 0.89669(5) 1.2368(4) 1.5139(3) 1.3686(2) 1.3028(1)
0.400 1.17560(5) 1.1752(2) 1.4312(2) 1.3199(1) 1.2660(1)
0.500 1.38750(4) 1.1440(2) 1.3854(2) 1.2943(1) 1.2465(1)
0.600 1.59311(4) 1.1204(1) 1.3464(1) 1.2734(1) 1.2316(1)
0.700 1.79313(4) 1.1018(1) 1.3107(1) 1.2535(1) 1.2183(1)
0.800 1.98751(3) 1.0867(1) 1.2771(1) 1.2328(0) 1.2046(0)
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zðmηc ; μÞ≡
mηh

2mhðμÞ
ðB2Þ

replaces zcðμÞ, which is defined at the c mass instead ofmh.
Fits to thesemoments give both the coupling and the function
zðmηh ; μÞ, from which the c and b masses can be extracted.
We analyzed our data using the old definition, para-

metrizing the mηh dependence of zðmηc ; μÞ with a cubic
spline. The values for the Rn moments used are given in
Table VI. We obtained results that agree with the results
obtained from our new method to within a standard
deviation but are not quite as accurate:

αMSð5 GeV; nf ¼ 4Þ ¼ 0.2148ð29Þ ðB3Þ

mcð3 GeV; nf ¼ 4Þ ¼ 0.9896ð69Þ: ðB4Þ

The older method is more complicated because it
attempts to determine the coupling at the same time
as it determines the functional dependence of zðmηh ; μ ¼
3mhÞ. In the new method, zðmηh ; μ ¼ 3mhÞ is replaced
by zcðμÞ, whose dependence on μ is known a priori from
perturbative QCD.
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