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We perform a nonperturbative lattice calculation of the complex phase and modulus of the pion form
factor in the timelike momentum region using the finite-volume technique. We use two ensembles of 2þ 1-
flavor overlap fermions at pion masses mπ ¼ 380 and 290 MeV. By calculating the I ¼ 1 correlators in the
center-of-mass and three moving frames, we obtain the form factor at ten different values of the timelike
momentum transfer around the vector resonance. We compare the results with the phenomenological model
of Gounaris-Sakurai and its variant.
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I. INTRODUCTION

Lattice quantum chromodynamics (QCD) has been
successful at providing first-principles calculations of
various physical quantities, among which the calculations
of the so-called gold-plated quantities, such as the lowest-
lying hadron masses, decay constants and matrix elements
with one hadron or vacuum as the initial or final state, are
carried out with controlled errors. On the other hand, there
are many interesting physical observables that are beyond
gold-plated. An interesting example is that of transition
amplitudes involving non-QCD initial/final states, such as
the amplitudes for ηc; χc0 → γγ [1] and π0 → γγ [2–6].
Another example is the K → ππ decay [7–9], where the
final state consists of multiple strongly interacting pions.
For such cases, the finite-volume correction to the two-
body state must be properly taken into account [10].
For the K → ππ decay, the main efforts have been made

to reproduce the physical amplitude where the center-of-
mass (CM) energy of the two pions, E�, is equal to the kaon
mass mK. In this work, on the other hand, we study a
simpler quantity, the timelike pion form factor, for which
the final state contains two pions but its energy E� varies in
the whole ππ elastic scattering region.
Physically, the timelike pion form factor describes how

an electromagnetic vector current couples to two pions. We
concentrate on the isovector part of the electromagnetic
current, which associates with an isospin I ¼ 1 ππ
scattering state. The corresponding ππ scattering phase
has been studied by several lattice groups using different
techniques [11–17].
Besides the tests of the lattice calculations of multi-

particle states, the pion form factor provides information on
the electromagnetic structure of pions. At tree level, the
coupling of an electromagnetic current to spinless pointlike
particles is completely determined by their charge. For the

composite particles such as the pion, however, one must
take into account their internal structure, which is described
by a form factor depending on the momentum transfer,
the so-called electromagnetic form factor. A direct lattice
QCD calculation of the pion form factor can reveal this
internal structure of the pion. Experimentally, the timelike
pion form factor can be measured through the process
eþe− → πþπ−, and it shows a resonance structure due to
the ρ meson. It is therefore interesting to calculate the
whole functional form on the lattice and compare it with the
available experimental data.
Previous lattice calculation of the pion form factor has

been carried out at Euclidean (or spacelike) momenta,
q2 < 0 [18–24]. At low momenta q2 → 0− the pion charge
radius can be extracted. In this work, we calculate the pion
form factor in the timelike momentum region, which
provides a different approach to extract the charge radius
from the opposite direction q2 → 0þ.
The method to calculate the amplitudes or the form

factors involving two particles in the final state was
originally proposed by [10] and extended to moving frames
by [25,26]. All these works chose K → ππ as the process to
study, where the initial state is an on-shell kaon and the
final state consists of ππ in the I ¼ 0 or 2 channel. In [27], it
is proposed to extract the pion form factor from the process
γ� → ππ, where the initial state is a virtual photon and the
two pions form a P-wave scattering final state in the I ¼ 1
channel. In this work we adopt this approach and extend it
to the moving frames, which allow us to obtain the form
factor in the whole elastic ππ scattering region.
The methods described above and used in our calculation

are universal and can be applied to other physical observ-
ables involving two-particle initial or final state. A direct
extension is the timelike scalar form factor of the pion. In
this case, the interest is in the I ¼ 0 scalar channel, where
the sigma resonance is relevant. If we consider two particles
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with unequal masses, the method may be extended to the
Kπ system. The timelike form factor is then related to the
process of semileptonic τ decays τ → Kπντ, where a weak
current couples to Kπ and a resonance K� appears in this
channel. One may also extend the calculation from the
meson sector to the baryon sector, such as the timelike
nucleon form factor associated with the proc-
ess eþe− → pp̄.
Since most of the hadrons, such as ρ, K� and Δ, are

resonances, one should treat them as a multiparticle system
in the lattice calculation. In this regard, our exploratory
study of the timelike pion form factor provides a test of the
lattice method and helps to pave the way towards more
challenging calculations with full consideration of more
complicated resonance physics.
This paper is organized as follows. In Sec. II we

introduce some phenomenological background of the time-
like pion form factor. In Sec. III we discuss the finite-
volume method used in our calculation. Then, in Sec. IV
we give the construction of the interpolating operator and
the correlation function. The analysis of lattice results is
described in Sec. V.

II. TIMELIKE PION FORM FACTOR

Hadron production via virtual photon in eþe− annihila-
tion offers a fundamental test of QCD. At low energies, the
dominant hadronic final state consists of two charged
pions. The total cross section σðeþe− → πþπ−Þ is given
by a square of the modulus of the electromagnetic pion
form factor FπðsÞ,

σðeþe− → πþπ−Þ ¼ σ0ðeþe− → πþπ−ÞjFπðsÞj2; ð1Þ

where σ0ðeþe− → πþπ−Þ is the tree-level cross section
calculated with scalar QED by assuming that the pion is a
pointlike particle. The QCD corrections are all encoded in
the pion form factor FπðsÞ, which describes how a (virtual)
photon couples to two pions in the final state.
The pion form factor is defined by a vector matrix element

between the QCD vacuum and the ππ in and out states

hπþðpþÞπ−ðp−Þ; injjemμ ð0Þj0i
¼ þiðpþ − p−ÞμFπðs − iεÞ;

hπþðpþÞπ−ðp−Þ; outjjemμ ð0Þj0i
¼ −iðpþ − p−ÞμFπðsþ iεÞ; ð2Þ

with p� ¼ ðE�;p�Þ the four-momenta of π� and s ¼
ðpþ þ p−Þ2 an invariant mass square of the two-pion
system. The π-state is normalized as

hπaðpÞjπbðqÞi ¼ 2Eð2πÞ3δabδðp − qÞ; a; b ¼ þ;−; 0:

ð3Þ

The hadronic electromagnetic current jemμ is given in terms
of three-flavor currents as jemμ ¼ 2

3
ūγμu − 1

3
d̄γμd − 1

3
s̄γμs,

where u, d, and s refer to the quark fields. One can also
write jemμ in an isospin basis as jemμ ¼ jI¼1

μ þ 1
3
jI¼0
μ − 1

3
jsμ,

with

jI¼1
μ ¼ 1

2
ðūγμu − d̄γμdÞ;

jI¼0
μ ¼ 1

2
ðūγμuþ d̄γμdÞ;

jsμ ¼ s̄γμs: ð4Þ

In the isospin symmetry limit, the jI¼0
μ and jsμ do not

contribute to FπðsÞ. Our calculation is performed in the limit
of mu ¼ md; thus the vector current is given by jI¼1

μ and the
ρ-ω mixing effects are neglected. To extend the calculation
beyond the isospin-symmetric limit, the disconnected dia-
grams need to be calculated, which is a subject of future
studies.
The pion form factor FπðsÞ is analytic in the complex

s-plane, with a branch cut from 4m2
π to ∞. The unitarity of

the scattering matrix implies

hf; outjjμj0i − hf; injjμj0i
¼ −

X
n

½hf; injn; outi − δfn�hn; outjjμj0i; ð5Þ

where jfi stands for the ππ states. In the elastic scattering
region, due to the energy-momentum conservation, the sum
over jni is restricted to ππ states as well. The coefficient
ðhf; injn; outi − δfnÞ is then given by the ππ scattering
amplitude. In the isovector channel, only the P-wave
amplitude t1ðsÞ ¼ ðe2iδ1ðsÞ − 1Þ=2i contributes to the uni-
tarity condition, where δ1ðsÞ is the P-wave ππ scattering
phase. One can then simplify (5) as

ImFπðsÞ ¼ t�1ðsÞFπðsþ iεÞ ¼ sin δ1ðsÞe−iδ1ðsÞFπðsþ iεÞ
ð6Þ

for s < ð4mπÞ2. It shows that the complex phase of the pion
form factor is equivalent to the P-wave ππ scattering phase
below the inelastic threshold. This result is known as
Watson’s final-state theorem.
At low energies the process of P-wave ππ scattering is

approximated well by the production and decay of the
ρ-meson, which is represented by a simple vector-meson-
dominance (VMD) form

FVMD
π ðsÞ ¼ A

s −m2
ρ
; A ¼ −m2

ρ; ð7Þ

with mρ the ρ-meson mass. The form factor is normalized
such that FVMD

π ð0Þ ¼ 1, which is required by the charge
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conservation. This form is, however, not very satisfactory
since the instability of the ρ-meson is not taken into
account. To include the ππ branch cut, Gounaris and
Sakurai (GS) introduced an analytic form that takes account
of the ρ → ππ transition [28]

FGS
π ðsÞ ¼ A

s −m2
ρ − ΠρðsÞ

; A ¼ −m2
ρ − Πρð0Þ; ð8Þ

where the function ΠρðsÞ stands for the ρ meson self-
energy due to the two-pion loop diagram.
Near the resonance energy, the ρ → ππ transition ampli-

tude can be parametrized as

hπþπ−; outjρ; ε; ini ¼ gρππεμ · ðpþ − p−Þμ; ð9Þ

through which the ρππ coupling gρππ is defined. The value
of gρππ can be estimated with the experimental measure-
ment of the ρ → ππ decay width

Γρππ ¼
g2ρππ
6π

k3ρ
m2

ρ
; kρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ=4 −m2
π

q
: ð10Þ

Using the optical theorem, the imaginary part of ΠρðsÞ can
be related to the ρ → ππ amplitude, or equivalently gρππ,
through

ImΠρðsÞ ¼ −
g2ρππ
6π

k3ffiffiffi
s

p ; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4 −m2

π

q
: ð11Þ

The real part of ΠρðsÞ can be related to its imaginary part
using a twice-subtracted dispersion relation. Hence, FGS

π ðsÞ
has only two parameters mρ and gρππ . An explicit expres-
sion FGS

π ðsÞ is given in Appendix A. In particular, the s
dependence of the P-wave pion-pion scattering phase
induced from the GS model is given in (A8).
As shown in Fig. 1, the GS form gives a reasonably good

approximation of the experimental measurements of the
scattering phase, but jFGS

π ðsÞj is about 10% lower near
the resonance peak

ffiffiffi
s

p ¼ mρ. The deviation may arise
from the ρ − ωmixing due to the isospin breaking effect. In
[29] the ω contribution is subtracted from the CMD-2 data
and the peak value of the form factor is only ∼3% smaller
than the original one, which suggests that the ρ − ω mixing
effect is not the only source of the deviation between the GS
model and experimental data. This is further confirmed by
our lattice calculation, where the up and down quark
masses are set identical while the peak value of the GS
form factor is 27% and 20% smaller than the lattice results
at mπ ¼ 380 MeV and 290 MeV, respectively, as shown
later in Fig. 13.
One way to make the GS form closer to the experimental

data is to include the contributions from higher resonances
such as ρð1450Þ and ρð1700Þ [37,38]. After doing this, the

extended GS form does agree with the experimental
measurements but there are still some doubts on whether
the higher resonances really affect the form factor at the
ρ-resonance peak in the suggested way [29].
Another way to modify the GS form is to focus only on

the resonance region s ≈m2
ρ and assume the ρ-meson

dominance. The matrix elements in (2) are then factorized
into two parts: hπþπ−; outjρ; ε; ini and hρ; ε; injjμj0i ¼
gρ;emm2

ρεμ, where the former one is related to gρππ by (9)
and the latter yields the ρ-meson decay constant gρ;em.
Consequently, the form factor is constructed as [39,40]

FGSþVMD
π ðsÞ ¼ A

s −m2
ρ − ΠρðsÞ

; A ¼ −gρππgρ;emm2
ρ;

ð12Þ

where the numerator is given by −gρππgρ;emm2
ρ and the

denominator still uses the dressed ρ propagator. Using
gρππ ¼ 5.95ð2Þ and gρ;em ¼ 0.2017ð9Þ extracted from the
ρ → eþe− decay width as inputs, this formula gives a good
description of the experimental data near the resonance
peak but violates the charge conservation condition
at s ¼ 0.
Comparing (8) to (12), it is natural to introduce an

s-dependent AðsÞ and write the form factor as
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FIG. 1 (color online). Comparison of the GS model with the
experimental measurements of P-wave pion-pion scattering
phase δ1ðsÞ and the modulus of the pion form factor jFπj. We
use E ¼ ffiffiffi

s
p

as the label of the x-axis. On the left-hand side,
circles are from [30], where the scattering phase is extracted from
the reactions πþp → πþπ−Δþþ, while the squares from [31] are
based on π−p → π−πþn. On the right-hand side, circles, squares
and diamonds stand for the data of jFπðsÞj, compiled using the
CMD-2 06 [32,33], SND 06 [34], and KLEO 10 eþe− data [35],
respectively. The blue curve shows the GS model (A8) and (A6),
where the Particle Data Group (PDG) [36] values mπ ¼
0.1395702ð4Þ GeV and mρ ¼ 0.7753ð3Þ GeV are inputs and
gρππ ¼ 5.95ð2Þ is estimated with the PDG value of
Γρ ¼ 0.1478ð9Þ GeV.
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FπðsÞ ¼
AðsÞ

s −m2
ρ − ΠρðsÞ

¼ FGS
π ðsÞ

XN
n¼0

cnðs −m2
ρÞn:

ð13Þ

Here we use a Taylor expansion at s ¼ m2
ρ to describe the

behavior of the form factor near the resonance region.
The polynomial terms are introduced to account for the
deviation between the FGS

π ðsÞ given by (8) and the
I ¼ 1 part of the experimental data, which may arise
from the interference between ρ and higher resonances
such as ρð1450Þ and ρð1700Þ. The coefficients cn
should respect the charge conservation condition,
i.e.

P
N
n¼0 cnð−m2

ρÞn ¼ 1.
In our work, since we calculate the scattering phase and

the modulus of the form factor at several discrete energies,
we adopt the form (13) to describe their s dependence. This
induces a model dependence in our final results for the
parameters mρ, gρππ and the charge radius hr2πi. But the
model dependence will become milder if one collects more
data points at various energies. As the data points become
dense, lattice QCD will eventually provide a complete
description of the low-energy timelike pion form factor
from the first principles.

III. FINITE-SIZE METHOD

According to the general idea of [41] for the study of the
two-body scattering problem on the lattice, we consider
the two-pion system in a box of finite size L.
Given an I ¼ 1 vector-current operator jb ¼ ψ̄ðb · γÞ τ3

2
ψ

one can construct a correlation function in a finite volume
V ¼ L3 as

CVðtÞ ¼
Z
V
d3xe−iP·xh0jjbðx; tÞj†bð0; 0Þj0i; ð14Þ

where a unit vector b indicates the polarization direction of
the vector current and P is the total three-momentum.When
P ≠ 0, b can be set either parallel or perpendicular to P to
make the operator jb belong to a certain irreducible
representation of the rotational group. Since jb has the
same quantum number as a two-pion system in the I ¼ 1
channel, two-pion states appear in the correlator as inter-
mediate states,

CVðtÞ →
X
n

jh0jjbjππ; niV j2e−Ent: ð15Þ

Here the arrow denotes the asymptotic contributions in the
large time separations, where the ππ states of various
relative momenta dominate as the lowest energy states.
By studying the time dependence of the correlator, one

obtains two observables from (15): En and jh0jjbjππ; niV j2.
The discrete energy En contains the information of pion-
pion scattering and can be related to the infinite-volume

P-wave scattering phase δ1 by the Lüscher formula [41]
and its extension to the moving frames where the total
momenta P is nonzero [25,26,42]:

nπ − δ1ðkÞ ¼ ϕP;Γðq ¼ kL=2πÞ;
ffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
n − P2

q
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2
q

: ð16Þ

Here, ϕP;ΓðqÞ is a known function, irrelevant to the details
of the interaction. It only depends on the moving frame P
and the irreducible representation Γ that the operator jb
belongs to. The “momentum” k entering in ϕP;ΓðqÞ through
q is indirectly determined by the energy En as shown by the
second equation of (16). The formula (16) is widely used in
various lattice calculations of the P-wave pion-pion scat-
tering phase and the studies of the ρ-resonance properties.
The formulas used in this calculation are listed in
Appendix B.
Since En can be used to determine the scattering phase

δ1, which is the complex phase of FπðsÞ, a natural question
arises whether one can relate jh0jjbjππ; niV j2 to jFπðsÞj2.
Meyer gave an answer to this question in [27], where he
introduced an external vector particle W which couples to
the quarks via an infinitesimal interaction HintðxÞ ¼
ejμðxÞWμðxÞ. Then, the matrix element hππ; outjjμð0Þj0i
is related to the amplitude hππ; outjHintð0ÞjWi, which
is analogous to the K → ππ transition amplitude
hππ; outjLWð0ÞjKi. The techniques used in deriving the
Lellouch-Lüscher formula for K → ππ [10] can thus be
transplanted to the case ofW → ππ. The main difference is
that K → ππ contains an S-wave ππ scattering in the I ¼ 0
or 2 channel while W → ππ has a P-wave scattering
in the I ¼ 1 channel. We generalize the formula of [27]
to the case of general moving frames. The relation between
the finite-volume matrix element jh0jjbjππ; niV j2 and the
square of the modulus of the form factor in the infinite
volume is written as

jFπðsÞj2 ¼
γ

gðγÞ2
�
k
∂δ1ðkÞ
∂k þ q

∂ϕP;ΓðqÞ
∂q

�

×
3πs
2k5

jh0jjbð0Þjππ; niV j2; ð17Þ

where s takes the discrete values s ¼ E�2
n with E�

n the
center-of-mass energy of the state corresponding to En. γ is
a Lorentz boost factor γ ¼ En=E�

n and the function gðγÞ
takes the value of gðγÞ ¼ γ for b∥P and gðγÞ ¼ 1 for b⊥P.
In the case of vanishing P, (17) reduces to the formula
in [27].
In the K → ππ decays, the power-law finite-volume

corrections are accounted for by the ππ-states rather than
the single K-states. It is therefore simpler to retain the
essential physical aspects of ππ and eliminate the kaon
[43]. Following this idea, we make another demonstration

FENG et al. PHYSICAL REVIEW D 91, 054504 (2015)

054504-4



of (17) without introducing the fictitious state W. Some
details are given in Appendix C.

IV. LATTICE SETUP

In this work we use the 2þ 1-flavor overlap fermion
ensembles generated by the JLQCD Collaboration [44,45].
Using the overlap fermions ensures exact chiral symmetry
in the chiral limit at finite lattice spacings. The calculation
is performed at bare quark masses am ¼ 0.025 and 0.015,
that correspond to the pion massesmπ ¼ 380 and 290MeV,
respectively. Physical kinematics that the ρ meson decays
to two pions is realized in both cases. The Iwasaki gauge
action is employed together with the unphysically heavy
Wilson fermions that prevent the topological charge from
changing its value during the hybrid Monte Carlo simu-
lation [45]. The β value is 4.30, that corresponds to the
lattice spacing a ¼ 0.112ð1Þ fm for both pion masses. To
take full control of systematic effects, having multiple
lattice spacings and performing a continuum extrapolation
are important. This would require further simulation efforts
and shall be done in the future. The lattice size is
ðL=aÞ3 × ðT=aÞ ¼ 243 × 48, and the lattice extent L in
the physical unit is 2.6 fm, which roughly satisfies
mπL≳ 4. The effect of fixing topological charge would
not be significant on such a large volume lattice [46].
We construct a vector-current operator using two-flavor

quark fields ψ̄ and ψ and consider its Fourier transform

jψ̄ψb ðP; tÞ ¼ ZV

L3=2

X
x

e−iP·x
�
ψ̄ðb · γÞ τ

3

2
ψ

�
ðx; tÞ; ð18Þ

where b is a unit vector and b · γ is defined as

b · γ ¼
X3
i¼1

biΓrot
i ; Γrot

i ¼ γi

�
1 −

aDovð0Þ
2m0

�
: ð19Þ

Here, we use the rotated gamma matrices Γrot
i to remove the

OðaÞ lattice artifacts from the interpolating operator.
DovðmqÞ is the overlap-Dirac operator for the quark mass
mq, and m0 ¼ 1.6 is the (negative) mass parameter to
define the kernel of the overlap-Dirac operator. In the
continuum limit a ¼ 0, Γrot

i reduces to the conventional
gamma matrix γi. ZV is the renormalization factor for the
vector currents. Its value ZV ¼ 1.39360ð48Þ is obtained
nonperturbatively [47].
Besides the constructionusing thequark fields, onecanalso

define the vector-current operator using πþπ− meson pairs

jðππ;nÞb ðP; tÞ ¼ πþðp1; tÞπ−ðp2; tÞ − πþðp2; tÞπ−ðp1; tÞ;
ð20Þ

where the pion interpolating operator π�ðp; tÞ is defined as

π�ðp; tÞ ¼ 1

L3=2

X
x

e−ip·x
�
ψ̄Γrot

5

τ�

2
ψ

�
ðx; tÞ: ð21Þ

The momenta p1;2 satisfy L
2π p1;2 ∈ Z3. The total three-

momentum of the two-pion system is given by P ¼
p1 þ p2 and the polarization direction is defined as
b ¼ p1−p2

jp1−p2j. The index n specifies the energy levels corre-

sponding to En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p2
1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p2
2

p
.

We can modify the two-pion interpolating operator (20)
by separating the two pion-operators at different time slices

jðππ;nÞb ðP; tÞ ¼ 1

2
½πþðp1; t1Þπ−ðp2; t2Þ þ πþðp1; t2Þπ−ðp2; t1Þ�

−
1

2
½πþðp2; t1Þπ−ðp1; t2Þ þ πþðp2; t2Þπ−ðp1; t1Þ�; t1;2 ¼ t� δt: ð22Þ

By swapping p1;2 → p2;1 or π� → π∓ we have

jðππ;nÞb → −jðππ;nÞb , which verifies that the operator defined
in (22) is parity-odd and isospin-odd. The reasons to use
(22) in our calculation are twofold: First, we use the all-to-
all propagator [48] in our calculation. When the two pions
are put on the same time slice, a different stochastic source
for each pion is required to avoid unphysical contributions,
but in our implementation [21], only one stochastic source
is used for each time slice. Therefore we separate the two
pions at different time slices to avoid the unwanted
contributions. Second, by separating with a distance of
2δt, the correlation between the two pion-operators is
reduced. As a consequence, the precision of the correlator
can be improved. For example, in the case of P ¼ 0, the
error of the effective energy is reduced by a factor of 3 by

introducing a separation of δt=a ¼ 1. We examine also the
case of δt=a ¼ 2 and 3, but the change is not very
significant. A drawback of using a large δt is that it
enhances the excited-state effects because the minimum

time separation between pion fields in jðππ;nÞb ðP; tÞ and

jðππ;nÞb ðP; 0Þ is t − 2δt rather than t. In this calculation we
simply use δt=a ¼ 1. As indicated in [49], separating the
two pion-operators can also be useful in the calculation of
the I ¼ 0 pion-pion scattering, where it reduces the noise
dramatically from the disconnected diagram.
With the vector-current operator jψ̄ψb or jðππ;nÞb , one can

construct operators in the irreducible representations of the

cubic group (and reflections) using the standard procedure

of the character projection
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jqðΓ;P; tÞ ¼ dΓ
NG

X
R̂∈G

χ�ΓðR̂ÞjqR̂bðP; tÞ; ð23Þ

where q ¼ ψ̄ψ or ðππ; nÞ, and NG ¼ P
R̂∈G1. The nota-

tions follow those of [13,50]. Here the symmetry groupG is
introduced as the set of all lattice rotations and reflections

R̂. In the case of P ¼ 0, G reduces to the full cubic group
Oh. For P ≠ 0, on the other hand, G spans a subspace of
Oh, under which the momentum P is invariant or changes
only by a minus sign:

G ¼ fR̂ ∈ OhjR̂P ¼ P or R̂P ¼ −Pg: ð24Þ

Γ is the irreducible representation of the group G, while dΓ
and χΓðR̂Þ are the dimension and character of Γ, respec-
tively. The character projection makes the operator
jqðΓ;P; tÞ belong to a given representation Γ.

In a general moving frame with nonzero P, the operator
jψ̄ψb with b∥P forms a basis of a one-dimensional repre-
sentation of G. For the operators belonging to the other
representations, we take b and P such that b⊥P. In
general, jqðΓ;P; tÞ defined in (23) is a linear combination
of a few jqb with different polarization b, but with our
choice these interpolating operators can be simply
given by a single jqb. We list the operators used in our
calculation in Table I.
Using the operators ①;…;⑤ in Table I, for each set of

fjψ̄ψb ; jðππ;nÞb g, we can construct a 2 × 2 correlation matrix
with its matrix elements defined through

Cq;q0 ðtÞ ¼
1

T

XT−1
t0¼0

hjqbðP; tþ t0Þjq
0

b ðP; t0Þ†i;

q; q0 ¼ ψ̄ψ or ðππ; nÞ: ð25Þ

The quark contractions for three- and four-point correlation
functions are shown in Fig. 2. Then the variational method
[51] allows us to isolate the ground state and first excited
state from the correlation matrix. From each of the five
operator sets, we can calculate two energy eigenvalues, so
that we obtain the scattering phase and the pion form
factors at ten discrete energies. As shown in (25), we
perform a time translation average to reduce the statistical
noise of the correlators. This requires the quark propa-
gator inversions at each time slice. For P ¼ 0, we average
the correlators using the three operator sets in ①, since
T−
1 is a three-dimensional representation. For P ≠ 0 we

average the correlators carrying total momentum P with
those carrying momenta R̂P (R̂ ∈ Oh), since these cor-
relators are equivalent under the symmetry. This requires
various momentum insertions in the propagator inver-
sions. All these requirements are fulfilled by using
the all-to-all propagators generated by the JLQCD
Collaboration.
Here we briefly describe the construction of the all-to-

all propagator [48,52] by the JLQCD Collaboration [21].
The quark propagator D−1ðx; yÞ can be explicitly com-
posed using the eigenmodes of the Hermitian Dirac
operator:

TABLE I. ①;…;⑤ identify the operators used in this calcu-
lation. P denotes the total three-momentum in units of 2π=L. G is
the cubic rotational group defined in (24). Since the reflection
operator is involved, G is a parity doubled little group associated
with momentum P. Γ stands for the irreducible representation of
group G. T−

1 is a three-dimensional representation while others
are one dimensional. For a given Γ, one can construct the
operators using (23). In our calculation, these interpolating

operators can be simplified as jðππ;nÞb and jψ̄ψb . The jðππ;nÞb are
specified using the momenta p1 and p2 in units of 2π=L. The j

ψ̄ψ
b

can be determined by the polarization b. Note that, although the
operators ① and ② contain the jψ̄ψb with the same polarization
b ¼ ð0; 0; 1Þ, the different total momentum Pmakes them belong
to the different representations of different groups.

No. P G Γ jðππ;nÞb : [p1, p2] jψ̄ψb : b

①

[(1, 0, 0), ð−1; 0; 0Þ] (1, 0, 0)
(0, 0, 0) Oh T−

1 [(0, 1, 0), ð0;−1; 0Þ] (0, 1,0)
[(0, 0, 1), ð0; 0;−1Þ] (0, 0, 1)

② (0, 0, 1) D4h A−
2 [(0, 0, 1), (0, 0, 0)] (0, 0, 1)

③ (1, 1, 0) D2h B−
1 [(1, 1, 0), (0, 0, 0)] 1ffiffi

2
p ð1; 1; 0Þ

④ (1, 1, 1) D3d A−
2 [(1, 1, 1), (0, 0, 0)] 1ffiffi

3
p ð1; 1; 1Þ

⑤ (1, 1, 0) D2h B−
2 [(1, 0, 0), (0, 1, 0)] 1ffiffi

2
p ð1;−1; 0Þ

FIG. 2. Quark contractions for three- and four-point correlation functions. The momenta �p1;2 are used to indicate the single pion
field. �P are used to specify the jψ̄ψb field.

FENG et al. PHYSICAL REVIEW D 91, 054504 (2015)

054504-6



Hðx; yÞ ¼ γ5Dðx; yÞ; D−1ðx; yÞ ¼ H−1ðx; yÞγ5;

Hðx; yÞunðyÞ ¼ λnunðxÞ ⇒ H−1ðx; yÞ ¼
X
n

1

λn
unðxÞu†nðyÞ; ð26Þ

where Hðx; yÞ is a Hermitian matrix with its color and spinor indices omitted for simplicity. λn is the nth eigenvalue and
unðxÞ the associated eigenvector. However, it is not realistic to calculate all the eigenmodes. So we decompose the
propagator into low- and high-mode contributions using a projection operator Plowðx; yÞ ¼

PNλ
n¼1 unðxÞu†nðyÞ:

H−1ðx; yÞ ¼ H−1
lowðx; yÞ þH−1

highðx; yÞ;

H−1
lowðx; yÞ ¼ H−1ðx; zÞPlowðz; yÞ ¼

XNλ

n¼1

1

λn
unðxÞu†nðyÞ;

H−1
highðx; yÞ ¼ H−1ðx; zÞðδz;y − Plowðz; yÞÞ: ð27Þ

We use only the low-lying eigenmodes and supplement
them with the remaining high-mode contributions calcu-
lated with a stochastic method:

Hðx; yÞϕr;dðyÞ ¼ ðδx;z − Plowðx; zÞÞηr;dðzÞ

⇒ H−1
highðx; yÞ ¼

1

Nr

XNr

r¼1

XNd

d¼1

ϕr;dðxÞη†r;dðyÞ;

ð28Þ

where r ¼ 1;…; Nr indicates the complex Z2 stochastic
sources and d ¼ 1;…Nd specifies the dilutions in spin, color
and space-time positions. Combining the low modes and
highmodes together yields the so-called all-to-all propagator.
In our analysis we use 50 configurations for each ensemble.
For each configuration, we use Nλ ¼ 240, Nr¼1 and

Nd¼3×4×T=2¼288. For more details of the all-to-all
propagator technique, we refer readers to [21,48,52].

V. ANALYSIS

A. Removal of the around-the-world effects

Before applying the variational technique for the sets of
correlators, we first remove the so-called around-the-world
effect, which arises due to the finite time extent T in the
lattice calculation. This effect modifies the time dependence
of single pion correlator hπðtÞπð0Þi as e−Eπ t þ e−EπðT−tÞ,
with the around-the-world contribution e−EπðT−tÞ. In the
calculation of the pion-pion scattering, it can cause a
discernible effect especially near t ∼ T=2 [53–55].
To find out how the around-the-world effects deform the

correlator, we insert a complete set of eigenstates into the
correlators in (25) as

Cq;q0 ðtÞ ¼
X
m;m0

hmjjqbjm0ihm0jjq0†b jmie−EmðT−tÞe−Em0 t

¼
X
n

h0jjqbjππ; nihππ; njjq
0†

b j0iðe−Eππ;nðT−tÞ þ e−Eππ;ntÞ

þ
X
p1;p2

hπjjqbjπihπjjq
0†

b jπiðe−Eπðp2ÞðT−tÞe−Eπðp1Þt þ e−Eπðp1ÞðT−tÞe−Eπðp2ÞtÞ þ � � � : ð29Þ

In the last equation, the first term represents the physical
contribution from the lowest energy states jmðm0Þi ¼ j0i
and jm0ðmÞi ¼ jππ; ni. The second term is the around-
the-world contribution, which arises by setting jmðm0Þi ¼
jπðp1Þi and jm0ðmÞi ¼ jπðp2Þi. Note that the interpolating
operator jq;q

0
b carries a three-momentum P. The momenta

p1, p2 and P satisfy the momentum conservation. The
largest contamination thus comes from the terms with
p1 ¼ 0 and p2 ¼ P or p1 ¼ −P and p2 ¼ 0.
To reduce the bulk of these around-the-world effects, we

construct a modified correlator through

C̄q;q0 ðtÞ ¼ Cq;q0 ðtÞ

− Cq;q0 ðtþ ΔtÞ cosh ½ΔEðT=2 − tÞ�
cosh ½ΔEðT=2 − ðtþ ΔtÞÞ� ;

ð30Þ

where ΔE ¼ EπðPÞ − Eπð0Þ. With too small Δt a cancel-
lation between Cq;q0 ðtÞ and Cq;q0 ðtþ ΔtÞ makes the modi-
fied correlator noisy, while too large Δt yields larger
intrinsic noise due to large time separation tþ Δt. As a
compromise, we take Δt=a ¼ 6.
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B. Extracting the eigenstates

After removing the around-the-world effects, we apply
the variational method [51] to extract the energy En and the
matrix element jh0jjqbjππ; niV j2 from the correlation matrix.
The procedure is as follows. We first build the correlation
matrix using the modified correlator in (30). By construct-
ing a ratio of the correlation matrix

Rðt; tRÞ ¼ C̄−1
2ðtRÞC̄ðtÞC̄−1

2ðtRÞ; ð31Þ
and solving the eigensystem of

Rðt; tRÞBn ¼ Dnðt; tRÞBn; n ¼ 0; 1 ð32Þ

one can determine the eigenvalues Dnðt; tRÞ and the
normalized eigenvectors Bn for t > tR. Since Rðt; tRÞ is
a Hermitian matrix, the eigenvectors Bn form an orthogonal
system, i.e. B†B ¼ 1. Then, Dnðt; tRÞ is related to the
energy eigenvalues of the ππ scattering states through

Dnðt; tRÞ ¼ DnðtÞ=DnðtRÞ; ð33Þ

with the function DnðtÞ defined as

DnðtÞ ¼ ðe−Ent þ e−EnðT−tÞÞ
�
1 −

cosh ½EnðT=2 − ðtþ ΔtÞÞ� cosh ½ΔEðT=2 − tÞ�
cosh ½EnðT=2 − tÞ� cosh ½ΔEðT=2 − ðtþ ΔtÞÞ�

�
: ð34Þ

Since ΔE and Δt are known, DnðtÞ is a function of only En and t. Using the lattice data of Dnðt; tRÞ as inputs, one can
determine En.
Note that the eigenvectors of Rðt; tRÞ can also be given by C̄

1
2ðtRÞA−1, with An;q defined as An;q ¼ hππ; njjq†b j0iV . A

relation between B and A is then established through

Bq;n ¼ Xn½C̄1
2ðtRÞA−1�q;n ⇒ ½C̄−1

2ðtRÞB�q;n ¼ Xn½A−1�q;n ð35Þ

with a coefficient Xn to be determined. B†B ¼ 1 leads to jXnj2 ¼ D−1
n ðtRÞ. Making use of the relation (35), we obtain

½B†C̄−1
2ðtRÞC̄ðtÞ�n;q ¼ X�

nDnðtÞAn;q

⇒ DnðtRÞjAn;qj2 ¼ j½B†C̄−1
2ðtRÞC̄ðtÞ�n;qj2D−2

n ðt; tRÞ: ð36Þ

Since Dnðt; tRÞ and B are known, (36) can be used to
extract DnðtRÞjAn;qj2. By putting the evaluated value of En

into (34), one can remove DnðtRÞ and determine jAn;qj2.
In practice, with a given reference time tR, we determine

En by fitting the data of Dnðt; tRÞ to (34) and obtain
DnðtRÞjAn;qj2 (q ¼ ψ̄ψ) from (36). A fitting window of t ∈
½tR þ a; tR þ 6a� is used in our analysis. We gradually
increase tR until the values of χ2=d:o:f: in the correlated fits
are under control. Here χ2=d:o:f: is not a unique criterion to
determine the fitting window. We also check the tR
dependence to make sure that the effective mass does
not have systematically decreasing behavior. Also, given a
pion mass, we try to have a consistent tR for different types
of correlators, since they have the same vector channel
spectral weight function and the excited states will have
similar effects on the correlators. tR is chosen in a
conservative way even at which χ2=d:o:f: does not take
its minimal value. In this way, we set tR=a ¼ 8 for mπ ¼
380 MeV and tR=a ¼ 9 for mπ ¼ 290 MeV. The fit
results are shown in Figs. 3–12 for each mass and the
operator choices ①;…⑤. In the left panel, the effective
masses for the two lowest-energy states are shown
together with the fit results (gray bands). We fix tR=a ¼
8 or 9. The effective mass at tþ a=2 means an energy

obtained from the equation that Dnðtþ aÞ=DnðtÞ ¼
Dnðtþ a; tRÞ=Dnðt; tRÞ. The right panel represents the
effective amplitude DnðtRÞjAn;qj2 as a function of t. The
gray bands show the fitted value and the fitting range. At
the t ¼ tR, the data point for the amplitude is missing
because Rðt; tRÞ defined in Eq. (31) is a unit matrix and
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FIG. 3 (color online). Effective energies and amplitudes for the
operator set ① and mπ ¼ 380 MeV.
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FIG. 5 (color online). Same as Fig. 3, but for the operator set ③
and mπ ¼ 380 MeV.
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FIG. 6 (color online). Same as Fig. 3, but for the operator set ④
and mπ ¼ 380 MeV.
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FIG. 7 (color online). Same as Fig. 3, but for the operator set ⑤
and mπ ¼ 380 MeV.
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FIG. 8 (color online). Same as Fig. 3, but for the operator set ①
and mπ ¼ 290 MeV.
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FIG. 9 (color online). Same as Fig. 3, but for the operator set ②
and mπ ¼ 290 MeV.
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thus contains no information for the amplitude. Although
the signal quality depends on the mass and channel, energy
eigenstates are clearly identified for all channels.

C. Results

We convert the energy eigenvalues En (n ¼ 0 and 1) for
each operator choice, i.e. the momentum configuration,
into the center-of-mass energy E�

n using the dispersion
relation. Then, inserting E�

n into the Lüscher’s formula (16)
yields the P-wave scattering phase shift δ1. The results for
E�
n and δ1 are shown in Table II. We neglect the KK̄

multichannel effects since the largest energy E�
n listed in

Table II is only slightly higher than 2mK .
In the upper panels of Fig. 13 we plot the scattering

phase δ1 at various energies E�
n. To study the energy

dependence of δ1, we fit the lattice data to the GS model
(A8). We find that this model gives a rather good descrip-
tion of the lattice data. Through the fit, we can extract the
gρππ coupling and the ρ-resonance mass mρ, which are
listed in Table IV. Such a way to determine the ρ-resonance
mass is different from the conventional method to obtain
the effective mass from a two-point correlation function.
We can make a comparison ofmρ given in Table IVand the
effective mass of operator choice ① given in Table II. As the
pion mass decreases, the effective mass becomes smaller
than the mρ extracted from the scattering phase. This is
consistent with our expectation, since at the physical pion
mass, the effective mass of the ground ππ state shall be
significantly lower than the physical ρ-meson mass. To see
this trend more clearly, we still need to improve precision or
to use a lighter pion mass.
Near the resonance region, some data points deviate from

the fit curve significantly. This might be due to the rapid
change of the scattering phase in the resonance region.
Namely, some systematic effects in the determination of the
energy eigenvalues may translate into a big shift in the
scattering phase and cause a deviation from the fit curve.
For instance, in our calculation we use only the 2 × 2
correlation matrix, which might not be enough to com-
pletely eliminate the excited-state effects.
With the values of jAn;qj, we determine the modulus of

the pion form factor jFπðsÞj using the Lellouch-Lüscher
formula (17). In this formula, a derivative of scattering
phase is required. Here we use the GS description of
the scattering phase (A8). The results for jFπðsÞj are given
in Table II. In the lower panels of Fig. 13, jFπðsÞj is shown
as a function of energy. As mentioned before, the simple
GS form (8) (using the lattice results of mρ and gρππ in
Table IV as inputs) shown by the dashed curve gives too
small values near the resonance region compared to our
lattice data.
We then use the modified form (13) to describe the lattice

data. The difference between the form (8) and (13) can be
written as
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FIG. 10 (color online). Same as Fig. 3, but for the operator set ③
and mπ ¼ 290 MeV.
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FIG. 11 (color online). Same as Fig. 3, but for the operator set ④
and mπ ¼ 290 MeV.
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jFπðsÞj
jFGS

π ðsÞj − 1 ¼
XN
n¼0

cnððs −m2
ρÞn − ð−m2

ρÞnÞ

¼ sðc1 þ c2ðs − 2m2
ρÞ þ � � �Þ: ð37Þ

In Fig. 14 we show the data of ðjFπðsÞ=FGS
π ðsÞj − 1Þ=s as a

function of s. The data points seem to be well described by
a straight line up to statistical fluctuations. We therefore fit
them to the form c1 þ c2ðs − 2m2

ρÞ. The fitting results for
c1 and c2, together with c0 determined from charge
conservation, are given in Table III. Within current sta-
tistics, the values of c2 are consistent with 0 for both pion
masses, and it is not necessary to pursue higher polynomial
terms with cn>2. Putting c0, c1 and c2 into (13), we draw the

fit curves for jFπðsÞj in Fig. 13. By including the poly-
nomial terms, the curves match the lattice data. Note that
we have imposed the charge conservation condition when
obtaining the values of cn in Table III. If we do not impose
this constraint and fit with a free c0, we find for c0 þ
c1ð−m2

ρÞ þ c2ð−m2
ρÞ2 ¼ 1.08ð14Þ at mπ ¼ 380 MeV and

1.12(16) at mπ ¼ 290 MeV. The charge conservation
condition is well reproduced by our lattice data.
As a by-product of this calculation, we evaluate the pion

mean-square charge radius (isovector part only) through

hr2πi ¼ 6
∂jFπðsÞj

∂s
����
s¼0

¼ 6

�
−

1

f0

�
b
4
þ 1

3π

�
þ c1 þ c2ð−2m2

ρÞ
�
; ð38Þ

TABLE II. Center-of-mass energy E�
n, P-wave pion-pion scattering phase shift δ1 and the modulus of the pion

form factor at the pion masses mπ ¼ 380 MeV (left block) and 290 MeV (right). E�
n are given in units of MeV.

mπ ¼ 380 MeV mπ ¼ 290 MeV

No. E�
n δ1 (°) jFπðsÞj E�

n δ1 (°) jFπðsÞj
① 876(7) 133.6(2.8) 41.0(5.7) 796(12) 111.9(3.9) 14.8(1.9)

1203(8) 174.1(3.9) 1.64(.14) 1134(13) 157.8(7.0) 1.60(.26)
② 817(3) 4.95(.10) 9.28(.42) 671(4) 3.16(.25) 3.65(.14)

947(10) 158.1(3.0) 7.23(.29) 875(19) 140.1(5.2) 7.36(.85)
③ 848(9) 15.73(.87) 19.9(4.0) 718(8) 8.3(1.1) 5.35(.34)

987(10) 163.1(2.8) 3.95(.35) 936(31) 139.3(8.2) 4.83(.21)
④ 913(19) 18.9(5.4) 13.0(4.2) 750(34) 14.3(6.5) 7.6(1.9)

1047(32) 152(23) 4.2(3.2) 1054(101) 133(31) 3.78(.62)
⑤ 871(12) 52.7(5.6) 41.6(5.9) 813(13) 21.8(5.0) 14.3(1.3)

1040(10) 164.9(3.5) 3.26(.29) 964(21) 150.1(6.8) 3.73(.31)
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FIG. 13 (color online). Upper panels: Scattering phases calcu-
lated using the Lüscher formula (16) together with the fits to the
GS form (A8). Lower panels: Modulus of the pion form factor
calculated using the Lellouch-Lüscher formula (17) together with
the GS-model curves (blue dashed) and the fits to (13) (red solid).
Circles, squares, diamonds, triangles-up and triangles-left data
points correspond to the operator sets ①–⑤ given in Table I,
respectively.
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FIG. 14 (color online). Difference between the lattice data of
jFπðsÞj and the GS form (8). The data for ðjFπðsÞ=FGS

π ðsÞj − 1Þ=s
are plotted as a function of s together with the fit to the
polynomial c1 þ c2ðs − 2m2

ρÞ.
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using the modified GS form. The first term arises from the
GS model with b and f0 defined in (A7). The second and
third terms are the polynomial corrections. The results for
hr2πi are listed in Table IV, where they are compared with
the calculation in the spacelike momentum transfer on the
same gauge ensembles [56,57]. The central values of the
timelike data seem systematically larger than the spacelike
ones but still consistent within the statistical errors.

VI. CONCLUSION

In this work, we calculate the complex phase and the
modulus of the pion form factor in the timelike momentum
region. We perform the calculation at two pion masses
mπ ¼ 380 MeV and 290 MeV and at a lattice spacing of
a ¼ 0.11 fm on Nf ¼ 2þ 1-flavor overlap fermion con-
figurations generated by the JLQCD Collaboration.
In the elastic scattering region, the complex phase of

FπðsÞ is given by the P-wave pion-pion scattering phase,
and thus can be evaluated using the standard Lüscher’s
finite-volume formula. We obtain the results at ten different
values of s from one setup in the center-of-mass frame and
four in the moving frames. From the energy dependence of
the scattering phase, we extract the gρππ coupling constant
and the ρ-resonance mass mρ.
Lattice calculation of the modulus of the pion form factor

was originally proposed in [27], and here we extend the
method to general moving frames and perform the actual
calculation using the all-to-all propagator technique.

We obtain a clear signal of the form factor and phase
indicating the vector meson resonance. The lattice data for
jFπðsÞj are not consistent with the simple GS model. To
address this discrepancy we introduce a simple polynomial
correction to the GS form, which describes the lattice data
quite well.
Though we focus on the calculation of the matrix

elements h0jjψ̄ψb jππiV , which can be directly related to
jFπðsÞj, the information hidden in the matrix elements of
the jππb -current insertion can also be useful for the study of
the resonance properties [58–60].
As an exploratory study, our work demonstrates the

feasibility of calculating the pion form factor in the timelike
region using lattice QCD. It is still challenging to make a
precise comparison to the experimental eþe− data, since we
need to calculate the form factor at the physical pion mass,
extract many more data points and control the errors both
statistically and systematically at the level of experimental
precision.
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APPENDIX A: GOUNARIS-SAKURAI MODEL

Using the twice-subtracted dispersion relation, one can
relate the real part of ΠρðsÞ to its imaginary part through

ReΠρðsÞ ¼ c0 þ c1sþ
s2

π
P
Z

∞

4m2
π

ds0
ImΠρðs0Þ
s02ðs0 − sÞ ; ðA1Þ

where P denotes the principal value of the integral.
Inserting (11) into the dispersion relation, one has

ReΠρðsÞ ¼ c0 þ c1sþ
g2ρππ
6π

�
k2hð ffiffiffi

s
p Þ − s

3π
þm2

π

π

�
;

ðA2Þ

where the function hð ffiffiffi
s

p Þ is given by

hð ffiffiffi
s

p Þ ¼ 2

π

kffiffiffi
s

p ln

� ffiffiffi
s

p þ 2k
2mπ

�
; ðA3Þ

TABLE III. Coefficients c0, c1 and c2 of the model (13). c1 and
c2 are determined by fitting the lattice data of ðjFπðsÞ=FGS

π ðsÞj −
1Þ=s to the polynomials c1 þ c2ðs − 2m2

ρÞ and c0 is determined
by charge conservation condition: c0þc1ð−m2

ρÞþc2ð−m2
ρÞ2¼1.

c1 and c2 are given in units of GeV−2 and GeV−4, respectively.

mπ ¼ 380 MeV mπ ¼ 290 MeV

c0 c1 c2 c0 c1 c2
1.273(51) 0.31(10) −0.07ð17Þ 1.195(47) 0.29(19) −0.00ð27Þ

TABLE IV. Numerical results formπ,mρ, gρππ and hr2πi atmπ ¼
380 MeV (left) and 290 MeV (right). The timelike hr2πi are
evaluated using Eq. (38). The spacelike hr2πi are compiled using
the spacelike form factor, where the first error is statistical and the
second one originates from the choice of the parametrization form
of the q2 dependence of Fπðq2Þ (linear, quadratic, VMD with
polynomial corrections).

Lattice mπ ¼ “380 MeV” mπ ¼ “290 MeV”

mπ (MeV) 378.6(7) 291.8(1.1)
mρ (MeV) 875(7) 819(14)
gρππ 5.85(19) 5.78(23)
(time-like) hr2πi (fm2) 0.377(38) 0.392(41)
(space-like) hr2πi (fm2) 0.334ð10Þðþ00

−32Þ 0.366ð19Þðþ00
−42Þ
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for s > 4m2
π. Using the conditions

ReΠρðsÞjs¼m2
ρ
¼ 0;

dReΠρðsÞ
ds

����
s¼m2

ρ

¼ 0; ðA4Þ

one can determine the constants c0 and c1 and find for

ReΠρðsÞ¼
g2ρππ
6π

�
k2ðhð ffiffiffi

s
p Þ−hðmρÞÞ−

2k2ρ
mρ

h0ðmρÞðk2−k2ρÞ
�
:

ðA5Þ

This finally results in the GS form factor as

FGS
π ðsÞ ¼ f0

k2hð ffiffiffi
s

p Þ − k2ρhðmρÞ þ bðk2 − k2ρÞ − k3ffiffi
s

p i
ðA6Þ

with

b ¼ −hðmρÞ −
24π

g2ρππ
−
2k2ρ
mρ

h0ðmρÞ;

f0 ¼ −
m2

π

π
− k2ρhðmρÞ − b

m2
ρ

4
: ðA7Þ

Here we use the same notations as in [61].
Using Watson’s theorem, it is natural to find for the

P-wave pion-pion scattering phase

k3ffiffiffi
s

p cot δ1ðsÞ ¼ k2hð ffiffiffi
s

p Þ − k2ρhðmρÞ þ bðk2 − k2ρÞ: ðA8Þ

Near the resonance energy
ffiffiffi
s

p
∼mρ, one has

k3ffiffiffi
s

p cot δ1ðsÞ ¼ −
24π

g2ρππ
ðk2 − k2ρÞ þOðð ffiffiffi

s
p

−mρÞ2Þ: ðA9Þ

This approximation reproduces the effective range formula,
which was proposed in [62] and commonly used in
previous lattice QCD studies [11–17] to describe the s
dependence of the scattering phase. Note that both the GS
model and effective range formula account for the leading-
order Taylor expansion term at

ffiffiffi
s

p ¼ mρ and thus have no
control of the s dependence for

ffiffiffi
s

p
≫ mρ. In [17], various

barriers were set for large s but with the given statistics
different parametrizations are not distinguishable.
Considering the fact that the current calculation mainly
collects the data near the resonance energy, we simply
adopt (A8) in our analysis.

APPENDIX B: LÜSCHER’S FORMULA USED IN
THIS CALCULATION

Given the total momentum P and irreducible represen-
tation Γ, the ways to construct the function ϕP;ΓðqÞ are
given in [41] for the center-of-mass frame and in [42] for
the general moving frames. Here we simply give the
expressions for ϕP;ΓðqÞ, which are defined through

tanϕP;ΓðqÞ ¼ −
γπ3=2q
Zd;ΓðqÞ ; P ¼ 2π

L
d ðB1Þ

with no ambiguity by setting ϕP;Γð0Þ ¼ 0 and requiring a
continuous dependence of ϕP;ΓðqÞ on q. The denominator
Zd;ΓðqÞ is given by

Zd
00; for d ¼ ð0; 0; 0Þ; Γ ¼ T−

1 ;Z
d
00 þ

2ffiffiffi
5

p q−2Zd
20; for d ¼ ð0; 0; 1Þ;

Γ ¼ A−
2 ;Z

d
00 −

1ffiffiffi
5

p q−2Zd
20 þ i

ffiffiffi
3

p
ffiffiffiffiffi
10

p q−2ðZd
22 − Zd

22̄
Þ; for d ¼ ð1; 1; 0Þ;

Γ ¼ B−
1 ;Z

d
00 −

1ffiffiffi
5

p q−2Zd
20 − i

ffiffiffi
3

p
ffiffiffiffiffi
10

p q−2ðZd
22 − Zd

22̄
Þ; for d ¼ ð1; 1; 0Þ;

Γ ¼ B−
2 ;Z

d
00 þ

ffiffiffi
2

p
ffiffiffiffiffi
15

p q−2ðð−1 − iÞZd
21 þ ð1 − iÞZd

21̄
þ iZd

22 − iZd
22̄
Þ; for d ¼ ð1; 1; 1Þ; Γ ¼ A−

2 :

ðB2Þ

In the above expression, Zd
lm is a short-hand notation for

the zeta function Zd
lmð1; q2Þ, which is defined through

Zd
lmðs; q2Þ ¼

X
n∈Pd

Y�
lmðnÞ

ðjnj2 − q2Þs ; ðB3Þ

with

YlmðrÞ ¼ rlYl;mðΩrÞ;
Ylm̄ðrÞ ¼ rlYl;−mðΩrÞ ðB4Þ

and

Pd ¼
�
njn ¼ ~γ−1

�
mþ 1

2
d

�
; for m ∈ Z3

�
: ðB5Þ
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Zd
lmðs; q2Þ is divergent for s ≤ l

2
þ 3

2
and needs to be analytically continued in a numerical calculation. An analytically

continued form of Zd
lmð1; q2Þ is given in [50] and confirmed by [63] with detailed derivations.1

APPENDIX C: LELLOUCH-LÜSCHER FORMULA IN THE P-WAVE ππ SCATTERING

The demonstration of (17) follows closely [43].
In the infinite volume limit, the correlator CVðtÞ turns out to be

CVðtÞ ¼
Z
V
d3xe−iP·xh0jjbðx; tÞj†bð0; 0Þj0i

!
V→∞

1

ð2πÞ3
Z

d3p1

2E1

d3p2

2E2

δð3Þðp1 þ p2 − PÞjh0jjbð0Þjππij2e−ðE1þE2Þt

¼ 1

ð2πÞ3
Z

dE
Z

d3p1

2E1

d3p2

2E2

δð3Þðp1 þ p2 − PÞδðE − E1 − E2Þjh0jjbð0Þjππij2e−Et: ðC1Þ

In a general moving frame, the center of mass is moving with velocity v ¼ P=E and the momenta pi and p�
i (center-of-mass

momentum) are related to each other by the standard Lorentz transformation

p1 ¼ ~γðp�
1 þ vE�

1Þ; p2 ¼ ~γðp�
2 þ vE�

2Þ
E1 ¼ γðE�

1 þ v · p�
1Þ; E2 ¼ γðE�

2 þ v · p�
2Þ; ðC2Þ

where we have defined

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ~γp ¼ γp∥ þ p⊥; ~γ−1p ¼ γ−1p∥ þ p⊥; ðC3Þ

with p∥ ¼ p·v
jvj2 v and p⊥ ¼ p − p∥. Note that the measure d3pi

2E and delta function δð4Þðp1 þ p2 − PÞ are Lorentz invariant and
satisfy

d3pi

2Ei
¼ d3p�

i

2E�
i
; δð4Þðp1 þ p2 − PÞ ¼ δð4Þðp�

1 þ p�
2 − P�Þ; P� ¼ ðE�; 0Þ: ðC4Þ

However, the amplitude h0jjbð0Þjππi is not invariant and transforms as

h0jjbð0Þjππi ¼ iðp1 − p2Þ · bFπðsÞ
¼ i½~γðp�

1 − p�
2Þ� · bFπðsÞ

¼ igðγÞðp�
1 − p�

2Þ · bFπðsÞ; ðC5Þ

with gðγÞ ¼ γ for b∥P and gðγÞ ¼ 1 for b⊥P.
Inserting (C4) and (C5) into (C1), we have

CðtÞ !
V→∞

1

ð2πÞ3
Z

dE
Z

d3p�
1

2E�
1

d3p�
2

2E�
2

δð3Þðp�
1 þ p�

2ÞδðE� − E�
1 − E�

2Þjh0jjbð0Þjππij2e−Et

¼ 1

ð2πÞ2
2

3

Z
dEgðγÞ2 k

3

E� jFπðsÞj2e−Et; ðC6Þ

with s ¼ E�2 ¼ 4ðm2
π þ k2Þ.

On the other hand, when taking a large volume limit in (15), the summation over discrete energy states will change to a
continuum integral

1In [63], the zeta function is defined using YlmðnÞ rather than its complex conjugate.
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X
n

→
Z

dEρVðEÞ; ρVðEÞ ¼
dn
dE

¼ 1

π

dðδ1 þ ϕP;ΓÞ
dE

¼ E
4πk2

�
k
∂δ1
∂k þ q

∂ϕP;Γ

∂q
�
; ðC7Þ

where we have used the Lüscher’s quantization condition (16). The correlator is now given by

CVðtÞ !
V→∞

Z
dEρVðEÞjh0jjbjππ; niV j2e−Ent: ðC8Þ

Comparing (C8) and (C6) we obtain the relation (17).
Strictly speaking, the equivalent integral does not mean
the equivalent integrand. Also, in the demonstration we
have used Lüscher’s quantization condition, which is only
valid in the elastic scattering region. However, the
integrals given by (C8) and (C6) cover also the inelastic

scattering region. To make a more rigorous demonstra-
tion, one can extend the approach of [27] to the moving
frames by requiring that the W particle carry the nonzero
momentum. This is very similar to the extension
of the Lellouch-Lüscher formula [10] to the moving
frames [25,26].
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