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We compute the axial, scalar, tensor and pseudoscalar isovector couplings of the nucleon as well as the
induced tensor and pseudoscalar charges in lattice simulations with Nf ¼ 2 mass-degenerate non-
perturbatively improved Wilson-Sheikholeslami-Wohlert fermions. The simulations are carried out down
to a pion mass of 150 MeVand linear spatial lattice extents of up to 4.6 fm at three different lattice spacings
ranging from approximately 0.08 fm to 0.06 fm. Possible excited state contamination is carefully
investigated and finite volume effects are studied. The couplings, determined at these lattice spacings, are
extrapolated to the physical pion mass. In this limit we find agreement with experimental results, where
these exist, with the exception of the magnetic moment. A proper continuum limit could not be performed,
due to our limited range of lattice constants, but no significant lattice spacing dependence is detected.
Upper limits on discretization effects are estimated and these dominate the error budget.
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I. INTRODUCTION

The electron spectrum measured in nuclear β decays
led to Pauli’s postulate of an electrically neutral, almost
massless particle in his famous letter presented to a meeting
of nuclear physicists in 1930 (reprinted and translated in
Ref. [1]). The existence of this particle was confirmed with
the discovery of the electron antineutrino some 25 years
later [2]. The axial coupling (or charge) of the nucleon
gA ¼ 1.2723ð23ÞgV [3] associated with the β decay of the
neutron into a proton is experimentally well determined
(see, e.g., Ref. [4]) and a parameter of fundamental
importance for the structure of baryons. Also the induced
tensor charge ~gT ≈ μp − μn − 1 ¼ 3.7058901ð5Þ [3] is well
known as it quantifies the difference between the anoma-
lous magnetic moments of the proton and the neutron
while the vector charge gV ¼ 1 is fixed due to baryon
number conservation.1 Computing these quantities pro-
vides a nontrivial cross-check of lattice predictions of
similar observables.
Little is known about charges related to flavor changing

processes in any other channels since these do not feature
in tree-level standard model interactions. However, new
physics processes analogous to the standard model nucleon

β-decay or neutrino capture may depend on such param-
eters, see, e.g., Refs. [6–8]. This is, in particular, also
relevant with respect to dark matter searches. Only the
pseudoscalar charges are, to some extent, constrained
through the effective field theory description of low energy
scattering processes nþ πþ → pþ π0, see Ref. [9] and
references therein, as well as by the current algebra
relations discussed below. The charges gT and gS can at
present only be determined through lattice simulation.
In this article we compute the isovector nucleon cou-

plings gA, gV , gS, gT , gP and the induced charges ~gT and g�P,
simulating Nf ¼ 2 QCD down to a nearly physical quark
mass. For calculations of isovector charges one can rely on
standard methods. In particular, quark-line disconnected
contributions to correlation functions cancel in the isospin
symmetric case which we realize here, i.e. we neglect the
mass difference between and the electric charges of up and
down quarks.
We extract the couplings from the following form factors

at q2 ¼ 0, where—in contrast to the remainder of this
article—we employ Minkowski spacetime conventions:

hpjūdjni ¼ gSðq2ÞūpðpfÞunðpiÞ; ð1Þ

hpjūγ5djni ¼ gPðq2ÞūpðpfÞγ5unðpiÞ; ð2Þ

hpjūγμdjni ¼ ūpðpfÞ
�
gVðq2Þγμ þ

~gTðq2Þ
2mN

iσμνqν
�
unðpiÞ;

ð3Þ
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1In the isovector channel that we consider here there will be

corrections to gV ¼ 1 to second order in the isospin breaking
parameter [5], however, we assume isospin symmetry.
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hpjūγμγ5djni ¼ ūpðpfÞ
�
gAðq2Þγμ þ

~gPðq2Þ
2mN

qμ

�
γ5unðpiÞ;

ð4Þ

hpjūσμνdjni ¼ gTðq2ÞūpðpfÞσμνunðpiÞ; ð5Þ

where σμν ¼ i
2
½γμ; γν�. Above, we have assumed isospin

symmetry [6,10]. The proton and neutron states jpi and jni
carry four-momenta pf and pi, respectively. up and un
denote the proton and neutron spinors, mN the nucleon
mass and the momentum transfer is q0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ p2
f

p
−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
N þ p2

i

p
, q ¼ pf − pi. The virtuality is given as

Q2 ¼ −q2 ≥ 0. In the isospin symmetric limit the identity
gV ≡ gVð0Þ ¼ 1 holds for the isovector vector charge [5]
(and therefore λ≡ gA=gV ¼ gA) since

hpjūΓdjni ¼ hpjðūΓu − d̄ΓdÞjpi ¼ hnjðd̄Γd − ūΓuÞjni

¼ hpj
�
2

3
ūΓu −

1

3
d̄Γd

�
jpi

− hnj
�
2

3
ūΓu −

1

3
d̄Γd

�
jni: ð6Þ

Here we construct the above matrix elements as
hpjðūΓu − d̄ΓdÞjpi, in which case the function gVðq2Þ is
also known as the Dirac form factor Fp

1 ðq2Þ − Fn
1ðq2Þ and

~gTðq2Þ as the Pauli form factor Fp
2 ðq2Þ − Fn

2ðq2Þ. Note that
~gT ¼ κu−d ≈ κp − κn determines the difference between
the anomalous magnetic moments of the proton and the
neutron (μp ¼ 1þ κp, μn ¼ κn), gT ¼ h1iδu−δd is the first
Mellin moment of the isovector transversity distribution
function and gA ¼ h1iΔu−Δd that of the spin distribution
function.
With the exceptions of g�P (defined below) and ~gT which

require extrapolations in q2, all couplings can directly be
accessed in the forward limit: gS ¼ gSð0Þ, gV ¼ gVð0Þ,
gA ¼ gAð0Þ and gT ¼ gTð0Þ. The determination of the
pseudoscalar, axial and tensor couplings requires polarized
nucleon states. We remark that gV , gA, ~gT and g�P are scale
independent while gT , gP and gS carry anomalous dimen-
sions. In these cases our results will refer to the MS scheme
at a renormalization scale μ ¼ 2 GeV. Also note that the
couplings gP and gS share the negative anomalous dimen-
sion of the quark mass mud so that combinations gSmud or
gPmud are scale independent.
The conservation of the isovector axial current (PCAC)

implies the relation [11–13]

mudgPðq2Þ ¼ mNgAðq2Þ þ
q2

4mN
~gPðq2Þ: ð7Þ

The right-hand side of this expression can be extrapolated
to q2 ¼ 0, giving

mudgP ¼ mNgA ¼ FπgπNN ½1þOðmπÞ2�; ð8Þ

where the second equality is the Goldberger-Treiman
relation [14], Fπ ≈ 92 MeV denotes the pion decay constant
and gπNN the pion-nucleon-nucleon coupling. The chiral
perturbation theory corrections to this relation due to the
nonvanishing pion mass are discussed in Refs. [9,15–17].
We will use the first equality in Eq. (8) to determine gP.
Equation (7) implies ~gPðq2Þ ¼ −4m2

NgAðq2Þ=q2 at zero
quark mass, which suggests ~gPðq2Þ is governed by a pion
pole at small q2 and mπ ,

~gPðq2Þ ¼
4c2N

m2
π − q2

gAðq2Þ þ � � � ; ð9Þ

where the ellipses refer to corrections that are regular at
q2 < m2

π or, equivalently, at Q2 > −m2
π and cN approaches

the nucleon mass as mπ → 0. Finally, the induced pseu-
doscalar coupling

g�P ¼ mμ

mN
~gPð−0.88m2

μÞ ð10Þ

quantifies the muon capture process [14,18,19] μ−p→νμn,
where the scale Q2 ¼ 0.88m2

μ corresponds to the kinematic
threshold and mμ denotes the muon mass.
Responding to the phenomenological demand, several

groups have recently determined gA [20–29], gT [30,31], gS
and gT [32], gA and the induced pseudoscalar form factor
[33–36], gA, gP and g�P [37,38] or gA, gS and gT [39,40] or
the related form factors in lattice simulations. gV and ~gT
are frequently determined in calculations of the electro-
magnetic form factors [28,33,35,38,39,41–47], also see
Refs. [48–52] for recent reviews. Here we compute the
complete set of isovector couplings down to a nearly
physical quark mass. We note that a preliminary analysis
on gA, gS and gT using a subset of our ensembles appeared
in Ref. [53].
This article is organized as follows. In Sec. II we

introduce our gauge ensembles and the analysis methods
used. Then in Sec. III we check the nonperturbative
renormalization by computing gV and also present results
on gA, which serves as a benchmark quantity. In the latter
case we find significant finite size effects. These are
addressed in Sec. IV, where we also investigate the volume
dependence of the pion mass mπ and the pion decay
constant Fπ . In Sec. V we present results on the remaining
couplings gS, gT , ~gT , gP, g�P and gπNN . We summarize our
findings in Sec. VI.

II. SIMULATION DETAILS

A. Lattice setup

We analyze several gauge ensembles that were
generated employing Nf ¼ 2 nonperturbatively improved
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Sheikholeslami-Wohlert (NPI Wilson-clover) fermions,
using the Wilson gauge action by the RQCD and
QCDSF collaborations. Three lattice spacings were real-
ized, corresponding to a ≈ 0.081 fm (β ¼ 5.20), a ≈
0.071 fm (β ¼ 5.29) and a ≈ 0.060 fm (β ¼ 5.40), where
the lattice spacing was set using the value r0 ¼ 0.5 fm at
vanishing quark mass, obtained by extrapolating the
nucleon mass to the physical point [54]. This is consistent
with determinations from the Ω baryon mass [55] or the
kaon decay constant [56]. With the exceptions of ~gT and g�P
we implement full order-a improvement such that our
leading lattice spacing effects are ofOða2Þ. We vary a2 by a

factor of about 1.8. However, not all volumes and quark
masses are realized at all three lattice spacings.
The analyzed ensembles are listed in Table I and

illustrated in Fig. 1, see also Ref. [57]. Our largest pion
mass (ensemble IX) corresponds to mπ ≈ 490 MeV.
Around mπ ≈ 425 MeV two lattice spacings and two
different spatial lattice extents L are available. Within
the window 260 MeV≲mπ < 290 MeV we cover three
lattice spacings and several volumes up to Lmπ ≈ 6.7. The
smallest mass mπ ≈ 150 MeV was simulated at only one
lattice spacing (a ≈ 0.071) but for two volumes (Lmπ ≈ 2.8
and 3.5). In Table I we also list the nucleon masses in lattice
units. Note that, with the exception of ensemble IX, all
masses agree within one to two standard deviations with
our previous analysis [54], where in some cases we
employed an inferior quark smearing.
To improve the overlap of our nucleon interpolators with

the physical ground state, we follow Ref. [58] and employ
Wuppertal (Gauss) smearing [59] of the quark fields

ϕðnÞ
x ¼ 1

1þ 6δ

�
ϕðn−1Þ
x þ δ

X�3

j¼�1

Ux;jϕ
ðn−1Þ
xþa|̂

�
; ð11Þ

where we replace the spatial links Ux;j by APE-smeared
[60] gauge links

UðnÞ
x;i ¼ PSUð3Þ

�
αUðn−1Þ

x;i þ
X
jjj≠i

Uðn−1Þ
x;j Uðn−1Þ

xþa|̂;iU
ðn−1Þ†
xþa{̂;j

�

ð12Þ

with i ∈ f1; 2; 3g; j ∈ f�1;�2;�3g. PSUð3Þ denotes a
projection into the SU(3) group and the sum is over the

TABLE I. Details of the ensembles used in this analysis. NðnÞ indicates the number of configurations N and the number of
measurements per configuration n. Nsm refers to the number of Wuppertal smearing iterations and tf to the sink-source time differences
realized. For small tf values the numbers of measurements per configuration n were reduced (indicated in brackets after the respective
tf=a entries). Note that the pion and nucleon masses displayed were obtained on the respective ensembles and are not extrapolated to
their infinite volume limits. The two errors of amπ and amN are statistical and from varying the fit range, respectively. The error of the
pion mass in physical units includes both sources of uncertainty.

Ensemble β a [fm] κ V amπ mπ [GeV] amN Lmπ NðnÞ Nsm tf=a

I 5.20 0.081 0.13596 323 × 64 0.11516(73)(11) 0.2795(18) 0.4480(31)(06) 3.69 1986(4) 300 13
II 5.29 0.071 0.13620 243 × 48 0.15449(69)(26) 0.4264(20) 0.4641(53)(05) 3.71 1999(2) 300 15
III 0.13620 323 × 64 0.15298(43)(16) 0.4222(13) 0.4486(22)(20) 4.90 1998(2) 300 15,17
IV 0.13632 323 × 64 0.10675(51)(08) 0.2946(14) 0.3855(39)(23) 3.42 2023(2) 400 7(1),9(1),11(1),

13,15,17
V 403 × 64 0.10465(37)(08) 0.2888(11) 0.3881(32)(12) 4.19 2025(2) 400 15
VI 643 × 64 0.10487(24)(04) 0.2895(07) 0.3856(19)(05) 6.71 1232(2) 400 15
VII 0.13640 483 × 64 0.05786(51)(21) 0.1597(15) 0.3484(69)(21) 2.78 3442(2) 400 15
VIII 643 × 64 0.05425(40)(28) 0.1497(13) 0.3398(61)(18) 3.47 1593(3) 400 9(1), 12(2), 15
IX 5.40 0.060 0.13640 323 × 64 0.15020(53)(06) 0.4897(17) 0.3962(33)(06) 4.81 1123(2) 400 17
X 0.13647 323 × 64 0.13073(55)(28) 0.4262(20) 0.3836(29)(14) 4.18 1999(2) 450 17
XI 0.13660 483 × 64 0.07959(25)(09) 0.2595(09) 0.3070(26)(43) 3.82 2177(2) 600 17

FIG. 1 (color online). Overview of the ensembles listed in
Table I. Colors encode the lattice spacings and symbols the lattice
extents. The color and symbol labeling defined here will be used
throughout in Secs. III–V. The horizontal lines separate different
volume ranges.
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four spatial “staples,” surroundingUx;i. We employ 25 such
gauge covariant smearing iterations and use the weight
factor α ¼ 2.5. Within the Wuppertal smearing we set
δ ¼ 0.25 and adjust the number of iterations to optimize the
quality of the effective mass plateaus of smeared-smeared
nucleon two-point functions.
We label the nucleon source time as ti ¼ 0 and the sink

time as tf . The currents are inserted at times t ∈ ½0; tf � and
the relevant matrix elements can be extracted from data
within the range t ∈ ½δt; tf − δt� where δt ≥ 2a, due to the
clover term in the action that couples adjacent time slices.
Using the sequential source method2 [64], all values of t
can be realized, essentially without overhead. However,
each tf value requires additional computations of sequential
propagators, adding to the cost. On some of our ensembles
we vary this distance too, since this may be necessary to
parametrize and eliminate excited state contributions.
The tf values used, the numbers of gauge configurations
N and measurements per configuration n are also included
in Table I. The statistical noise decreases with smaller
Euclidean time distances between source and sink, which
means we can reduce the number of three-point function
measurements in some cases (indicated in brackets after the
respective tf=a entries).
Naively, one would expect the optimal number of

smearing iterationsNsm to somewhat increase with decreas-
ing quark mass and, at a fixed mass, to scale with 1=a2,
maintaining a smearing radius that is constant in physical
units. As can be read off from the table, we approximately
follow this rule. In Fig. 2 we compare our effective nucleon
masses

mNðtf þ a=2Þ ¼ a−1 ln

�
C2ptðtfÞ

C2ptðtf þ aÞ
�

ð13Þ

in physical units between ensembles III and X as well as
between ensembles I, IV and V, see Fig. 1. These two
groups of ensembles correspond to similar pion masses
but differ in terms of the lattice spacing. Using our
optimized smearing functions in the construction of the
nucleon interpolators, we do not detect any significant
lattice spacing dependence of the shapes of the resulting
effective mass curves. In Fig. 3 the same comparison is
made for smeared-smeared pion effective masses. Again,
the shapes within each group of ensembles are very similar
while obviously in this case we can resolve the small
differences between the lower pion masses.
Our nucleon sources were placed at different time slices

and spatial positions from configuration to configuration to
reduce autocorrelations. Remaining autocorrelations were
accounted for by binning subsequent configurations within
the jackknife error analysis and varying the bin sizes until

they were bigger than four times the respective estimated
integrated autocorrelation times.
Recently, many groups investigated the issue of excited

state contamination of ground state signals of three-point
functions and, indeed, by applying a more careful analysis,
varying tf [21–24,27,28,32,36,37,39,40,57,65], using a
variational approach [25] and/or by optimizing the ground
state overlap of the nucleon interpolator [24,57] significant
effects were detected in many matrix elements. Hence,
for three of our ensembles, covering the pion masses
150 MeV (VIII), 290 MeV (IV) and 425 MeV (III), we
vary the source-sink distance tf in addition to the position
of the current t, see Table I. Based on these results and our
observation of very similar shapes as a function of time of
the effective masses computed from our nucleon two-point
functions (see Fig. 2), for the remaining ensembles we
fix tf ≳ 1 fm.

B. Excited state analysis

The spectral decompositions for two- and three-point
functions read

FIG. 2 (color online). Effective nucleon masses Eq. (13) for five
of our ensembles, computed from smeared-smeared two-point
functions C2ptðtfÞ.

FIG. 3 (color online). The same as Fig. 2 for the pion effective
mass.

2We also explored stochastic methods [61], see also
Refs. [62,63].
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C2ptðtfÞ ¼ A0e−mNtf ð1þ A1e−ΔmNtf þ � � �Þ; ð14Þ

C3ptðt; tfÞ ¼ A0e−mNtf ½B0 þ B01e−ΔmNtf=2 coshðΔmNtÞ
þB1e−ΔmNtf þ � � ��; ð15Þ

where ΔmN ¼ mN0 −mN denotes the mass gap between
the nucleon ground state and its first excitation and the
ellipses denote contributions from higher excited states.
The coefficients A0, A1, B0, B01 and B1 are real if the
current is self-adjoint (or anti-self-adjoint) and the same
interpolator (i.e. smearing) is used at the source and the
sink. Above we assumed the temporal lattice extent to be
much bigger than tf which holds in our case.
For a current J ¼ ūΓd, a nucleon interpolator Φ, a

nucleon state jNi (and first excitation jN0i) and a vacuum
state j0i the coefficients read3

A0 ¼
jh0jΦjNij2

2mN
; A1 ¼

jh0jΦjN0ij2
2mN0A0

; ð16Þ

B0 ¼
hNjJjNi
2mN

; B1 ¼ A1

hN0jJjN0i
2mN0

; ð17Þ

B01 ¼
2Reðh0jΦjNihNjJjN0ihN0jΦ†j0iÞ

4mNmN
0A0

: ð18Þ

If for instance the transition matrix element hNjJjN0i
and therefore B01 is small, this does not imply a small
coefficient B1 and vice versa. Hence it is essential to
employ interpolators that minimize overlaps with higher
excitations (i.e. jh0jΦjN0ij ≪ jh0jΦjNij etc.) and to choose
tf sufficiently large.
For two-point functions excited states are suppressed by

factors e−ΔmNtf while in the three-point functions there exist
contributions ∝ e−ΔmNtf=2. If the ratio of the three-point
function over the two-point function is constant upon
varying t, this indicates a small B01e−ΔmNtf=2 term, but
still terms ðB1 − A1Þe−ΔmNtf may be present that can only
be isolated if tf is varied as well. Up to such corrections the
ratio reads

Rðt; tfÞ≡ C3ptðt; tfÞ
C2ptðtfÞ

¼ hNjJjNi
2mN

þ � � � ; ð19Þ

where hNjJjNi is the matrix element of interest. Fitting this
combination to a constant suffers from the obvious caveats
described above.

Recently, the summation method [64]

a
tf

Xtf−δt
t¼δt

Rðt; tfÞ ¼
hNjJjNi
2mN

þ c
a
tf
þOðe−ΔmNtf Þ ð20Þ

was advertised [65] as a more reliable alternative. In this
case corrections ∝ e−ΔmNtf=2 are removed, but a c=tf term is
introduced, adding a not necessarily small parameter c to
the fit function. We refrain from quoting the corresponding
results as direct fits to the known parametrization equa-
tions (14) and (15) are cleaner theoretically and utilize the
whole functional dependence of the data on t and tf . Since
the summation method appears to be very popular, we
discuss it in more detail in Sec. II C below.
First we discuss gA. In Fig. 4 we display the ratio

equation (19) of the renormalized (see Sec. III below) three-
point over the two-point function obtained from ensemble
VIII (mπ ≈ 150 MeV) at tf ¼ 15a ≈ 1.07 fm, tf ¼ 12a and
tf ¼ 9a. All three sets are compatible with constants,
however, the tf ¼ 9a ≈ 0.64 fm data are significantly
lower than the two other sets. This indicates a small B01

coefficient in Eq. (15). The effect of B1 − A1 (or higher
excitations) becomes visible at tf < 1 fm. Whenever B01

could not be resolved, such as in the case shown in the
figure, gA was obtained from a fit of the plateau to a
constant. Otherwise multiexponential fit equations (14)
and (15) were performed, where B1 was set to zero for
the ensembles with only one tf value. These multiexpo-
nential fits gave numbers compatible with those obtained
by fitting the tf ≳ 1 fm ratios to constants for gA as well as
for all the other couplings discussed in this article.
In all analyses presented in this article the fit ranges were

selected based on the goodness of the correlated χ2 values
and the stability of the results upon reducing the fit range,

FIG. 4 (color online). The renormalized ratio equation (19) for
the example of gA obtained on ensemble VIII (mπ ≈ 150 MeV,
a ≈ 0.071 fm) for three different values of tf . The shaded region
represents the result of a constant fit in the range t=a ∈ ½4; 11� to
the tf ¼ 15a data.

3In our normalization we assume jN0i to be a one-particle state.
However, the precise nature of jN0i does not have any impact on
the discussion below nor does it affect any of the arguments or the
analysis.
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i.e. increasing the minimal distance between the current
and the source-sink δt or reducing the number of tf values
entering the fit. A systematic error was then estimated by
varying the fit range, and the parametrization, e.g., allowing
for B1 ≠ 0 in cases where this parameter was consistent
with zero.
In some publications a dependence of the ratio of the

axial three-point over the two-point function on tf and on t
is reported that is much stronger than what we observe,
see, e.g., Refs. [23,28,36] while the results of, e.g.,
Ref. [39] are quite similar to ours. This motivates us to
compare two different smearing methods found in the
literature on ensemble IX: Jacobi smearing [66] and
Wuppertal smearing [59]. With the optimized root mean
squared smearing radius4 rRMS ≈ 0.58 fm both methods
give similar results, see the comparison between the Nsm ¼
225 Jacobi and the Nsm ¼ 400 Wuppertal smearing in
Fig. 5. In these cases the parameter B01 is statistically
compatible with zero. Without realizing additional tf values
we cannot determine B1 but, based on our detailed
investigations on ensembles III, IVand VIII, it is reasonable

to assume that the effect of this term is statistically
insignificant at tf ¼ 17a ≈ 1.03 fm.
For the Jacobi algorithm additionally we realize

Nsm¼75, reducing the smearing radius to rRMS≈0.37 fm
and rRMS ≈ 0.34 fm with and without APE smearing,
respectively. This results in some curvature due to the
effect of excited states, i.e. the parameter B01 now signifi-
cantly differs from zero. Comparing the two Nsm ¼ 75
results illustrates that APE smearing the spatial gauge links
is less important than varying the number of smearing
iterations. However, APE smearing further increases the
overlap with the physical ground state.
For tf → ∞ and t ≈ tf=2 obviously all four data sets must

approach the same asymptotic value. However, from the
comparison shown in Fig. 5 it is clear that with the two
inferior smearing functions tf needs to be chosen much
larger—or at least additional source-sink distances need to
be realized, to enable a determination of the parameters B1

and B01 and a subsequent extrapolation. Otherwise, in these
cases an incorrect result would be obtained: Clearly, the
minimal sensible value of tf does not only depend on the
statistical accuracy but also on the quality of the inter-
polator. For instance, an ideal interpolator Φ with 100%
ground state overlap would, up to issues related to the
locality of the action, eliminate the time dependence
altogether.
In Fig. 6 we show data for the renormalized scalar

density for the same mπ ≈ 150 MeV ensemble as in Fig. 4.
In this case B01 significantly differs from zero. We divide

FIG. 5 (color online). The ratio of the three- over the two-point
function for gA at tf ¼ 17a on ensemble IX (mπ ≈ 490 MeV,
a ≈ 0.060 fm) with different smearing methods.

FIG. 6 (color online). The combination C3ptðt; tfÞ=ðA0e−mNtf Þ
with tf=a ∈ f9; 12; 15g on ensemble VIII (mπ ≈ 150 MeV,
a ≈ 0.071 fm), multiplied by the appropriate renormalization

factors to give gMS
S ð2 GeVÞ. A0e−mNtf corresponds to the ground

state contribution to C2ptðtfÞ obtained from a simultaneous fit
according to Eqs. (14) and (15) to C3pt and C2pt. The fit ranges
were tf=a ∈ ½2; 26� for C2pt and δt ¼ 2a for C3pt where B1 is set
to zero. Also shown are the resulting fit curves for each tf . The

shaded region indicates the fitted value of gMS
S ð2 GeVÞ and the

corresponding statistical uncertainty.

4All three quarks within the interpolator Φ†, used to create a
state with the quantum numbers of the nucleon, are smeared
applying the same matrix A to δ sources. For the case of
Wuppertal smearing this matrix A with space and color indices
is iteratively defined in Eq. (11). We compute a gauge invariant
smearing function ψðrÞ ≥ 0: ψ2ðrÞ ¼ P

abjðAδaÞr;bj2, where the δ
source has only one nonvanishing entry, at the spatial origin and
of color a. The RMS radius is computed in the usual way:
r2RMS ¼ ½Pnr

2ψðnaÞ�=½PnψðnaÞ�, where the sum extends over
all (three-dimensional) lattice points and r2 ¼ P

i min½ðaniÞ2;
ðani − LÞ2�, taking account of the periodic boundary conditions.
In principle one could also, by analogy with quantum mechanics,
define rRMS with a weight factor ψðrÞ2, rather than ψðrÞ. Due to
the approximately Gaussian profile, this definition will result in a
radius that is smaller by a factor of about

ffiffiffi
2

p
than the numbers we

quote.
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the three-point functions by the asymptotic parametrization
of the two-point function A0e−mNtf , obtained from the
combined fit. The curves correspond to the multiexponen-
tial fit equations (14) and (15) with δt ¼ 2a. B1 is
compatible with zero. The figure demonstrates that varying
tf helps to obtain a reliable result. However, it is also clear
that within statistical errors the tf ¼ 15a > 1 fm data alone
would have given the correct value.
Finally, we discuss the tensor charge gT where the

relative errors are—in contrast to gS—not much bigger
than for gA but excited state contributions are clearly
present, as is illustrated in Figs. 7 and 8 for the examples
of mπ ≈ 150 MeV and mπ ≈ 290 MeV, respectively.
Again, the error bands shown are from multiexponential
fits. In Fig. 9 we compare the different smearing methods
for the case of gT . The effect is visible, however, much less
dramatic than for gA (see Fig. 5). In the case of gT the
smearing has only a minor effect on the shape as a function
of t but still moves the ratio vertically.
We conclude this section by investigating the lattice

spacing dependence of ratios of renormalized three- over
two-point functions. This is important as we have only

varied tf on three of our ensembles, albeit at three very
different pion masses. From these detailed investigations
we concluded that—within the statistics that we have been
able to accumulate and with the smearing employed—a
single value tf ≈ 1 fm was sufficient to obtain the correct
ground state results. No lattice spacing effects are visible
for effective masses, see Figs. 2 and 3. However, in
principle the situation may differ for three-point functions.
Therefore, we plot a comparison of the three-point func-
tion, normalized with respect to the two-point function
for two different pion masses for the couplings with the
highest statistical accuracy, gA and gT , respectively, in
Figs. 10 and 11; no significant dependence of the shape on
the lattice spacing can be recognized.
Similar excited state analyses to those detailed above

were carried out for all the couplings on all the different
ensembles displayed in Table I, also shown in Fig. 1.

C. Comparison with the summation method

The summation method [64] has recently gained in
popularity [65]. Fitting ratios in Rðt; tfÞ to a plateau

FIG. 9 (color online). The same as Fig. 5 for gT.

FIG. 7 (color online). The same as Fig. 6 for gT.

FIG. 8 (color online). The same as Fig. 7 on ensemble IV
(mπ ≈ 290 MeV, a ≈ 0.071 fm) and tf=a ∈ f7; 9; 11; 13; 15; 17g.

FIG. 10 (color online). Ratios of renormalized three- over two-
point functions, giving gA in the limit 0 ≪ t ≪ tf for four of our
ensembles.
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in t, see Eq. (19), there are corrections of order
expð−ΔmNtf=2Þ. Instead, the summation method com-
prises computing sums

Sðtf ; δtÞ ¼
Xtf−δt
t¼δt

Rðt; tfÞ ¼ cðδtÞ þ tf
a

�hNjJjNi
2mN

þ � � �
�
;

ð21Þ

see Eq. (20), and fitting these linearly in tf within an
interval tf ∈ ½tf;min; tf;max�. It is easy to see from Eqs. (14)
and (15) that the corrections to the slope, and thereby to
the desired matrix element, in this case are only of order
expð−ΔmNtfÞ. Therefore, for δt chosen sufficiently large
and tf;min ≥ tf;max=2, the convergence of the slope as a
function of tf;max towards the asymptotic value is faster
than the convergence of results of plateau fits as a
function of tf , at the price of introducing a second fit
parameter c. It is not clear why one would compare this
procedure to simple plateau fits: In that case, introducing
for each tf value additional fit parameters c0 ¼
B01 expð−ΔmNtf=2Þ and ΔmN , the leading dependence
on expð−ΔmNtf=2Þ can be removed too. If more than one
tf value is available, which is a prerequisite of the
summation method, it is also not obvious why one should
not attempt the combined fit equations (14) and (15),
rather than transforming (and reducing) the available data
into sums Sðtf ; δtÞ.
For gA, with our interpolator, differences between plateau

fits, our combined fit and the summation method cannot be
resolved statistically as all Rðt; tfÞ data for different tf and
t ≈ tf=2 basically agree within errors. For examples of these
ratios, see Figs. 4 and 10 and the Nsm ¼ 400 ratio shown
in Fig. 5. In Fig. 12 we compare the result of our combined
fit (including a systematic error from varying the fit range
and parametrization) to results of the summation method

equation (21) for the example of gMS
S ð2 GeVÞ on ensemble

IV. We employ two different minimal distances δt of the
summation region in t from the source and sink positions
and fit to different intervals tf ∈ ½tf;min; tf;max�. Indeed, the
summation method converges towards the asymptotic

result and the convergence rate improves for larger values
of tf;min. The same can be seen in Fig. 13 for the tensor

coupling gMS
T ð2 GeVÞ.

The form factors ~gTðQ2Þ and ~gPðQ2Þ at different vir-
tualitiesQ2 show a similar behavior. For the example of the
second Mellin moment of the isovector spin-independent
structure function hxiu−d, a comparison between the meth-
ods was presented in Ref. [57]. Also in that case we found
agreement between the results of the two methods within
the respective δt and tf windows of applicability, however,
the combined fits utilize more information than the sum-
mation method.

FIG. 12 (color online). Results on gMS
S ð2 GeVÞ obtained with

the summation method equation (21) for different fit ranges tf ∈
½tf;min; tf;max� and δt=a ∈ f2; 3g on ensemble IV (mπ ≈ 290 MeV,
a ≈ 0.071 fm). The error band corresponds to the result obtained
with the fit method detailed in Sec. II B, including our assignment
of systematic errors. All data are normalized with respect to the
MS scheme. The error of the renormalization factor is smaller by
more than one order of magnitude than any of the statistical errors
displayed and can be neglected.

FIG. 13 (color online). The same as Fig. 12 for gMS
T ð2 GeVÞ.

FIG. 11 (color online). The same as Fig. 10 for gMS
T ð2 GeVÞ.
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III. gV , gA AND THE RENORMALIZATION

Following the procedure outlined in Sec. II B, we obtain
the unrenormalized values glatA , glatS , glatP and glatT listed in
Table II. The induced couplings ~gT and g�P require an
extrapolation of nonforward three-point functions in the
virtualityQ2 and will be discussed in detail together with gS
and gT in Sec. V below. Here we concentrate on gV and gA.
We also list the pion masses and PCAC lattice quark
masses, obtained from the axial Ward identity

~m ¼ ∂4h0jA4jπi
2h0jPjπi ½1þ amðbA − bPÞ�; ð22Þ

where jπi is the physical pion state created by an inter-
polator of spin/flavor structure ðūγ5dÞ†, ∂μ denotes the
symmetrized lattice derivative, P ¼ ūγ5d is the local
pseudoscalar density and Aμ ¼ ūγ4γ5dþ acA∂μP is the
nonperturbatively improved axial current (P is automati-
cally order-a improved). cA was obtained in Ref. [67], the
improvement factor bA − bP is explained below and m
denotes the lattice vector quark mass defined through

m ¼ 1

2a

�
1

κ
−

1

κcrit

�
; ð23Þ

where κcrit is the value of the hopping parameter where the
PCAC mass vanishes. The lattice quark masses m can
easily be computed from the κ values given in Table I and
the critical hopping parameter values listed in Table III.

The PCAC quark masses ~m (listed in Table II) can be
translated into the MS scheme at 2 GeV, upon multiplica-
tion with ZA=ZP (see below). The pion decay constant is
obtained through

Flat
π ¼ h0jA4jπiffiffiffi

2
p

mπ

; ð24Þ

where we use the normalization that corresponds to the
experimental value Fπ ¼ ZAð1þ ambAÞFlat

π ≈ 91 MeV.
The lattice couplings extracted from the respective

matrix elements need to be renormalized too:

gX ¼ ZXð1þ ambXÞglatX ; ð25Þ

where X ∈ fS; P; V; A; Tg. The renormalization factors ZX
and the improvement coefficients bX depend on the inverse
lattice coupling β. No anomalous dimension is encountered
for gV and ~gT due to baryon number conservation and for gA
and g�P due to the PCAC relation. In the other cases we
quote the values in the MS scheme at a scale μ ¼ 2 GeV.
As detailed in Ref. [68], the renormalization factors are
first determined nonperturbatively in the RI’MOM scheme,
using the Roma-Southampton method [69], and then
converted perturbatively at three-loop order to the MS
scheme. The improvement factors ambX were computed in
Ref. [70] (X ∈ fS; P; V; Ag) to one loop and confirmed in
Refs. [71,72], where bT is given as well. These are very
close to unity, due to the smallness of am, and can be taken
into account perturbatively:

TABLE II. Values of the pion mass, the PCAC lattice quark mass equation (22), the unrenormalized pion decay constant Flat
π and the

couplings glatV , glatA , glatS and glatT . The errors are statistical and systematic (from varying the fit range and parametrization), respectively.

Ensemble amπ a ~m aFlat
π glatV glatA glatS glatT

I 0.11516(73)(11) 0.003676(38)(10) 0.05056(18)(07) 1.3714(24)(03) 1.566(23)(14) 1.59(17)(05) 1.239(19)(16)
II 0.15449(69)(26) 0.007987(44)(06) 0.04841(43)(05) 1.3461(87)(04) 1.473(31)(04) 1.15(19)(03) 1.275(35)(07)
III 0.15298(43)(16) 0.007964(32)(10) 0.04943(28)(03) 1.3387(17)(01) 1.550(15)(09) 1.35(07)(03) 1.264(14)(11)
IV 0.10675(51)(08) 0.003794(27)(06) 0.04416(37)(05) 1.3539(57)(05) 1.491(30)(02) 1.58(18)(11) 1.188(30)(11)
V 0.10465(37)(08) 0.003734(21)(04) 0.04449(12)(04) 1.3473(30)(05) 1.600(19)(09) 1.49(14)(03) 1.267(20)(05)
VI 0.10487(24)(04) 0.003749(16)(08) 0.04490(12)(04) 1.3445(14)(04) 1.585(17)(05) 1.51(09)(02) 1.221(17)(04)
VII 0.05786(51)(21) 0.001129(18)(04) 0.04048(48)(13) 1.3395(120)(04) 1.521(28)(02) 1.48(38)(05) 1.196(27)(20)
VIII 0.05425(40)(28) 0.000985(17)(08) 0.04029(30)(34) 1.3440(110)(17) 1.540(26)(03) 1.68(28)(13) 1.181(17)(07)
IX 0.15020(53)(06) 0.009323(21)(13) 0.04351(33)(03) 1.3141(15)(02) 1.489(14)(00) 1.57(07)(03) 1.201(22)(10)
X 0.13073(55)(28) 0.007005(23)(04) 0.04152(27)(03) 1.3190(23)(04) 1.492(15)(00) 1.42(10)(01) 1.249(20)(05)
XI 0.07959(25)(09) 0.002633(13)(04) 0.03651(33)(04) 1.3233(50)(06) 1.540(19)(09) 1.51(15)(02) 1.179(17)(18)

TABLE III. The critical hopping parameters κcrit, m ¼ 0 plaquette values P and renormalization constants [68] of the lattice currents
relative to the MS scheme at μ ¼ 2 GeV. The errors given include systematics.

β κcrit P ZA ZV ZMS
S ð2 GeVÞ ZMS

P ð2 GeVÞ ZMS
T ð2 GeVÞ

5.20 0.1360546(39) 0.53861 0.7532(16) 0.7219(47) 0.6196(54) 0.464(12) 0.8356(15)
5.29 0.1364281(12) 0.54988 0.76487(64) 0.7365(48) 0.6153(25) 0.476(13) 0.8530(25)
5.40 0.1366793(11) 0.56250 0.77756(33) 0.7506(43) 0.6117(19) 0.498(09) 0.8715(14)
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bA ¼ 1þ 0.15219ð5Þg2; bV ¼ 1þ 0.15323ð5Þg2;
bP ¼ 1þ 0.15312ð3Þg2; bS ¼ 1þ 0.19245ð5Þg2;
bT ¼ 1þ 0.1392ð1Þg2: ð26Þ

In this context we use the “improved” coupling
g2 ≡ −3 lnP ¼ 6=β þOðg4Þ, where P denotes the average
plaquette with the normalization P ¼ 1 at β ¼ ∞. The
corresponding chirally extrapolated values of P are dis-
played in Table III. Note that bm ¼ −bS=2 as well as the
combination bA − bP ≈ 0 were determined nonperturba-
tively [73] and for bS we use the interpolating formula of
this reference

bS ¼ ð1þ 0.19246g2Þ 1 − 0.3737g10

1 − 0.5181g4
; ð27Þ

instead of the one-loop expression given in Eq. (26).
For convenience we list, in addition to the critical

hopping parameter values, the renormalization factors ZX

between the lattice and the MS schemes determined in
Ref. [68] (and slightly updated here) in Table III. Note that
our ZA value at β ¼ 5.2 is by about 2% smaller than that
obtained in Ref. [56] from the Schrödinger functional. This
is indicative of the Oða2Þ difference between cutoff effects
of the two methods. This disagreement indeed reduces with
increasing β [74]. Also note that the ratios Z ¼ ZP=ðZSZAÞ
are consistent with the parametrization obtained from the
dependence of the PCAC quark mass on a valence quark
hopping parameter by the ALPHA Collaboration [73].
For all ensembles, in Fig. 14 we compare the glatV values,

multiplied by the improvement terms ½1þ ambVðβÞ�, to the
corresponding renormalization factors 1=ZVðβÞ of Table III
to confirm the relation gV ¼ ZVglatV ½1þ ambV þOða2Þ�.
We find perfect agreement within errors. The nonpertur-
bative determination of ZA is very similar to that of ZV .
Therefore, based on this independent validation of gV ¼ 1,

we would not expect any problems related to the renorm-
alization of gA either.
In Fig. 15 we show the renormalized axial coupling as

a function of the squared pion mass for all ensembles.
The different symbols encode the linear lattice extents
Lmπ and the colors the lattice spacings, see Fig. 1. Finite
lattice spacing effects cannot be resolved within our errors.
Comparing volumes similar in units of mπ , gA increases
with decreasing pion mass. It also increases, enlarging the
volume at a fixed pion mass: by about 5% increasing Lmπ

from 3.7 to 4.9 at mπ ≈ 425 MeV and by about 6% going
from Lmπ ≈ 3.4 to 4.2 at mπ ≈ 290 MeV. When further
pushing Lmπ from 4.2 to 6.7, gA remains constant within a
combined error of 1.7%. At the near-physical pion mass
the larger volume has an extent Lmπ ≈ 3.5 only, possibly
explaining the underestimation of the experimental value
by about 7%. Unfortunately, at this pion mass, we do not
have a volume with Lmπ > 4.1 at our disposal which
would have required simulating a spatial box of 803 points.
There is little effect, however, moving from Lmπ ≈ 3.5
down to Lmπ ≈ 2.8. One should not overinterpret this
though as it is conceivable that the volume dependence
could be small within some range of volumes, due to other
effects competing with Nπ and Δπ loop corrections.
Naively, one would expect volume effects mediated by
pion exchange to be proportional to m2

π when keeping the
lattice extent fixed in terms of the pion Compton wave-
length. Comparing the 290 MeV pion mass points to the
425 MeV points, there is no indication though for the
change being larger in the latter case, suggesting a more
complex behavior—at least for Lmπ < 4.
Fitting the Lmπ > 4.1 values of gAðm2

πÞ alone for
mπ < 430 MeV as a linear function of m2

π gives the line
drawn in Fig. 15, illustrating the remarks made above. The

FIG. 14 (color online). gV=ZV ≡ glatV ð1þ ambVÞ as a function
of m2

π for all ensembles. Symbols are as in Fig. 1. Shown as solid
bands are the 1=ZV values determined nonperturbatively [68]
(updated in Table III) for the three β values.

FIG. 15 (color online). gA as a function ofm2
π for all ensembles.

Symbols are as in Fig. 1: the square corresponds to Lmπ ≈ 6.7,
circles to Lmπ > 4.1, stars to Lmπ ∈ ½3.4; 4.1� and the triangle to
Lmπ ≈ 2.8. The line drawn to guide the eye represents the result
of a linear fit to the four mπ < 430 MeV points with Lmπ > 4.1.
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line suggests consistency with experiment. At the physical
point it reads gA ¼ 1.242ð15Þ, two standard deviations
below the known value. However, clearly, with few
ensembles at small quark masses and Lmπ > 4, we cannot
at present perform such an extrapolation with any con-
fidence, in particular as the slope is expected to change its
sign towards very small pion masses, see, e.g., Ref. [75] as
well as Sec. IV below.
Prior to investigating the finite volume behavior in more

detail in the next section, in Fig. 16 we put our Nf ¼ 2
results on gA in perspective, comparing these to recent
determinations obtained by other collaborations, namely
QCDSF [26], the Mainz group5 [28] and ETMC [29]
for Nf ¼ 2, LHPC [23] and RBC/UKQCD [27] for Nf ¼
2þ 1 as well as ETMC [35] and PNDME [39] for
Nf ¼ 2þ 1þ 1. Most errors displayed are larger than
ours, which include the systematics from the renormaliza-
tion factors, varying fit ranges and parametrizations. This
precision is in particular due to our large numbers of
measurements and the effort that went into the optimization
of the nucleon interpolators. We also indicate in the figure
as a shaded area the result of a chiral extrapolation of our
data on the ratio gA=Fπ , which we expect to be less affected
by finite volume effects, see Sec. IV.

Note that the recent QCDSF study [26] utilizes a
smearing different from ours for mπ > 250 MeV but has
significant overlap in terms of the gauge ensembles and the
values of ZA used. These results also carry quite small
errors, however, their gA values are systematically lower,
suggesting in these cases that smearing could be an issue,
see Fig. 5. The leftmost point of that study, which they
associate with mπ≈130MeV, was obtained using the same
smearing that we employ on a subset of ensemble VII
[mπðLÞ ≈ 160 MeV, Lmπ ≈ 2.8, mπð∞Þ ≈ 149.5 MeV].
Their result at this point (leftmost circle) is compatible
within errors not only with experiment but also with our
corresponding high statistics result (second red square from
the left).
Within errors all recent determinations (with the excep-

tion ofmπ > 250 MeV QCDSF results) are consistent with
our data. In particular, differences between including the
strange or even the charm quark or ignoring these vacuum
polarization effects are not obvious. Moreover, in all
studies the gA values appear to be constant or increasing
with decreasing pion mass and, where this could be
resolved, correlated with the lattice size. In none of the
simulations could any significant lattice spacing effects be
detected.

IV. FINITE SIZE EFFECTS AND
THE AXIAL CHARGE gA

Above we have seen a noticeable dependence of gA
on the lattice volume for Lmπ < 4.1. Chiral perturbation
theory not only predicts the functional form of the pion
mass dependence of hadronic observables but also their
finite volume effects, as long as mπ is small enough and
λ ¼ Lmπ sufficiently large. To leading nontrivial order
[76,77], the finite size effects on the pion mass read

mπðLÞ −mπ

mπ
¼ 2

Nf
hðLmπ; mπÞ; ð28Þ

hðλ; mπÞ ¼
m2

π

16π2F2

X
n≠0

K1ðλjnjÞ
λjnj ; ð29Þ

where F is the pion decay constant in the chiral limit,
mπ ¼ mπð∞Þ is the infinite volume pion mass, n ∈ Z3 are
integer component vectors and K1ðxÞ is the modified
Bessel function of the second kind.
The only parameter appearing in Eq. (28), apart from

F ¼ 85.8ð6Þ MeV [3,78], is the infinite volume pion mass.
Going beyond this order of chiral perturbation theory
[79,80], several low energy constants (LECs) are encoun-
tered, namely l̄i, i ¼ 1; 2; 3; 4 at Oðp4Þ and ~riðmρÞ, i ¼
1; 2;…; 6 atOðp6Þ (next-to-next-to-leading order, NNLO).
We use the parametrization with NNLO chiral perturbation
theory input of Ref. [80] to investigate finite volume effects
of the pion mass, setting F ¼ 86 MeV and using the FLAG

FIG. 16 (color online). gA as a function of m2
π : our results

[RQCD, nonperturbatively improved (NPI) Wilson clover] in
comparison to other results (fermion action used in brackets).
Nf ¼ 2: QCDSF [26] (NPI Wilson clover), Mainz5 [28] (NPI
Wilson clover), ETMC [29] (twisted mass). Nf ¼ 2þ 1: LHPC
[23] (HEX-smeared Wilson clover), RBC/UKQCD [27] (domain
wall). Nf ¼ 2þ 1þ 1: ETMC [35] (twisted mass), PNDME [39]
(Wilson clover on a HISQ staggered sea). Also indicated as a
shaded area is the result from extrapolating our gA=Fπ data to the
physical point, see Sec. IV.

5For each of the ensembles studied by the Mainz group two
results are given in their article, obtained from plateau fits and
from the summation method. We include the summation results
since this appears to be their preferred method.
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values [78] l̄3 ¼ 3.41ð41Þ, l̄4 ¼ 4.62ð22Þ for these two
LECs. For l̄1, l̄2 and ~ri we take the central values given in
Ref. [81] that were also used in Ref. [80].
We are now in a position to estimate the infinite volume

pion masses. We do this by matching the NNLO finite size
formula [80] in each case to the pion mass obtained on the
largest available volume. Extrapolating this to infinite
volume lowers the central value of the pion mass on
ensemble III from 422.2 MeV by half a standard deviation
to 421.5 MeV, that on ensemble VI (289.5 MeV) by
0.02 MeV and that on ensemble VIII from 149.7 MeV
by one sixth of a standard deviation to 149.5 MeV. Having
eliminated the free parameter by this matching, we can
compare the combination ½mπðLÞ −mπ�=m3

π to the leading
order chiral expectation hðλ; mπÞ=m2

π , see Eqs. (28) and
(29), and the NNLO formula of Ref. [80]. This comparison
is shown in Fig. 17. Note that we omit the mπ ≈ 150 MeV
data from the figure. In this case ½mπð3.42 fmÞ −mπ�=
m3

π ≈ 3 GeV−2, well off the scale of the figure, while the
leading order prediction equation (28) amounts to
0.20GeV−2 and the NNLO prediction [80] to 0.27GeV−2.
On one hand the expansion seems to break down around
Lmπ ≈ 3.5 where the differences between the leading order
and NNLO curves become large. Already the leftmost point
shown in the figure appears to deviate from the predictions.
On the other hand, in the safe Lmπ > 4 region, the exponen-
tially small finite size effects cannot be resolved within the
precision of the lattice data.
In Refs. [76,77] the leading order finite size expression

of the pion decay constant is given too:

FπðLÞ − Fπ

Fπ
¼ −2NfhðLmπ; mπÞ: ð30Þ

The leading order finite volume effect of the axial charge in
SU(2) chiral perturbation theory contains the same hðλ; mπÞ
term [82–84]:

gAðLÞ − gAð∞Þ
g0A

¼ −4hðLmπ; mπÞ þDðL;mπ;Δ0Þ;
ð31Þ

where g0A ¼ gAð∞Þ at mπ ¼ 0 and we have suppressed
the pion mass dependence of gAðLÞ. The correction
DðL;mπ;Δ0Þ has been computed taking into account also
transitions between the nucleon and the Δð1232Þ resonance
in Ref. [84], using the small scale expansion (SSE)
technique [85]. Consequently, it depends on the mass
difference Δ0 between the nucleon and the real part of
the Δ pole as well as on the squares of the pion-nucleon-
nucleon and pion-nucleon-Δ couplings and the ratio of the
Δ axial charge over the nucleon axial charge g01=g

0
A. In the

chiral limit the pion-nucleon-nucleon and pion-nucleon-Δ
couplings can be reexpressed in terms of g0A, see Eq. (8),
and the axial transition charge c0A, respectively. In the
SUð2NfÞ quark model g01=g

0
A ¼ 9=5. Note that, although

this may not be obvious immediately, the result of Ref. [82]
is identical to the expression of Ref. [84] in terms of the
volume-dependence equation (31).
In Ref. [26] an approximate cancellation between

different contributions to DðL;mπ;Δ0Þ over a large range
of L and mπ values was observed, which motivated the
authors to study the ratio gA=Fπ . From Eqs. (30) and (31)
we obtain to leading one-loop order [i.e. Oðϵ3Þ in the
SU(2) SSE [85]]

gAðLÞ
FπðLÞ

¼ gAð∞Þ
Fπ

1 − g0A
gAð∞Þ ½4hðLÞ −DðL;Δ0Þ�

1 − 4hðLÞ :

ð32Þ

For FπðLÞ also the next-to-leading order and NNLO
corrections are known [80], however, to be consistent
in terms of the order of the SSE, we do not add these
here. We set g0A ¼ 1.21 (see below), c0A ¼ 1.5 [86], g01 ¼
2.2 ≈ ð9=5Þg0A and Δ0 ¼ 272 MeV [87]. In Fig. 18 we
show the resulting curves for the infinite volume pion
masses mπ ¼ 149.5 MeV, mπ ¼ 289.5 MeV and mπ ¼
421.5 MeV as functions of Lmπ . The normalization
gAð∞Þ=Fπ will depend on the pion mass and is adjusted
to match the three data sets while the error band is from
varying g0A=gAð∞Þ ∈ ½0.9; 1.1� within Eq. (32). Indeed,
finite volume effects are much reduced, relative to those
for gA visible in Fig. 15, and these are also broadly
consistent with the predicted behavior.
Finally, in Fig. 19 we show the ratio gAðLÞ=FπðLÞ

as a function of the squared pion mass, together with
a linear fit to the mπ < 300 MeV data, omitting the

FIG. 17 (color online). The combination ½mπðLÞ −mπ�=m3
π as a

function of the linear lattice extent, in comparison with the
leading order [76] [Eq. (28)] and NNLO [80] chiral perturbation
theory expectations.

GUNNAR S. BALI et al. PHYSICAL REVIEW D 91, 054501 (2015)

054501-12



Lmπ < 3.4 data point (ensemble VII). This fit, with a
reduced χ2=NDF¼5.9=4, gives gA=Fπ ¼13.88ð29ÞGeV−1

at mπ ¼ 135 MeV which compares well with the
experimental result gA=Fπ ¼ 13.797ð34Þ. Using Fπ ¼
92.21ð15Þ MeV [3] at the physical point as an input, this
gives gA ¼ 1.280ð27Þð35Þ, where the second error corre-
sponds to the overall uncertainty of assigning physical
values to our lattice spacings [54] (not shown in the figure).
We remark that towards the chiral limit gA decreases with
decreasing pion mass while the observed increase of the
ratio gA=Fπ is entirely due to an also decreasing pion decay
constant. Towards large pion masses Fπ will continue to
increase while gA eventually starts decreasing again.

From Fπ=F ¼ 1.0744ð67Þ [78] we obtain the ratio
gA=g0A ¼ 1.050ð14Þ, giving g0A ¼ 1.211ð16Þ using gA ¼
1.2723ð23Þ [3]. Using the normalization conventions

gAðmπÞ ¼ g0A

�
1þ m2

π

16π2F2
b̄þ � � �

�
; ð33Þ

Fπ ¼ F

�
1þ m2

π

16π2F2
l̄4 þ � � �

�
ð34Þ

for the leading chiral corrections, one obtains

gAðmπÞ
Fπ

¼ g0A
F

þ g0A
16π2F3

ðb̄ − l̄4Þm2
π þ � � � : ð35Þ

From our fit we find b̄ − l̄4 ¼ −1.41ð36Þ and, using l̄4 ¼
4.62ð22Þ [78], arrive at the value b̄ ¼ 3.21ð42Þ > 0 for this
LEC: gA increases with the pion mass [as is also obvious
from the ratio gAð135 MeVÞ=g0A > 1 above]. Note how-
ever that gA is expected to start decreasing towards larger
pion masses, due to the effect of the nearby Δð1232Þ
resonance [75,88]. This is also reflected in the lattice data,
see Fig. 15.
We did not detect any lattice spacing effects within our

statistical errors and therefore so far have ignored these.
Not being able to resolve such differences does not mean
they are absent and we will readdress this issue in the
summary Sec. VI.

V. THE SCALAR, TENSOR AND
PSEUDOSCALAR CHARGES

The scalar and tensor couplings can be obtained directly
in the forward limit of Eqs. (1) and (5) while the induced
tensor and pseudoscalar charges are extracted from
extrapolating the respective form factor equations (3)
and (4) to small virtualities. We will also determine the
value of the induced pseudoscalar form factor g�P ¼
~gPðQ2Þ at the virtuality Q2 ¼ −q2 ¼ 0.88m2

μ ≈ 9.82×
10−3 GeV2, corresponding to muon capture [18].

A. The scalar charge gS
In Fig. 20 we show our results for gS as a function of

m2
π . Within their large errors the mπ < 430 MeV data are

consistent with a linear extrapolation and we find no lattice
spacing or volume dependence. The result of such an
extrapolation to the physical point, fitting the six mπ <
300 MeV data points with Lmπ > 3.4 is shown in the

figure. We find gMS
S ð2 GeVÞ ¼ 1.02ð18Þ for a fit with

χ2=NDF ¼ 0.48=4.
The charge gS can, via the conserved vector charge

relation, also be obtained as the ratio of the mass splitting

FIG. 18 (color online). The ratio gAðLÞ=FπðLÞ as a function of
the linear lattice extent for three different pion masses. The error
bands are the predictions of Eq. (32), multiplied by constants
gAð∞Þ=Fπ to match the three data sets. The widths of the error
bands are from varying the ratio g0A=gAð∞Þ ∈ ½0.9; 1.1�.

FIG. 19 (color online). gA=Fπ as a function of m2
π for all

ensembles, together with a linear fit to the low mass points,
omitting the smallest volume (ensemble VII). Symbols are as
in Fig. 1.
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of proton and neutron in the absence of electromagnetic
interactions over the difference of light quark masses.
The determination of this requires either further assump-
tions or lattice simulations of QCD plus (Q)ED with
electrically charged quarks. Recently, such lattice input
was used in Ref. [89] to give gS ¼ 1.02ð11Þ. However,
not all systematic uncertainties were accounted for in
the error estimate. The central value agrees with our direct
determination.
In Fig. 21 we compare our results on gS to recent lattice

determinations by other groups, namely LHPC [32],
employing Nf ¼ 2þ 1 HEX-smeared Wilson-clover fer-
mions, PNDME [39], using clover valence fermions on top
of a Nf ¼ 2þ 1þ 1 highly improved staggered quark

(HISQ) sea and ETMC6 [40], using Nf ¼ 2þ 1þ 1
twisted mass fermions. The errors of LHPC are quite large
while there appears to be some tension between our results
and those of PNDME. Notwithstanding this, around any
single pion mass value all results are compatible with each
other as well as with our extrapolation on the level of two
standard deviations.

B. The tensor charge gT
In Fig. 22 we show our results on gT . Again, we cannot

detect any lattice spacing or volume effects. Note that
for our three a ≈ 0.071 fm points at mπ ≈ 290 MeV
(m2

π ≈ 0.084 GeV2), the central value for the largest vol-
ume (Lmπ ≈ 6.7) lies in between those for the Lmπ ≈ 3.4
and Lmπ ≈ 4.2 lattices. Again, we show a linear extrapo-

lation to the physical point which gives gMS
T ð2 GeVÞ ¼

1.005ð17Þ with χ2=NDF ¼ 6.0=4. Unlike in the case of gA
we regard such an extrapolation of gT as safe since there
are no indications of finite volume effects and our lowest
mass point mπ ≈ 150 MeV is already very close to the
physical pion mass mπ ¼ 135 MeV. This conclusion is
also supported by Fig. 23 where we compare our results to
those of ETMC [31] (Nf ¼ 2 twisted mass fermions), RBC/
UKQCD [30] (Nf ¼ 2þ 1 domain wall fermions), LHPC
[32] (Nf ¼ 2þ 1 HEX-smeared Wilson-clover fermions),
PNDME [39] (Wilson clover on a HISQ staggered Nf ¼
2þ 1þ 1 sea) and ETMC [31] (Nf ¼ 2þ 1þ 1 twisted
mass fermions). No correlation with the sea quark content,
volume, lattice action or lattice spacing is obvious.
Moreover, all these determinations are statistically consis-
tent with each other as well as with our extrapolation.

FIG. 21 (color online). gMS
S ð2 GeVÞ as a function of m2

π: our
results (RQCD, NPI Wilson clover) in comparison to other
results. Nf ¼ 2þ 1: LHPC [32] (HEX-smeared Wilson clover).
Nf ¼ 2þ 1þ 1: PNDME [39] (Wilson clover on a HISQ
staggered sea) and ETMC6 [40] (twisted mass). Also included
is the linear extrapolation of our data points.

FIG. 22 (color online). gMS
T ð2 GeVÞ as a function of m2

π for all
ensembles. Symbols are as in Fig. 1. Also shown is a linear
extrapolation in m2

π to the physical point.

FIG. 20 (color online). gMS
S ð2 GeVÞ as a function of m2

π for all
ensembles. Symbols are as in Fig. 1. Also shown is a linear
extrapolation in m2

π to the physical point.

6At mπ ≈ 370 MeV we show their tf ¼ 14a ≈ 1.14 fm result.
In this reference also Nf ¼ 2 results at mπ ≈ 126 MeV can
be found: 1.01(46) at t ¼ 12a ≈ 1.13 fm and 1.63(76) at
t ¼ 14a ≈ 1.32 fm.
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C. The induced tensor charge ~gT
The induced tensor coupling ~gT ¼ κu−d ≈ κp − κn ≈

3.706 is well determined experimentally. Computing ~gT
requires an extrapolation of lattice data obtained at virtual-
ities Q2 > 0 to Q2 ¼ 0. At small Q2 one can expand

gVðQ2Þ ¼ 1 −
r21
6
Q2 þOðQ4Þ; ð36Þ

~gTðQ2Þ ¼ ~gTð0Þ
�
1 −

r22
6
Q2 þOðQ4Þ

�
; ð37Þ

where the proton isovector Dirac and Pauli radii r1 and r2
diverge as the pion mass approaches zero.7 It is well known
that the Q2 dependence exhibits a substantial curvature,
see, e.g., Refs. [35,38,39,41,42,45,90]. This means small
Q2 values are required for a controlled extrapolation, in
particular at small quark masses where the coefficient r22 of
the leadingQ2 term becomes large. We expect this effect to
partially cancel from the ratio

~gTðQ2Þ
gVðQ2Þ ¼

~glatT ðQ2Þ
glatV ðQ2Þ ⟶

Q2→0
~gT: ð38Þ

Therefore, one of our strategies is to extrapolate this ratio as
a linear function of Q2 to Q2 ¼ 0.

Another parametrization that incorporates the curvature
is a dipole fit

~gTðQ2Þ ¼ ~gTð0Þ
ð1þQ2=m2

VÞ2
: ð39Þ

Taylor expanding this expression, the linear approximation
equation (37) should be valid for Q2 ≪ m2

V ≡ 12=r22. We
show both extrapolations, Eqs. (38) and (39) for our three
mπ ≈ 290 MeV volumes (ensembles IV, V and VI, see
Fig. 1) in Fig. 24. The ~gT=gV data (shown in the left panel)
are compatible with a linear behavior down to our largest
Q2 ≈ 0.6 GeV2 ≈m2

ρ value, however, in this case we
restrict ourselves to the range Q2 < 0.4 GeV2 to keep
Q2 < m2

V ≈m2
ρ. Note that for Lmπ ¼ 3.4 only one point

lies within this window, so no extrapolation is possible. In
the right panel we show the corresponding dipole fits to
the Q2 < 0.6 GeV2 data. We see no significant volume
dependence between the Lmπ ¼ 3.4; 4.2 and 6.7 data.
Moreover, all five extrapolated values are consistent with
each other.
We repeat this procedure for all ensembles and take the

central value from dipole fits, adding in quadrature to the
statistical error an uncertainty from taking the difference
between using the two extrapolation methods and varying
the fit range. The resulting induced tensor charges are shown
in Fig. 25 as a function of m2

π . Due to the different volumes
the numbers of points within the fit ranges vary consid-
erably, thus giving rise to significantly fluctuating error
sizes. We extrapolate the mπ < 300 MeV, Lmπ > 3.4 data
linearly to the physical point, obtaining ~gT ¼ 3.00ð8Þ, which
is significantly smaller than the experimental value 3.706.
While there could be a deviation between this value and the
one relevant for the isospin symmetric approximation, one
would not expect this to exceed eight of our standard
deviations. It is interesting that results obtained at larger
pion masses are closer to experiment than our lowest mass
point, which dominates the extrapolation. Small volumes
result in a larger low-momentum cutoff and a significant loss
of precision which complicates resolving the volume
dependence. In general, the central values increase with
the lattice size and this deserves further study.
In Fig. 26 we compare our results on ~gT to recent lattice

determinations by other groups, namely QCDSF [42], the
Mainz group8 [28,46] and ETMC [43] for Nf ¼ 2, LHPC
[45] and RBC/UKQCD [38] for Nf ¼ 2þ 1 as well as
ETMC [35] and PNDME [39] for Nf ¼ 2þ 1þ 1. With
the exception of one LHPC point that carries one of the
larger error bars, all the central values are below the
experimental result. The figure does not include recent
CSSM/QCDSF/UKQCD Nf ¼ 2þ 1 stout link NPI
Wilson-clover data that, extrapolated to the physical point,
give ~gT ¼ 2.8ð3Þ [44]. Most points with a precision better

FIG. 23 (color online). gMS
T ð2 GeVÞ as a function of m2

π: our
results (RQCD, NPI Wilson clover) in comparison to other
results. Nf ¼ 2: ETMC [31] (twisted mass). Nf ¼ 2þ 1: RBC/
UKQCD [30] (domain wall), LHPC [32] (HEX smeared Wilson
clover).Nf ¼ 2þ 1þ 1: PNDME [39] (Wilson clover on a HISQ
staggered sea), ETMC [31] (twisted mass). Also included is the
linear extrapolation of our data.

7Note that the electric Sachs form factor reads GEðQ2Þ ¼
gVðQ2Þ −Q2=ð4m2

NÞ~gTðQ2Þ. Therefore, in the isospin symmetric
limit, the squared charge radius is given as r2p ¼ r21 þ 3~gT=ð2m2

NÞ. 8See footnote 5.

NUCLEON ISOVECTOR COUPLINGS FROM Nf ¼ 2 … PHYSICAL REVIEW D 91, 054501 (2015)

054501-15



than 10% are hard to reconcile with the experimental value.
At least in part this may be related to finite volume effects
that we are not yet able to resolve sufficiently well.
Discretization effects will be addressed in Sec. VI.

D. The pseudoscalar couplings g�P, gπNN and gP
From Eq. (9) we expect, up to OðaQÞ discretization

errors,

~gPðQ2Þ
gAðQ2Þ ¼

~glatP ðQ2Þ
glatA ðQ2Þ ¼

4c2N
m2

π þQ2
þ � � � ; ð40Þ

where cN → mN as mπ → 0 and the ellipses represent
corrections due to singularities at Q2 < −m2

π , i.e. terms
that are regular at Q2 ≥ −m2

π . Pole dominance implies
neglecting these terms and setting cN ¼ mN . In Fig. 27 we
test this model assumption by plotting the combination

½~gPðQ2Þ=gAðQ2Þ�ðm2
π þQ2Þ=ð4m2

NÞ as a function of
m2

π þQ2. The data obtained at different pion masses,
volumes and lattice spacings appear to follow an almost
universal shape, starting out at values around 0.9 at m2

π þ
Q2 ≈ 1 GeV2 and decreasing towards 0.6 for m2

π þQ2≈
0.1 GeV2. These deviations of the ratio from unity illustrate
that at small virtualities terms other than the contribution of
the leading pole cannot be neglected. A similar observation
was reported in Refs. [37,38] where for Q2 > 0.2 GeV2

and different quark mass values ∼0.8 were obtained for this
ratio. Here, we find deviations from single pole dominance

FIG. 25 (color online). The isovector induced tensor charge
~gT ¼ κu−d as a function of m2

π . Symbols are as in Fig. 1. Also
shown is a linear extrapolation in m2

π to the physical point.

FIG. 26 (color online). The isovector anomalous magnetic
moment ~gT as a function of m2

π: our results (RQCD, NPI Wilson
clover) in comparison to other results (fermion action used in
brackets). Nf ¼ 2: QCDSF [42] (NPI Wilson clover), Mainz8

[28,46] (NPI Wilson clover), ETMC [43] (twisted mass).
Nf ¼ 2þ 1: LHPC [45] (HEX smeared Wilson clover), RBC/
UKQCD [38] (domain wall). Nf ¼ 2þ 1þ 1: ETMC [35]
(twisted mass), PNDME [39] (Wilson clover on a HISQ stag-
gered sea). Also included is the linear extrapolation of our data.

FIG. 24 (color online). ~gTðQ2Þ=gVðQ2Þ (left panel) and ~gTðQ2Þ as functions of the virtuality Q2 at mπ ≈ 290 MeV for three volumes
(ensembles IV, V and VI).
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to increase towards low momenta, thereby ruling out that a
dominant part of these violations can be ascribed to lattice
spacing effects.
The induced pseudoscalar coupling for muon capture g�P

is defined in Eq. (10). It can be obtained, extrapolating
the induced pseudoscalar form factor ðmμ=mNÞ~gPðQ2Þ to
Q2 ¼ 9.82 × 10−3 GeV2. We employ a phenomenological
parametrization that incorporates the leading pole:

mμ

mN
~gPðQ2Þ ¼ c1

m2
π þQ2

þ c2 þ c3Q2; ð41Þ

where the parameters c1 < 4m2
Ng

0
A, c2 and c3 are fitted

separately for each ensemble. The terms involving c2
and c3 turn out to be necessary to approximate
corrections to the pole ansatz, which are regular at
positive virtualities.
We display the resulting extrapolations for three pion

masses (ensembles III, VI and VIII) in Fig. 28. We are not
able to reliably determine the above form factor for Q2 >
1 GeV2 which means results cannot be obtained for the
small volume ensembles II, IX and X, where less than four
data points are within this range. We show the remaining
eight results in Fig. 29 as a function of the squared pion
mass. A phenomenological fit of the mπ < 300 MeV,
Lmπ > 3.4 data to the functional form

g�Pðm2
πÞ ¼

a1
m2

π þ a2
; ð42Þ

with parameters a1 and a2, gives g�P ¼ 8.40ð40Þ at the
physical point with a χ2=NDF ¼ 6.4=4. Since our nearly
physical mπ ≈ 150 MeV point dominates the extrapolated
value, this is robust against changes of the parametrization.
The number obtained compares well with the recent
experimental determination of the MuCap Collaboration
[91] g�P ¼ 8.06ð55Þ and also with the determinations g�P ¼
8.44ð23Þ [18] or g�P ¼ 8.21ð9Þ [16] from heavy baryon
chiral perturbation theory or g�P ¼ 8.29þ24

−13ð52Þ [92] from
covariant baryon chiral perturbation theory. Previously,
the RBC and UKQCD collaborations [38] obtained
g�P ¼ 6.6ð1.0Þ, extrapolating Nf ¼ 2þ 1 domain wall fer-
mion results to the physical point.
The flavor changing coupling constant gπNN between

the nucleon and the charged pion is defined as the residue
of the pole of the induced pseudoscalar form factor at
Q2 ¼ −m2

π:

FIG. 29 (color online). Chiral extrapolation of the induced
pseudoscalar coupling g�P. The error band corresponds to the
parametrization equation (42). Symbols are as in Fig. 1.

FIG. 28 (color online). Extrapolation of the induced pseu-
doscalar form factor to the muon capture point Q2 ¼ 0.88m2

μ

(vertical line) for three values of the pion mass (ensembles
III, VI and VIII). The error bands correspond to fits
according to Eq. (41).

FIG. 27 (color online). The ratio of form factors
~gPðQ2Þ=gAðQ2Þ, normalized with respect to the single pole
dominance expectation, as a function of the virtuality Q2. Data
from all 11 ensembles are plotted on top of each other. Symbols
are as in Fig. 1. Deviations from unity quantify violations of the
pole dominance model.
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gπNN ≡ lim
Q2→−m2

π

m2
π þQ2

4mNFπ
~gPðQ2Þ: ð43Þ

Implementing the above definition requires an extrapola-
tion of lattice data, which is limited to positive virtualities.
Figure 27 demonstrates that corrections to the pole domi-
nance model become significant towards small virtualities.
Assuming the parametrization equation (41), we obtain
gπNN ¼ c1=ð4mμFπÞ, which then needs to be extrapolated
to the physical pion mass. However, it is already obvious
from Fig. 28 that a controlled extrapolation of Q2 ≳
0.1 GeV2 data to negative virtualities is hardly possible.
Indeed, playing around with different parametrizations of
~gPðQ2Þ that assume a pole at Q2 ¼ −m2

π , values ranging
from gπNN ∼ 8 up to gπNN ∼ 14 can easily be produced
from our lattice data.
The Goldberger-Treiman relation gπNN ≈mNgA=Fπ does

not require such an extrapolation, however, it is subject to
Oðm2

πÞ corrections. The relative difference between gπNN
defined in Eq. (43) and this approximation is known as the
Goldberger-Treiman discrepancy

ΔπN ¼ 1

gπNN

�
gπNN −mN

gA
Fπ

����
mπ¼135 MeV

�
: ð44Þ

Using the experimental values of mN , gA and Fπ , the
Goldberger-Treiman relation amounts to gπNN ≈ 12.96ð3Þ
while determinations of gπNN fromNπ scattering data result
in values gπNN ¼ 14.11ð20Þ [93], gπNN ¼ 13.76ð8Þ [94] or
gπNN ¼ 13.69ð19Þ [95]. We remark that obtaining these
values also involves extrapolating in Q2. Combining the
last number quoted above with the Goldberger-Treiman
relation translates into ΔπN ¼ 0.053ð13Þ. Experimental

data, both from nucleon-nucleon scattering and pionic
atoms, have been analyzed systematically in the framework
of covariant baryon chiral perturbation theory in Ref. [96]
(see also references therein), with the central values
obtained for gπNN ranging from 13.0 to 14.1, depending
on the experimental input and the method used (with or
without including the Δ resonance).
In Fig. 30 we plot the combination

mN
gA
Fπ

¼ mN
glatA
Flat
π

¼ gπNN ½1þOðm2
πÞ� ð45Þ

versus m2
π , see Eq. (8). As demonstrated in Sec. IV, finite

volume effects between gA and Fπ partially cancel, how-
ever, the nucleon mass adds a new source of volume
dependence. Extrapolating the combination equation (45)
to the physical pion mass corresponds to the Goldberger-
Treiman approximation while extrapolating it to mπ ¼ 0
gives the pion-nucleon-nucleon coupling in the chiral limit.
A linear fit to the Lmπ > 4.1 data (indicated as a line)
results in gπNNðmπ ¼ 0Þ ¼ 13.62ð32Þ. This is broadly
consistent with the phenomenological values [93–95] that
can differ by Oðm2

πÞ terms. Note, however, that this fit
overestimates the known value mNgA=Fπ ¼ ≈12.96 at
the physical pion mass by two standard deviations. We
conclude that while our results are consistent with expect-
ations, predicting gπNN at mπ > 0 or determining the
Goldberger-Treiman discrepancy ΔπN requires different
methods, not least due to the significant violations of
single pole dominance illustrated in Fig. 27.
Finally, in Fig. 31 we show the pseudoscalar charge,

obtained from the first equality in Eq. (8):

FIG. 30 (color online). The Goldberger-Treiman ratio
mNgA=Fπ as a function of the squared pion mass. Symbols
are as in Fig. 1. The line indicates a linear extrapolation of Lmπ >
4.1 data. The experimental values for gπNN (black triangles) are
from Refs. [93–95].

FIG. 31 (color online). The pseudoscalar charge gMS
P ð2 GeVÞ,

defined in Eq. (46), as a function of the squared pion mass.
Symbols are as in Fig. 1. The physical point (Phys.) is
obtained dividing the experimental value of mNgA by the MS-
scheme quark mass of Ref. [78]. The 1=m2

π curve is drawn to
guide the eye.
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gMS
P ð2 GeVÞ ¼ ZP

mN

~m
glatA ð1þ ambAÞ: ð46Þ

Note that order-a improvement is already incorporated into
our definition equation (22) of the lattice PCAC mass ~m,
which is why the coefficient bA rather than bP appears
above. ZP, κcrit and P [needed to compute ambA, see
Eqs. (23) and (26)] can be found in Table III and glatA , the
nucleon and lattice PCAC masses in Table II. We expect gP
to diverge like 1=mud and thus, using the Gell-Mann–
Oakes–Renner relation, to be proportional to 1=m2

π . Such a
curve is drawn to guide the eye. Using the Nf ¼ 2 value

mMS
ud ð2 GeVÞ ¼ 3.6ð2Þ MeV of the FLAG Working Group

[78], from Eq. (8) we expect gMS
P ð2 GeVÞ ¼ 332ð19Þ at

the physical point. Our data are broadly consistent with
this value: obviously our quark mass, extrapolated to
mπ ¼ 135 MeV, is consistent with the FLAG average.

VI. SUMMARY

We have computed all nucleon charges that may be
relevant for nonstandard model (and standard model)
transitions [6–8] between the neutron and the proton in
lattice simulations with Nf ¼ 2 mass-degenerate flavors
of sea quarks. These isovector couplings are by definition
valence quark quantities. Therefore, we do not expect
significant effects from including strange (or charm) sea
quarks. This claim is substantiated by comparison with
lattice results of other groups, some of which have included
more sea quark flavors, see Figs. 16, 21, 23 and 26. In
contrast to this, the chiral extrapolation may be an issue.
Therefore, we have included a point at mπ ≈ 150 MeV,
close to the physical pion mass. Differences between the
numbers obtained at this mass point and our final results,
extrapolated to mπ ¼ 135 MeV, were all much smaller
than the errors encountered at mπ ≈ 150 MeV. This means
these extrapolations are under control. Finite volume effects
were investigated too and found to be significant in the case
of the axial coupling gA and, by implication, the pseudo-
scalar and induced pseudoscalar form factors. These could
be much reduced, considering ratios over the pion decay
constant Fπ , which shares a similar finite volume behavior.
Consistency checks were made, regarding the renormali-
zation. The known results for gV and gA were reproduced.
The charges, extrapolated to the physical point, as well

as gA in the chiral limit are summarized in Table IV. The
first errors displayed contain our statistical and systematic
uncertainties related to fit ranges and parametrizations
used. The second errors are estimates of the maximally
possible discretization effects. These were obtained as
follows. To leading order in a, assuming OðanÞ discretiza-
tion effects, we can write gðaÞ ¼ gð0Þ þ δgan=fmn ¼
gð0Þ þ Δag, where gð0Þ denotes the continuum limit,
gðaÞ the result for this coupling determined at a fixed
lattice spacing and the dimensionless constant δg is

unknown. We varied the lattice constant from a≈
0.081 fm down to a ≈ 0.060 fm. The nondetection of
any discretization effect means that our error on a coupling
g is bigger than the associated variation: Δg >
ð0.081n − 0.060nÞjδgj. Our extrapolated results are domi-
nated by points at a ¼ 0.071 fm, meaning that we cannot
exclude lattice corrections Δag ¼ 0.071njδgj < 0.071nΔg=
ð0.081n − 0.060nÞ ≈ 1.7Δg (n ¼ 2). Therefore, we multi-
ply our errors by this factor. For the induced couplings g�
and ~gT the leading discretization effects are linear in a
which is why in these cases we allow for discretization
errors of 3.7Δg.
The errors not related to the lattice spacing vary

significantly between different couplings. Therefore, our
estimates of lattice spacing effects—if obtained as detailed
above—become large for some of the channels. However,
there is no obvious reason why some couplings should
carry much larger discretization effects than others. This
means in some cases, in particular for gS and g�P, our
discretization error assignment may be overly conservative.
However, in the absence of a real continuum limit extrapo-
lation, we do not see any way of reliably estimating this
remaining uncertainty.
In addition to the results displayed in Table IV, we find

values for the pion-nucleon-nucleon coupling gπNN ,
defined in the chiral limit, consistent with experimental
estimates, which may not be too surprising, given that gA
comes out correctly. However, violations of the pole
dominance model are found to be large, see Fig. 27. We

also quote gMS
P ð2 GeVÞ ¼ 332ð19Þ, which is no indepen-

dent determination as it relies on the FLAGWorking Group
quark mass average [78]. Moreover, we determined the low
energy constant

b̄ ¼ 3.21ð42Þ; ð47Þ

TABLE IV. Summary of results, extrapolated to the physical
point. The first errors contain statistics and systematics. The
second errors are estimates of lattice spacing effects. gA was
obtained, dividing by Fπ and therefore a scale setting error is
included in the first error that is not subject to further lattice
spacing effects. To determine g0A in the chiral limit, the exper-
imental gA value was used as an input. The experimental gA and
~gT ¼ κp − κn numbers are Particle Data Group averages [3] and
g�P is from the MuCap Collaboration [91].

Our result Experiment

gA 1.280(44)(46) 1.2723(23)

g0A 1.211(16)(27) � � �
gMS
S ð2 GeVÞ 1.02(18)(30) � � �
gMS
T ð2 GeVÞ 1.005(17)(29) � � �
~gT 3.00(08)(31) 3.7058901(5)

g�P 8.40(40)(159) 8.06(55)
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defined in Eq. (33), which encodes the leading order chiral
correction to g0A.
The disagreement between the anomalous magnetic

moment ~gT ¼ ~gTð0Þ and experiment (see Table IV) is
puzzling and deserves further attention. The determination
of the induced couplings is less direct than computing gV ,
gA, gS and gT since it requires extrapolating form factors to
vanishing virtuality, where the momentum resolution on a
finite volume becomes an issue. The error of this extrapo-
lation to the forward limit reduces with the minimal
momentum available π=L while finite volume effects are
dominantly functions of the combination Lmπ . Therefore,
Lmπ ≈ 3.5 results at mπ ≈ 290 MeV carry much larger
errors than at mπ ≈ 150 MeV, which may hide finite
volume effects. Moreover, we find excited state contribu-
tions to increase with Q2. This behavior, while under
control at each single value of Q2, may become amplified
in the slope of the form factor and its extrapolation. We
will discuss form factors in detail, including ~gTðQ2Þ, in a
forthcoming publication.
While lattice calculations of baryon structure have not

yet reached the level of precision of computations of
quantities related to meson properties, it is now possible
to obtain predictions, e.g., for the isovector scalar and

tensor charges, with uncertainties that have an impact on
beyond-the-standard-model phenomenology and in other
cases, e.g., for g�P, to reduce errors to a level that is
competitive with experimental determinations. The next
obvious step is to significantly vary the lattice spacing, thus
enabling a controlled continuum limit extrapolation, further
reducing the remaining uncertainties.
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