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We compute the spectral density of the (Hermitian) Dirac operator in quantum chromodynamics with
two light degenerate quarks near the origin. We use CLS/ALPHA lattices generated with two flavors of
OðaÞ-improved Wilson fermions corresponding to pseudoscalar meson masses down to 190 MeVand with
spacings in the range 0.05–0.08 fm. Thanks to the coverage of parameter space, we can extrapolate our data
to the chiral and continuum limits with confidence. The results show that the spectral density at the origin is
nonzero because the low modes of the Dirac operator do condense as expected in the Banks-Casher
mechanism. Within errors, the spectral density turns out to be a constant function up to eigenvalues of
≈80 MeV. Its value agrees with the one extracted from the Gell-Mann-Oakes-Renner relation.

DOI: 10.1103/PhysRevD.91.054505 PACS numbers: 12.38.Gc, 11.15.Ha, 12.39.Fe

I. INTRODUCTION

There is overwhelming evidence that the chiral sym-
metry group SUðNfÞL × SUðNfÞR of quantum chromody-
namics (QCD) with a small number Nf of light flavors
breaks spontaneously to SUðNfÞLþR. This progress
became possible over the last decade thanks to the
impressive speed-up of the numerical simulations of lattice
QCD with light dynamical fermions [1–5] (for a recent
compilation of results see [6]). By now it is standard
practice to assume this fact and extrapolate phenomeno-
logically interesting observables in the quark mass by
applying the predictions of chiral perturbation theory
(ChPT) [7,8].
The distinctive signature of spontaneous symmetry

breaking in QCD is the set of relations among pion masses
and matrix elements which are expected to hold in the
chiral limit [7]. Pions interact only if they carry momentum,
and their matrix elements near the chiral limit can be
expressed as known functions of two low-energy constants,
the decay constant F and the chiral condensate Σ. The
simplest of these relations is the Gell-Mann-Oakes-Renner
(GMOR) one, which equals the slope of the pion mass
squared with respect to the quark mass to 2Σ=F2. On the
one hand, lattice simulations have become so powerful that
we now have the tools to verify some of these relations with
confidence. On the other hand, very little is known about
the dynamical mechanism which breaks chiral symmetry.
Maybe the spectrum of the Dirac operator is the simplest
quantity to look at for an insight. Indeed, many years ago
Banks and Casher suggested that chiral symmetry breaks if
the low modes of the Dirac operator at the origin do
condense and vice versa [9]. Remarkably, we now know
that the spectral density [9–11] is a renormalizable quantity
to which a universal meaning can be assigned [12].

The present paper is the second of two devoted to the
computation of the spectral density of the Dirac operator in
QCD with two flavors near the origin.1 This is achieved
by extrapolating the numerical results obtained with
OðaÞ-improved Wilson fermions at several lattice spacings
to the universal continuum limit. In the first paper, the focus
was on the physics results [15], while here we report the full
set of results, including the technical and numerical details
of the computation. After fixing the notation and giving the
parameters of the lattices simulated in Secs II and III,
Secs. IV and V are devoted to two different numerical
analyses of the data. Results and conclusions are given in
the last section.

II. SPECTRAL DENSITY OF THE
DIRAC OPERATOR

In a space-time box of volume V with periodic boundary
conditions, the spectral density of the Euclidean massless
Dirac operator D is defined as

ρðλ; mÞ ¼ 1

V

X∞
k¼1

hδðλ − λkÞi; ð1Þ

where iλ1; iλ2;… are its (purely imaginary) eigenvalues
ordered with their magnitude in ascending order. As usual,
the bracket h…i denotes the QCD expectation value and m
the quark mass. The spectral density is a renormalizable
observable [12,16]. Once the free parameters in the action
(coupling constant and quark masses) have been renormal-
ized, no renormalization ambiguity is left in ρðλ; mÞ.
The Banks-Casher relation [9],

1Preliminary results of this work were presented in
Refs. [13,14].
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lim
λ→0

lim
m→0

lim
V→∞

ρðλ; mÞ ¼ Σ
π
; ð2Þ

links the spectral density to the chiral condensate,

Σ ¼ −
1

2
lim
m→0

lim
V→∞

hψ̄ψi; ð3Þ

where ψ is the quark doublet. It can be read in either
direction. If chiral symmetry is spontaneously broken by a
nonzero value of the condensate, the density of the quark
modes in infinite volume does not vanish at the origin.
Conversely, a nonzero density implies that the symmetry is
broken.
The mode number of the Dirac operator,

νðΛ; mÞ ¼ V
Z

Λ

−Λ
dλρðλ; mÞ; ð4Þ

also corresponds to the average number of eigenmodes of
the massive Hermitian operator D†Dþm2 with eigenval-
ues α ≤ M2 ¼ Λ2 þm2. It is a renormalization-group
invariant quantity as it stands. Its (normalized) discrete
derivative,

~ρðΛ1;Λ2; mÞ ¼ π

2V
νðΛ2Þ − νðΛ1Þ

Λ2 − Λ1

; ð5Þ

carries the same information as ρðλ; mÞ, but this effective
spectral density is a more convenient quantity to consider in
practice on the lattice.

A. Mode number on the lattice

We discretize two-flavor QCD with the Wilson plaquette
action for the gauge field and OðaÞ-improvedWilson action
for the doublet of mass-degenerate quarks [17,18]; see
Appendix A for more details. The mode number2 νðΛ; mÞ is
defined as the average number of eigenmodes of the
massive Hermitian OðaÞ-improved Wilson-Dirac operator
D†

mDm with eigenvalues α ≤ M2. In the continuum limit
this definition converges to the universal one [12],

νRðΛR;mRÞ ¼ νðΛ; mÞ; ð6Þ
provided mR is defined as in Eq. (A6), and ΛR as

ΛR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

R −m2
R

q
; MR ¼ Z−1

P ð1þ b̄μamÞM: ð7Þ

The counter term proportional to b̄μ ensures that at finite
lattice spacing νRðMR;mRÞ is an OðaÞ-improved quantity.

This improvement coefficient has been computed in
Ref. [12], and its values for the inverse couplings β
considered in this paper are given in Table III.
For Wilson fermions chiral symmetry is violated at finite

lattice spacing. As a consequence, the fine details of the
spectrum of the Wilson-Dirac operator near the threshold
ΛR ¼ 0 is not protected from large lattice effects
[16,19,20]. While this region may be of interest for
studying the peculiar details of those fermions, it is easier
to extract universal information about the continuum theory
far away from it. In this respect the effective spectral
density in Eq. (5) is a good quantity to consider on the
lattice to extract the value of the chiral condensate.3

III. NUMERICAL SETUP

The CLS community4 and the ALPHA Collaboration
have generated the gauge configurations of the two-flavor
QCD with the OðaÞ-improved Wilson action by using
the MP-HMC (lattices A5, B6, G8, N6 and O7) and the
DD-HMC (all other lattices) algorithms as implemented in
Refs. [22,23]. The primary observables that we have
computed are the two-point functions of bilinear operators
in Eq. (A5) and the mode number νðΛ; mÞ. The former were
already computed by the ALPHA Collaboration; see
Appendix B and Refs. [24,25] for more details.

A. Computation of the mode number

The stochastic computation of the mode number has
been carried out as in Ref. [12]. A numerical approximation
of the orthogonal projector PM to the subspace spanned by
the eigenmodes of D†

mDm with eigenvalues α ≤ M2 is
computed as

PM ≃ hðXÞ4; X ¼ 1 −
2M2�

D†
mDm þM2�

; ð8Þ

whereM=M⋆ ¼ 0.96334. The function hðxÞ is an approxi-
mation to the step function θð−xÞ by a minmax polynomial
of degree n ¼ 32 in the range −1 ≤ x ≤ 1; see Ref. [12] for
more details. This choice, together with the value of M⋆
given, guarantees a systematic error well below our
statistical errors. The mode number is then computed as

νðM;mÞ ¼ hONi; ON ¼ 1

N

XN
k¼1

ðηk;PMηkÞ; ð9Þ

where we have added to the theory a set of pseudofermion
fields η1;…; ηN with Gaussian action. In the course of a
numerical simulation, one such field (N ¼ 1) for each

2We use the same notation for lattice and continuum quantities,
since any ambiguity is resolved from the context. As usual, the
continuum limit value of a renormalized lattice quantity, iden-
tified with the subscript R, is the one to be identified with its
continuum counterpart.

3Once the renormalizability of the spectral density is proven, a
generic finite integral of ρðλ; mÞ can be used to measure the
condensate; see Ref. [21] for a different choice.

4https://wiki‑zeuthen.desy.de/CLS/CLS.
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gauge-field configuration is generated randomly, and the
mode number is estimated in the usual way by averaging
the observable ON over the generated ensemble of fields.
The mode number is an extensive quantity, and at fixed N
and for a given statistics, the relative statistical error of the
calculated mode number is, therefore, expected to decrease
like V−1=2.

B. Ensembles generated

The details of the lattices are listed in Tables I and II. All
of them have a size of 2L × L3, and the spatial dimensions
are always large enough so thatMπL ≥ 4. The three values
of the coupling constant β ¼ 5.2, 5.3, 5.5 correspond to
lattice spacings of a ¼ 0.075, 0.065, 0.048 fm, respec-
tively, which have been fixed from FK by supplementing
the theory with a quenched “strange” quark [24]. The pion
masses range from 190 to 500 MeV. To explicitly check for

finite-size effects in the mode number, we have generated
an additional set of lattices (D5) with the same spacing
and quark mass as E5, but with a smaller lattice volume
48 × 243.
The autocorrelation times of the two-point functions and

of the mode number are reported in Table II. For the lattice
E5, we have computed τintðνÞ for three values of aM
corresponding to ΛR ¼ 30, 40 and 86 MeV, and no
significative difference was observed. We thus space the
measurements to give time to the mode number to
decorrelate, while we bin properly the (cheaper) measure-
ments of the two-point functions. To measure ν, the number
of configurations to be processed is chosen so that the
statistical error of the effective spectral density receives
roughly equally sized contributions from the scale and the
mode number. To ensure a proper Monte Carlo sampling, a
minimum of 50 configurations is processed in any case.

TABLE I. Overview of the ensembles and statistics used in this study. We give the label, the spatial extent of the lattice, β ¼ 6=g20, the
hopping parameter κ for the quark fields, the number of molecular dynamics units (MDU), the quark mass mR renormalized in the MS
scheme at μ ¼ 2 GeV, the pion mass Mπ and its decay constant Fπ , the product MπL, and the (updated) value of the lattice spacing
determined as in [24] (see also [26]).

id L=a β κ MDU mR [MeV] Fπ[MeV] Mπ[MeV] MπL a[fm]

A3 32 5.2 0.13580 7040 37.4(9) 120.8(7) 496(6) 6.0 0.0749(8)
A4 32 0.13590 7920 22.8(6) 110.7(6) 386(5) 4.7
A5 32 0.13594 1980 16.8(4) 106.0(6) 333(5) 4.0
B6 48 0.13597 1200 12.2(3) 102.3(5) 283(4) 5.2
E5 32 5.3 0.13625 8832 32.0(8) 115.2(6) 440(5) 4.7 0.0652(6)
F6 48 0.13635 4000 16.5(4) 105.3(6) 314(3) 5.0
F7 48 0.13638 3600 12.0(3) 100.9(4) 268(3) 4.3
G8 64 0.136417 1680 6.1(2) 95.8(4) 193(2) 4.1
N5 48 5.5 0.13660 3840 34.8(8) 115.1(7) 443(4) 5.2 0.0483(4)
N6 48 0.13667 7680 20.9(5) 105.8(5) 342(3) 4.0
O7 64 0.13671 3800 12.9(3) 101.2(4) 269(3) 4.2

TABLE II. The integrated autocorrelation time τint of the pion mass and of the mode number, multiplied by the
fraction of active links in the HMC Ract, is given in units of MDU. The parameters τint have a typical error of
25%–35%. The number nit of MDUs skipped between two consecutive measurements of the two-point functions
and of the mode number is also reported. The value of τexp of the Markov chain given in the last column is taken
from Ref. [27]. The value of RactτintðνÞ for N5 is a conservative estimate from the one of E5 and a scaling
proportional to τexp.

id Ract RactτintðMπÞ RactnitðMπÞ RactτintðνÞ RactnitðνÞ Ractτexp

A3 0.37 7 2.96 47.36 40
A4 0.37 5 2.96 53.28
A5 1 5 4.00 3 36.00
B6 1 6 2.00 24.00
E5 0.37 9 5.92 6 35.52 55
F6 0.37 8 2.96 29.60
F7 0.37 7 2.96 26.64
G8 1 8 2.00 24–48
N5 0.44 30 3.52 11 28.16 100
N6 1 10 4.00 128
O7 1 15 4.00 76
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The value of τexp of the Markov chain, defined as in
Ref. [24], is taken from [27]. It gets significantly longer
towards finer lattice spacings. For the ensembles where
nit < τexp, we estimate the contributions of the tails in the
autocorrelation functions of the observables as described in
Ref. [28]. When needed, we take them into account to have
a more conservative error estimate.

IV. A FIRST LOOK INTO THE
NUMERICAL RESULTS

We have computed the mode number ν for nine values5

of ΛR in the range 20–120 MeV with a statistical accuracy
of a few percent on all lattices listed in Table I. Four larger
values of ΛR in the range 150–500 MeV also have been
analyzed for the ensemble E5. The results are collected in
Tables V–VII of Appendix D.
In Fig. 1 we show ν as a function of ΛR for the lattice O7,

corresponding to the smallest reference quark mass (see
below) at the smallest lattice spacing. On all other lattices
an analogous qualitative behavior is observed. The mode
number is a nearly linear function in ΛR up to approx-
imatively 100–150 MeV. A clear departure from linearity is
observed for ΛR > 200 MeV on the lattice E5. At the
percent precision, however, the data show statistically
significant deviations from the linear behavior already
below 100 MeV. To guide the eye, a quadratic fit in ΛR
is shown in Fig. 1, and the values of the coefficients are
given in the caption. The bulk of ν is given by the linear
term, while the constant and the quadratic term represent
Oð10%Þ corrections in the fitted range. The nearly linear
behavior of the mode number is manifest on the right plot
of Fig. 1, where its discrete derivative, defined as in Eq. (5)
for each couple of consecutive values of ΛR, is shown as a
function of ΛR ¼ ðΛ1;R þ Λ2;RÞ=2. Since it is not affected

by threshold effects, the effective spectral density ~ρR is the
primary observable we focus on in the next sections.

A. Continuum-limit extrapolation

In general for ~ρR we observe quite a flat behavior in ΛR
toward finer lattice spacings and light quark masses, similar
to the one shown in Fig. 1. Because the action and the mode
number are OðaÞ-improved, the Symanzik effective theory
analysis predicts that discretization errors start at Oða2Þ. In
order to remove them, at every lattice spacing we match
three quark mass values (mR ¼ 12.9, 20.9, 32.0 MeV) by
interpolating ~ρR linearly in mR (see next section for more
details). The values of ~ρR show mild discretization effects at
light mR and ΛR, while they differ up to 15% per linear
dimension among the three lattice spacings toward larger
ΛR. Within the statistical errors all data sets are compatible
with a linear dependence in a2, and we thus independently
extrapolate each triplet of points to the continuum limit
accordingly. We show six of those extrapolations in Fig. 2,
considering the lightest and the heaviest reference quark
masses for the lightest, an intermediate, and the heaviest
cutoff ΛR. The difference between the values of ~ρR at the
finest lattice spacing and the continuum-extrapolated ones
is within the statistical errors for light mR and ΛR, and it
remains within few standard deviations toward larger
values of mR and ΛR. This fact makes us confident that
the extrapolation removes the cutoff effects within the
errors quoted.
The results for ~ρR at mR ¼ 12.9 MeV in the continuum

limit are shown as a function of ΛR in the left plot of Fig. 3.
A similar ΛR dependence is observed at the two other
reference masses. It is worth noting that no assumption on
the presence of spontaneous symmetry breaking was
needed so far. These results, however, point to the fact
that the spectral density of the Dirac operator in two-flavor
QCD is (almost) constant in ΛR near the origin at small
quark masses. This is consistent with the expectation from
the Banks-Casher relation in presence of spontaneous

0

50

100

150

200

250

300

0 20 40 60 80 100 120

ν

ΛR [MeV]

mR  = 12.9 MeV

a = 0.048 fm

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100 120

ρ ~
R

 [G
eV

3 ]

ΛR [MeV]

mR = 12.9 MeV
a = 0.048 fm

FIG. 1 (color online). Left: the mode number ν as a function of ΛR for the ensemble O7. A quadratic fit of the data gives
ν ¼ −9.0ð13Þ þ 2.07ð7ÞΛR þ 0.0022ð4ÞΛ2

R. Right: the effective spectral density ~ρR as defined in Eq. (5) for the same ensemble as a
function of ΛR ¼ ðΛ1;R þ Λ2;RÞ=2. Since we are interested in the ΛR dependence only, the errors in this plot do not include those of the
lattice spacing and of ZP. The errors from ZA and mR appear to be invisible in the figure.

5If not explicitly stated, the scheme- and scale-dependent
quantities such as Σ, mR, ΛR and ~ρR are renormalized in the MS
scheme at μ ¼ 2 GeV.
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symmetry breaking. In this case next-to-leading (NLO)
ChPT indeed predicts

~ρnloR ¼ Σ
�
1þ mRΣ

ð4πÞ2F4

�
3l̄6 þ 1 − lnð2Þ

− 3 ln
�
ΣmR

F2μ̄2

�
þ ~gν

�
Λ1;R

mR
;
Λ2;R

mR

���
; ð10Þ

i.e. an almost flat function in (small) ΛR at (small) finite
quark masses; see Appendix C for unexplained notation. At
fixed quark mass, the ΛR dependence of ~ρRnlo in Eq. (10) is
parameter free once the pion mass and decay constant are
measured.

B. Chiral limit

The extrapolation to the chiral limit requires an
assumption on how the effective spectral density ~ρR
behaves when mR → 0. In this respect it is interesting to
note that the NLO function in Eq. (10) goes linearly in mR
near the chiral limit since there are no chiral logarithms at
fixed ΛR; see Appendix C. A fit of the data to Eq. (10)

shows that the data are compatible with that NLO formula.
A prediction of NLO ChPT in the two-flavor theory is that
in the chiral limit ~ρnloR ¼ Σ also at nonzero ΛR, since all
NLO corrections in Eq. (10) vanish [29]. To check for this
property we extrapolate ~ρR with Eq. (11), which is a
generalization of Eq. (10) see below, and we obtain the
results shown in the right plot of Fig. 3 with a χ2=dof ¼
16.4=14. Within errors the ΛR dependence is clearly
compatible with a constant up to ≈80 MeV. Moreover
the difference between the values of ~ρR in the chiral limit
and those at mR ¼ 12.9 MeV is of the order of the
statistical error; i.e., the extrapolation is very mild. A fit
to a constant of the data gives Σ1=3 ¼ 261ð6Þ MeV.
As in any numerical computation, the chiral limit

inevitably requires an extrapolation of the results with a
pre-defined functional form. The distinctive feature of
spontaneous symmetry breaking, however, is that the
behavior of ~ρR near the origin is predicted by ChPT, and
its extrapolated value has to agree with the one of
M2

πF2
π=ð2mRÞ. We have thus complemented our computa-

tions with those for mR, Mπ and Fπ , and extrapolated the
above-mentioned ratio to the chiral limit as prescribed by
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FIG. 2 (color online). Effective spectral density ~ρR vs the lattice spacing squared for the lightest (left-hand side) and the heaviest
reference quark massmR (right-hand side), and for the lightest, an intermediate, and the heaviest cutoff ΛR in both panels. In general, the
data are well described by a linear fit in a2, which suggests that, within our statistical errors, we are in the asymptotic regime of
Symanzik effective theory. As evident from the figures, there are competing (positive and negative) discretization effects, which can
approximately compensate for each other in specific domains of parameter space.
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FIG. 3 (color online). Effective spectral density ~ρR in the continuum limit at the smallest reference quark massmR ¼ 12.9 MeV (left),
and in the chiral limit (right). Note the flat dependence on ΛR which agrees with the expectation from NLO ChPT. The results of the fit to
a constant is also shown on the right plot.
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ChPT; see Appendix B and Ref. [15]. We obtain Σ1=3
GMOR ¼

263ð3Þð4Þ MeV, where the first error is statistical and the
second is systematic, in excellent agreement with the
value quoted above. These results show that the spectral
density at the origin has a nonzero value in the chiral limit.
In the rest of this paper we assume this conclusion, and we
apply standard field theory arguments to remove with
confidence the (small) contributions in the raw data due
to the discretization effects, the finite quark mass and
finite ΛR.

V. DETAILED DISCUSSION OF
NUMERICAL RESULTS

We have analyzed the numerical results for the effective
spectral density ~ρR following two different fitting strategies.
In the first one, the main results of which are reported in the
previous section, we have extrapolated the results at fixed
kinematics ðΛR;mRÞ to the continuum limit independently.
The results of this analysis call for an alternative strategy to
extract the chiral condensate which uses ChPT from the
starting point, i.e. based on fitting the data in all three
directions ðΛR;mR; aÞ at the same time. This procedure
reduces the number of fit parameters, allows us to include
all generated data in the fit, and avoids the need for an
interpolation in the quark mass. It is important to stress that
also in this case ChPT is used to remove only (small)
higher-order corrections in the spectral density. The details
of these fits are reported in the next two subsections.

A. Continuum limit fit

In the first strategy outlined in Sec. IV, we start by
interpolating the data in the quark mass at fixed ΛR and a.
We choose three reference values (mR ¼ 12.9, 20.9,
32.0 MeV) which are within the range of simulated quark
masses at all β values, and they are as close as possible to
the values at the finest lattice spacing. Most of the data sets
look perfectly linear inm in the vicinity of the interpolation

points, with small deviations only for simultaneous coarse
lattices, light ΛR’s and towards heavy quark masses (see
Fig. 4). In all cases, however, the systematic error asso-
ciated with the linear interpolation is negligible with respect
to the statistical one. The interpolation and all following fits
are performed using the jackknife technique to take into
account the correlation of the data.
At fixed ðΛR;mRÞ, each data set is well fitted by a linear

function in a2, see Fig. 2, a fact which supports the
assumption of being in the Symanzik asymptotic regime
within the errors quoted.6 Once extrapolated to the con-
tinuum limit, we fit the effective spectral density with the
functional form

~ρR ¼ c0ðΛRÞ þmR

�
c1 þ c2

�
−3 ln

�
mR

μ̄

�

þ ~gν

�
ΛR;1

mR
;
ΛR;2

mR

���
; ð11Þ

which rests on NLO ChPT but is capable of accounting
for OðΛ2Þ effects. The latter are expected to be the
dominant higher-order effects in ChPT in this range of
parameters. Within the given accuracy, c0ðΛÞ is consistent
with a plateau behavior in the range 20 ≤ ΛR ≤ 80 MeV;
see right plot of Fig. 3. By fitting c0ðΛRÞ to a constant in
this range, we obtain Σ1=3 ¼ 261ð6Þ MeV. If we include
also a Λ2

R term in the fit and consider the entire range
20 ≤ ΛR ≤ 120 MeV, we find 253(9) MeV, which
differs from the previous result by roughly one standard
deviation. At the level of our statistical errors of
Oð10%Þ, the spectral density of the Dirac operator in the
continuum and chiral limits is a constant function up
to ΛR ≈ 80 MeV.
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FIG. 4 (color online). Left: effective spectral density ~ρR vs the quark mass mR for the finer lattice spacings and three cutoffs ΛR
together with the combined fit to all data to Eq. (14). Right: effective spectral density ~ρR vs the cutoff ΛR in the continuum and chiral
limits. The squares are the results for c0;0ðΛRÞ of the fit to the function in Eq. (14), and the plateau fit shown gives the value for the chiral
condensate.

6A detailed analysis of discretization effects in the spectral
density is beyond the scope of this paper. For completeness, we
report the results of these fits in Appendix D for interested
readers.
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B. Combined fit

In this section we present an alternative strategy to
extract the chiral condensate, based on fitting the data in all
three directions ðΛR;mR; aÞ at the same time. Compared to
the first strategy, the shortcomings are that we cannot
disentangle different corrections as clearly and ChPT is
used from the very beginning. We remark, however, that
also in this case ChPT is used only to remove higher-order
corrections, while the bulk of the chiral condensate is still
given through the Banks–Casher relation. The statistical
analysis is based on a double-elimination jackknife fit to
take into account all errors and correlations (no fit of fitted
quantities is needed). We start with the fit form

~ρR ¼ c0ðΛR; aÞ þmR

�
c1ðΛR; aÞ þ c2

�
−3 ln

�
mR

μ̄

�

þ ~gν

�
ΛR;1

mR
;
ΛR;2

mR

���
; ð12Þ

where ΛR ¼ ðΛR;1 þ ΛR;2Þ=2, and we constrain the fit
parameters as suggested by NLO chiral and Symanzik
effective theories. As already verified in the first strategy,
the discretization effects obey an a2 dependence in the
range of parameters simulated. We, thus, constrain our fit
parameters to obey7

c0ðΛR; aÞ ¼ c0;0ðΛRÞ þ a2c0;1ðΛRÞ;
c1ðΛR; aÞ ¼ c1;0ðΛRÞ þ a2c1;1ðΛRÞ: ð13Þ

The NLO ChPT predicts that c0;0ðΛRÞ and c1;0ðΛRÞ should
both be constant. Allowing for the time being an arbitrary
ΛR dependence in the parameter c0;0ðΛRÞ, we arrive at the
fit function

~ρR ¼ c0;0ðΛRÞ þ a2c0;1ðΛRÞ þmR

�
c1;0 þ a2c1;1ðΛRÞ

þ c2

�
−3 ln

�
mR

μ̄

�
þ ~gν

�
ΛR;1

mR
;
ΛR;2

mR

���
: ð14Þ

The fit of the data is shown versus the quark mass in the left
plot of Fig. 4 for the finer lattice spacings and three cutoffs
ΛR’s. The resulting effective spectral density in the con-
tinuum and chiral limit, corresponding to c0;0ðΛRÞ, is
shown in the right plot of Fig. 4. The results are very well
compatible with the ones determined in Sec. IV. If we fix
c0;0 to a constant in the region 20 ≤ ΛR ≤ 80, we can
extract the condensate to get Σ1=3 ¼ 259ð6Þ MeV, which is
well compatible with the one extracted in the previous
strategy.

To assess the stability of the fit, we have amended the
function with higher-order terms of the form
OðΛ2

R;ΛRmR;m2
RÞ. Note that when including Λ2

R terms,
we always consider the entire range 20 ≤ ΛR ≤ 120 MeV.
The coefficient of ΛRmR is consistent with zero, while m2

R
and Λ2

R effects are nonzero by 2 and 3 standard deviations,
respectively, and affect our final result systematically by
roughly 1 standard deviation downwards. We remark,
however, that in the truncated range 20 ≤ ΛR ≤ 80 the
data is perfectly compatible with a flat dependence on ΛR.
We also investigated the effect of truncating the amount of
data included in the fit. Cutting light ΛR slightly improves
the fit, while cutting heavy ones does not make a note-
worthy difference. To check again whether all data obey
well the assumed linear a2 dependence, we perform also
fits excluding the data at the coarsest lattices
(a ¼ 0.075 fm) with larger discretization effects (we kept
12 out of 32 data points at this lattice spacing). This does
not improve the quality of the fit significantly, and it gives
Σ1=3 ¼ 267ð6Þ MeV which differs from the previous result
by roughly one standard deviation upwards. We remark,
however, that the linear a2 dependence has been checked
and confirmed explicitly for each pair of ðΛR;mRÞ in the
first strategy. A further reduction of the number of fit
parameters can actually be achieved by noting that c2 is
known in ChPT, as seen in Eq. (10). One can rewrite it as a
function ofmπ andm. We have also tried to fix c0;1ðΛRÞ to a
constant which is suggested from results of the several fits
we have done (see Appendix E). In either case, we get
results which are well compatible with the results quoted.
For this strategy the best value of the chiral condensate is

Σ1=3 ¼ 259ð6Þ MeV. It is extracted from the fit function
Eq. (14) where c0;0 is fitted to a constant in the range
20 ≤ ΛR ≤ 80 MeV. This fit confirms that in the chiral and
continuum limits the spectral density is a flat function ofΛR
up to ≈80 MeV at the level of precision of our data points
in the continuum limit (approximatively 10%), and it can be
parametrized by NLO ChPT.
We presented preliminary results of this study at only

two lattice spacings in Ref. [13]. There we observed effects
of OðΛ2

RÞ already for ΛR ≳ 50 MeV, in particular for
a ¼ 0.065 fm. Once the data are extrapolated to the
continuum limit, these effects are not visible anymore up
to ΛR ≈ 80 MeV. In this respect it must be noted, however,
that once the uncertainties in the scale and renormalization
constants are included, the final errors of the extrapolated
results are significantly larger than those used to study the
ΛR dependence at fixed lattice spacing. It is, therefore, not
surprising that the window extends to larger values of ΛR.
By estimating the spectral density of the twisted mass

Hermitian Dirac operator, the dimensionless quantity
r0Σ1=3 was computed in Ref. [31]. Since they have a
smaller set of data, the analysis described in Sec. VA is not
a viable option for them. They opt for the strategy adopted
in Ref. [12] which is inspired by NLO ChPT. They fit the

7Note that this expression includes also the functional form of
discretization effects predicted at NLO in the GSM regime of
ChPT [30]; see Appendixes C and E.
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mode number linearly in M in the range 50–120 MeV, and
they extrapolate the results to the chiral and continuum
limits linearly. The smaller quark masses and in particular
the smaller values of ΛR that we considered were instru-
mental to properly quantify and eventually reduce our
systematic error.

C. Finite-size effects

We have chosen the lattice parameters so that finite-
volume effects, as estimated by NLO ChPT (see
Appendix C), are negligible within the statistical accuracy.
For the lattice E5 we have explicitly checked that finite-size
effects are within the expectations of ChPT by comparing
the values of the mode number with those obtained on a
lattice of 48 × 243, lattice D5 in Table VI of Appendix D.

VI. RESULTS AND CONCLUSIONS

Our results show that in QCD with two flavors, the low
modes of the Dirac operator do condense in the continuum
limit as expected by the Banks-Casher relation in the
presence of spontaneous symmetry breaking. The spectral
density of the Dirac operator in the chiral limit at the origin

is ½πρMSð2 GeVÞ�1=3 ¼ 261ð6Þð8Þ MeV, where the first
error is statistical and the second is systematic. The latter
is estimated so that the results from various fits are within
the range covered by the systematic error: in particular, the
smaller value that we find in Sec. VA when a Λ2

R term is
included in the fit function and the higher one obtained in
Sec. V B when some of the data at the coarser lattice
spacing are excluded from the fit. From the GMOR
relation, the best value of the chiral condensate that we

obtain is ½ΣMS
GMORð2 GeVÞ�1=3 ¼ 263ð3Þð4Þ MeV, where

again the first error is statistical and the second is
systematic. The spectral density at the origin, thus, agrees
with M2

πF2
π=ð2mRÞ when both are extrapolated to the

chiral limit.
For the sake of clarity, the above values of the condensate

have been expressed in physical units by supplementing the
theory with a quenched “strange” quark and by fixing the
lattice spacing from the kaon decay constant FK . They are,
therefore, affected by an intrinsic ambiguity due to the
matching of FK in the Nf ¼ 2 partially quenched theory
with its experimental value. The renormalization group-
invariant dimensionless ratio

½ΣRGI�1=3
F

¼ 2.77ð2Þð4Þ; ð15Þ

however, is a parameter-free prediction of the Nf ¼ 2

theory. It belongs to the family of unambiguous quantities
that should be used for comparing computations in the two-
flavor theory rather than those expressed in physical
units [6].
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APPENDIX A: LATTICE ACTION
AND OPERATORS

The gluons are discretized with the Wilson plaquette
action, while the doublet of mass-degenerate quarks with
the OðaÞ-improved Wilson action8 [17,18] with its coef-
ficient csw determined nonperturbatively [32]. We are
interested in the flavor nonsinglet (r; s ¼ 1; 2; r ≠ s)
fermion bilinears

Prs ¼ ψ̄ rγ5ψ s; Ars
0 ¼ ψ̄ rγ0γ5ψ s: ðA1Þ

The corresponding OðaÞ-improved renormalized operators
are given by

Prs
R ¼ ZPð1þ ðb̄P þ ~bPÞamÞPrs;

Ars
0;R ¼ ZAð1þ ðb̄A þ ~bAÞamÞ

�
Ars
0 þ cA

a
2
ð∂�

0 þ ∂0ÞPrs

�
;

ðA2Þ

where ∂0 and ∂�
0 are the forward and the backward lattice

derivatives, respectively. The coefficient cA has been
determined nonperturbatively for the Nf ¼ 2 theory in
Ref. [33], while the b coefficients are known in perturba-
tion theory up to one loop only [34,35]. The multiplicative
renormalization constants ZA and ZP have been computed
nonperturbatively in Ref. [24]. For the lattices considered in
this paper, the numerical values of the improvement
coefficients and of the renormalization constants are
summarized in Table III. The matching factors between
ZP in the Schrödinger functional scheme and the renorm-
alization-group invariant ZRGI

P (with the overall normali-

zation convention of Ref. [24]) and ZMS
P ð2 GeVÞ are

ZRGI
P ¼ 1

1.308ð16ÞZP;

ZMS
P ð2 GeVÞ ¼ 1

0.740ð12ÞZ
RGI
P : ðA3Þ

8The correction proportional to bg is neglected.
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Using the PCAC relation, we can define

mðx0Þ ¼
1
2
ð∂0 þ ∂�

0ÞfAPðx0Þ þ cAa∂�
0∂0fPPðx0Þ

2fPPðx0Þ
; ðA4Þ

where

fPPðx0Þ ¼ −a3
X
~x

hP12ðxÞP21ð0Þi;

fAPðx0Þ ¼ −a3
X
~x

hA12
0 ðxÞP21ð0Þi: ðA5Þ

At asymptotically large values of x0, the mass mðx0Þ has a
plateau which defines the value of m to be used in
Eqs. (A2). From this, the renormalized quark mass is
obtained as

mR ¼ ZAð1þ ðb̄A þ ~bAÞamÞ
ZPð1þ ðb̄P þ ~bPÞamÞ m; ðA6Þ

where the renormalization scheme and scale are those of
ZP. In particular in this paper, when not explicitly stated,
we use the symbol mR for the quark mass renormalized in
the MS scheme at μ ¼ 2 GeV. The bare pseudoscalar
decay constant is given by [36]

F π ¼ 2m
Gπ

M2
π
; ðA7Þ

where Gπ is extracted from the behavior of the correlator
fPPðx0Þ at asymptotically large values of x0,

fPPðx0Þ ¼
G2

π

Mπ
e−Mπx0 : ðA8Þ

Thanks to Eq. (A2), the pseudoscalar decay constant is
finally given by

Fπ ¼ ZAð1þ ðb̄A þ ~bAÞamÞF π: ðA9Þ

APPENDIX B: QUARK MASSES, PION MASSES
AND DECAY CONSTANTS

On all ensembles in Table I, we have computed the two-
point functions of the flavor nonsinglet bilinear operators
in Eqs. (A4) and (A5). They have been estimated by using

10 to 20 Uð1Þ noise sources located on randomly chosen
time slices. The bare quark mass mðx0Þ in Eq. (A4) has a
plateau for large enough x0 over which we average. The
pion mass Mπ and the bare pion decay constant F π are
extracted from fPPðx0Þ and the quark mass following
Ref. [24]. In particular, we determine the region x0 ∈
½xmin

0 ;T − xmin
0 � where we can neglect the excited state

contribution by first fitting the pseudoscalar two-point
function with a two-exponential fit,

fPPðx0Þ ¼ d1½e−E1x0 þ e−E1ðT−x0Þ�
þ d2½e−E2x0 þ e−E2ðT−x0Þ�; ðB1Þ

in a range where this function describes the data well for the
given statistical accuracy. We then determine xmin

0 to be
the smallest value of x0 where the statistical uncertainty on
the effective mass meffðx0Þ ¼ − d

dx0
log½fPPðx0Þ� is 4 times

larger than the contribution of the excited state to meffðx0Þ
as given by the result of the fit. In the second step only the
first term of Eq. (B1) is fitted to the data restricted to this
region, and E1 and d1 are determined. The pion mass and
its decay constant are then fixed to be Mπ ¼ E1 and
F π ¼ 2

ffiffiffiffiffi
d1

p
m=M3=2

π , respectively. The numerical results
for all lattices are reported in Table IV, and those for the
pseudoscalar decay constant and for the cubic root of
the ratio M2

π=ð2mRFÞ are shown in Fig. 5 versus
y ¼ M2

π=ð4πFπÞ2. We fit Fπ to the function

TABLE III. Improvement coefficients and renormalization constants for the β values considered in the paper.

β run cSW cA ~bP ~bA b̄μ ZP ZA

5.2 all 2.01715 −0.06414 1.07224 1.07116 −0.576 0.5184(53) 0.7703(57)
5.3 all 1.90952 −0.05061 1.07088 1.06982 −0.575 0.5184(53) 0.7784(52)
5.5 N5 1.751496 −0.03613 1.06830 1.06728 −0.572 0.5184(53) 0.7932(43)
5.5 N6,O7 1.751500 −0.03613 1.06830 1.06728 −0.572 0.5184(53) 0.7932(43)

TABLE IV. The bare quark mass am as defined in Eq. (A4), the
pion mass aMπ and pion decay constant aFπ as defined in
Eq. (A9).

id am aMπ aFπ

A3 0.00985(6) 0.1883(8) 0.04583(37)
A4 0.00601(6) 0.1466(8) 0.04200(35)
A5 0.00444(6) 0.1263(11) 0.04023(34)
B6 0.00321(4) 0.1073(8) 0.03883(31)
E5 0.00727(3) 0.1454(5) 0.03803(29)
F6 0.00374(3) 0.1036(5) 0.03479(29)
F7 0.002721(20) 0.0886(4) 0.03331(24)
G8 0.001395(18) 0.0638(4) 0.03162(23)
N5 0.00576(3) 0.1085(8) 0.02816(21)
N6 0.003444(15) 0.0837(3) 0.02589(19)
O7 0.002131(9) 0.06574(23) 0.02475(16)
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aFπ ¼ ðaFÞf1 − y lnðyÞ þ byg; ðB2Þ

where b is common to all lattice spacings, restricted to the
points with Mπ < 400 MeV (see left plot of Fig. 5). This
function rests on the Symanzik expansion and is compat-
ible with Wilson ChPT (WChPT) at the NLO [37]. To
estimate the systematic error, we performed a number of fits
to different functions: linear in y with Mπ < 400 MeV and
next-to-next-to-leading order in ChPT with all data
included. As a final result, we quote aF ¼ 0.0330ð4Þð8Þ,
0.0287(3)(7) and 0.0211(2)(5) at a ¼ 0.075, 0.065 and
0.048 fm, respectively, where the second (systematic) error
takes into account the spread of the results from the various
fits. By fixing the scale from FK , and by performing a
continuum-limit extrapolation, we obtain our final result
F ¼ 85.8ð7Þð20Þ MeV.
We further compute the ratio M2

π=ð2mRFÞ for all data
points. We fit the data restricted to Mπ < 400 MeV to

�
M2

π

2mRF

�
1=3

¼ ðs0 þ s1ðaFÞ2Þ
�
1þ y

6
lnðyÞ þ dy

�
; ðB3Þ

where s0, s1 and d are common to all lattice spacings, and
the fit function is again the one resting on the Symanzik
expansion and compatible with WChPT at the NLO. Also
in this case we checked several variants, although the data
look very flat up to the heaviest mass. From the fits we
get s0 ¼ 3.06ð3Þð4Þ, where the systematic error is deter-
mined as for F. This translates to a value for the
renormalization-group-invariant dimensionless ratio of
½ΣRGI�1=3=F ¼ 2.77ð2Þð4Þ, which in turn corresponds to

½ΣMSð2GeVÞ�1=3¼263ð3Þð4ÞMeV if again FK is used to
set the scale.

APPENDIX C: MODE NUMBER IN CHIRAL
PERTURBATION THEORY

When chiral symmetry is spontaneously broken, the
mode number can be computed in the chiral effective
theory. At the NLO it reads [12] (see also Ref. [38])

νnloðΛR;mRÞ ¼
2ΣΛRV

π

�
1þ mRΣ

ð4πÞ2F4

�
3l̄6 þ 1 − lnð2Þ

− 3 ln

�
ΣmR

F2μ̄2

�
þ fν

�
ΛR

mR

���
; ðC1Þ

where

fνðxÞ ¼ x

�
arctanðxÞ − π

2

�
−
1

x
arctanðxÞ

− lnðxÞ − lnð1þ x2Þ: ðC2Þ

The constants F and l̄6 are, respectively, the pion decay
constant in the chiral limit and a SUð3j1Þ low-energy
effective coupling renormalized at the scale μ̄. The formula
in Eq. (C1) has some interesting properties:

(i) for x → ∞,

fνðxÞ⟶
x→∞

− 3 lnðxÞ; ðC3Þ

and, therefore, at fixed ΛR the mode number has no
chiral logs when mR → 0;

(ii) since in the continuum the operator D†
mDm has a

threshold at α ¼ m2, the mode number must satisfy

lim
ΛR→0

νnloðΛR;mRÞ ¼ 0; ðC4Þ

a property which is inherited by the NLO ChPT
formula;

(iii) in the chiral limit νnloðΛR;mRÞ=ΛR becomes inde-
pendent of ΛR. This is an accident of the Nf ¼ 2

ChPT theory at NLO [29];
(iv) the ΛR dependence in the square brackets on the rhs

of (C1) is parameter free. Since mRΣ2

ð4πÞ2F4 > 0, the

behavior of the function fνðxÞ implies that
νnloðΛR;mRÞ=ΛR is a decreasing function of ΛR at
fixed mR, and no ambiguity is left due to free
parameters.
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FIG. 5 (color online). Left: the pseudoscalar decay constant aFπ versus y ¼ M2
π=ð4πFπÞ2. Right: The ratioM2

π=ð2mRFÞ versus y. The
bands are the result of a combined fit, see main text.
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At the NLO the effective spectral density defined in
Eq. (5) reads

~ρnloR ¼ Σ
�
1þ mRΣ

ð4πÞ2F4

�
3l̄6 þ 1 − lnð2Þ

− 3 ln

�
ΣmR

F2μ̄2

�
þ ~gν

�
Λ1;R

mR
;
Λ2;R

mR

���
; ðC5Þ

where

~gνðx1; x2Þ ¼
fνðx1Þ þ fνðx2Þ

2
þ 1

2

x1 þ x2
x2 − x1

½fνðx2Þ − fνðx1Þ�:

ðC6Þ

The quantity ~ρnloR inherits the same peculiar properties of
νnloðΛR;mRÞ=ΛR at NLO: at fixed Λ1;R and Λ2;R, it has no
chiral logarithms when mR → 0, it is independent from
Λ1;R and Λ2;R in the chiral limit, and at nonzero quark mass
it is a decreasing parameter-free (apart the overall factor)
function of ðΛ1;R þ Λ2;RÞ=2. It is very weakly dependent on
ðΛ1;R − Λ2;RÞ in the range we are interested in. To have a
quantitative idea of the ðΛ1;R þ Λ2;RÞ=2 dependence
of ~ρnloR , we can choose Σ ¼ ð260 MeVÞ3, F ¼ 85 MeV,

msea
R ¼ 10 MeV, Λ1;R ¼ 20, 40 MeV, Λ2;R ¼ 25, 55 MeV

to obtain

Σ
ð4πÞ2F4

¼ 0.00213 MeV−1;

0.0213 ·

�
~gν

�
20

10
;
25

10

�
− ~gν

�
40

10
;
55

10

��
¼ 0.0467: ðC7Þ

For light values of the quark masses, the variations are
rather mild, i.e. of the order of a few percent. The next-to-
next-to-leading corrections in ~ρR are of the form
OðΛ2

R;mRΛR;m2
RÞ. They are expected to spoil some of

the peculiar properties of the NLO formula. In the chiral
limit the OðΛ2

RÞ corrections can induce a ΛR dependence,
and the OðmRΛRÞ can change the parameter-free depend-
ence on ΛR within the square brackets on the rhs
of Eq. (C5).

1. Finite volume effects

Finite volume effects in the mode number were com-
puted in the chiral effective theory at the NLO in
Refs. [12,38] (see also [30]). They are given by

�
ΔνV
ν

�
nlo

¼ Σ
ð4πÞ2F4

X0

fn1;…;n4g
lim
ϵ→0

�
2

ΛR
Im

�
F−2

�
Σq2n
4F2

; iΛR þmR þ ϵ

��
−
mR

ΛR
Im

�
F−1

�
Σq2n
2F2

; iΛR þ ϵ

��

þ Re

�
F−1

�
Σq2n
2F2

; iΛR þ ϵ

���
; ðC8Þ

where

Fνðb; zÞ ¼ 2

�
b
z

�
ν=2

Kνð2
ffiffiffiffiffi
bz

p Þ; ðC9Þ

with Reb > 0, Rez > 0, and Kν is a modified Bessel
function [39]. Furthermore, q2n ¼

P
d
μ¼1ðnμLμÞ2 andP0

fn1;…;ndg denotes the sum over all integers without

n ¼ ð0;…; 0Þ. By expanding the Bessel functions for large
arguments [39], it is straightforward to show that the most
significant terms in the sum on the rhs of Eq. (C9) are
proportional to the exponentials expf−M1L=

ffiffiffi
2

p g and
expf−M2L=2g, where M1 and M2 are the leading-order
expressions in ChPT for the mass of a pseudoscalar
meson made of two valence quarks of mass ΛR and

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
R þm2

R

p
þmRÞ, respectively.

2. Discretization effects

At finite lattice spacing and volume, the threshold
region should be treated carefully in ChPT [19]. The latter

can be avoided by considering the quantity ~ρR, with
Λ2;R > Λ1;R ≫ 1=ΣV. In this case, the computation in
the GSM power-counting regime of the Wilson ChPT
gives [30]

~ρnloR ðaÞ ¼ ~ρnloR − 32ðW0aÞ2W0
8mR

1

Λ1;RΛ2;R
: ðC10Þ

Since W0
8 is expected to be negative [20,40], if we

rewrite

Λ1;RΛ2;R ¼
�
Λ1;R þ Λ2;R

2

�
2

−
1

4
ðΛ2;R − Λ1;RÞ2; ðC11Þ

and we keep constant ðΛ2;R − Λ1;RÞ, then ~ρnloR ðaÞ is a
decreasing function of ΛR ¼ ðΛ2;R þ Λ1;RÞ=2 on the
lattice too. At variance with the continuum case, however,
a free parameter W2

0W
0
8 appears in the function, and its

magnitude cannot be predicted. Remarkably, ~ρnloR ðaÞ
is free from discretization effects in the chiral limit and,
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therefore, it is independent of Λ1;R and Λ2;R. The con-
tinuum extrapolation of the chiral value of ~ρnloR ðaÞ then
removes the discretization effects due to the reference
scale used.

APPENDIX D: NUMERICAL RESULTS
FOR THE MODE NUMBER

We collect the results for the mode number in
Tables V, VI and VII. For each lattice, the values of aM
correspond to approximatively ΛR ¼ 20, 25, 30, 40, 55, 71,
86, 101, 116 MeV with the exception of the lattice
E5 for which ΛR ¼ 151, 202, 303, 505 MeV were also
computed. In Table VIII we give the value of ~ρR in the

TABLE V. Values of aM and the corresponding results for ν for
each lattice at β ¼ 5.2.

id Ncnfgs aM ν

A3 55 0.008673 13.3(6)
0.009208 16.2(6)
0.009821 20.5(7)
0.011235 29.6(9)
0.013665 47.3(10)
0.016322 66.9(12)
0.019110 88.2(14)
0.021979 111.1(16)
0.024901 134.6(18)

A4 55 0.006205 11.6(6)
0.006929 15.9(7)
0.007723 20.6(7)
0.009447 30.8(8)
0.012228 48.8(10)
0.015127 68.6(12)
0.018088 89.6(13)
0.021085 110.9(15)
0.024103 132.5(15)

A5 55 0.005352 11.4(6)
0.006176 15.6(6)
0.007054 20.6(7)
0.008905 31.9(8)
0.011810 50.1(11)
0.014786 68.3(13)
0.017799 88.7(14)
0.020831 108.7(16)
0.023877 129.2(18)

B6 50 0.004800 59.5(10)
0.005703 82.5(11)
0.006642 108.4(13)
0.008580 162.3(16)
0.011563 253.0(22)
0.014586 346.5(25)
0.017629 443(3)
0.020683 543(3)
0.023743 647(4)

TABLE VI. As in Table V but for β ¼ 5.3.

id Ncnfgs aM ν

D5 345 0.006720 2.09(9)
0.007239 2.77(10)
0.007826 3.42(10)
0.009153 5.26(12)
0.011385 8.38(16)
0.013782 11.69(19)
0.016271 15.16(22)
0.018815 18.61(25)
0.021396 22.3(3)

E5 92 0.006720 7.3(3)
0.007239 9.3(3)
0.007826 11.5(3)
0.009153 17.1(4)
0.011385 26.9(5)
0.013782 37.4(7)
0.016271 47.3(8)
0.018815 58.0(9)
0.021396 68.8(10)
0.027499 93.7(10)
0.036321 138.6(12)
0.054110 259.7(16)
0.089863 689(3)

F6 50 0.004618 34.7(9)
0.005342 47.6(11)
0.006111 60.7(12)
0.007732 90.8(16)
0.010268 135.8(17)
0.012865 183.0(20)
0.015492 230.9(23)
0.018137 280(3)
0.020791 330(3)

F7 50 0.004159 34.7(9)
0.004950 47.0(10)
0.005770 59.3(10)
0.007464 87.1(12)
0.010065 128.9(16)
0.012701 172.0(21)
0.015354 217.2(23)
0.018015 265(3)
0.020682 314(3)

G8 50 0.003737 113.7(16)
0.004599 153.8(18)
0.005472 196.7(22)
0.007233 282.3(25)
0.009892 409(3)
0.012560 543(3)
0.015233 682(4)
0.017910 828(4)
0.020587 981(5)
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continuum for various values of the cutoff ΛR and the quark
mass mR.

APPENDIX E: NUMERICAL ANALYSIS OF
DISCRETIZATION EFFECTS

In this appendix we report more details on the discre-
tization effects that we have observed in our data. We limit

ourselves to an empirical discussion of the results obtained
by following the strategy described in Sec. VA.
A first look into the data reveals that discretization

effects in ν show a nontrivial dependence on ΛR and mR.
We plot the mode number at mR ¼ 32 MeV, normalized
with respect to its value at ΛR ¼ 40 MeV, for all three
lattice spacings and all values of ΛR in Fig. 6, left-hand
side. After interpolating the effective spectral density in
mR, we fit the data linearly in a2

~ρRðΛR;mR; aÞ ¼ ~ρRðΛR;mR; 0Þ þ a2ΔðΛR;mRÞ ðE1Þ

for each pair of ðΛR;mRÞ. By fitting Δ linearly in mR
(Fig. 6, right plot)

ΔðΛR;mRÞ ¼ c0;1ðΛRÞ þ c1;1ðΛRÞmR ðE2Þ

for each ΛR, we obtain the values for c0;1ðΛRÞ shown in the
left plot of Fig. 7. Within errors, c0;1ðΛRÞ turns out to be
compatible with a constant. To reduce the noise in c1;1ðΛRÞ,

TABLE VII. As in Table V but for β ¼ 5.5.

id Ncnfgs aM ν

N5 60 0.005287 12.0(6)
0.005647 15.6(6)
0.006058 19.3(7)
0.006998 27.3(8)
0.008599 40.2(9)
0.010334 52.3(10)
0.012146 65.0(11)
0.014005 77.7(12)
0.015895 91.2(13)

N6 60 0.003797 11.0(4)
0.004284 14.9(5)
0.004812 18.3(5)
0.005949 25.6(7)
0.007765 37.3(8)
0.009646 49.1(8)
0.011562 60.4(9)
0.013496 72.6(10)
0.015444 85.8(11)

O7 50 0.003137 34.3(9)
0.003710 45.9(10)
0.004309 57.5(11)
0.005548 78.5(12)
0.007459 111.9(15)
0.009399 147.8(16)
0.011354 184.0(18)
0.013316 220.8(19)
0.015284 260.2(21)

TABLE VIII. The effective density ~ρR in the continuum is given
for various values of the cutoff ΛR and the quark mass mR. These
data are obtained by first interpolating ~ρR linearly in mR for each
ΛR and lattice spacing a, followed by an extrapolation linear in a2

to the continuum for each pair of ðΛR;mRÞ, as described in
Secs. IV and VA. ~ρR is given in GeV3, and ΛR and mR are given
in MeV.

ΛR=mR 12.9 20.9 32.0

22.7 0.0289(20) 0.032(3) 0.033(3)
27.7 0.0249(21) 0.023(3) 0.029(3)
35.3 0.0191(16) 0.025(3) 0.0308(24)
47.9 0.0192(15) 0.0239(22) 0.0288(19)
63.0 0.0221(15) 0.0228(24) 0.0229(18)
78.2 0.0210(16) 0.0174(20) 0.0224(18)
93.3 0.0212(14) 0.0221(21) 0.0211(18)
108.4 0.0237(15) 0.0257(22) 0.0243(19)
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FIG. 6 (color online). Left: mode number atmR ¼ 32 MeV for all three lattice spacings and all cutoffs ΛR, normalized with respect to
its value at ΛR ¼ 40 MeV. Right: discretization effects Δ of the effective spectral density as defined in Eq. (E1), shown vs mR for three
values of ΛR. The fit in the plot follows Eq. (E2), the resulting parameters of which are shown in Fig. 7.

SPECTRAL DENSITY OF THE DIRAC OPERATOR IN … PHYSICAL REVIEW D 91, 054505 (2015)

054505-13



we repeat the fit in Eq. (E2) but constraining c0;1ðΛRÞ to be
a constant. The results of this fit are shown in the right plot
of Fig. 7. The coefficient c1;1ðΛRÞ tends to a constant for
large ΛR, while a significant drop is observed towards the
origin. In an intermediate range, the opposite signs of c0;1
and c1;1 allow for a compensation of the different effects,
implying an effectively flat dependence of ~ρR in the lattice

spacing. Within the large errors, the mass-dependent
discretization effects could be compatible with the func-
tional form given in Eq. (C10) [30]. The sign of the pole,
however, appears to be opposite than predicted in
Refs. [20,40]. In this respect it must be said that it is
not clear that the GSM power-counting scheme used in
Ref. [30] applies in the range of parameters of our data.
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