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We calculate spatial correlation functions of in-medium mesons consisting of strange-antistrange,
strange-anticharm and charm-anticharm quarks in (2þ 1)-flavor lattice QCD using the highly improved
staggered quark action. A comparative study of the in-medium modifications of mesons with different
flavor contents is performed. We observe significant in-medium modifications for the ϕ and Ds meson
channels already at temperatures around the chiral crossover region. On the other hand, for the J=ψ and ηc
meson channels in-medium modifications remain relatively small around the chiral crossover region and
become significant only above 1.3 times the chiral crossover temperature.
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I. INTRODUCTION

At high temperatures matter controlled by the strong
force undergoes a chiral crossover transition [1], accom-
panied by the deconfinement of flavor quantum numbers
carrying degrees of freedom [2]. The relevant degrees of
freedom change from hadrons to quarks and gluons (see
e.g. Refs. [3,4] for recent reviews). The in-medium modi-
fication and dissolution of heavy quarkonium were sug-
gested as a signal for creating a deconfined medium in
heavy ion collisions by Matsui and Satz [5]. The existence
of heavy-light mesons above the chiral transition temper-
ature has also been proposed to explain the large energy
loss and flow of heavy quarks observed in heavy ion
collisions [6]. Recent lattice QCD calculations suggest that
heavy-light bound states dissolve already at or close to the
QCD transition temperature based on flavor and quantum
number correlation analysis [7].
Hadronic correlation functions have long been advocated

as convenient tools to explore the properties of strong
interaction matter [8,9]. They encode the in-medium
properties of hadrons, as well as their dissolution.
Moreover, through the comparison of lattice results with
weak coupling calculations at high temperature [10,11]
they also provide information on the change from strongly
to weakly interacting matter.
Spectral functions, the Fourier transforms of real time

meson correlation function, are the basic quantities that
provide knowledge regarding the in-medium properties of
mesons and their dissolution. Meson states appear as peaks
in the corresponding spectral functions with the peak
position equal to the meson mass. The width of the peak
corresponds to the in-medium width of the meson.
However, lattice QCD is formulated in Euclidean space
time. Temporal meson correlation functions calculated on
the lattice,

Gðτ; ~p; TÞ ¼
Z

d3xei~p·~xhJHðτ; ~xÞJHð0; ~0Þi; ð1Þ

have a simple relation to the spectral function, σðω; ~p; TÞ:

Gðτ; ~p; TÞ ¼
Z

∞

0

dωσðω; ~p; TÞKðω; τ; TÞ;

Kðω; τ; TÞ ¼ coshðωðτ − 1=2TÞÞ
sinhðω=2TÞ : ð2Þ

Here JH is a meson operator, typically of the form JH ¼
q̄ΓHq, withΓH being some combination of theDiracmatrices
that specifies the quantum numbers of the meson. One way
to obtain the spectral function from the above relation is to
use the maximum entropy method [12–19]. The analysis of
temporal correlation functions is difficult due to the limited
extent, 1=T, in the Euclidean time direction. In the case of
heavy quarkonium correlators, for instance, it turned out that
the melting of bound states does not lead to large changes in
the correlation functions [19,20]. In order to become sensitive
to the corresponding disappearance of a resonance peak in the
spectral function high statistical accuracy and the analysis of
the correlation function at a large number of Euclidean time
separations are needed. At fixed temperature T ¼ 1=Nτa,
this requires large lattices with the temporal extent Nτ and
sufficiently small lattice spacing, a.
Alternatively, one can study the spatial correlation

functions of mesons

Gðz; TÞ ¼
Z

1=T

0

dτ
Z

dxdyhJHðτ; x; y; zÞJHð0; 0; 0; 0Þi:
ð3Þ

These are related to the spectral functions in a more
complicated way that also involves integration of momenta,

PHYSICAL REVIEW D 91, 054503 (2015)

1550-7998=2015=91(5)=054503(16) 054503-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.054503
http://dx.doi.org/10.1103/PhysRevD.91.054503
http://dx.doi.org/10.1103/PhysRevD.91.054503
http://dx.doi.org/10.1103/PhysRevD.91.054503


Gðz; TÞ ¼
Z

∞

0

2dω
ω

Z
∞

−∞
dpzeipzzσðω; pz; TÞ: ð4Þ

Since the spatial separation is not limited by the inverse
temperature, the spatial correlation function can be studied
at separations larger than 1=T. Therefore, the spatial
correlation functions can be more sensitive to in-medium
modifications and/or the dissolution of mesons. Another
advantage of spatial correlation functions over the temporal
ones is that the spatial correlation function can be directly
compared to the corresponding vacuum correlation func-
tion to quantify modifications of the in-medium spectral
function. It is apparent from Eq. (2) that for the temporal
correlation function the temperature dependent in-medium
modifications of the spectral function are partly masked by
the temperature dependence of the kernel Kðω; τ; TÞ, and a
comparison with the corresponding vacuum correlation
function demands evaluation of the reconstructed correlator
[16]. Such a complication is not present for the spatial
correlation functions.
While the general relation between spectral functions

and spatial meson correlators is more involved, in some
limiting cases it becomes simple. At large distances
the spatial correlation functions decay exponentially,
Gðz; TÞ ∼ expð−MðTÞzÞ, whereM is known as the screen-
ing mass. Note that, unlike the in-medium temporal
correlation functions, the transport contributions to the
spectral functions at small frequencies do not lead to a
nondecaying constant in the large distance behavior of the
spatial correlation functions. At small enough temperatures
when there exists a well-defined mesonic bound state,
the spectral function has the form σðω; 0; 0; pz; TÞ∼
δðω2 − p2

z −m2
0Þ, and M becomes equal to the (pole) mass

m0 of the meson. On the other hand, at high enough
temperatures, when the mesonic excitations are completely
melted, the spatial meson correlation functions describe the
propagation of a free quark-antiquark pair. The screening
masses are then given by [21]

Mfree ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q1 þ ðπTÞ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q2 þ ðπTÞ2
q

; ð5Þ

where mq1 and mq2 are the masses of the quark and
antiquark that form the meson. This form of the screening
mass in the noninteracting limit is a direct consequence of
the antiperiodic boundary conditions in Euclidean time that
are needed for the representation of fermions at nonzero
temperature. This leads to the appearance of a smallest
nonzero Matsubara frequency, πT, in the quark and
antiquark propagators. As the bosonic meson state is
dissolved in the noninteracting limit the screening mass
results as the contribution of two independently propagat-
ing fermionic degrees of freedom. Thus the transition
between these two limiting values of the screening mass
can be used as an indicator for the thermal modification and
eventual dissolution of mesonic excitations.

Lattice QCD studies of the screening masses of light
quark mesons have been performed within the quenched
approximation [22,23] and also with two dynamical flavors
using staggered [24] as well as Wilson-type quarks [25].
Screening masses in the light and strange quark sector
have been studied recently in (2þ 1)-flavor QCD using the
so-called p4 staggered fermion action [26,27] and the
expected qualitative behavior discussed above was
observed. Furthermore, the study has been extended to
the case of charmonium providing the first direct evidence
for melting of the charmonium ground state [28] from
lattice QCD with light dynamical quark degrees of
freedom.
In this work we report, for the first time, on studies of

spatial meson correlators and screening masses using the
highly improved staggered quark (HISQ) action [29] with a
strange quark mass tuned to its physical value and almost
physical, degenerate up and down quark masses. The HISQ
action is known to lead to discretization effects that are
smaller than those observed with all other staggered-type
actions currently used in studies of lattice QCD thermo-
dynamics [30]. Moreover, the HISQ action is well suited
to study heavy quarks on the lattice [29] and turned out to
be successful in quantitative studies of charmonium [31]
and D meson properties [32]. In this work we study the
spatial correlation functions of mesonic excitations with
strange (s) and charm (c) quarks, specifically the lowest
states in the pseudoscalar, vector, scalar and axial vector
channels for the ss̄, sc̄ and cc̄ flavor combinations. In the
following we refer to the meson states corresponding to
these flavor combinations as hidden strange, open charm-
strange and hidden charm mesons. Some preliminary
results from this study have been published in conference
proceedings [33,34].

II. LATTICE SETUP

We calculate meson correlation functions on gauge
configurations generated in (2þ 1)-flavor QCD using
the HISQ action [30]. The strange quark mass ms is
adjusted to its physical value and the light quark masses
are fixed at ml ¼ ms=20, corresponding to mπ ≃ 160 MeV
and mK ≃ 504 MeV at zero temperature in the continuum
limit [30]. Charm quarks are introduced as valance quarks
and we use the HISQ action with the so-called ϵ-term for
the charm quark mass [29] which makes our calculations
in the heavy quark sector free of tree-level discretiza-
tion errors up to OððamcÞ4Þ. Our calculations have been
performed on lattices of the size N3

σ × Nτ ¼ 483 × 12. We
consider lattice couplings in the range β ¼ 6.664–7.280
which correspond to temperatures T ¼ 138–248 MeV.
This enables investigation of in-medium modifications of
meson properties below and above the chiral crossover
transition at Tc ¼ ð154� 9Þ MeV [30]. To study the
spatial correlators at higher temperatures we adopt the
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fixed-scale approach and perform calculations at
β ¼ 7.280 for Nτ ¼ 10, 8, 6, 4, which corresponds to
the temperature range T ¼ 298–744 MeV. In all our
calculations the spatial extent of the lattice is four times
the temporal extent: Nσ ¼ 4Nτ. The lattice spacing and
the resulting temperature values, T ¼ 1=Nτa, have been
determined using results for the kaon decay constant [30].
These temperatures together with the run parameters for
all our finite temperature calculations are summarized
in Table I.
In the staggered formulation quarks come in four valence

tastes and meson operators are defined as JH ¼
q̄ðΓD × ΓFÞq, ΓD and ΓF being products of Dirac gamma
matrices which generate spin and taste structures, respec-
tively [35]. In this study we focus only on local meson
operators with ΓD ¼ ΓF ¼ Γ. By using staggered quark
fields χðxÞ at x ¼ ðτ; x; y; zÞ the local meson operators can
be written in a simple form JHðxÞ ¼ ~ϕðxÞχ̄ðxÞχðxÞ, where
~ϕðxÞ is a phase factor depending on the choice of Γ. We
calculate only the quark-line connected part of the meson
correlators since the contribution of the disconnected part
either vanishes or is expected to be small in most cases
considered in this study (see discussions below). Since a
staggered meson correlator couples to two different meson
excitations with opposite parity, the large distance behavior
of the lattice correlator can be described by

GðτÞ ¼ A2
NOðe−M−τ þ e−M−ðNτ−τÞÞ

− ð−1ÞτA2
Oðe−Mþτ þ e−MþðNτ−τÞÞ; ð6Þ

where the first (second) term on the right-hand side
characterizes a nonoscillating (oscillating) contribution
governed by a negative (positive) parity state. Taking the
square of the amplitudes ensures their positivity [36].
In Table II we summarize the different choices of the
phase factor ~ϕ and the meson states they correspond to. We
have considered four channels, which we denote as
scalar (S), pseudoscalar (PS), axial vector (AV) and
vector (V). Notice that the oscillating state does not exist
for the PS channel of ss̄ and cc̄ sectors [35], thus we impose
AO ¼ 0 on these correlators. The negative parity states in
these channels correspond to different tastes of the same
physical meson and will thus have nearly degenerate
masses if lattice spacing is sufficiently small. For instance,
in the cc̄ sector the negative parity states in S and PS
channels both correspond to the same ηc state. We will
comment on this in more detail later.
In Eq. (6) as well as in Table II we assume that the

direction of propagation is the imaginary time τ. When
discussing spatial correlation functions we assume that the
direction of propagation is z. In that case, z should be
replaced by τ in Table II and τ andNτ should be replaced by
z and Nσ in Eq. (6), respectively. We calculate meson
propagators using point sources as well as corner-wall
sources, where on a given time slice the source is set to one
at the origin of each 23 cube and zero elsewhere. The use of
corner-wall sources reduces the contribution of higher
excited states and thus allows for a more accurate deter-
mination of the screening masses, especially for the
positive parity states.

TABLE I. Gauge coupling (β), strange (ms) and charm (mc)
quark masses, temporal lattice sizes (Nτ) and the number of
trajectories (traj.) used for the finite temperature calculations. The
light quark mass is fixed as ml ¼ ms=20. The meson correlation
functions are calculated every ten trajectories. The spatial lattice
extent is Nσ ¼ 4Nτ. We also show the temperature values
determined using fK as an input.

β ams amc Nτ traj. T [MeV]

6.664 0.0514 0.632 12 3740 138.2
6.700 0.0496 0.604 12 6500 143.3
6.740 0.0476 0.575 12 6170 149.0
6.770 0.0460 0.554 12 6320 153.5
6.800 0.0448 0.534 12 6590 158.0
6.840 0.0430 0.509 12 7910 164.3
6.860 0.0420 0.497 12 3660 167.5
6.880 0.0412 0.486 12 9620 170.8
6.910 0.0400 0.469 12 4130 175.8
6.950 0.0386 0.448 12 6200 182.6
6.990 0.0370 0.429 12 5100 189.6
7.030 0.0356 0.410 12 6700 196.9
7.100 0.0332 0.380 12 10050 210.2
7.150 0.0320 0.360 12 9590 220.2
7.280 0.0284 0.315 12 11120 247.9
7.280 0.0284 0.315 10 4180 297.5
7.280 0.0284 0.315 8 4990 371.9
7.280 0.0284 0.315 6 3810 495.8
7.280 0.0284 0.315 4 4820 743.7

TABLE II. List of meson operators and corresponding physical
states in the strange (ss̄), strange-charm (sc̄) and charm (cc̄)
sectors. The lightest ss̄ pseudoscalar state is defined as Mηss̄ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M2
K −M2

π

p
∼ 686 MeV which is used to determine the strange

quark mass on the zero-temperature lattices.

− ~ϕðxÞ Γ JPC ss̄ sc̄ cc̄

MS
− γ4γ5 0−þ ηss̄ Ds ηc

1
MSþ 1 0þþ D�

s0 χc0

MPS
− γ5 0−þ ηss̄ Ds ηc

ð−1Þxþyþz

MPSþ γ4 0þ− – –
MAV

− γiγ4 1−− ϕ D�
s J=ψ

ð−1Þx, ð−1Þy
MAVþ γiγ5 1þþ f1ð1420Þ Ds1 χc1

MV
− γi 1−− ϕ D�

s J=ψ
ð−1Þxþz, ð−1Þyþz

MVþ γjγk 1þ− hc

IN-MEDIUM MODIFICATIONS OF OPEN AND HIDDEN … PHYSICAL REVIEW D 91, 054503 (2015)

054503-3



As stated above, in this study we do not include the
contribution from disconnected diagrams. In the case of
charmonium the contribution of disconnected diagrams is
expected to be small, see e.g. Ref. [37]. For ss̄ mesons
disconnected diagrams will cause mixing with the light
quark sector in the isospin zero channel. For vector mesons
this mixing is known to be very small and the ϕ meson is
almost a pure ss̄ state. In SU(3) quark model language this
is called the ideal mixing between SU(3) flavor singlet and
SU(3) flavor octet. Thus, neglecting the disconnected
diagrams also seems to be justified in this case. Mixing
is, however, large for isosinglet pseudoscalar mesons. For a
realistic study of η and η0 mesons it is certainly necessary to
include contributions from disconnected diagrams. Thus,
we do not pursue a detailed study of the pseudoscalar
meson correlators in the ss̄ sector. It is customary, however,
to compare the lattice calculations of the pseudoscalar
meson mass which do not include disconnected diagrams
with the mass of the fictitious unmixed ss̄ meson that is
estimated using leading order chiral perturbation theory
mηss̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

K −m2
π

p
¼ 686 MeV, with mK and mπ being

the kaon and pion masses, respectively. We will use this
approach in what follows.
Not much is known about the mixing between the light

and strange sectors for isoscalar mesons in scalar and axial
vector channels. It is expected that there is strong mixing in
the scalar meson sector as well. The mass of the lowest
lying ss̄ scalar meson considered in our calculation is about
1.12 GeV, as shown in Fig. 1 (explained below). It is
considerably heavier than the lightest isoscalar scalar
meson f0ð980Þ but lighter than the next-to-lightest

isoscalar scalar state f0ð1370Þ. However, for the axial
vector meson mass we find good agreement between our
calculations and the mass of the f1ð1420Þ meson, sug-
gesting that the mixing between the light and strange quark
sector is likely to be small in this case. Thus, in the strange
sector we could study reliably the correlators in the vector
and axial vector channels. Moreover, at sufficiently high
temperatures we expect that the contribution of discon-
nected diagrams will become small because of screening
effects and the weakly interacting nature of the deconfined
phase. Even in the pseudoscalar channel our calculations
will therefore be reliable for high enough temperatures.

III. ZERO-TEMPERATURE CALCULATIONS AND
DETERMINATION OF CHARM QUARK MASS

Before discussing our results on the temperature depend-
ence of the spatial correlators and the screening masses we
need to determine the charm quark mass at the various
values of the gauge coupling used in our finite temperature
calculations and understand the accuracy that is reachable
in our approach. For this purpose we analyze the meson
spectrum at zero temperature at five values of the gauge
couplings spread over the range of couplings used in our
finite temperature calculations. The run parameters for
these calculations are summarized in Table III.
For the determination of the charm quark mass we

calculate the masses of J=ψ and ηc mesons for gauge
couplings β ¼ 10=g2 in the interval ½6.39; 7.28�. We cal-
culate correlation functions at several trial values of the
bare charm quark mass in the range 10 ≤ mc=ms ≤ 14
using point sources. We then perform linear interpolations
in the charm quark mass of the spin-averaged charmonium
mass, ðmηc þ 3mJ=ψÞ=4, and match them to the physical
value. This determines the bare charm quark mass amc and
the quark mass ratio mc=ms for each value of β. Finally we
fit the β dependence of amc to a renormalization group
inspired ansatz,

amLCP
c ¼ c0fðβÞ þ c2ð10=βÞf3ðβÞ

1þ d2ð10=βÞf2ðβÞ
; ð7Þ
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FIG. 1 (color online). Zero-temperature masses of the lowest
lying ss̄, sc̄ and cc̄ mesons. Corresponding experimental values
are depicted by the horizontal lines. The error bars and broad gray
bands indicate the statistical and systematic errors, respectively.
The systematic errors also include the scale uncertainty (see text).
In the ss̄ sector we compare our results with the mass of the
unmixed ηss̄ pseudoscalar meson (see text).

TABLE III. Gauge coupling (β), strange (ms) and charm (mc)
quark masses, lattice sizes (N3

σ × Nτ) and the number of
trajectories (traj.) used for our zero-temperature spectrum calcu-
lations. The light quark mass is fixed ml ¼ ms=20. The meson
correlation functions are calculated every five (six) trajectories
for Nτ ¼ 48 (64).

β ams amc N3
σ × Nτ traj.

6.740 0.0476 0.575 484 5995
6.880 0.0412 0.486 484 5995
7.030 0.0356 0.410 484 6995
7.150 0.0320 0.360 483 × 64 6096
7.280 0.0284 0.315 483 × 64 6096
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fðβÞ ¼
�
10b0
β

�
−b1=ð2b20Þ

exp

�
−

β

20b0

�
; ð8Þ

where b0 and b1 are the coefficients of the QCD beta
function. The above formula defines the line of constant
physics for the charm quark mass. From our fit we
find c0 ¼ 61.0ð1.7Þ, c2 ¼ 2.76ð26Þ × 105, and d2 ¼
3.3ð3.7Þ × 102. The details of these calculations are pre-
sented in Appendix A.
We performed calculations of meson correlation func-

tions containing a charm quark in four different channels
corresponding to local meson operators (see Table II) for
β ¼ 6.74, 6.88, 7.03, 7.15 and 7.28 using point and corner-
wall sources. We extract the zero-temperature masses using
the ansatz given in Eq. (6). The pseudoscalar and vector
meson masses obtained using the corner-wall sources are
systematically lower by 0.2% compared to the masses
obtained using the point sources. In the case of pseudo-
scalar mesons there is also a small difference of about
0.2% or less between the two tastes corresponding to the
Goldstone and the lightest non-Goldstone modes. For
vector mesons we do not see any statistically significant
splitting between states corresponding to different tastes.
However, the largest uncertainty in the value of the vector
and pseudoscalar masses expressed in physical units arises
from the uncertainty in the determination of the lattice
spacing through the calculation of the kaon decay constant.
This scale setting uncertainty is about 1%.
Our determination of scalar and axial vector meson

masses is less accurate due to the fact that we use the simple
two-exponential ansatz given in Eq. (6) without including
higher excited states. As a result the fit results for the meson
masses oscillate as we vary the lower limit τmin of the fit
interval. These oscillations persist to all values of τmin,
where a reasonable signal can be extracted. To determine
the scalar and axial vector meson masses we average over
results obtained using different fit intervals, making sure
that τmin is large enough that there is no systematic drift in
the value of the screening masses beyond these oscillations.
The typical difference between the averaged value and the
individual fit values of the meson masses is used as an
estimate of systematic errors.
Our results for the zero-temperature masses and com-

parisons with experimental values are shown in Fig. 1. The
error bars shown in the figure correspond to the statistical
errors. The broad gray bands correspond to the systematic
errors due to dependence of our fitted masses on the fit
interval and 1% uncertainty of the scale setting discussed
above. As one can see from the figure, our calculations
reproduce the experimental results within the estimated
errors. There is no apparent cutoff dependence of the
meson masses in the beta range studied by us. This is
partly due to the fact that cutoff dependence of the meson
masses is compensated for by the cutoff dependence of the
kaon decay constant fK [38] used to set the lattice spacing.

The deviations of the ϕ and ηss̄ meson masses from the
experimental values at the two highest β are due to the
mistuning of the strange quark mass. As discussed in
Ref. [39] at β > 7.03 the values of the strange quark mass
are slightly above the nominal value. After retuning the
valence strange quark mass to the correct value one indeed
finds that the experimental value of the ϕ meson mass is
reproduced.
The averaged value of the hyperfine splitting,

mJ=Ψ −mηc , in our calculations turns out to be
107(1) MeV compared to the experimental value of
113.2(7) MeV. The small discrepancy of 6 MeV could
be due to the missing contributions from disconnected
diagrams, inaccurate tuning of the charm quark mass and
slightly larger than the physical light quark mass.
Altogether we find that discretization errors in the charm
sector are considerably smaller than required for the studies
at nonzero temperature that we discuss in the following
sections.

IV. TEMPERATURE DEPENDENCE OF SPATIAL
MESON CORRELATORS

Having determined the charm quark masses we can
perform calculations of the finite temperature ss̄, sc̄ and cc̄
correlation functions in the four different quantum number
channels that we have also analyzed at zero temperature.
We start the discussion of our results at nonzero temper-

ature with the temperature dependence of meson correla-
tors. It was pointed out in Ref. [28] that, contrary to the
temporal correlation functions, spatial correlation functions
show visible changes already in the vicinity of the cross-
over temperature even in the case of charmonium. Since
staggered meson correlators in each channel contain both
negative parity (nonoscillating) and positive parity (oscil-
lating) states, it is important to separate these contributions
before studying the temperature dependence of the corre-
lators. As discussed in detail in Appendix B, it is possible to
define two separate effective correlators for the negative
(nonoscillating, NO) and positive (oscillating, O) parity
states of a staggered meson correlation function GðzÞ

GNOðzÞ≡ A2
NOðzÞe−M−ðzÞz ¼ g1 þ g0xþ

x− þ xþ
; ð9aÞ

GOðzÞ≡ A2
OðzÞe−MþðzÞz ¼ ð−1Þz g1 − g0x−

x− þ xþ
; ð9bÞ

in terms of the local, effective masses, x�ðzÞ ¼ e−M�ðzÞ,
obtained by solving the equations

Ax2�∓Bx� þ C ¼ 0: ð10Þ

Here, A ¼ g21 − g2g0, B ¼ g3g0 − g2g1, C ¼ g22 − g3g1 and
gi ≡Gðzþ iÞ, i ¼ 0, 1, 2, 3, are the values of the meson
correlation function at four successive z values. In this
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description we neglect the contribution of the periodic
boundary to the propagating direction. Further, one can
form ratios of these contributions at different temperatures
to the corresponding zero-temperature results. As discussed
before, in contrast to temporal correlation functions, such a
ratio can directly probe the thermal modifications of the
spectral functions themselves. If there is no change in the
meson spectral functions, these ratios will be equal to one
and deviations from unity will indicate an in-medium
modification of the meson spectral functions at nonzero
temperature.
In Fig. 2, we show the ratio of the negative parity part of

the vector correlator in the ss̄, sc̄ and cc̄ channels to the
corresponding zero-temperature correlator, obtained with
point sources. At zero temperature, these nonoscillating
parts of vector correlators are dominated by the ϕ, D�

s
and J=ψ states, respectively. We show the results only for
z=a < 18 in the ss̄ sector and for z=a < 20 in the sc̄ and cc̄
sectors. At these distances the influence of periodic
boundary conditions in the spatial directions can be
neglected in the effective meson correlator introduced in
Eq. (9). This is discussed in more detail in Appendix B. In
the ss̄ sector, at large distances, we observe the ∼18% and
∼38% decrease of this ratio at T ¼ 149 and 171 MeV,
respectively. A somewhat smaller but still significant ∼8%
and∼20%, respectively, decrease of this ratio is also seen in
the sc̄ sector. Note that recent lattice studies based on flavor
and quantum number correlations [2,7] have strongly

suggested that open strange and charm mesons already
start to melt around Tc ¼ ð154� 9Þ MeV. Thus, a ∼20%
deviation of the in-medium correlator with respect to the
vacuum one depicts a thermally modified spectral function
with a melted meson state. For ratios in the J=ψ sector no
changes are visible at the lowest 149 MeV temperature, and
even at T ¼ 171 MeV the deviations of this ratio from
unity are at best a few percent. For charmonia the devia-
tions of the in-medium correlators, at large distances with
respect to the vacuum ones, become larger than 20% only
for T ≳ 200 MeV. In all cases, the ratio of the correlators
decreases with increasing temperature at large distances. As
we will see in the next section this is related to the fact that
screening masses in the negative parity channels increase
with respect to their vacuum values with increasing
temperature.
In Fig. 3, we show the ratio of the positive parity

(oscillating) part of the axial vector correlator in ss̄, sc̄
and cc̄ channels to the corresponding zero-temperature
correlator, again obtained with point sources. We only
show the ratio for z=a < 15 as at larger distances the effect
of periodic boundary conditions cannot be neglected when
extracting the positive parity contribution from the corre-
lators (see Appendix B). The meson states that dominate
the oscillating part of these correlators are f1ð1420Þ, Ds1
and χc1. The ratios of the correlators in this case show a
more complex behavior. At a relatively short distance the
ratios of the correlators increases, then depending on the
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FIG. 2 (color online). Ratios of the nonoscillating (negative parity) part of the vector correlators in ss̄ (left), sc̄ (middle) and cc̄ (right)
sectors at different temperatures to the corresponding zero-temperature results. We also show the JPC quantum numbers in each sector.
For the Ds meson we have 1− as there is no charge conjugation symmetry (see Table II).
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FIG. 3 (color online). Ratios of the oscillating (positive parity) part of axial vector correlators in ss̄ (left), sc̄ (middle) and cc̄ (right)
sectors at different temperatures to the corresponding zero-temperature results. See Table II for JPC assignments.
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temperature value and the quark content the ratio can also
decrease both as a function of z and of the temperature. As
will be discussed in the next section, this feature of the
correlator ratios is closely related to the behavior of the
screening masses of the positive parity states. For not too
large temperatures the positive parity screening masses
decrease compared to their vacuum values. This corre-
sponds to the increase in the ratio of the correlators at large
z. At sufficiently high temperature the screening masses
start to increase again, which then leads to the decrease in
the ratio of the positive parity correlators. This tendency is
seen in the ss̄ and sc̄ sectors in Fig. 3.
Similar to the case of the negative parity states the size of

the medium modification varies with the heavy quark
content. It is the largest for ss̄ mesons and is the smallest
for cc̄ mesons. In fact, for charmonium the ratio of the
correlators is equal to one for z < 1 fm and T < 171 MeV,
while for the other two cases it is significantly above one
already at the lowest temperature. Furthermore, the size of
medium modifications of the correlator ratio in the cc̄
sector is much larger than for the negative parity part of
the vector correlator. This is what one would expect in the
sequential charmonium melting picture, where the larger
and more loosely bound χc states dissolve at a lower
temperature than J=ψ .
For the sc̄ and cc̄ sectors we also consider the pseudo-

scalar and scalar correlators, as the contributions of the

disconnected diagrams are absent for the former and small
for the latter. The results are shown in Fig. 4. The ratios of
the nonoscillating part of the pseudoscalar correlators to the
corresponding zero-temperature results are shown in the
upper panels of Fig. 4. For small temperatures the lowest
states that dominate the pseudoscalar correlators areDs and
ηc mesons. The temperature dependence of these ratios is
similar to the ratios of the nonoscillating part in the vector
channel, i.e. they decrease monotonically with increasing
temperatures. For the cc̄ case the ratio only shows
significant modifications for T ≳ 200 MeV, while for sc̄
sizable modifications are already visible at the lowest
temperature. The ratio of the positive parity contribution
is shown in the lower panels of Fig. 4, where the
corresponding states at T ¼ 0 are D�

s0 and χc0 for the sc̄
and cc̄ channels, respectively. The ratio becomes larger
than one. In the cc̄ sector the deviations of this ratio from
one are larger than those in the pseudoscalar case and set in
at lower temperatures. Again, these results are suggestive of
sequential melting of the charmonia states. The size of
medium modifications of the correlator ratio also depends
on the heavy quark content: it is larger in the sc̄ sector than
in the cc̄ sector.
The ratio of spatial charmonium correlators and corre-

sponding zero-temperature correlators was first studied in
Ref. [28] in the pseudoscalar channel. Strong in-medium
modifications of this ratio were found for zT > 1.
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FIG. 4 (color online). Ratios of the nonoscillating (negative parity) part of the pseudoscalar correlators (top panels) and oscillating
(positive parity) part of scalar correlators (bottom panels) in sc̄ (left panels), and cc̄ (right panels) sectors at different temperatures to the
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The magnitude of the medium effects in the ratios of
pseudoscalar correlators calculated with the HISQ action is
similar to that obtained previously with the p4 action at the
same value of T=Tc. The large changes in the ratio of the
spatial correlators, which could be indicative of significant
in-medium modification or dissolution of 1S charmonium
states, are in contrast to the very mild temperature depend-
ence of the analogous ratios of the reconstructed temporal
correlators. The reason for this apparent difference lies in
the fact that at nonzero temperature the temporal correlators
are defined only at relatively small separations τ < 1=ð2TÞ
and, thus, have a limited sensitivity to the in-medium
modifications of the spectral functions. As one can see from
Figs. 2–4 the mediummodification of the spatial correlators
for z < 1=ð2TÞ is also quite small. As discussed in Sec. I
the access to larger separation is the main reason why the
spatial correlation functions are more sensitive to the in-
medium modification of the spectral functions.

V. LARGE DISTANCE BEHAVIOR OF SPATIAL
MESON CORRELATORS AND SCREENING

MASSES

We fit the large distance behavior of the spatial corre-
lators using Eq. (6) and extract screening masses in various
channels for ss̄, sc̄ and cc̄mesons. In our study of PS and V
screening masses we use point and corner-wall sources. For
the cc̄ sector the differences between the results obtained
using point and corner-wall sources are quite small. It is
typically around 0.4%, except for the three highest temper-
atures, where it reaches 3%. Similarly in the sc̄ sector, the
difference between point and corner-wall source results is
typically about 1% for all temperatures except the three
highest ones, where it is 3%. Larger differences between
point and corner-wall source results are seen in the ss̄
sector, where they reach 3% at the highest five temper-
atures, and are about 1% at other temperatures. In the
following we will use the results from corner-wall sources
when presenting our results on the screening masses in the
PS and V channels. In the S and AV channels screening
masses can be reliably extracted only by using the corner-
wall sources. The effects of taste symmetry breaking are
only visible for the negative parity states in PS and S
channels at low temperatures, where they are about 1.5%.
For temperature above 200 MeV we do not find any
statistically significant effects of taste splitting.
All our results on screening masses in the ss̄, sc̄ and cc̄

sectors are summarized in Tables V–VII, respectively,
given in Appendix C and are shown in Fig. 5. The error
bars in the figure indicate the statistical and systematic
errors added in quadrature. We expect that at very high
temperature the screening masses are given by Eq. (5). We
show the free theory (leading order perturbative) results as
dashed lines in Fig. 5. For this we need to specify the quark
masses. The quark masses depend on the renormalization
scale which is not specified at leading order. A natural

choice of the renormalization scale would be to identify it
with the lowest scale in the problem provided that this
lowest scale is still in the perturbative region. In our case
there are two relevant energy scales, the charm quark mass
mc and the thermal scale, which here is taken to be 2πT.
For temperatures T > 200 MeV both scales are compa-
rable. Therefore, we could take the charm quark mass
as the renormalization scale and the corresponding value
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FIG. 5 (color online). Screening masses for different channels
in the ss̄ (top panel), sc̄ (middle panel) and cc̄ (bottom panel)
sectors as functions of the temperature. The solid horizontal lines
on the left depict the corresponding zero-temperature meson
masses. The shaded regions indicate the chiral crossover temper-
ature Tc ¼ ð154� 9Þ MeV. The dashed lines are the correspond-
ing free field theory result (see text).
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mcðμ̄ ¼ mcÞ ¼ 1.275 GeV from the Particle Data Group
[40]. Using the renormalization invariant ratio of charm to
strange quark mass mc=ms ¼ 11.85 [41] and the above
value, we can determine the value of the strange quark mass
at the same renormalization scale to be ms ¼ 0.108 GeV.
This completely specifies our free theory prediction.
As one can see from Fig. 5, there are three distinct

regions: the low temperature region, where the screening
masses are close to the corresponding vacuum masses (the
solid lines), the intermediate temperature region, where we
see significant changes in the value of the screening masses
with respect to the corresponding vacuum masses, and
finally, the high temperature region, where the screening
masses are close to the free theory result (the dashed lines).
In the high temperature region, there clearly are no meson
bound states anymore. The onset of the high temperature
behavior is different in different sectors. In the ss̄ sector it
starts at around T ¼ 210 MeV. In the sc̄ sector it starts
at T ¼ 250 MeV, while in the cc̄ sector it starts at
T > 300 MeV. As the temperature increases, we see that
the screening masses corresponding to negative parity
states increase monotonically, while the screening masses
in the positive parity states first decrease before starting to
rise towards the asymptotic high temperature values. In the
intermediate temperature region the screening masses of
opposite parity partners start to approach each other and we
observe a significant rearrangement of the ordering of
screening masses in different channels. At sufficiently high
temperatures the PS and S (0−þ and 0þþ) as well as the V
and AV (1−− and 1þþ) screening masses become degen-
erate. In the ss̄ sector this is evident for T > 220 MeV,
while for the two other sectors it happens at higher
temperatures due to the larger explicit breaking of parity
by the charm quark mass. In the high temperature region
the screening masses in the PS channel are smaller than the
screening masses in the V channel. This behavior has been
observed previously in lattice calculations [26] and in
calculations using Dyson-Schwinger equations [42].
In order to emphasize the different behavior of negative

and positive parity screening masses in the low and
intermediate temperature regions it is convenient to con-
sider the difference between the screening mass and the
corresponding vacuum masses m0 calculated at T ¼ 0:

ΔMðTÞ ¼ MðTÞ −m0: ð11Þ

It is tempting to interpret this difference as the change in the
binding energy of meson states, however, the relation
between the screening mass and the pole mass only holds
as long as there is a well-defined bound state. Nonetheless,
ΔM could provide some constraints on the change of the
binding energy in the low and intermediate temperature
regions. We show our results for ΔMðTÞ for the vector (1−)
and axial vector (1þ) ss̄, sc̄ and cc̄ mesons in Fig. 6. The
error bars and gray bands indicate the statistical and

systematic errors, respectively. In all cases ΔM increases
for negative parity states and decreases for positive parity
states in the considered temperature region. This corre-
sponds, of course, directly to the pattern seen in the
behavior of ratios of spatial correlation functions (see
Figs. 2, 3 and 4). At higher temperatures the positive
parity screening masses will start increasing again
(see Fig. 5) leading to the nonmonotonic behavior of the
correlator ratios in the ss̄ and sc̄ sectors. Except for the
negative parity (S-wave) charmonium states we clearly
see that in all other cases in-medium modifications lead to
significant deviations of screening masses from pole
masses already in the crossover region. In the case of
the ss̄ states this is the case even below Tc. For the S-wave
charmonium states screening and pole masses are nearly
compatible up to temperatures of about 200 MeV. This is
consistent with the small deviations from unity observed
for ratios of zero and finite temperature correlators in these
quantum number channels and may indicate that these
states do persist as bound states at least up to this value of
the temperature. Thus, in the charmonium case the temper-
ature dependence ofΔM provides some hints for sequential
thermal modification: It shows a strong decrease of screen-
ing masses starting in the crossover region for scalar and
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axial vector channels corresponding to 1P charmonium
states (χc0 and χc1) and very little change in the pseudo-
scalar and vector channels corresponding to 1S charmo-
nium states (ηc and J=ψ ).
The amplitudes A2

NO and A2
O appearing in Eq. (6) are

related to the wave function of meson states and to the
meson decay constants (corresponding to weak decays or a
decay into a virtual photon) in the zero-temperature limit.
In particular, for point sources and mesons consisting of
heavy quarks they are proportional to the square of the
wave function at the origin and the derivative of the square
of the wave function at the origin. As we are interested in
signatures for the melting of meson states at high temper-
atures, it is worth studying the temperature dependence of
these amplitudes. In Fig. 7 we show the ratios of the
amplitude A2

NO for the spatial meson correlators in the
vector channel to the corresponding zero-temperature
result. If meson states exist in the medium with little or
no modifications this ratio should be close to one. For the
strange and strange-charm mesons we see that there are
deviations of this ratio from one already at relatively low
temperatures and these deviations are increasing with
increasing temperature. For charmonium the ratio of the
amplitude to the zero-temperature amplitude is close to one
up to a temperature of about 170 MeV, and slowly increases
above that temperature. Only at temperatures above
200 MeV are the deviations of this ratio from unity similar
to the ones observed in strange and strange-charm sectors
in the transition region. This also suggests that significant
thermal modifications of the J=ψ occur for T ≳ 200 MeV.
Finally, we comment on the sensitivity of spatial

correlation functions to temporal boundary conditions of
the fermionic fields. At finite temperature, the temporal
boundary condition must be antiperiodic for the fermionic
fields and all gauge field configurations are generated by

imposing such a boundary condition. On the other hand, on
these configurations one can measure observables also by
imposing periodic temporal boundary conditions for the
fermion fields. Such a trick may provide some further
insight into the melting of charmonia states [28,43,44]. As
discussed above, at asymptotically high temperatures the
screening masses approach twice the value of the lowest
Matsubara frequency, which arises entirely from the anti-
periodic temporal boundary conditions for the fermions.
This result reflects that the two fermions (quarks) of the
bosonic meson operator propagate independently and are
separately sensitive to the antiperiodic boundary condi-
tions. This tells us that if one measures the screening
masses of the meson operators by artificially imposing
periodic temporal boundary conditions for the fermions,
one expects to find vanishing screening masses at very high
temperatures. Asymptotically, the quadratic difference of
the screening masses calculated with antiperiodic and
periodic boundary conditions will approach ð2πTÞ2
[28,43,44]. More generally, by comparing the screening
masses for mesonic observables calculated with both sets
of boundary conditions we can probe to what extent the
corresponding correlators are influenced by the boundary
conditions, i.e. whether the fermionic substructure of the
meson becomes visible and influences the asymptotic
behavior of spatial correlation functions. On the other
hand, if the two fermions constituting the meson operator
remain as a well-defined bosonic bound state, then the
corresponding screening mass should be insensitive to the
fermionic boundary conditions and we would expect to
obtain identical screening masses for both antiperiodic and
periodic ones.
In Fig. 8 we show the charmonium screening masses in

the pseudoscalar (0−þ) and vector (1−−) channels
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calculated using antiperiodic and periodic boundary con-
ditions. Both channels show similar temperature depend-
ence: Already in the crossover region the screening masses
start to become sensitive to the boundary conditions.
However, there is little sensitivity to the boundary con-
ditions for T ≲ 170 MeV. Above that temperature we see a
clear sensitivity of the screening masses to the boundary
conditions which becomes quite large for T ≳ 200 MeV.
This may indicate the dissolution of the ηc and J=ψ states at
these temperatures. However, to quantify the “onset tem-
perature” for dissolution is clearly not possible in this way.
We also see sensitivity to the boundary conditions in the
scalar and axial vector charmonium screening masses. But
due to large errors in the corresponding screening masses
with the periodic boundary condition it is more difficult to
quantify this sensitivity.

VI. CONCLUSIONS

We have studied spatial correlation functions at non-zero
temperature for ss̄, sc̄ and cc̄mesons to investigate their in-
medium modifications. We have performed direct compar-
isons of the in-medium correlation functions with the
corresponding zero temperature ones, extracted screening
masses and amplitudes from large distance behaviors of the
correlation functions and also investigated their sensitivity
to the temporal boundary conditions of the charm quark. In
all cases, we have found that medium modifications of the
spatial meson correlation functions set in the crossover
region. However, that the amount of in-medium modifica-
tions in the spatial correlators is different in different
sectors and decreases with the heavy quark content. The
ss̄ and sc̄ mesons are significantly effected by the medium
already at relatively low temperatures and possibly dissolve
at temperature close to the crossover temperature,
Tc ¼ ð154� 9Þ MeV. For the cc̄ mesons, S-wave char-
monium states (J=ψ and ηc) undergo very small medium
modifications up to T ∼ 1.1Tc (T ∼ 170 MeV) and signifi-
cant medium modifications are observed only for T ≳
1.3Tc (T ≳ 200 MeV). We have also seen a clear difference
between the temperature dependence of the correlators
corresponding to S-wave charmonium and to P-wave
charmonium (χc0 and χc1) states. The spatial correlators
corresponding to (χc0 and χc1) states show sizable medium
modifications already in the crossover region. This is in line
with the sequential melting of charmonia states—the larger,
loosely bound P-wave states dissociate at lower temper-
atures than the smaller, tightly bound S-wave charmonia.
Let us finally summarize the importance of our findings

for the physics of heavy ion collisions. The sequential
charmonium melting is an essential ingredient for most of
the phenomenological models that attempt to explain
charmonium yield in heavy ion collisions. Therefore our
findings provide support for these models. The fact that
open-charm mesons dissolve at temperatures close to the
transition temperature disfavors the models which try to

explain the large energy loss of heavy quarks in heavy ion
collisions through the existence of heavy-light bound states
in quark gluon plasma [6]. Finally the large medium
modification of hidden strange meson correlators disfavors
scenarios of separate freeze-out of strange degrees of
freedom in heavy ion collisions [45].
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APPENDIX A: DETERMINATION OF CHARM
QUARK MASS

Here we determine the line of constant physics (LCP) for
the charm quark mass. To estimate the charm quark mass, we
calculate the masses of the negative parity ground states,
JPC ¼ 0−þ and 1−−, which correspond to the ηc and J=ψ
mesons, respectively, in a range of couplings β ¼ 6.39–7.28
with several trial values for the ratio of the bare charm to
strange quark masses, mc=ms, using point sources. We
summarize the simulation parameters and lattice sizes

TABLE IV. The gauge couplings (β), lattice sizes (N3
σ × Nτ)

and strange quark mass (ms) used to determine the charm quark
mass. Results of the ratio of charm and strange quark masses
ðmc=msÞLCP and the charm quark mass amLCP

c on the line of
constant physics are also summarized.

β N3
σ × Nτ ams ðmc=msÞLCP amLCP

c

6.390 324 0.0694 13.2222(40) 0.91762(27)
6.488 324 0.0620 12.8386(33) 0.79600(21)
6.515 324 0.0604 12.7091(54) 0.76763(33)
6.664 324 0.0514 12.327(12) 0.63361(66)
6.740 484 0.0476 12.107(13) 0.57631(62)
6.880 484 0.0412 11.8208(53) 0.48702(22)
7.030 484 0.0356 11.5702(85) 0.41190(30)
7.150 483 × 64 0.0320 11.2789(43) 0.36092(14)
7.280 483 × 64 0.0284 11.0350(55) 0.31339(15)
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in Table IV, and show results for the spin-averaged charmo-
nium mass ðm0−þ þ 3m1−−Þ=4 as a function of mc=ms for
each β in Fig. 9. In the figure, we interpolate the masses
linearly for each β and estimate the line of constant physics
for the ratio ðmc=msÞLCP from the intersection with the
physical value ðmηc þ 3mJ=ψ Þ=4. The numerical results are
also summarized in Table IV.
From the ratio ðmc=msÞLCP we determine the charm

quark mass on LCP shown in Fig. 10. We fit the data
with the renormalization group inspired by Eq. (7) and
obtain c0 ¼ 61.0ð1.7Þ, c2 ¼ 2.76ð26Þ × 105 and d2 ¼
3.3ð3.7Þ × 102. The fit result is also shown in Fig. 10 as
a solid curve.

APPENDIX B: NEGATIVE AND POSITIVE
PARITY PARTS OF STAGGERED MESON

CORRELATOR FROM EFFECTIVE MASSES

In this appendix we briefly discuss our procedure
for identifying separate contributions of the negative

(nonoscillating) and positive (oscillating) parity states in
a given staggered meson correlation function.
We assume that the staggered meson correlator can be

described by a single negative and a single positive parity
meson state:

GðzÞ ¼ A2
NOðzÞe−M−ðzÞz − ð−1ÞzA2

OðzÞe−MþðzÞz: ðB1Þ
For simplicity, contributions arising from the periodicity of
the lattice in the z direction have been neglected. Thus, the
correlator is parametrized by four quantities: ANO, AO and
M�. Assuming that, for a given value of z, these four
parameters vary little over at least four successive points in
z, one can determine the parameters from values of the
correlation function at these four points: gi ≡Gðzþ iÞwith
i ¼ 0, 1, 2, 3. With x� ≡ e−M� and the assumption
xþ ≠ x−, it is easy to see

giþ2 − giþ1x−
giþ1 − gix−

¼ −xþ; for i ¼ 0; 1; ðB2Þ

yielding a quadratic equation for x−:

ðg2 − g1x−Þ2 ¼ ðg3 − g2x−Þðg1 − g0x−Þ: ðB3Þ

Similarly, one can obtain a quadratic equation for xþ

ðg2 þ g1xþÞ2 ¼ ðg3 þ g2xþÞðg1 þ g0xþÞ: ðB4Þ

Both equations can be expressed in simple quadratic
equations,

Ax2�∓Bx� þ C ¼ 0; ðB5Þ
where A ¼ g21 − g2g0, B ¼ g3g0 − g2g1 and C ¼ g22 − g3g1.
Under a condition A · C < 0, definite solutions are
given by

x� ¼ � B
2A

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2jAj : ðB6Þ

Once the local, effective masses x� are determined, it is
possible to define two separate effective correlators for
the negative (nonoscillating) and positive (oscillating)
parity states of a staggered meson correlation function:

GNOðzÞ≡ A2
NOðzÞe−M−ðzÞz ¼ g1 þ g0xþ

x− þ xþ
; ðB7aÞ

GOðzÞ≡ A2
OðzÞe−MþðzÞz ¼ ð−1Þz g1 − g0x−

x− þ xþ
: ðB7bÞ

As an illustrative example, in Fig. 11 we show the local,
effective masses, M� ¼ − ln x�, obtained from the point
source correlator of cc̄ scalar channel at T ¼ 248 MeV as a
function of z. At T ¼ 0 the positive parity 0þþ (negative
parity 0−þ) state corresponds to χc0 (the different taste of
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FIG. 10 (color online). Results for the charm quark mass on
LCP as a function of β. The curve shows the fit result (see text).
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FIG. 9 (color online). Results for the spin-averaged charmo-
nium mass ðm0−þ þ 3m1−−Þ=4 for several trial mc=ms values of
each β. The charm quark mass on LCP is determined by matching
those to the physical value ðmηc þ 3mJ=ψ Þ=4, summarized in
Table IV.
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ηc). The effective masses for different parity states can be
well identified in this way, and plateaus appear at z ≥
0.5 fm for the negative parity state and at z ≥ 0.8 fm for the
positive parity state. At large distances, z ≥ 1.2 fm, the
plateaus get worse due to the periodicity in the z direction.
To estimate systematic errors that arise from neglecting

the periodic terms in Eq. (B1) it is easier to look into the
pseudoscalar correlators in the ss̄ and cc̄ sectors, as they do
not receive a contribution from an oscillating state. In this
case, the correlation function is parametrized as

GðzÞ ¼ A2
NOðzÞ½e−M−ðzÞz þ e−M−ðzÞðNz−zÞ�: ðB8Þ

The second term on the right-hand side arises from the
periodic boundary conditions in the z direction. If one
neglects the periodicity, the effective mass is simply
obtained from the single exponential decay (sngl) form,

Msngl
− ðzÞ ¼ ln

GðzÞ
Gðzþ 1Þ : ðB9Þ

On the other hand, the effective mass including the effects
of periodic boundary (PB) can be determined from the
numerical solution of the equation

fðMPB
− Þ≡ cosh ½MPB

− ðzÞðz − Nz
2
Þ�

cosh ½MPB
− ðzÞðz − Nz

2
þ 1Þ� −

GðzÞ
Gðzþ 1Þ ¼ 0:

In Fig. 12 we show results for the effective masses of the
ss̄ and cc̄ pseudoscalar channels at T ¼ 248 MeV,

obtained by including the effects of PB as well as using
the sngl form. One finds that both effective masses
converge at short distances and reach a plateau at moderate
values of the distance. At large distances MPB

− stays on the
plateau, whereas Msngl

− deviates from the plateau. The
deviation becomes visible at z=a ∼ 18 for ss̄ and ∼20
for cc̄. Thus, for our calculations, one can cleanly define
the effective correlators [Eq. (B7)] till z=a < 18 for ss̄ and
till z=a < 20 for cc̄. We also performed a similar study for
the sc̄ sector and find that the deviation is visible only at
z=a ∼ 20. For positive parity states the amplitudes are
smaller than that for the negative parity states, and the effect
of the periodic boundary condition is slightly larger. Thus,
to be conservative, we apply our procedure for separating
the contributions of the positive and negative parities only
up to z=a < 15.

APPENDIX C: SUMMARY OF
SCREENING MASSES

The screening masses determined by fitting the corre-
sponding correlators with the corner-wall sources are
summarized in Tables V, VI and VII for the ss̄, sc̄ and
cc̄ mesons, respectively. The first and second parentheses
give the statistical and systematic errors. The former is
estimated from a bootstrap analysis for each fit and the
latter gives the systematic ambiguity arising from the
variation of the fit range.
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FIG. 12 (color online). The effective masses for the ss̄ and cc̄
pseudoscalar channel at T ¼ 248 MeV as functions of distance,
obtained by including the effects of periodicity in the z direction
(PB) and also by using a single exponential decay ansatz (sngl).

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

z [fm]

Meff [GeV]
 cc-, scalar, T=248 MeV

0++

0−+
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TABLE VI. Same as Table V, but for the sc̄ sector.

T [MeV] 0−þ 0þþ 1−− 1þþ

138.2 1.97625(26)(97) 2.326(3)(10) 2.1176(5)(13) 2.451(8)(14)
143.3 1.97997(17)(81) 2.293(2)(10) 2.12105(47)(83) 2.4255(53)(97)
149.0 1.98459(28)(54) 2.2789(25)(72) 2.12494(46)(58) 2.405(3)(11)
153.5 1.98708(14)(67) 2.2815(18)(42) 2.12906(51)(86) 2.3936(34)(89)
158.0 1.99315(27)(88) 2.2585(20)(45) 2.13648(37)(64) 2.3783(27)(71)
164.3 2.0029(1)(10) 2.2484(12)(40) 2.14577(47)(64) 2.3611(21)(67)
167.5 2.00951(38)(46) 2.2410(18)(38) 2.1554(6)(12) 2.3647(27)(63)
170.8 2.0122(2)(11) 2.2315(9)(33) 2.15700(44)(50) 2.3495(18)(47)
175.8 2.02757(33)(98) 2.2309(14)(19) 2.17614(59)(69) 2.3494(19)(59)
182.6 2.0403(2)(14) 2.2260(9)(29) 2.18684(51)(96) 2.3467(13)(60)
189.6 2.0582(4)(11) 2.2205(8)(12) 2.20748(75)(87) 2.3450(15)(32)
196.9 2.0784(3)(20) 2.2177(7)(18) 2.2269(5)(20) 2.3430(8)(35)
210.2 2.1189(3)(18) 2.2361(5)(16) 2.2740(4)(23) 2.3715(7)(11)
220.2 2.1531(3)(19) 2.2534(5)(14) 2.3103(4)(15) 2.3889(7)(19)
247.9 2.2553(4)(31) 2.3251(3)(21) 2.4160(5)(17) 2.4696(5)(10)
297.5 2.4624(12)(9) 2.5057(10)(20) 2.6368(18)(24) 2.6676(18)(35)
371.9 2.7942(15)(35) 2.8171(14)(38) 2.9782(20)(25) 2.9936(21)(24)
495.8 3.4036(20)(54) 3.4162(21)(50) 3.6043(22)(67) 3.6107(22)(66)
743.7 4.8049(39)(92) 4.8100(41)(93) 5.0251(42)(97) 5.0276(43)(98)

TABLE V. Numerical values of the screening masses, in GeV, for the ss̄ sector at different temperatures. The first and second
parentheses indicate the statistical and systematic errors, respectively.

T [MeV] 0−þ 0þþ 1−− 1þþ

138.2 0.69572(18)(35) 1.0542(40)(96) 1.0469(13)(29) 1.3766(83)(50)
143.3 0.70202(13)(4) 1.041(2)(12) 1.0565(8)(49) 1.343(4)(16)
149.0 0.70997(18)(39) 1.016(2)(17) 1.0618(11)(67) 1.325(5)(23)
153.5 0.71691(20)(33) 1.0115(17)(97) 1.0719(9)(47) 1.300(3)(19)
158.0 0.72777(21)(48) 1.0010(15)(71) 1.0852(9)(51) 1.286(2)(19)
164.3 0.74406(18)(62) 0.9754(12)(64) 1.0982(6)(55) 1.273(2)(20)
167.5 0.75755(34)(67) 0.9715(15)(78) 1.1146(14)(66) 1.273(2)(16)
170.8 0.76538(28)(27) 0.9687(6)(51) 1.1221(10)(67) 1.268(1)(12)
175.8 0.79145(40)(36) 0.9690(11)(26) 1.1475(9)(54) 1.2742(20)(89)
182.6 0.81736(51)(49) 0.9717(8)(59) 1.1673(9)(69) 1.276(1)(16)
189.6 0.8508(5)(11) 0.9834(9)(32) 1.2058(14)(69) 1.2857(20)(85)
196.9 0.8912(5)(11) 1.0034(6)(39) 1.2387(8)(50) 1.3096(14)(85)
210.2 0.9694(5)(11) 1.0474(6)(33) 1.3123(8)(32) 1.3611(10)(61)
220.2 1.0381(6)(12) 1.0979(7)(23) 1.3709(8)(31) 1.4077(8)(51)
247.9 1.23211(58)(73) 1.2689(5)(10) 1.5468(8)(41) 1.5671(9)(49)
297.5 1.5862(30)(17) 1.5969(31)(13) 1.8787(32)(35) 1.8855(34)(40)
371.9 2.1069(23)(35) 2.1150(23)(50) 2.3695(40)(28) 2.3719(41)(29)
495.8 2.9102(40)(55) 2.9181(24)(37) 3.1589(27)(47) 3.1605(27)(51)
743.7 4.512(6)(13) 4.5233(55)(67) 4.7677(45)(70) 4.7674(45)(72)
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