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In this work, we explore the charmed pentaquarks, where the relativistic five-quark equations are
obtained by the dispersion relation technique. By solving these equations with the method based on the
extraction of the leading singularities of the amplitudes, we predict the mass spectrum of charmed
pentaquarks with JP ¼ 1=2� and 3=2�, which is valuable to further experimental study of charmed
pentaquarks.
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I. INTRODUCTION

Exploring and investigating exotic states, which include
glueball, hybrid, and multiquark states, is an intriguing
research topic in particle physics. With more and more
observations of new hadronic states, there are extensive
discussions of whether these observed new hadronic states
are good candidates of exotic states (see Refs. [1,2] for a
recent review). Studying the hadronic configuration beyond
the conventional meson and baryon can greatly increase our
knowledge of nonperturbative QCD.
In 2013, the BESIII Collaboration announced the obser-

vation of the charged charmoniumlike structure Zcð3900Þ
in the J=ψ� invariant mass spectrum of eþe− → J=ψπþπ−

at
ffiffiffi
s

p ¼ 4.26 GeV [3]. Zcð3900Þ can be a good candidate
of the DD̄� molecular state [4,5], which is one of the four-
quark matters. If it is possible that four-quark matter exists
in nature, we naturally conjecture whether there exist
pentaquark states.
In 2003, the γ12C → KþK−X reaction was studied and a

peak was found in the Kþn invariant mass spectrum around
1540 MeV, which was identified as a signal for a penta-
quark with positive strangeness, the “Θþð1540Þ” [6]. The
unexpected finding led to a large number of poor statistics
experiments where a positive signal was also found, but
gradually an equally large number of statistical experiments
showed no evidence for such a peak. A comprehensive
review of these developments was done in [7], where one
can see the relevant literature on the subject, as well as in
the devoted section of Ref. [8] from the Particle Data Group
Collaboration [8].

Although the signal of Θþð1540Þ was not confirmed
in experiment, searching for a pentaquark is still an
important task [9]. Thus, we need to carry out further
theoretical study of pentaquarks, which can provide us
more abundant information about possible pentaquarks.
We also notice that most of new hadronic states were
observed in the charm-τ energy region. This fact shows
that the charm-τ energy region should be a suitable plat-
form to study pentaquarks. The Zcð3900Þ observation, in
particular, boosts our confidence to study heavy-flavor
pentaqurks again.
In this work, we focus on the charmed pentaquark states

with JP ¼ 1=2�; 3=2�, which are composed of a charm
antiquark and four light quarks. First, we need to construct
relativistic five-quark equations, which contain the u, d,
and c quarks. Then the masses of these discussed penta-
quarks can be determined by the poles of the amplitudes,
where the constituent quark involved in our calculation is
the color triplet and the quark amplitudes obey the global
color symmetry. As the main task of this work, we need to
perform the calculation of the pentaquark amplitudes which
contain the contribution of four subamplitudes: molecular
subamplitude BM, and Dq̄D, Mqqq and Dqqq̄ subampli-
tudes (D denotes the diquark state, B andM are the baryon
and meson states), where the relativistic generalization of
five-quark Faddeev-Yakubovsky equations is constructed
in the form of the dispersion relation [10]. Finally, we can
get the masses of the low-lying charmed pentaquarks,
which provide valuable information for the further exper-
imental search for these predicted charmed pentaquarks.
Our paper is organized as follows. After this introduc-

tion, we briefly discuss the relativistic Faddeev equations.
In Sec. III we provide the five-quark amplitudes relevant to
charmed pentaquarks. The numerical results are shown in
Sec. IV. The last section is devoted to a summary.
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II. BRIEF INTRODUCTION TO RELATIVISTIC
FADDEEV EQUATIONS

We consider the derivation of the relativistic generaliza-
tion of the Faddeev equation for the example of theΔ isobar
(JP ¼ 3

2
þ). This is convenient because the spin-flavor part of

the wave function of the Δ isobar contains only nonstrange
quarks and pair interactions with the quantum numbers of a
JP ¼ 1þ diquark (in the color state 3̄c). The 3q baryon state
Δ is constructed as color singlet. Suppose that there is a
Δ-isobar current which produces three u quarks [Fig. 1(a)].
Successive pair interactions lead to the diagrams shown in
Figs. 1(b)–1(f). These diagrams can be grouped according to
which of the three quark pairs undergoes the last interaction;
i.e., the total amplitude can be represented as a sum of
diagrams. Taking into account the equality of all pair interac-
tions of nonstrange quarks in the state with JP ¼ 1þ, we
obtain the corresponding equation for the amplitudes:

A1ðs; s12; s13; s23Þ ¼ λþ A1ðs; s12Þ þ A1ðs; s13Þ
þ A1ðs; s23Þ: ð1Þ

Here the sik are the pair energies of particles 1, 2, and 3, and s
is the total energy of the system. Using the diagrams of

Fig. 1, it is easy to write down a graphical equation for
the function A1ðs; s12Þ (Fig. 2). To write down a concrete
equation for the function A1ðs; s12Þ, we must specify the
amplitude of the pair interaction of the quarks. We write
the amplitude of the interaction of two quarks in the state
JP ¼ 1þ in the following form:

a1ðs12Þ ¼
G2

1ðs12Þ
1 − B1ðs12Þ

; ð2Þ

B1ðs12Þ ¼
Z

∞

4m2

ds012
π

ρ1ðs012ÞG2
1ðs012Þ

s012 − s12
; ð3Þ

ρ1ðs12Þ ¼
�
1

3

s12
4m2

þ 1

6

��
s12 − 4m2

s12

�1
2

: ð4Þ

Here G1ðs12Þ is the vertex function of a diquark with
JP ¼ 1þ. B1ðs12Þ is the Chew-Mandelstam function [11],
and ρ1ðs12Þ is the phase space for a diquark with JP ¼ 1þ.
The pair quark amplitudes qq → qq are calculated in the

framework of the dispersion N=D method with input from
the four-fermion interaction [12,13] with the quantum
numbers of the gluon [14,15].

+ + +

+ + +                 .   .   . 

+

(a)

(d) (e)

(f)

(c)(b)

FIG. 1. Diagrams which correspond to (a) production of three quarks, (b)–(f) subsequent pair interaction.
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The four-quark interaction is considered as an input:

gVðq̄λIfγμqÞ2 þ 2gðsÞV ðq̄λIfγμqÞðs̄λγμsÞ þ gðssÞV ðs̄λγμsÞ2:
ð5Þ

Here If is the unity matrix in the flavor space ðu; dÞ. λ
are the color Gell-Mann matrices. Dimensional constants of

the four-fermion interaction gV , g
ðsÞ
V , and gðssÞV are param-

eters of the model. At gV ¼ gðsÞV ¼ gðssÞV , the flavor SUð3Þf
symmetry occurs. The strange quark violates the flavor
SUð3Þf symmetry. In order to avoid additional violation
parameters, we introduce the scale of the dimensional
parameters [15]:

g ¼ m2

π2
gV ¼ ðmþmsÞ2

4π2
gðsÞV ¼ m2

s

π2
gðssÞV ;

Λ ¼ 4ΛðikÞ
ðmi þmkÞ2

: ð6Þ

Here mi and mk are the quark masses in the intermediate
state of the quark loop. Dimensionless parameters g and Λ
are supposed to be constants which are independent of
the quark interaction type. The applicability of Eq. (5) is
verified by the success of the De Rujula-Georgi-Glashow
quark model [14], where only the short-range part of the
Breit potential connected with the gluon exchange is
responsible for the mass splitting in hadron multiplets.
In the case under discussion, the interacting pairs of

particles do not form bound states. Therefore, the integra-
tion in the dispersion integral (7) runs from 4m2 to ∞. The
equation corresponding to Fig. 2 can be written in the
following form:

A1ðs; s12Þ ¼
λ1B1ðs12Þ
1 − B1ðs12Þ

þ G1ðs12Þ
1 − B1ðs12Þ

Z
∞

4m2

ds012
π

ρ1ðs012Þ
s012 − s12

G1ðs012Þ

×
Z þ1

−1

dz
2
½A1ðs; s013Þ þ A1ðs; s023Þ�: ð7Þ

In Eq. (7) z is the cosine of the angle between the relative
momentum of particles 1 and 2 in the intermediate state and
the momentum of the third particle in the final state in the
c.m. system of particles 1 and 2. In our case of equal mass

of the quarks 1, 2, and 3, s013 and s012 are related by Eq. (8)
(see Ref. [16]):

s013¼ 2m2−
ðs012þm2− sÞ

2

� z
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs012−4m2Þ

s012
ðs012− ð ffiffiffi

s
p þmÞ2Þðs012− ð ffiffiffi

s
p

−mÞ2Þ
s

:

ð8Þ

The expression for s023 is similar to (8) with the
replacement z → −z. This makes it possible to replace
½A1ðs; s013Þ þ A1ðs; s023Þ� in (7) by 2A1ðs; s013Þ.
From the amplitude A1ðs; s12Þ, we shall extract the

singularities of the diquark amplitude:

A1ðs; s12Þ ¼
α1ðs; s12ÞB1ðs12Þ

1 − B1ðs12Þ
: ð9Þ

The equation for the reduced amplitude α1ðs; s12Þ can be
written as

α1ðs; s12Þ ¼ λþ 1

B1ðs12Þ
Z

∞

4m2

ds012
π

ρ1ðs012Þ
s012 − s12

G1ðs012Þ

×
Z þ1

−1

dz
2

2α1ðs; s013ÞB1ðs013Þ
1 − B1ðs013Þ

: ð10Þ

The next step is to include into (10) a cutoff at large s012.
This cutoff is needed to approximate the contribution of
the interaction at short distances. In this connection we
shall rewrite Eq. (10) as

α1ðs; s12Þ ¼ λþ 1

B1ðs12Þ
Z

∞

4m2

ds012
π

ΘðΛ − s012Þ
ρ1ðs012Þ
s012 − s12

G1

×
Z þ1

−1

dz
2

2α1ðs; s013ÞB1ðs013Þ
1 − B1ðs013Þ

: ð11Þ

In Eq. (11) we have chosen a hard cutoff. However,
we can also use a soft cutoff, for instance, G1ðs012Þ ¼
G1 exp ð− ðs0

12
−4m2Þ2
Λ2 Þ, which leaves the results of calcula-

tions of the mass spectrum essentially unchanged.
The construction of the approximate solution of Eq. (11)

is based on extraction of the leading singularities close to
the region sik ≈ 4m2. The structure of the singularities of

1 1

1 2

1 2
2 2

2 1

2 1

3 3

3 3

+ +=

FIG. 2. Graphic representation of the equation for the amplitude A1ðs; s12Þ [formulas (7) and (11)].
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amplitudes with a different number of rescattering (Fig. 1)
is the following [16]. The strongest singularities in sik arise
from pair rescatterings of quarks: square-root singularity
corresponding to a threshold and pole singularities corre-
sponding to bound states (on the first sheet in the case of
real bound states, and on the second sheet in the case of
virtual bound states). The diagrams of Figs. 1(b) and 1(c)
have only these two-particle singularities. In addition to
two-particle singularities, diagrams of Figs. 1(d) and 1(e)
have their own specific triangle singularities. The diagram
of Fig. 1(f) describes a larger number of three-particle
singularities. In addition to singularities of the triangle type,
it contains other weaker singularities. Such a classification
of singularities makes it possible to search for an approxi-
mate solution to Eq. (11), taking into account a definite
number of leading singularities and neglecting the weaker
ones. We use the approximation in which the singularity
corresponding to a single interaction of all three particles,
the triangle singularity, is taken into account.
For fixed values of s and s012 the integration is carried out

over the region of the variable s013 corresponding to a
physical transition of the current into three quarks (the
physical region of the Dalitz plot). It is convenient to take
the central point of this region, corresponding to z ¼ 0, to
determine the function α1ðs; s12Þ and also the Chew-
Mandelstam function B1ðs12Þ at the point s12 ¼ s0 ¼
s
3
þm2. Then the equation for the Δ isobar takes the

following form:

α1ðs; s0Þ ¼ λþ I1;1ðs; s0Þ · 2α1ðs; s0Þ; ð12Þ

I1;1ðs; s0Þ ¼
Z

Λ1

4m2

ds012
π

ρ1ðs012Þ
s012 − s12

G1

Z þ1

−1

dz
2

G1

1 − B1ðs013Þ
:

ð13Þ
We can obtain an approximate solution for Eq. (12):

α1ðs; s0Þ ¼ λ½1 − 2I1;1ðs; s0Þ�−1: ð14Þ

The function I1;1ðs; s0Þ takes into account correctly the
singularities corresponding to the fact that all propagators
of triangle diagrams like those of Figs. 1(d) and 1(e) reduce
to zero. The right-hand side of (14) may have a pole in s,
which corresponds to a bound state of the three quarks. The
choice of the cutoff Λ makes it possible to fix the value of
the mass of the Δ isobar.
Baryons of S-wave multiplets have a completely sym-

metric spin-flavor part of the wave function, and spin 3
2

corresponds to the decouplet which has a symmetric flavor
part of the wave function. Octet states have spin 1

2
and a

mixed symmetry of the flavor function.
In analogy with the case of the Δ isobar, we can obtain

the rescattering amplitudes for all S-wave states with
JP ¼ 3

2
þ, which include quarks of various flavors. These

amplitudes will satisfy systems of integral equations. In

considering the JP ¼ 1
2
þ octet, we must include the

interaction of the quarks in the 0þ and 1þ states (in the
color state 3̄c). Including all possible rescatterings of each
pair of quarks and grouping the terms according to the final
states of the particles, we obtain the amplitudes A0 and A1,
which satisfy the corresponding systems of integral equa-
tions. If we choose the approximation in which two-particle
and triangle singularities are taken into account, and if all
functions which depend on the physical region of the Dalitz
plot, the problem of solving the system of integral equa-
tions reduces to one of solving simple algebraic equations.
In our calculation, the quark masses mu ¼ md ¼ m and

ms are not uniquely determined. In order to fix m and ms,
we make the simple assumption that m ¼ 1

3
mΔð1232Þ

m ¼ 1
3
mΩð1672Þ. The strange quark breaks the flavor

SUð3Þf symmetry (6).
In Ref. [17] we consider two versions of calculations.

In the first version, the SUð3Þf symmetry is broken by the
scale shift of the dimensional parameters. A single cutoff
parameter in pair energy is introduced for all diquark
states λ1 ¼ 12.2.
In Table I the calculated masses of the S-wave baryons

are shown [17]. In the first version, we use only three
parameters: the subenergy cutoff λ and the vertex functions
g0, g1, which correspond to the quark-quark interaction in
0þ and 1þ states. In this case, the mass values of strange
baryons with JP ¼ 1

2
þ are less than the experimental ones.

This means that the contribution color-magnetic interaction
is too large. In the second version we introduce four
parameters: cutoff λ0, λ1 and the vertex functions g0, g1.
We decrease the color-magnetic interaction in 0þ strange
channels, and the calculated mass values of the two
baryonic multiplets JP ¼ 1

2
þ, 3

2
þ are in good agreement

with the experimental data [8].
The essential difference between Σ and Λ is the spin of

the lighter diquark. The model explains both the sign and
magnitude of this mass splitting.
The suggested method of the approximate solution of the

relativistic three-quark equations allows us to calculate the
S-wave baryon mass spectrum. The interaction constants,

TABLE I. Baryon masses MðJpÞ (GeV). Version 1 (the cutoff
parameter λ1 ¼ 12.2), version 2 (λ0 ¼ 9.7, λ1 ¼ 12.2). The vertex
functions g0 ¼ 0.702, g1 ¼ 0.540. Experimental values of the
baryon masses [8] are given in parentheses.

Mð1
2
þÞ Mð3

2
þÞ

N
0.940

(0.940) Δ 1.232
(1.232)

0.940 1.232

Λ
1.022

(1.116) Σ� 1.377
(1.385)

1.098 1.377

Σ 1.050
(1.193) Ξ� 1.524

(1.530)
1.193 1.524

Ξ
1.162

(1.315) Ω 1.672
(1.672)

1.325 1.672
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determined by the baryon spectrum in ourmodel, are similar
to the ones in the bootstrap quark model of S-wave mesons
[15]. The diquark interaction forces are defined by the gluon
exchange. The relative contribution of the instanton-induced
interaction is less than that with the gluon exchange. This is
the consequence of the 1=Nc expansion [15].
The gluon exchange corresponds to the color-magnetic

interaction, which is responsible for the spin-spin splitting
in the hadron models. The sign of the color-magnetic term
is such as to make any baryon of spin 3

2
heavier than its

spin-1
2
counterpart (containing the same flavors).

III. FIVE-QUARK AMPLITUDES FOR THE
CHARMED PENTAQUARKS

In the following, we introduce how to get the relativistic
five-quark amplitudes for the charmed pentaquarks, where
we adopt the dispersion relation technique. Due to the rules
of 1=Nc expansion [18–20], we only need to consider
planar diagrams, while the other diagrams can be neglected.
By summing over all possible subamplitudes which cor-
respond to the division of the complete system into
subsystems with a smaller number of particles, we can
obtain the total amplitude.
In general, a five-particle amplitude (A) can be

expressed as the sum of ten subamplitudes [Aij

(i ¼ 1; 2; 3; 4, j ¼ 1; 2; 3; 4; 5)], i.e.,

A ¼ A12 þA13 þA14 þA15 þA23 þA24

þA25 þA34 þA35 þA45;

where Aij denotes the subamplitude from the pair inter-
action of particles i and j in a five-particle system.
For the sake of simplifying the calculation, we

take the relativistic generalization of the Faddeev-
Yakubovsky approach. With the uuuuc̄ system as an
example, we introduce how to obtain A12. First, we
need to construct the five-quark amplitude of the
uuuuc̄ system, where only pair interaction with the
quantum numbers of a JP ¼ 1þ diquark is included.
Then, the set of diagrams relevant to the amplitude A12

can further be broken down into groups corresponding
to amplitudes, A1ðs; s1234; s12; s34Þ, A2ðs;s1234;s25;s34Þ,
A3ðs;s1234;s13;s134Þ, A4ðs;s1234;s24;s234Þ, which are
shown in Fig. 3 by the graphic representation of the
equations for the five-quark subamplitudes. Similarly,
we also give the corresponding graphic representation
for the uuudc̄ and ududc̄ systems, which are shown in
Fig. 4. For the cases of the uuudc̄ and ududc̄ systems,
there are six and seven subamplitudes, respectively.
Here, the coefficients can be obtained by the permu-
tation of quarks [21,22].
In the following, we need to further illustrate how

to write out the subamplitudes, A1ðs; s1234; s12; s34Þ,
A2ðs;s1234;s25;s34Þ, A3ðs;s1234;s13;s134Þ, and A4ðs; s1234;
s24; s234Þ, which are in the form of a dispersion relation.
First, we need to define the amplitudes of quark-quark
and quark-antiquark interaction anðsikÞ. With the help of
four-fermion interaction with quantum numbers of the
gluon [15], we can calculate the amplitudes qq̄ → qq̄ and
qq → qq through the dispersion N=D method. Thus, the
pair quark amplitude can be expressed as [15]

FIG. 3. The graphic representation of the equations for the five-quark subamplitudes Ak (k ¼ 1–4) in the case of the uuuuc̄ system.
Here, we mark c̄ and other four light quarks by lines with and without an arrow, respectively.
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anðsikÞ ¼
G2

nðsikÞ
1 − BnðsikÞ

;

BnðsikÞ ¼
Z

Λn

ðm1þm2Þ2
ds0ik
π

ρnðs0ikÞG2
nðs0ikÞ

s0ik − sik
;

where sik denotes the two-particle subenergy squared, and
sijk is the energy squared of particles i, j, k, while sijkl is the
four-particle subenergy squared. In addition, we also define
s as the system total energy squared.
We obtain the concrete forms of Ai (i ¼ 1; 2; 3; 4), i.e.,

A1ðs; s1234; s12; s34Þ ¼
λ1B3ðs12ÞB2ðs34Þ

½1 − B3ðs12Þ�½1 − B2ðs34Þ�
þ 6Ĵ2ð3; 2ÞA4ðs; s1234; s023; s0234Þ

þ 2Ĵ2ð3; 2ÞA3ðs; s1234; s013; s0134Þ þ 2Ĵ1ð3ÞA3ðs; s1234; s015; s125Þ
þ 2Ĵ1ð2ÞA4ðs; s1234; s025; s125Þ þ 4Ĵ1ð2ÞA4ðs; s1234; s035; s345Þ; ð15Þ

A2ðs; s1234; s25; s34Þ ¼
λ2B2ðs25ÞB2ðs34Þ

½1 − B2ðs25Þ�½1 − B2ðs34Þ�
þ 12Ĵ2ð2; 2ÞA4ðs; s1234; s023; s0234Þ

þ 8Ĵ1ð2ÞA3ðs; s1234; s025; s125Þ; ð16Þ

A3ðs; s1234; s13; s134Þ ¼
λ3B3ðs12Þ
1 − B3ðs12Þ

þ 12Ĵ3ð3ÞA1ðs; s1234; s012; s034Þ; ð17Þ

A4ðs; s1234; s24; s234Þ ¼
λ4B2ðs24Þ
1 − B2ðs24Þ

þ 4Ĵ3ð2ÞA2ðs; s1234; s025; s034Þ þ 4Ĵ3ð2ÞA1ðs; s1234; s012; s034Þ; ð18Þ

where λi denotes the current constants. In addition, the integral operators Ĵ1ðlÞ, Ĵ2ðl; pÞ, and Ĵ3ðl; pÞ are introduced, and
their expressions can be found in the Appendix. Taking the same treatment as that given in Ref. [23], where we pass from
the integration over the cosines of the angles to the integration over the subenergies, we can extract two-particle singularities
in the amplitudes A1ðs; s1234; s12; s34Þ, A2ðs; s1234; s25; s34Þ, A3ðs; s1234; s13; s134Þ, and A4ðs; s1234; s24; s234Þ:

FIG. 4. The graphic representation of the equations for the five-quark subamplitudes for the uuudc̄ and ududc̄ systems. Here, the c̄
quark is denoted by the lines with an arrow. There are six and seven diagrams for the uuudc̄ and ududc̄ systems, respectively.

S. M. GERASYUTA, V. I. KOCHKIN, AND XIANG LIU PHYSICAL REVIEW D 91, 054037 (2015)

054037-6



A1ðs;s1234;s12;s34Þ¼
α1ðs;s1234;s12;s34ÞB3ðs12ÞB2ðs34Þ

½1−B3ðs12Þ�½1−B2ðs34Þ�
;

A2ðs;s1234;s25;s34Þ¼
α2ðs;s1234;s25;s34ÞB2ðs25ÞB2ðs34Þ

½1−B2ðs25Þ�½1−B2ðs34Þ�
;

A3ðs;s1234;s13;s134Þ¼
α3ðs;s1234;s13;s134ÞB3ðs13Þ

1−B3ðs13Þ
;

A4ðs;s1234;s24;s234Þ¼
α4ðs;s1234;s24;s234ÞB2ðs24Þ

1−B2ðs24Þ
:

Here we want to further specify that we do not extract the
three-particle and four-particle singularities, which are
weaker than the two-particle singularities. In addition,
we also adopt the classification of singularities suggested
in Ref. [16]. The main singularities in sik ¼ ðmi þmkÞ2 are
from pair rescattering of particles i and k. First of all,
they are threshold square-root singularities. Also possible
are singularities which correspond to the bound states.
Apart from two-particle singularities, we have the tri-
angular singularities, the singularities defining the inter-
action of four and five particles. Such classification
allows us to search the corresponding solution by taking
into account some definite number of leading singular-
ities and neglecting all the weaker ones. We use the
approximation that defines two-, three-, four-, and five-
particle singularities. As the smooth functions of sik, sijk,
sijkl, and s, α1ðs; s1234; s12; s34Þ, α2ðs; s1234; s25; s34Þ,
α3ðs; s1234; s13; s134Þ, and α4ðs; s1234; s24; s234Þ can be
expanded in a series in the singularity point, where only
the first term of this series should be employed further.
Thus, we further define the reduced amplitudes α1, α2, α3,
α4, and the B functions in the middle point of the physical
region of the Dalitz plot at the point s0, i.e.,

sik0 ¼ s0 ¼
sþ 3

P
5
i¼1 m

2
i

0.25
P

5
i;k¼1;i≠kðmi þmkÞ2

; ð19Þ

s123 ¼ 0.25s0
X3

i;k¼1;i≠k
ðmi þmkÞ2 −

X3
i¼1

m2
i ; ð20Þ

s1234 ¼ 0.25s0
X4

i;k¼1;i≠k
ðmi þmkÞ2 − 2

X4
i¼1

m2
i : ð21Þ

Then, we replace the integral Eqs. (15)–(18) corresponding
to the diagrams in Fig. 3 with the following algebraic
equations:

α1 ¼ λ1 þ 6α4J2ð3; 2; 2Þ þ 2α3J2ð3; 2; 3Þ þ 2α3J1ð3; 3Þ
þ 2α4J1ð3; 2Þ þ 4α4J1ð2; 2Þ; ð22Þ

α2 ¼ λ2 þ 12α4J2ð2; 2; 2Þ þ 8α3J1ð2; 3Þ; ð23Þ
α3 ¼ λ3 þ 12α1J3ð3; 3; 2Þ; ð24Þ

α4 ¼ λ4 þ 4α2J3ð2; 2; 2Þ þ 4α1J3ð2; 2; 3Þ; ð25Þ

respectively. Here, the definitions of the functions J1ðl; pÞ,
J2ðl; p; rÞ, J3ðl; p; rÞ (l; p; r ¼ 1; 2; 3) are listed in the
Appendix.
Finally, we have the function

αiðsÞ ¼ Fiðs; λiÞ=DðsÞ; ð26Þ

where the masses of these discussed systems can be
determined by zeros of DðsÞ determinants, and, Fiðs; λiÞ
denotes the function of s and λi, which determines the
contribution of the subamplitude.

IV. NUMERICAL RESULTS

In Sec. III, the involved parameters in our model include
quark masses mu;d ¼ 439 MeV and mc ¼ 1640 MeV,
where we effectively take into account the contribution
of the confinement potential in obtaining the spectrum of
charmed pentaquarks. The adopted value of the cutoff is
Λ ¼ 10, which coincides with that taken in Refs. [24,25].
In addition, a dimensionless parameter g, which is the gluon
coupling constant, is introduced in our calculation. We
notice that the mass of the charmed pentaquark with both
configuration D�

2N (ududc̄) and quantum number ðIÞJP ¼
ð0Þ3

2
þ was calculated through the one-boson-exchange

model in Ref. [26], where its mass is 3387 MeV. Thus,
by reproducing this value in our model, we can determine
g ¼ 0.825, which is adopted in the following calculation
to give more predictions of the masses of charmed
pentaquarks.
With the above preparation, in this section we present

the numerical results of the mass spectrum of the discussed
charmed pentaquarks, where the poles of the reduced
amplitudes α1, α2, α3, α4 correspond to the bound states
of charmed pentaquarks. The predicted masses of charmed
pentaquarks are shown in Table II.

TABLE II. The obtained low-lying charmed pentaquark
masses. Here, the parameters involved in our model include
quark mass mu;d ¼ 439 MeV, mc ¼ 1640 MeV, cutoff param-
eter λ ¼ 10, and gluon coupling constant g ¼ 0.825. Here, –
denotes that there does not exist the corresponding charmed
pentaquark state.

JP

States 1
2
þ 3

2
þ 1

2
− 3

2
−

Θþþ
c ðuuuuc̄Þ=Θ−−

c ðddddc̄Þ 3323 3323 3339 3339
Θþ

c ðuuudc̄Þ=Θ−
c ðddduc̄Þ 2986 3209 3277 � � �

Θ0
cðududc̄Þ 2980 3387 3280 � � �
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V. SUMMARY

As an interesting research topic, exploring the exotic
multiquark matter beyond the conventional meson and
baryon is an exciting and important task, which will be
helpful to understanding the nonperturbative behavior of
quantum chromodynamics. The new observation of numer-
ous XYZ particles opens the Pandora’s box of studying the
exotic multiquark matter [2].
In this work, we studied the charmed pentaquarks with

JP ¼ 1=2�; 3=2� by the relativistic five-quark model,
where the Faddeev-Yakubovsky-type approach is adopted.
The masses of the low-lying charmed pentaquarks are
calculated. This information is useful to the further exper-
imental search for them in the future.
We used some approximations for the calculation of the

five-quark amplitude. The estimation of the theoretical
error on the pentaquark masses is about 20%, which is
common for model estimations. This result was obtained
with the choice of the following model parameters: gluon
coupling constant g ¼ 0.825 and cutoff parameter λ ¼ 10.
We also notice that there were several experimental

efforts in the search for the charmed pentaquarks [27–29],
where the present experiment still did not find any evidence
of the charmed pentaquark. Unlike the mesons, all half-
integral spin and parity quantum numbers are allowed in
the baryon sector, which means that there exists the mixing
between charmed pentaquark and conventional charmed
baryon, so that experimentally searching for such a
charmed pentaquark is not a simple task. In addition, the
charmed pentaquarks have abnormally small widths since
the observed charmed pentaquarks with the isospin I ¼
0; 1; 2 and the spin-parity JP ¼ 1

2
þ, 3

2
þ are below the thresh-

olds. These facts make the identification of a pentaquark in
experiment difficult.
In summary, exploring the charmed pentaquark is a reach

field, full of challenges and opportunities. More united
theoretical and experimental efforts should be made in the
future to establish the charmed exotic pentaquark family.
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APPENDIX: SOME USEFUL FORMULAS

The definitions of Ĵ1ðlÞ, Ĵ2ðl; pÞ, and Ĵ3ðl; pÞ are
given by

Ĵ1ðlÞ¼
Glðs12Þ

½1−Blðs12Þ�
Z

Λl

ðm1þm2Þ2
ds012
π

Glðs012Þρlðs012Þ
s012− s12

Z þ1

−1

dz1
2

;

ðA1Þ

Ĵ2ðl; pÞ ¼
Glðs12ÞGpðs34Þ

½1 − Blðs12Þ�½1 − Bpðs34Þ�
Z

Λl

ðm1þm2Þ2
ds012
π

×
Glðs012Þρlðs012Þ

s012 − s12

Z
Λp

ðm3þm4Þ2
ds034
π

Gpðs034Þρpðs034Þ
s034 − s34

×
Z þ1

−1

dz3
2

Z þ1

−1

dz4
2

; ðA2Þ

Ĵ3ðlÞ¼
Glðs12; ~ΛÞ

1−Blðs12; ~ΛÞ
×

1

4π

Z ~Λ

ðm1þm2Þ2
ds012
π

Glðs012; ~ΛÞρlðs012Þ
s012− s12

×
Z þ1

−1

dz1
2

Z þ1

−1
dz

Z þ1

−1
dz2

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− z2− z21− z22þ2zz1z2
p ; ðA3Þ

respectively, where l; p are taken as 1, 2, 3, and mi denotes
the corresponding quark mass. In Eqs. (A1) and (A3), z1 is
the cosine of the angle between the relative momentum
of the particles 1 and 2 in the intermediate state and the
momentum of the particle 3 in the final state, taken in the
c.m. of particles 1 and 2. In Eq. (A3), we can define z as
the cosine of the angle between the momenta of the particles
3 and 4 in the final state, taken in the c.m. of particles 1 and 2.
z2 is the cosine of the angle between the relative momentum
of particles 1 and 2 in the intermediate state and the
momentum of particle 4 in the final state is taken in the
c.m. of particles 1 and 2. In Eq. (A2), z3 is the cosine of
the angle between the relative momentum of particles 1
and 2 in the intermediate state and the relative momentum of
particles 3 and 4 in the intermediate state, taken in the c.m. of
particles 1 and 2. z4 is the cosine of the angle between the
relative momentum of particles 3 and 4 in the intermediate
state and that of the momentum of particle 1 in the
intermediate state, taken in the c.m. of particles 3 and 4.
In Eqs. (A1)–(A3), GnðsikÞ denotes the quark-quark

and quark-antiquark vertex functions, where the concrete
expressions of GnðsikÞ are listed in Table. III. The vertex
functions satisfy the Fierz relations. All of these vertex

functions are generated from gV , g
ðcÞ
V . Dimensional con-

stants of the four-fermion interaction gV , gðcÞV are the

TABLE III. The expressions of vertex function GnðsikÞ.
JPC G2

n

0þðn ¼ 1Þ 4g=3 − 2gðmi þmkÞ2=ð3sikÞ
1þðn ¼ 2Þ 2g=3
0þþðn ¼ 3Þ 8g=3
0−þðn ¼ 4Þ 8g=3 − 4gðmi þmkÞ2=ð3sikÞ
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parameters of the model. In order to avoid additional
violation parameters, we introduce the scale of the dimen-
sional parameters similar to (6). Dimensionless parameters
g andΛ are supposed to be constants which are independent
of the quark interaction type.
In Eqs. (A1)–(A3), BnðsikÞ is the Chew-Mandelstam

function, where Λn is the cutoff [11]. Additionally, we also
list the expression of the phase space ρnðsikÞ, i.e.,

ρnðsik; JPCÞ ¼
�
αðJPC; nÞ sik

ðmi þmkÞ2
þ βðJPC; nÞ

þ γðJPC; nÞ ðmi −mkÞ2
sik

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½sik − ðmi þmkÞ2�½sik − ðmi −mkÞ2�

p
sik

;

ðA4Þ
where the values of αðJPC; nÞ, βðJPC; nÞ, and γðJPC; nÞ are
shown in Table IV.
In addition, we also list the definitions of some functions

used in this work, i.e.,

J1ðl; pÞ ¼
G2

l ðs120 ÞBpðs130 Þ
Blðs120 Þ

Z
Λl

ðm1þm2Þ2
ds012
π

ρlðs012Þ
s012 − s120

×
Z þ1

−1

dz1
2

1

1 − Bpðs013Þ
; ðA5Þ

J2ðl;p;rÞ¼
G2

l ðs120 ÞG2
pðs340 ÞBrðs130 Þ

Blðs120 ÞBpðs340 Þ ×
Z

Λl

ðm1þm2Þ2
ds012
π

ρlðs012Þ
s012−s120

×
Z

Λp

ðm3þm4Þ2
ds034
π

ρpðs034Þ
s034−s340

Z þ1

−1

dz3
2

×
Z þ1

−1

dz4
2

1

1−Brðs013Þ
; ðA6Þ

J3ðl; p; rÞ ¼
G2

l ðs120 ; ~ΛÞBpðs130 ÞBrðs240 Þ
1 − Blðs120 ; ~ΛÞ

1 − Blðs120 Þ
Blðs120 Þ

×
1

4π

Z ~Λ

ðm1þm2Þ2
ds012
π

ρlðs012Þ
s012 − s120

Z þ1

−1

dz1
2

Z þ1

−1
dz

×
Z

zþ
2

z−
2

dz2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2 − z21 − z22 þ 2zz1z2
p

×
1

½1 − Bpðs013Þ�½1 − Brðs024Þ�
: ðA7Þ

Since other choices of point s0 do not essentially change the
contributions of α1, α2, α3, and α4, the indexes sik0 are
omitted here. Due to the weak dependence of the vertex
functions on the energy, we treat them as constants in our
calculation, which is an approximation. The details of the
integration contours of the function J1; J2; J3 can be found
in Ref. [30].
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