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We present a quantitative analysis of chiral symmetry breaking in two-flavor continuum QCD in the
quenched limit. The theory is set up at perturbative momenta, where asymptotic freedom leads to precise
results. The evolution of QCD towards the hadronic phase is achieved by means of dynamical
hadronization in the nonperturbative functional renormalization group approach. We use a vertex
expansion scheme based on gauge-invariant operators and discuss its convergence properties and the
remaining systematic errors. In particular, we present results for the quark propagator, the full tensor
structure and momentum dependence of the quark-gluon vertex, and the four-Fermi scatterings.
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I. INTRODUCTION

The understanding of the hadron spectrum as well as the
phase structure of QCD at finite temperature and density
are very important and long-standing problems. Qualitative
access to the hadron spectrum beyond low-lying resonan-
ces and the phase structure at large densities already
requires a quantitative hold on competing fluctuations as
well as the phenomena of dynamical chiral symmetry
breaking and confinement.
Building on previous studies [1,2], this work, together

with a related qualitative study of the unquenched system
in [3], provides the foundation for achieving this goal. The
present work and [3] are the first works within a collabo-
ration (fQCD) aiming at a quantitative functional renorm-
alization group framework for QCD [4]. While the correct
implementation of relative fluctuation scales is not required
to reproduce the thermodynamic properties of QCD at
vanishing chemical potential [5], it will become increas-
ingly important at finite chemical potential. As was detailed
in [6] in the example of quantum/thermal and density
fluctuations, mismatches in thermal/density fluctuation
scales inevitably lead to large systematic errors at finite
chemical potential. This is particularly important for the
question of the potential critical end point in the QCD
phase diagram.
Functional continuum approaches provide access to the

mechanisms of dynamical chiral symmetry breaking and
confinement, as well as their interrelation. Up until now,
functional computations have required larger or smaller
amounts of phenomenological input in the form of running
couplings, vertex models, or further low-energy parame-
ters; see [7–18] and references therein. In this work, we
present the first closed, self-consistent and quantitative
computation for quenched continuum QCD in the vacuum.
A prominent feature of this calculation is the lack of
additional model input; the computation depends only on

the fundamental parameters of QCD, the strong coupling αs
and the current quark masses which are set at a large,
perturbative momentum scale. We implement a systematic
vertex expansion scheme that is fully capable of taking the
nonperturbative physics at low momenta into account.
Gauge invariance is implemented and tested in the form
of modified Slavnov-Taylor identities (mSTIs). In the
present work, we focus on the matter system as one of
the two subsectors of the full calculation. Using results for
the Yang-Mills propagators [15,19], we solve the matter
sector in a quenched approximation and assess the quality
of our results in comparison to lattice QCD; see Fig. 1.
A separate analysis of the fully coupled system is presented
elsewhere.
The paper is organized as follows. In Sec. II we describe

our approach to QCD; in particular, we briefly introduce
the dynamical hadronization procedure within the func-
tional renormalization group approach and describe the
used truncation scheme. In Sec. III, we present our results
and comment on the mechanism of chiral symmetry
breaking in light of our investigations. Technical details
on modified Slavnov-Taylor identities and on our trunca-
tion can be found in the Appendixes.

II. QCD WITH THE FUNCTIONAL RG

In quenched QCD there are no matter contributions
to the gluon/ghost correlation functions, since these con-
tributions involve only diagrams with closed quark loops.
Therefore, all gluon/ghost correlation functions are given
by those of the pure Yang-Mills theory. Consequently, we
use the functional renormalization group (FRG) results
for Yang-Mills gluon and ghost propagators, [15,19] in our
calculation.
We perform a vertex expansion including a fully

momentum-dependent quark propagator and quark-gluon
vertex as well as dynamically generated four-Fermi
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interactions in the matter sector and ghost-gluon and three-
gluon vertices in the glue sector. Furthermore, we use gauge
invariance in the form of mSTIs to include higher quark-
gluon interactions as well as the four-gluon vertex. Mesonic
interactions are included via the mechanism of dynamical
hadronization, an RG-scale dependent change of variables
which constitutes an economic way to take into account
resonant structures in four-Fermi interaction channels. In
the following two subsections, we give a brief account of
the FRG approach and our truncation scheme. A more
complete description of the truncation and a discussion of
its stability is found in Appendixes B and C.

A. Dynamical hadronization in the functional
renormalization group

The central object in the functional renormalization
group approach to quantum field theory is the scale-
dependent effective action Γk. It generalizes the effective
action Γ, in the spirit of the Wilsonian RG, by introducing a
cutoff scale k such that Γk includes only fluctuations from
momentum modes with momenta larger than k; see [7–11]
for QCD-related reviews. On a technical level, this is
achieved by giving a momentum-dependent mass to modes
with momenta smaller than the scale k by means of an
infrared regulator function Rk. In this way the scale-
dependent effective action Γk interpolates between a micro-
scopic action, parametrized by a finite set of parameters, at
some large cutoff scale k ¼ ΛUV and the full quantum
effective action in the limit k → 0. The evolution of Γk with
the RG-scale k is described in terms of an exact equation of
one-loop structure, [23]

∂tΓk ¼
1

2
Tr

1

Γð2Þ
k þ Rk

∂tRk: ð1Þ

Here Γð2Þ
k denotes the second functional derivative with

respect to the fields, t ¼ logðk=ΛÞ with some reference
scale Λ, and the trace includes a sum over all field species
and internal indices as well as a momentum-space inte-
gration. Note that the flow equation (1) is one-loop exact,
higher loop corrections and nonperturbative effects are
incorporated due the presence of dressed, field-dependent

propagators ðΓð2Þ
k þ RkÞ−1. Flow equations for propagators

or higher-order n-point functions are obtained by taking
appropriate functional derivatives of (1). Despite its nature
as an exact equation, most practical applications require an
ansatz for the scale-dependent effective action. Therefore,
identifying the operators that carry the relevant physical
information is of utmost importance for any quantitatively
reliable solution of the flow equation (1).
Four-Fermi interactions, e.g. in the scalar channel with

coupling λðψ̄ψÞ2 , are created dynamically from two-gluon
exchange box diagrams that are proportional to α2s . The
back-coupling of these four-Fermi interactions on the
system is suppressed by additional powers of α2s , for
example its contributions to the four-Fermi system is of
order α4s. However, as the strong running coupling, αs,
becomes large close to ΛQCD, the suppression of the four-
Fermi interactions is overcome and they start to grow large.
As it becomes sufficiently large, the four-Fermi dynamics
eventually become dominant and lead to a four-Fermi
resonance. This resonance corresponds to the light pions as
pseudo–Nambu-Goldstone modes in the spontaneously
broken phase. For even smaller momentum scales, quark
interactions exhibit dominant scatterings of these resonant
momentum channels. Hence, it is advantageous to describe
these interactions in terms of composite operators, which is
achieved via the introduction of scale-dependent mesonic
field operators [3,8,24,25]. In the present work, we follow
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FIG. 1 (color online). FRG results in comparison to lattice QCD. Dimensionful quantities in Bowman et al., [20,21], are rescaled by a
factor 0.91 in both plots to match the scales of Sternbeck et al., [22] and the FRG results, [15,19]. (a) Yang-Mills FRG gluon dressing
function, (B1), taken from [15,19] in comparison to quenched lattice data [20,22]. (b) Our result for quark propagator dressing functions,
(B6), in comparison to quenched lattice results [21] and mass function in GeV.

MARIO MITTER, JAN M. PAWLOWSKI, AND NILS STRODTHOFF PHYSICAL REVIEW D 91, 054035 (2015)

054035-2



the dynamical hadronization procedure set up in [3,8].
In each renormalization group step this leads e.g. to λπ →
h2π=ð2m2

πÞ at vanishing s-channel momentum in the four-
Fermi channel. Here λπ corresponds to the exchange of
pions with mass mπ and Yukawa coupling hπ. This exact
dynamical change of field-variables avoids the numerically
inconvenient singularity shown in Fig. 2, which is a
consequence of neglected momentum dependencies in
the four-Fermi interaction. Additionally, it provides a
smooth transition from QCD degrees of freedom to
constituent quarks and light mesons as low-energy effective
degrees of freedom. The resulting low-energy description
in terms of a quark-meson model introduces no model
parameter dependence provided the UV initial scale is
chosen large enough ΛUV ≫ ΛQCD; see Sec. III D for an
explicit demonstration. Finally we want to stress that the
restriction to such a small set of low-energy degrees of
freedom is justified by the comparably large masses in the
remainder of the spectrum of the strong interaction. Since
any of the hadrons can play a dynamical role only below
about 500 MeV, their fluctuations are strongly suppressed
in any of the loops by their comparably large mass; see
also [3].

B. Truncation of effective action

In our truncation we consider the momentum depend-
ence of all vertices which include at least one relevant or
marginally relevant operator with the help of [26]. In the
pure glue sector we calculate the ghost- and three-gluon
vertices in single channel approximations including only
the classical tensor structure. Moreover we use modified
Slavnov-Taylor identities to fix the momentum dependence
of the four-gluon vertex in this channel. This approximation
is motivated by results from other methods [30–35], which
show nontrivial momentum dependencies only in momen-
tum regions where the gluon sector already starts to

decouple from the system. The matter-glue coupling as
the interface between the two subsectors of the system is of
crucial importance for the whole system. Therefore, we
include the full momentum dependence and all eight tensor
structures in the quark-gluon vertex. Furthermore, there are
two exceptions from the RG relevance counting, in the
sense that we also include perturbatively irrelevant oper-
ators in our truncation. Firstly, in the matter sector we
include in addition the four-Fermi interactions, which are
required for the description of chiral symmetry breaking.
Secondly, for any nonclassical operator which shows a
significant contribution in the flow, we identify the corre-
sponding gauge-invariant completion and include the
resulting higher-order vertices in the flow equations.
The general vertex construction follows [36].

Suppressing the explicit RG-scale dependence we
parametrize

ΓðnÞ
Φ1���Φn

ðp1;…; pn−1Þ

¼ Γ̄ðnÞ
Φ1���Φn

ðp1;…; pn−1Þ
Yn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z̄Φi

ðpiÞ
q

; ð2Þ

where we introduced a superfield

Φ ¼ ðAμ; c; c̄; q; q̄; ~π; σ;…Þ ð3Þ

which subsums all dynamical degrees of freedom including
the effective low-energy fields generated by dynamical
hadronization. The tensor kernel Γ̄ðnÞ

Φ1���Φn
is expanded in a

basis of tensor structures T ðiÞ
Φ1���Φn

Γ̄ðnÞ
Φ1���Φn

ðp1;…; pn−1Þ
¼

X
i

zðiÞΦ1���Φn
ðp1;…; pn−1ÞT ðiÞ

Φ1���Φn
ðp1;…; pn−1Þ: ð4Þ

Since the dressing functions zðiÞΦ1���Φn
ðp1;…; pn−1Þ depend

on our choice of Z̄Φi
, the latter are at our disposal to give

special properties like RG-invariance in the perturbative
regime to the former. If not specified otherwise, we choose
Z̄Φi

ðpÞ≡ ZΦi;kðpÞ, where the ZΦi;kðpÞ are the scalar
dressing functions of the full propagators; see
Appendix B. An important example are the classical
vertices with tensor structures T class present in the classical
action. We use

T class;Φ1���Φn
ðp1;…; pn−1Þ ¼ SðnÞΦ1…Φn

jg¼1; ð5Þ

where SðnÞ denotes the appropriate n-th functional deriva-
tive of the action. By setting g ¼ 1 in (5), the running
coupling is taken into account via the dressing functions

zð1ÞΦ1���Φn
in (4). As a consequence of our choice for Z̄Φi

ðpÞ,
the zð1ÞΦ1…Φn;k≡0ðp1;…; pn−1Þ run like appropriate powers of
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FIG. 2 (color online). Dynamical hadronization: four-Fermi
coupling (λπ , see Appendix B 2 c) vs corresponding coupling
from dynamical hadronization, ðkhπÞ2=ð2m2

πÞ, in a momentum-
independent approximation similar to [3].
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the strong running coupling with the momenta pi in the
perturbative regime. The same holds for the RG-scale

dependence of the zð1ÞΦ1…Φn
ð0;…; 0Þ at perturbative scales.

In the following we discuss in some detail the constitu-
ents of our ansatz for the bosonized effective action of
Landau-gauge QCD, which are also summarized pictorially
in Fig. 3. For a more detailed description the reader is
referred to Appendix B. The stability of this truncation and
the systematic errors are discussed in Appendix C.
Glue sector: As a consistent scale-setting both in the

perturbative and in the nonperturbative regime is crucial for
our calculation, we use YM FRG data [15,19] for both the
gluon propagator and the ghost propagator; see Fig. 1(a).
Here, we have matched our scale to the corresponding
lattice scales in [22] via the peak position in the gluon
dressing function 1=ZA, which translates to

αsð20 GeVÞ ¼ 0.21: ð6Þ

The dressing functions of the Yang-Mills three-point
functions, zc̄Ac; zA3 , are calculated momentum dependently
for a single momentum channel. The four-gluon vertex
is approximated using the three-gluon vertex; see
Appendix B 1 b. This is a very good approximation down
to semi-perturbative momenta [30–35], whereas deviations
occur mostly for momenta where the glue gap implies
already decoupling.
Matter sector: We take into account the full momentum

dependence of the quark propagator, parametrized by its
wave function renormalization ZqðpÞ and mass function
MqðpÞ, where we have for the current quark mass

Mqð20 GeVÞ ¼ 1.3 MeV; ð7Þ

(see Appendix B 2 a for details). The treatment of the quark-
gluon vertex is of crucial importance for the whole system.
Therefore, we include the full momentum dependence of all

eight linearly independent tensor structures T ðiÞ
q̄Aq of Landau

gauge as described in Appendix B 2 b. Additionally we
perform a gauge-invariant completion of any quark-gluon
vertex tensor structure that contributes quantitatively,
leading to the inclusion of two-quark–two-gluon and
two-quark–three-gluon vertices that are approximated
gauge invariantly; see Appendix B 2 b.
In the four-Fermi sector, we take into account a Fierz-

complete basis of all ten tensor structures consistent with a
Uð1ÞV × SUð2ÞV symmetry (see Appendix B 2 c) and
approximate their momentum dependence using a single
(s-channel) momentum variable. As discussed previously,
we utilize dynamical hadronization to effectively remove
the resonant σ − π channel from the four-Fermi tensor
structures via the inclusion of effective (quark-)meson
interactions.
In the mesonic sector we include a scale-dependent

mesonic wave function renormalization factor, Zπ , and a
Yukawa interaction between quarks and mesons, hπ .
Additionally, a scale-dependent effective potential, UðρÞ
captures higher mesonic interactions in the nonperturbative
regime of spontaneously broken chiral symmetry; see
e.g. [37]. This approximation has been shown to be in
quantitative agreement with the full momentum depend-
ence [6].

III. RESULTS

A. Quark-gluon interactions

We start by considering the quark-gluon vertex and focus
in particular on additional nonclassical tensor structures, as

FIG. 3 (color online). Pictorial description of our truncation for the effective action; see Fig. 7 for corresponding RG flows.
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they are shown for the symmetric momentum configuration
p2
1 ¼ p2

2 ¼ p2
3 in Fig. 4(a). To investigate their importance

we calculate the full momentum dependence of a basis
for the transversally projected Landau-gauge quark-gluon
vertex. The resulting eight tensor structures include the
classical tensor structure,

½T ð1Þ
q̄Aq�μ ¼ γμ; ð8Þ

three further chirally symmetric tensors

T ð5Þ
q̄Aq; T ð6Þ

q̄Aq; T ð7Þ
q̄Aq; ð9Þ

and four tensors which break chiral symmetry

T ð2Þ
q̄Aq; T ð3Þ

q̄Aq; T ð4Þ
q̄Aq; T ð8Þ

q̄Aq; ð10Þ
listed explicitly in Appendix B 2 b. Each of the eight tensor
structures leads to a contribution in the effective action that,
if separated from the remainder of the action, violates
gauge invariance. For example, the classical tensor struc-
ture, γμ, corresponds to the term q̄Aq in the effective action
which is by itself not gauge invariant. However, it appears
as part of the gauge-covariant derivative q̄Dq which
respects gauge invariance. On the other hand, for the

additional tensor structures, T ðiÞ
q̄Aq, i > 1, such a gauge-

covariant completion is not automatically included. A naïve
inclusion of these tensor structures alone would, therefore,
violate gauge invariance in the form of (modified) Slavnov-
Taylor identities; see the discussion in Appendix A.
In the semi-perturbative, chirally symmetric regime we

find the gauge-invariant operator

i
ffiffiffiffiffiffiffiffiffiffi
4παs

p
q̄γ5γμϵμνρσfFνρ; Dσgq; ð11Þ

whose contribution to the term of Oðq̄AqÞ is proportional
to the tensor

1

2
T ð5Þ

q̄Aq þ T ð7Þ
q̄Aq: ð12Þ

Together with our results for the dressing functions,

zðiÞq̄Aqðp; qÞ evaluated at p2 ¼ q2 ¼ ðpþ qÞ2, Fig. 4(a),
we conclude that this is indeed the gauge-invariant operator
that determines most of the strength of the chirally
symmetric nonclassical tensor structures; see also Fig. 6.
Since the operator in (11) contributes also to tensor
structures in higher vertices, namely the two-quark–two-
gluon and two-quark–three-gluon interactions, we include
these as well in our truncation and dress them in accordance
with gauge symmetry, see Appendixes A 2 and B 2 b for
further details. Similarly we find that the chiral symmetry
breaking operator

q̄ðδμν þ ½γμ; γν�ÞDμDνq; ð13Þ

contributes to Oðq̄AqÞ to the tensor

1

2
T ð2Þ

q̄Aq þ T ð4Þ
q̄Aq: ð14Þ

Since this is the most relevant operator in the phase of
spontaneously broken chiral symmetry we again include
the corresponding contribution to the two-quark—two-
gluon vertex with gauge invariant dressing. The explicit
calculation of the dressing functions of the higher inter-
actions to check the quantitative importance of deviations
from the STI which are expected to occur below momenta
of Oð1 GeVÞ is deferred to future work.
We want to stress at this point that if we would only take

into account a full basis for the quark-gluon vertex without
the corresponding gauge invariant partner tensor structures
in the higher vertices, we would see considerably different
results. In particular, the running coupling (see Fig. 4), as
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FIG. 4 (color online). Strength of tensor structures and vertices. (a) Coupling strength, (17) and (B9), of quark-gluon vertex tensor
components at symmetric point. Black: classical tensor structure, grey: chirally symmetric non-classical tensor structures, red: tensor
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takes the gluon gap into account analogous to (17) for the quark-gluon vertex. Critical gauge coupling for chiral symmetry breaking αcrit.

CHIRAL SYMMETRY BREAKING IN CONTINUUM QCD PHYSICAL REVIEW D 91, 054035 (2015)

054035-5



defined from the dressing function of the classical tensor
structure, zð1Þq̄Aq, would deviate from the corresponding
ghost-gluon running coupling at considerably larger
momenta. However, the degeneracy of the running couplings
defined from the different vertices at semi-perturbative
momentum scales is a consequence of gauge invariance.
Hence we conclude that the higher quark-gluon vertices are
important for the consistency of the truncation. Moreover,
diagrams that contain the two-quark–two-gluon vertex have
a different number of quark lines than the ones that contain
only classical vertices. Consequently, the balance between
diagrams with classical and nonclassical vertices is changed
by a finite chemical potential.
Note that for assessing the importance of the different

tensor structures one has to take into account not only their
relative strength but also their respective symmetry proper-
ties. For example, simply extracting the relative strength
from Fig. 4(a), we would conclude that the operator in (11)
seems to be the most important one by far. We find,
however, that also the operator in (13) is very important for
the value of the quark propagator mass function. This is
explained by the fact that (13) breaks chiral symmetry and
contributes, therefore, directly to the quark mass function.

B. Quark propagator

Next we discuss our solution for the quark propagator
parametrized as

Γq̄qðpÞ ¼ ZqðpÞðipþMqðpÞÞ; ð15Þ
which is shown in Fig. 1(b); for an earlier study, see
e.g. [38]. Particular focus will be put on the effect of
different quark-gluon interactions. We find very convincing
agreement with results obtained in lattice QCD in the
quenched approximation [21], that are shown with dimen-
sionful quantities rescaled by a factor of 0.91 to match the
scale of [22] and [15,19]. However, some care is necessary
when comparing our propagator to the lattice results, since
the quenched approximation in lattice simulations sets the
fermion determinant to unity, whereas we just used a
quenched gluon propagator.
Apart from the classical tensor structure, the most

important contribution to the quark propagator stems from
the tensor structures 1

2
T ð5Þ

q̄Aq þ T ð7Þ
q̄Aq for ZqðpÞ, and

1
2
T ð2Þ

q̄Aq þ T ð4Þ
q̄Aq for MqðpÞ, where we find it necessary to

include the full momentum dependence of the correspond-

ing dressing functions zðiÞq̄Aqðp; qÞ. It is only the combination
of all these terms, including their gauge invariant partner
structures in the quark-gluon vertex equation together with
their momentum dependencies, that leads to the very good
agreement with the lattice propagator. In particular this
concerns the wave function renormalization ZqðpÞ for
small momenta, where an important contribution stems
from mesonic fluctuations in the infrared. These fluctua-
tions have been included with functional methods, e.g. in

[2,7,39–45]. Restricting the discussion only to the relative
importance of quark-gluon vertex tensor structures, recent
findings in Dyson-Schwinger studies [46–48] agree with
ours; see also [49] for an earlier study. Moreover, our
present findings suggest the inclusion of the STI-consistent
higher quark-gluon interactions in future DSE-studies.
Finally we want to point out that one crucial contribution

to the quark mass function comes from the addition to the
flow of the Yukawa coupling, ∂tΔh, due to dynamical
hadronization; see (D7). As soon as one runs into the
spontaneously broken phase of QCD, hσi ≠ 0, this term
contributes to the quark mass function as well via the
relation ∂tΔMqð0Þ ∝ hσi∂tΔhπ . Momentum dependencies
are very important in ∂tΔMqðpÞ, since we expect this term
to be approximately zero for momenta larger than the chiral
symmetry breaking scale; see Appendix D for details.
Similarly, we had to include momentum dependencies in
the remaining four-Fermi interactions that appear in the
tadpole diagram. In the language of dynamical hadroniza-
tion, chiral symmetry breaking in terms of the quark mass
function is then triggered by the additional term, ∂tΔMq;
see (D9). This, however, is just due to the chosen para-
metrization of the four-Fermi interaction in terms of
mesons. Without dynamical hadronization, chiral sym-
metry breaking would be driven by the tadpole diagrams
containing the resonant (momentum-dependent) four-
Fermi channel, which in turn is driven by quark-gluon
interactions.

C. Gluonic vertices and running couplings

From our calculated momentum-dependent QCD
vertices, namely from the quark-gluon, the ghost-gluon
and the three-gluon vertex we can extract running cou-
plings. Following the detailed discussion in Appendix A,
these running couplings are required to be degenerate at
(semi-) perturbative momenta p≳Oð1 GeVÞ by means of
Slavnov-Taylor identities,

4παSðpÞ ¼ z2c̄AcðpÞ ¼ z2q̄AqðpÞ ¼ z2A3ðpÞ ¼ zA4ðpÞ; ð16Þ

whereas they will start to deviate in the nonperturbative
regime p≲Oð1 GeVÞ. Additionally, there is no unique
definition of a running coupling extracted from a particular
vertex in the nonperturbative regime. Here we define
effective running couplings that explicitly take the decou-
pling due to the gluonic mass gap into account, illustrated
exemplarily for the running coupling extracted from the
quark-gluon vertex evaluated at the symmetric point,

αq̄Aqðp2Þ ¼ ðzð1Þq̄Aqðp; qÞÞ2
4π

����
p2¼q2¼ðpþqÞ2

: ð17Þ

The running couplings from different vertices are shown in
Fig. 4. Irrespective of the definition, all running couplings
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coincide down to momenta of 4 GeV. This underlines the
fact that STI violations are negligible, without the necessity
to tune initial conditions as an implicit solution of the STI
as described in Appendix A 1. Even more, the degeneracy
of all running couplings at large momenta represents a
highly nontrivial statement about the consistency of our
truncation, in the sense that all important contributions in
the semi-perturbative regime have been consistently taken
into account. Note that the very good agreement of the
quark-gluon and the ghost-gluon running coupling is in part
a consequence of the full momentum dependence which
is self-consistently taken into account in the quark gluon
vertex. This suggests that a similar improvement in the glue
sector might lead to an even better agreement of the three-
gluon coupling with the two other couplings. At low
momenta, the gap in the gluon propagator becomes
important and we find a clear difference between the
strength of the various vertices. In particular, the three-
gluon vertex drops considerably earlier, which is mainly
due to the larger number of gluon legs.

D. Relative importance of four-Fermi channels

As mentioned in the discussion of our truncation in
Sec. II B, we include a Fierz-complete basis with all ten
basis elements consistent with the SUðNcÞc ⊗ SUðNfÞV ⊗
Uð1ÞB symmetry to assess the importance of different four-
Fermi interaction channels; see Appendix B 2 c for details
on the choice of the basis. All four-Fermi couplings are
shown in Fig. 5(a), where in particular h2π=2m2

π corresponds
to the dressing function of the tensor structure

ðq̄T0qÞ2 − ðq̄γ5TfqÞ2; ð18Þ

and λη0 to the dressing function of

ðq̄TfqÞ2 − ðq̄γ5T0qÞ2; ð19Þ

where Tf (T0) denote the generators of SUðNfÞ (Uð1Þ). We
find that the dynamics of spontaneous chiral symmetry
breaking is almost exclusively driven by the chirally
symmetric four-Fermi channel λðS−PÞþ , which corresponds
to the quantum numbers of the σ; π; η and a mesons.
However, this channel is split by the presence of the ’t
Hooft determinant coupling, λðSþPÞ− , such that only the σ
meson and pions become very light. The dynamically
created quark mass is already sufficient to strongly suppress
the η0 channel in comparison to the resonant pion channel.
Additional contributions due to the Uð1ÞA anomaly would
lead to an even stronger suppression; see [41,50].
Additionally, for sufficiently large initial scales, these
anomalous contributions are suppressed relative to the
contribution that orginates from the explicit symmetry
breaking due to nonvanishing current quark masses. First
checks indeed indicate that the anomalous contributions at
a sufficiently initial large cutoff scale do not play a
quantitatively important rôle, a more detailed study will
be presented elsewhere. On the other hand, anomalous
contributions corresponding to fluctuations below the cut-
off scale are already taken into account by integrating the
FRG running. This has also been demonstrated e.g. for the
quantummechanical anharmonic oscillator [51]. Therefore,
all but the resonant pion four-Fermi channel constitute
subleading contributions with a quantitative effect of less
than 5%; see Fig. 2. Independent of their relative strength,
the suppression of any of the four-Fermi interactions is
overcome by the strength of αs only in the nonperturbative
regime of QCD at scales of Oð1 GeVÞ.
In light of these results it is sufficient to take into account

only the ðσ − πÞ channel, provided one uses a projection
obtained from a full basis to avoid ambiguities in the
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FIG. 5 (color online). RG-scale dependence of four-Fermi interactions and Yukawa coupling. (a) Renormalisation group scale
dependence of dimensionless four- fermi interactions, see Appendix B 2 c, and bosonised σ-π channel. Grey: respects chiral symmetry,
blue: breaks Uð1ÞA, red: breaks SUð2ÞA, magenta: breaks Uð2ÞA. (b) Independence of infrared model parameters from initial value and
scale demonstrated for Yukawa coupling in a momentum-independent approximation similar to [3].
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projection procedure. Furthermore, note that in the purely
fermionic theory all ten channels diverge at the chiral
symmetry breaking scale signaling resonant quark-anti-
quark states, as illustrated in Fig. 2 for the ðσ − πÞ channel.
These divergencies are a consequence of ignoring momen-
tum dependencies and can be removed by dynamically
hadronizing only the ðσ − πÞ channel. Nevertheless, it
would be interesting to also bosonize other four-
Fermi channels to investigate the properties of the corre-
sponding bound states. Alternatively an investigation of the
momentum dependencies of the four-Fermi interactions
themselves is also conceivable. As a word of caution, our
statements about the relative strength of four-Fermi chan-
nels are only valid in the vacuum as in particular finite
chemical potential is expected to shift the relative strength
of four-Fermi interaction channels. This expectation is
based on the picture that different effective degrees of
freedom like diquarks might become important at larger
chemical potentials which would manifest itself also in the
corresponding 4-Fermi interaction channels.
Finally we want to mention that Fig. 5(a) captures only

the zero external momentum limit of the four-Fermi
interaction channels. Although it was necessary to calculate
the momentum dependence of the s-channel momentum
configuration for the evaluation of the quark-propagator
for this work, we postpone a thorough discussion of the
momentum dependence of the four-Fermi interactions to
future publications. Here we only note that the effect of
such momentum dependencies on the remainder of the
matter system is very weak, since all but the σ-π channel
are very weak. In the latter, on the other hand, we have
implicitly taken momentum dependencies into account via
dynamical hadronization.
Furthermore, we want to stress that the dynamical

hadronization procedure of introducing effective mesonic
degrees of freedom introduces no model parameters in the
theory. Therefore, the infrared physics in terms of quarks
and mesons is independent of the ultraviolet starting point
and initial values. This is demonstrated explicitly for
the Yukawa interaction between quarks and mesons in
Fig. 5(b). The flow of the four-Fermi channel λπ determines
only the value of the ratio h2π=ð2m2

πÞ, which rises monoto-
nously in the perturbative regime, cf. Fig. 5(a). Although
the inital flows of the Yukawa coupling hπ and pion mass
m2

π depend on their particular inital values, each pair of
initial values ðhπ;Λ; m2

π;ΛÞ at any reasonably large UV-scale
Λ leads to the same infrared values. As is demonstrated
in Fig. 5(b), the flows of, e.g. the Yukawa coupling with
different initial values and/or scales, converge to the same
infrared value after a short tuning phase.

E. Mechanism of chiral symmetry breaking

As outlined in the introduction a proper understanding
of the mechanisms of confinement and chiral symmetry
breaking is a crucial step towards a quantitatively reliable

approach to the phase diagram of QCD at finite chemical
potential. Here we comment on the mechanism of chiral
symmetry breaking from the point of view of the matter
system.
In [11,24,52–56] a simple picture for chiral symmetry

breaking in quenched QCD was put forward. In their
analysis the IR fixed points in the four-Fermi interactions
are destabilized if the gauge coupling exceeds a critical
coupling αcrit and as a result the four-Fermi coupling
becomes singular. Although the argument is qualitatively
correct, in quenched QCD the picture is not so simple, as
the drop of the gauge coupling at small momenta [see
Fig. 4(b)], lets the quark sector become subcritical again.
This was discussed as one possible scenario in [56], but is
confirmed here as the actual physical situation. In Fig. 4(b),
we show the different running couplings and the critical
gauge coupling. Since the gauge coupling decreases below
the critical coupling for decreasing momenta, it is merely
the area above the critical value line which is decisive
for the occurrence of chiral symmetry breaking.
Our findings indicate that an approach where the vertex

strength of all tensor structures of the quark-gluon vertex is
subsummed in an enhanced strength of the classical tensor
structure lacks quantitative precision. Using such an
enhanced quark-gluon vertex in our calculation would lead
to much too large contributions in the four-Fermi sector,
from gluonic box diagrams which grow like α2q̄Aq. Taking
into account different tensor structures approximately
corresponds to a sum of contributions ≃P

iα
2
i , if we

denote the running couplings associated to different com-
ponents of the quark-gluon vertex as αi and neglect cross
terms, whereas the enhanced vertex from the single channel
approximation contributes as the square of the sums
≃ðPiαiÞ2 in the four-Fermi box diagram.
Finally, we briefly discuss the mechanism of chiral

symmetry breaking which is at work in our framework.
Here, chiral symmetry breaking is driven by four-Fermi
interactions. In a framework of dynamical hadronization
this is reflected in the corresponding contributions to the
Yukawa coupling/quark mass. Therefore, our calculation
requires significantly less vertex strength in the quark-
gluon vertex in order to see chiral symmetry breaking
compared to the required strength in single channel
approximation as described above. In our framework,
including just the classical tensor structure in the quark-
gluon vertex leads to qualitatively albeit not quantitatively
correct results. This is mainly due to the contributions
from the tensor structure 1

2
T ð5Þ

q̄Aq þ T ð7Þ
q̄Aq in the quark-

gluon vertex and its gauge invariant completion; see the
discussion in Sec. III A and Appendix B 2.

IV. SUMMARY AND CONCLUSIONS

In the present work, we have investigated spontaneous
chiral symmetry breaking in quenched continuum QCD.
The only relevant couplings are those of QCD: the strong
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coupling αs and the current quark masses which are fixed in
the perturbative regime. In particular, this allows us to
compute the quark propagator in excellent agreement with
corresponding results from lattice QCD.
The functional renormalization group analysis presented

here uses a vertex expansion that goes qualitatively beyond
the approximation level used so far in continuum methods.
On the one hand, advanced approximations have been used
in subsystems such as the pure glue sector and the low-
energy matter sector. On the other hand, we have, for the
first time, introduced a complete basis of four-Fermi
interactions in the s channel as well as the full quark-
gluon vertex with all its momentum dependencies and
tensor structures. The latter has been linked to higher-order
quark-gluon interactions via modified Slavnov-Taylor
identities. These higher-order terms are also important
for the convergence of the results, which emphasizes the
necessity of an expansion scheme based on gauge-invariant
operators. The quantitative reliability has been discussed in
a detailed analysis of the systematic errors.
The transition from the quark-gluon to the hadronic

phase is smoothly done by means of dynamical hadroniza-
tion. This allows us to monitor the emergence of composite
mesonic operators as dynamical degrees of freedom at low
energies. We have also investigated the relative importance
of different four-Fermi interaction channels. Here we find
that a single channel approximation with σ and ~π is
sufficient to induce spontaneous chiral symmetry breaking
on a semi-quantitative level. This fact together with the
small width of the strongly correlated transition region
from the quark-gluon regime to the hadronic regime (see
also [3]) can be used to systematically improve the
reliability of low-energy effective models; see [5,57–59].
The present computation is currently being extended to

full dynamical QCD (for first investigations, see [3]) and to
finite temperature and density. Our analysis of the matter
sector should also give access to the large density regime,
provided the higher fermionic interactions including
fluctuating baryons are monitored accordingly.
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APPENDIX A: MODIFIED SLAVNOV-TAYLOR
IDENTITIES

In the presence of the regulator terms the standard
Slavnov-Taylor identities (STI) are modified (mSTI).

Here we briefly discuss these modifications and their
implications following [8], a more detailed study will be
presented elsewhere. Avery concise form of these identities
is found in a formulation with the auxiliary Nakanishi-
Lautrup field λ with

e−
1
2

R
x
ð∂μAa

μÞ2 →
Z

Dλe−
1
2

R
x
∂μAa

μλ
a−ξ

2

R
x
∂μλaλa ; ðA1Þ

where the full classical action S ¼ SQCD þ Sgf þ Sghost is
invariant under the BRST transformations

sΦ ¼
�
Dμc;−

1

2
fabccbcc; λa;−cq; q̄c; 0; 0;…

�
; sλ ¼ 0:

ðA2Þ

with Φ as defined in (3). In (A2) we have assumed that all
the composite fields introduced in Φ are colorless. The
introduction of the auxiliary field λ leads to s2ϕ ¼ 0. The
cutoff terms are not invariant under the BRST transforma-
tions in (A2) and the standard STI is modified. It reads in a
compact way [8,60–62]

Z
δΓk

δQϕi

δΓk

δϕi
¼

Z
Rk;ϕnϕi

δ2Γk

δQϕi
δϕj

Gϕjϕn
; ðA3Þ

where we have added a BRST source termZ
Qϕi

ðsϕÞi; ðA4Þ

to the path integral, see [8] for more details and further
references. The sums in (A3) run over all species of fields
including internal indices.

1. Initial conditions for vertices

In the limit k → 0 the left-hand side of (A3) vanishes and
we arrive at the standard STI: the derivative of Γ with
respect to Qϕ generates the (quantum) BRST transforma-
tions that act linearly on the fields via the derivative of Γ
with respect to ϕ. For perturbative momenta p this gives the
standard relations between the renormalization factors of
the vertex functions at k ¼ 0, that is

z2c̄AcðpÞ ¼ z2q̄AqðpÞ ¼ z2A3ðpÞ ¼ zA4ðpÞ; ðA5Þ

corresponding to degenerate running couplings in the
perturbative regime. Equation (A5) entails that in QCD
the parameters of the theory are given by the
power-counting relevant mass parameters of the quarks
(dimension one), one (marginal) coupling, αs, and the
unobservable (marginal) wave function renormalizations of
the fundamental fields.
In turn, for k ≠ 0 the simple relations in (A5) are in

general lost and the loop term on the right-hand side of (A3)
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leads to modifications. In terms of power-counting the most
relevant modification is the occurrence of a longitudinal
gluon mass parameter m2

k;L in the gluon propagator that
vanishes for k → 0. Perturbatively it relates to a transversal
mass parameter m2

k;⊥;pert ¼ m2
k;L;pert. Nonperturbatively this

relation does not hold anymore, as we have a nonvanishing
transversal mass gap in Landau gauge, for more details see
[19]. In the present work, we do not solve the mSTIs for the
vertices explicitly and also avoid the necessity of discus-
sing the decoupling of transversal and longitudinal param-
eters. We take the very good realization of (A5) in our
results, i.e. Fig. 4, as an indication that the effects of the
right-hand side of (A3) at the initial scale Λ are either small
or become unimportant during the evolution of flow
equation.

2. STI-invariant vertices

In the perturbative regime, the relations between the
gluonic vertices can be obtained with the help of the
renormalization group invariant covariant derivative

Dμ ¼ ∂μ − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παsZ̄A

q
Aμ; ðA6Þ

with the renormalized gauge field Aμ. Using the corre-
sponding field strength tensor

Fμν ¼
iffiffiffiffiffiffiffiffiffiffi
4παs

p ½Dμ; Dν�; ðA7Þ

in the effective action leads to gluonic vertices that are
consistent with gauge invariance for momenta p ≈ k down
to Oð1 GeVÞ. By using αs;kðpÞ and ZA;kðpÞ these relations
could be made true for a larger range of momenta, which,
however, is not necessary due to the locality of the flow.
In any case, such relation cannot be found for the non-
perturbative regime, since the perturbative mSTIs are in
general only valid for the longitudinal part of the vertices
which deviate from their transversal parts at nonperturba-
tive momenta as it is for example the case for the gluon
mass gap. Consequently, the vertices have to be computed
separately and do not follow from the mSTI at low
momenta. However, the gluonic vertices and ghost-gluon
vertex gain a potentially significant nontrivial momentum
dependence and nonclassical tensor structures only in the
deep infrared where their contributions decouple due to the
mass gap in the gluon propagator. In the present work, we
use this as a justification for approximating the four-gluon
vertex by the three-gluon vertex.
On the other hand, the quark-gluon vertex potentially

gets a significant nontrivial momentum dependence and
nonclassical tensor structures [see (B8)] below momenta of
Oð1 GeVÞ, where chiral symmetry breaking is triggered.
To take these effects into account we study the STI-
consistent version of the most important tensor structures,

zð5Þq̄Aqðpþ qÞðp − qÞμ; zð7Þq̄Aq
1

2
½p; q�γμ ðA8Þ

[see Fig. 4(a)]. It can be shown that terms proportional to

zð5Þq̄Aq and zð7Þq̄Aq are derived from

zðavÞq̄Aqq̄γ5γμϵμνρσDνDρDσq; ðA9Þ
with

zð7Þq̄Aq ¼ zðavÞq̄Aq; zð5Þq̄Aq ¼
1

2
zðavÞq̄Aq; ðA10Þ

valid for constant zðavÞq̄Aq. In (A9) we have used that the mSTI-

consistent extension of the zð5Þq̄Aq; z
ð7Þ
q̄Aq-momentum structure

in (A8) is

1

4
q̄Dμf½γμ; γν�; DgDνq: ðA11Þ

The tensor structure (A11) only projects on the zð5Þq̄Aq and

zð7Þq̄Aq terms. After some algebra, (A11) can be rewritten
as (A9) by using

1

4
zðavÞq̄Aqf½γμ; γν�; γρg ¼ ϵμνραγ5γα: ðA12Þ

With (A7) we get

zðavÞq̄Aq
i
4

ffiffiffiffiffiffiffiffiffiffi
4παs

p
q̄γ5γμϵμνρσfFνρ; Dσgq: ðA13Þ

Hence, as long as

zð7Þq̄Aq − 2zð5Þq̄Aq ¼ 0; ðA14Þ

the quark-gluon vertex tensor structures (A8) follow
from the single term (A13), see Fig. 6. This term is derived
from the mSTI which is valid down to the semi-perturbative
regime. We conclude that within a self-consistent
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FIG. 6 (color online). Normalized difference ðzð7Þq̄Aq −
2zð5Þq̄AqÞ=zð7Þq̄Aq (blue solid) and ðzc̄Ac − zð1Þq̄AqÞ=zc̄Ac (red dashed).
Small values indicate that the mSTI is applicable for constraining
transversal tensor structures.
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approximation one also has to take into account the related
quark-gluon scattering vertices (q̄A2q and q̄A3q) derived
from (A13). A more detailed study will be published
separately. Finally, it is noteworthy that the tensor structure
(A13) also plays a crucial rôle in the so-called transverse
Ward-Takahashi identity for the quark-gluon vertex, see
[63] and e.g. [48,64,65] for applications.

APPENDIX B: TRUNCATION

In this section we discuss in detail the different con-
stituents of the truncation scheme introduced in Sec. II B.

1. Yang-Mills sector

a. Propagators

The only external input which is required in our
calculation are the pure gauge propagators. In Landau
gauge, the inverse gluon propagator can be parametrized as

Γμν
A2ðpÞ ¼ ZAðpÞp2Πμν

T ðpÞ; ðB1Þ

where Πμν
T ðpÞ denotes the transverse projector

Πμν
T ðpÞ ¼

�
δμν −

pμpν

p2

�
: ðB2Þ

In addition to the gluon propagator we also encounter the
ghost propagator,

Γc̄cðpÞ ¼ ZcðpÞp2; ðB3Þ

in the equations for the pure gauge vertices.
We stress that the matter sector computation does not rely

on a particular propagator input, but can use any available
propagators. This includes RG-scale and momentum-
dependent propagators as provided by FRG calculations
[15,19] or just momentum-dependent input such as lattice
Yang Mills propagators in minimal Landau gauge from
[20,22] where the former will be used here, see Fig. 1(a).
Taking an external input for the propagators automatically
sets the scale of the theory and, apart from the bare quark
mass, no parameters remain in the perturbative regime,
where we set our initial condition.

b. Vertices

We approximate the ghost-gluon vertex, the three-gluon
vertex and the four-gluon vertex with their classical tensor
structures and a momentum-dependent dressing, zX for
X ∈ fc̄Ac; A3; A4g,

Γc̄Acðp1;p2Þabcμ ¼ zc̄Acðp̄ÞZcðp̄ÞZ1=2
A ðp̄Þ½igfabcqμ�;

ΓA3ðp1;p2Þabcμνρ ¼ zA3ðp̄ÞZ3=2
A ðp̄Þ½ifabc

× fðp2 −p1Þρδμν þ permg�;
ΓA4ðp1;p2; p3Þabcdμνρσ ¼ zA4ðp̄ÞZ2

Aðp̄Þ½fiabficdδμρδνσ þ perm�:
ðB4Þ

Here the pi, denote the momenta and we approximate the
dressing functions zX as functions of one average momen-
tum p̄≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ip
2
i =
P

i

p
. To project onto the dressing func-

tions we multiply each gluon leg with the corresponding
transversal projector. Therefore, the projection on the
ghost-gluon vertex dressing is uniquely defined whereas
we contract the three-gluon vertex equation additionally
with δμνp2;ρ − δνρp2;μ. The four-gluon vertex is approxi-
mated from the three-gluon vertex via

zA4ðp̄Þ ¼ z2A3ðp̄Þ; ðB5Þ

which leads to an approximate agreement of the three-
gluon running coupling with the ghost-gluon and quark-
gluon running coupling down to Oð1 GeVÞ and is still
expected to improve with an improved momentum reso-
lution of the glue sector, see the discussion in Sec. III C.

2. Matter sector

a. Quark propagator

We parametrize the inverse dressed quark propagator
with two dressing functions as

Γq̄qðpÞ ¼ ZqðpÞðipþMqðpÞÞ; ðB6Þ

where

fγμ; γνg ¼ 2δμν1; γ†μ ¼ γμ; γ5 ¼ γ1γ2γ3γ4: ðB7Þ

Setting the current quark mass, Mqð20 GeVÞ ¼ 1.3 MeV,
is related to the value of the pion mass; see Appendix B 2 d.
Apart from the purely mesonic sector of our truncation, the
full momentum dependence of the quark propagator is fed
back into the equations for all other vertices. In the quark-
meson sector, as described in Sec. B 2 d, such an approxi-
mation leads to an overestimation of the suppression of
loops containing quarks via the quark mass function. The
resulting effect will most likely be an underestimation of
the order parameter hσi since the quarks drive the order
parameter to larger values in the quark-meson model.

b. Quark-gluon interactions

In Landau gauge, a basis for the quark-gluon vertex is
given by the eight tensor structures,
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½T ð1Þ
q̄Aq�μðp; qÞ ¼ γμ;

½T ð2Þ
q̄Aq�μðp; qÞ ¼ −iðp − qÞμ;

½T ð3Þ
q̄Aq�μðp; qÞ ¼ −iðp − qÞγμ;

½T ð4Þ
q̄Aq�μðp; qÞ ¼ iðpþ qÞγμ;

½T ð5Þ
q̄Aq�μðp; qÞ ¼ ðpþ qÞðp − qÞμ;

½T ð6Þ
q̄Aq�μðp; qÞ ¼ −ðp − qÞðp − qÞμ;

½T ð7Þ
q̄Aq�μðp; qÞ ¼

1

2
½p; q�γμ;

½T ð8Þ
q̄Aq�μðp; qÞ ¼ −

i
2
½p; q�ðp − pÞμ; ðB8Þ

where p (q) denotes the momentum of the (anti)quark. It is

important to note that the tensor structures T ð2Þ
q̄Aq, T

ð3Þ
q̄Aq,

T ð4Þ
q̄Aq and T

ð8Þ
q̄Aq break chiral symmetry and are only created

in the spontaneously broken phase. Our final ansatz for the
quark-gluon vertex is then

Γq̄Aqðp; qÞ ¼ −iZqðp̄ÞZ1=2
A ðp̄Þ

×
X
i

zðiÞq̄Aqðp; qÞ
p̄ni

½T ðiÞ
q̄Aq�μðp; qÞ; ðB9Þ

where p̄ni is the average momentum and ni is chosen such

that zðiÞq̄Aqðp; qÞ is dimensionless.
As remarked in Sec. III A a sensible truncation scheme

should also include a set of higher-order operators to
complete it consistent with the STI. We find that the most
important contributions to nonclassical tensor structures in
the quark-gluon vertex stem from terms of the form

q̄TμνDμDνq; q̄TμνρDμDρDνq; ðB10Þ

where the first (second) contribution breaks (respects)
chiral symmetry. In momentum space these yield contri-
butions to the action of the form

Oðq̄AqÞ∶ q̄ðpÞfTμνðiqνÞ þ Tνμð−ipνÞ þ Tμνρð−qνqρÞ þ Tνμρð−pνpρÞ þ TρνμðpρqνÞg × ½−igAμð−p − qÞ�qðqÞ;
Oðq̄A2qÞ∶ q̄ðpÞfTμν þ Tρμνð−ipρÞ þ Tνμρðiðrþ qÞρÞ þ TνρμðiqρÞg½−igAνð−p − q − rÞ�½−igAμðrÞ�qðqÞ;
Oðq̄A3qÞ∶ q̄ðpÞTμνρ½−igAμð−p − q − rþ sÞ� × ½−igAρðsÞ�½−igAνðrÞ�qðqÞ; ðB11Þ

where g is to be understood as g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παðp̄ÞZAðp̄Þ

p
everywhere. In particular, we find that the dominant
contributions to order D2 and D3 correspond to the tensor
structures,

Tμν ¼ δμν þ ½γμ; γν�;
Tμνρ ¼ f½γμ; γν�; γρg: ðB12Þ

In terms of quark-gluon tensor structures from (B8), these
are proportional to the linear combinations

1

2
T ð2Þ

q̄Aq þ T ð4Þ
q̄Aq;

1

2
T ð5Þ

q̄Aq þ T ð7Þ
q̄Aq ðB13Þ

[see Fig. 4(a)].
Therefore, we set for consistency reasons zð5Þq̄Aq ¼ 1

2
zð7Þq̄Aq

and zð2Þq̄Aq ¼ zð4Þq̄Aq in all equations. The dressing of the
corresponding higher-order operators is then simply iden-
tified with that of the corresponding quark-gluon vertex

dressings zð7Þq̄Aq and z
ð4Þ
q̄Aq, respectively, where we additionally

use the RG-invariant ansatz as in all other vertices, e.g.

q̄ðpÞZqðp̄Þzð4Þq̄Aqðp̄ÞTμν½−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παðp̄ÞZAðp̄Þ

p
AμðrÞ�

×½−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παðp̄ÞZAðp̄Þ

p
Aνð−p − q − rÞ�qðqÞ; ðB14Þ

with p̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þ q2 þ r2 þ ðpþ qþ rÞ2Þ=4

p
.

c. Four-Fermi interactions

Here we discuss a basis for the four-Fermi interactions
where ðS� PÞ=ðV � AÞ denotes the scalar-pseudoscalar/
vector-axialvector Dirac structure, the subscript denotes the
flavor structure and the superscript the color structure.
Omitted subscripts and superscripts are to be understood as
singlet contributions.
A basis for the Uð2ÞL ×Uð2ÞR symmetric four-Fermi

interactions is given by [68] (see also [11] for a review),

LðS−PÞþ
ðq̄qÞ2 ¼ ðq̄T0qÞ2 − ðq̄γ5TfqÞ2 − ðq̄γ5T0qÞ2 þ ðq̄TfqÞ2

LðV−AÞ
ðq̄qÞ2 ¼ ðq̄γμT0qÞ2 þ ðq̄γμγ5T0qÞ2

LðVþAÞ
ðq̄qÞ2 ¼ ðq̄γμT0qÞ2 − ðq̄γμγ5T0qÞ2

LðV−AÞadj
ðq̄qÞ2 ¼ ðq̄γμT0TaqÞ2 þ ðq̄γμγ5T0TaqÞ2: ðB15Þ
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We denote the generators of flavor Uð1Þ and SUð2Þ by T0

and Tf whereas Ta are the generators of color SUð3Þc.
Note, that the obvious choice ðS − PÞadjþ instead of ðV −
AÞadj is not linearly independent of ðS − PÞþ and ðV þ AÞ
and, therefore, ðV − AÞadj has to be considered.
There are two four-Fermi interactions which break the

axial Uð1ÞA but are symmetric under Uð1ÞV × SUð2ÞL×
SUð2ÞR

LðSþPÞ−
ðq̄qÞ2 ¼ ðq̄T0qÞ2 − ðq̄γ5TfqÞ2 þ ðq̄γ5T0qÞ2 − ðq̄TfqÞ2

LðSþPÞadj−
ðq̄qÞ2 ¼ ðq̄T0TaqÞ2 − ðq̄γ5TfTaqÞ2

þ ðq̄γ5T0TaqÞ2 − ðq̄TfTaqÞ2; ðB16Þ

where the first corresponds to the ’t Hooft determinant [69].
For applications it is convenient to introduce the linear
combinations,

LðπÞ
ðq̄qÞ2 ¼ LðS−PÞþ

ðq̄qÞ2 þ LðSþPÞ−
ðq̄qÞ2 ¼ 2ðq̄T0qÞ2 − 2ðq̄γ5TfqÞ2

Lðη0Þ
ðq̄qÞ2 ¼ LðS−PÞþ

ðq̄qÞ2 − LðSþPÞ−
ðq̄qÞ2 ¼ 2ðq̄TfqÞ2 − 2ðq̄γ5T0qÞ2;

ðB17Þ

with quantum numbers corresponding to ðσ − πÞ− and
ðη − aÞ− meson exchange channels.
Since the SUð2ÞL × SUð2ÞR symmetry is only approxi-

mate and explicitly broken to SUð2ÞLþR, we additionally
take into account the tensor structures,

LðSþPÞþ
ðq̄qÞ2 ¼ðq̄T0qÞ2 þ ðq̄γ5TfqÞ2 þ ðq̄γ5T0qÞ2 þ ðq̄TfqÞ2

L
ðSþPÞadjþ
ðq̄qÞ2 ¼ðq̄T0TaqÞ2 þ ðq̄γ5TfTaqÞ2

þ ðq̄γ5T0TaqÞ2 þ ðq̄TfTaqÞ2; ðB18Þ

which break SUð2ÞA. Finally, there are two basis elements
which break SUð2ÞA as well as Uð1ÞA:

LðS−PÞ−
ðq̄qÞ2 ¼ðq̄T0qÞ2 þ ðq̄γ5TfqÞ2 − ðq̄γ5T0qÞ2 − ðq̄TfqÞ2

LðS−PÞadj−
ðq̄qÞ2 ¼ðq̄T0TaqÞ2 þ ðq̄γ5TfTaqÞ2

− ðq̄γ5T0TaqÞ2 − ðq̄TfTaqÞ2: ðB19Þ

Consequently, a basis that respects Uð1ÞV × SUð2ÞV con-
sists of ten elements and the ansatz for the full four-Fermi
vertex is given by

Γðq̄qÞ2;kðp1; p2; p3Þ ¼ Z2
q;kð0Þ

X
i

λi;kðsÞ
k2

Li
ðq̄qÞ2 ; ðB20Þ

where the sum runs over these ten tensor structures.
We investigated the momentum dependencies in the
four-Fermi interactions for three momentum configurations

corresponding to pure s-, t- and u-channel momentum
configurations on the basis of the given solution at zero
external momentum. For example, for the s channel
we consider p1 ¼ p2 ¼ −p3 ¼ −p4 ¼ p corresponding
to s ¼ 4p2.

d. Quark-meson system: LPA0 approximation

We parametrize the inverse meson propagators as

Γσ2=~π2;kðpÞ ¼ Zπ;kðp2 þm2
σ=π;kÞ: ðB21Þ

In the chirally symmetric phase, the approximation Zσ ≈ Zπ

is exact, whereas the deviations in the broken phase
are suppressed by the comparably large mass of the
sigma-meson mσ . The mass terms can be absorbed into
the definition of the effective mesonic potential and
will be discussed there. Additionally we neglect the
momentum dependence of Zπ which has been shown to
be a quantitatively reliable approximation [6]. As a con-
sequence, only the anomalous dimension,

ηπ ¼ −
∂tZπ

Zπ
; ðB22Þ

appears in any of the flow equations.
We perform a Taylor expansion of the effective mesonic

potential in ρ [70],

Vðρ̄≡ ZπρÞ ¼
X6
j¼0

vj
j!
ðρ̄ − ρ̄0Þj; ðB23Þ

with ρ̄0 ≡ Zπρ0 and ρ0 scale independent such that ρ̄0
becomes the minimum of the effective potential at k → 0.
At this order of the Taylor expansion we see convergence
and a comparison to a calculation on a discrete grid in ρ
yields perfect agreement. The meson masses are obtained
from this potential as

m2
π ¼ V 0ðρ̄0Þ;

m2
σ ¼ V 0ðρ̄0Þ þ 2ρ̄0V 00ðρ̄0Þ: ðB24Þ

Therefore, the value of the pion mass depends directly on
the expansion point ρ̄0 which, in turn, is directly propor-
tional to the current quark mass MqðΛÞ. In our case we
choose Mqð20 GeVÞ ¼ 1.3 MeV such that mπ takes the
physical value of 135 MeV.
We consider only one Yukawa interaction of the σ − π

tensor structure LðπÞ
ðq̄qÞ2 . Hence, integrating out the mesonic

fields leads to contributions to the four-Fermi interaction

LðπÞ
ðq̄qÞ2 . In other words, the total coupling of LðπÞ

ðq̄qÞ2 is a sum
of the explicit four-Fermi interaction and the part stored in
the quark-meson sector of the theory. The distribution of
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these fluctuations is done with dynamical hadronization
explained in Appendix D.
The chirally symmetric Yukawa interaction reads

Z
p1;p2

zq̄ϕqðp1; p2ÞZ̄
1
2
πðp1 þ p2ÞZ̄

1
2
qðp1ÞZ̄

1
2
qðp2Þ

× ϕðp1 þ p2Þq̄ðp1Þτqðp2Þ; ðB25Þ

where τ ¼ ðT0; γ5 ~TÞ. Reducing this to the s channel with
p1 ¼ p2 ¼ p leads to

Z
p
zq̄ϕqðp; pÞZ̄

1
2
πð2pÞZ̄

1
2
qðpÞZ̄

1
2
qðpÞ × ϕð2pÞq̄ðpÞτqðpÞ:

ðB26Þ
In our calculations we use the renormalized Yukawa
coupling hπ, with Z̄πð2pÞ≡ Zπ;kð0Þ, Z̄qðpÞ≡ Z̄q;kð0Þ and

hπð2pÞ ¼ 2zq̄ϕqðp; pÞ; ðB27Þ

where 2p is the momentum of the mesonic field ϕð2pÞ.
Furthermore, we ignore momentum dependencies as well
as field dependencies in hπ .
This parametrization of the quark-meson model is

termed “LPA0 approximation” and has been shown to be
capable of approximating the full momentum dependence
very well [6]. Furthermore, it has been found that the effect
of higher meson quark interactions that stem from a
possible field dependence in the Yukawa interaction would
yield a decrease of the order of 10% in the chiral
condensate [70].

APPENDIX C: STABILITY
OF THE TRUNCATION

Here we give a detailed analysis of the systematic errors
and hence of the stability of the current truncation. To this
end we briefly summarize the vertex structures taken into
account: in the pure gauge sector, the classical tensor
structures of all primitively divergent correlation functions
have been considered. The quark propagator and the quark-
gluon vertex—as the essential interface coupling between
glue and matter sector—have been included with full
momentum dependencies and all tensor structures.
Additionally, higher quark-gluon interactions as obtained
from a gauge invariant extension of nonclassical tensors
structures in the quark-gluon vertex have been taken into
account. A Fierz-complete basis has been used for the four-
Fermi couplings in an s-channel approximation. Moreover,
meson propagators and quark-meson Yukawa interactions,
as well as higher-order mesonic correlation functions in the
scalar-pseudoscalar s channel, are included.
Gluonic interactions: As the momentum dependence of

the Yang-Mills vertices has been found to be rather small
at the relevant momentum scales [30–35,66,67,71], we

approximated the momentum dependence of these vertices
only with one variable at the symmetric point, which is
expected to be a good approximation.
For the three-gluon vertex, DSE studies show that the

effect of additional tensors structures is small [32].
Furthermore, there exists only one nonclassical gauge
invariant operator contributing to the three-gluon vertex
that can be constructed from the field strength tensor,
namely, tr½FμνFνρFρμ�. We explicitly calculated its dressing
and found it to be negligibly small. In the ghost-gluon
vertex, on the other hand, only one (transversal) tensor
structure contributes in Landau gauge. Our largest system-
atic error concerns, therefore, the four-gluon vertex which
has been determined via STIs from the three-gluon vertex
keeping only the classical tensor structure. While this
certainly works well in the semi-perturbative regime, below
Oð1 GeVÞ deviations are to be expected as well as
contributions from other tensor structures (see [35]).
Indeed, the three-gluon vertex running coupling deviates
already earlier from the other running couplings, indicating
some missing vertex strength [see Fig. 4(b)].
Quark-gluon interactions: In the matter sector the quark-

gluon vertex was fully taken into account. However, based
on an analysis of the relative strength of the different tensor
structures we only fed back the T ð4Þ

q̄Aq and T ð7Þ
q̄Aq as the

dominant chiral symmetry breaking and chiral tensor
structures. We have checked the quantitative convergence
of this approximation at the example of the flow equations
of the quark propagator and the quark-gluon vertex itself.
Higher quark-gluon interactions follow from the quark-

gluon vertex using the modified Slavnov-Taylor identities
(mSTIs) discussed in Appendix A. The applicability of the
mSTIs, which constrain only the longitudinal part of any
correlation function, relies on identifying them with their
transversal counterparts. At nonperturbative momenta
Oð1 GeVÞ, the connection between transversal and longi-
tudinal parts is lost, with the running couplings as obtained
from different vertices as a prominent example; see

comparison of zð1Þq̄Aqα
ffiffiffiffiffiffiffiffiffi
αq̄Aq

p with zc̄Acα
ffiffiffiffiffiffiffiffiffi
αc̄Ac

p
in Fig. 6.

In their regime of applicability, the mSTIs provide, there-
fore, relations between different tensor structures—most

prominently this leads to zð7Þq̄Aq − 2zð5Þq̄Aq ≈ 0—see
Appendix A 2. In Fig. 6 we show the normalized difference

ðzð7Þq̄Aq − 2zð5Þq̄AqÞ=zð7Þq̄Aq as obtained from the vertex equation
with only the classical tensor structure inserted on the right-
hand side. In this case the mSTI is fulfilled even better than
for the strong running coupling down to very low momenta
Oð0.5 GeVÞ. We take this as a justification for approxi-
mating the dressing and momentum dependence of the
higher quark-gluon interactions by the solution of the semi-
perturbative mSTI that relates them to the tensor struc-

ture 1
2
T ð5Þ

q̄Aq þ T ð7Þ
q̄Aq.

Quark interactions: We have taken into account a
complete Fierz basis for the four-Fermi interaction and
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used s-channel approximations for all tensor structures. All
higher purely fermionic vertices in the s channel of the
scalar-pseudoscalar interaction are included. Their contri-
bution beyond meson exchange (eight-fermion interaction)
is small (see [3]). This observation is additionally supported
by the fast convergence of expansions in powers of the
mesonic field that is found in the quark-meson model
and in dynamical QCD, at vanishing temperature [6,70].
Concerning the quark-meson interactions, we neglected
higher contributions due to field-derivatives of the Yukawa
interaction which have been found to be of the order of 10%
[3,70]. A more detailed study will be presented elsewhere.
In the equation for the quark propagator, momentum

dependencies of the four-Fermi interactions play a quanti-
tative rôle via the tadpole diagrams. We have implemented
this momentum dependence via one momentum variable
using a symmetric projection. Furthermore, momentum
dependencies in the meson sector have been ignored which
is justified by the success of the LPA0 approximation [6].
Additionally, we have ignored the backcoupling of the
momentum dependence of the quark propagator in the
equation for the effective potential. We expect some effects
due to this approximation, which would mitigate the effect
of ignoring higher quark-meson interactions.

APPENDIX D: DYNAMICAL HADRONIZATION

As already pointed out in the main text, the concept of
dynamical hadronization [8,24,25] is of crucial importance
for the present application. In the form used here, it allows
us to exactly rewrite momentum channels of the four-Fermi
interactions in terms of Yukawa couplings to an effective
bosonic exchange field. This corresponds to a Hubbard-
Stratonovich transformation in every RG-step, and is also
called rebosonization in the present case of composite
bosonic fields [24]. Naturally, the bosonic field carries
the quantum numbers of the related four-Fermi channel,
and may be interpreted as the corresponding meson or
diquark field.
For simplicity, we restrict ourselves in the following

discussion to the dynamical hadronization of the sigma-
pion channel. Following [8] and in particular [3], we start
from the path integral representation for Γk½Φ� in terms of

the fundamental superfield φ̂ ¼ ðÂμ; Ĉ;
ˆ̄C; q̂; ˆ̄qÞ,

e−Γk½Φ� ¼
Z

Dφ̂e−S½φ̂�−ΔSk½ϕ̂k�þδðΓkþΔSkÞ
δϕ ðΦ̂k−ΦÞþΔSk½Φ�; ðD1Þ

with ΔSk½Φ� ¼ 1
2
ΦRkΦ, where we introduced a dynamical

superfield Φ̂k ¼ ðφ̂; σ̂k; ~̂πkÞ with expectation value
Φ ¼ hΦ̂ki≡ ðφ; σ; ~πÞ. It is constructed from the fundamen-
tal superfield φ and scale-dependent composite operators

ϕ̂k ¼ ðσ̂k; ~̂πkÞ, whose flow we define to be of the form

∂tϕ̂kðrÞ ¼ ∂tAkðrÞðq̄τqÞðrÞ þ ∂tBkðrÞϕ̂kðrÞ ðD2Þ

with ðq̄τqÞðrÞ ¼ R
l q̄ðlÞτqðr − lÞ. The flow (D2) is defined

in momentum space which will allow us to identify it with a
specific momentum channel in the four-Fermi flow. Note
also that the term multiplying ∂tAk involves only expect-
ation values q and q̄. The two coefficient functions ∂tAk
and ∂tBk appearing in (D2) are so far undetermined and at
our disposal in the dynamical hadronization. They specify
the RG-adaptive change of our field basis. The scale
dependence of ϕ̂k leads to additional contributions on
the right-hand side of the flow equation compared to
(1), which now takes the form

∂tjϕΓk½Φ� ¼
1

2
Tr

1

Γð2Þ
k þ Rk

ð∂tRk þ 2Rk∂tBkÞ

−
Z
l

δΓk

δϕ
½∂tAkðrÞðq̄τqÞðrÞ þ ∂tBkðrÞϕðrÞ�:

ðD3Þ

The second line on the right-hand side accounts for the
scale dependence of the composite fields. Together with the
left-hand side, they constitute a total derivative with respect
to the logarithmic scale t. In the present work, we use
∂tAkðrÞ to completely eliminate the corresponding channel
of the scalar-pseudoscalar four-Fermi interaction with λπ ≡
λðS−PÞþ þ λðSþPÞ− and λπðsÞ ¼ λπðp; p;−pÞ [see (B20)],
that is, with t ¼ u ¼ 0,

∂tλπðsÞ ¼ Flowð4Þ
π ðsÞ − ∂tAkð2pÞhπð2pÞ ¼! 0; ðD4Þ

where Flowð4Þ
π ðsÞ stands for the diagrams in the four-Fermi

flow. Equation (D4) leads to a vanishing flow of the s
channel of the four-Fermi coupling λπ and requires

∂tAkð2pÞ ¼
Flowð4Þ

π ðsÞ
hð2pÞ ; with s ¼ 4p2; ðD5Þ

which completely fixes ∂tAkð2pÞ. Still, the second rebo-
sonization function ∂tBkð2pÞ is at our disposal. It can be
used to improve the approximation at hand by distributing
the momentum dependence of the rebosonized four-Fermi
channel between the Yukawa coupling and the mesonic
propagator. For example, when considering the full
momentum dependence of the latter but only a running,
momentum-independent Yukawa coupling, the ∂tBk can be
chosen such that this is an exact procedure. The discussion
of the general procedure is beyond the scope of the present
work and will be presented elsewhere. In the present case
we resort to the simplest option by using

∂tBk ≡ 0: ðD6Þ

As a consequence of (D3) together with (D5) and (D6)
we get additional contributions to the mesonic anomalous
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dimension at vanishing momentum and the momentum-
dependent quark-meson coupling hπð2pÞ,

∂tΔηπ ¼ 2
V 0ðρ̄0Þ
h2πð0Þ

Flowð4Þ
π ð0Þ;

∂tΔhπð2pÞ ¼
Γð2Þ
π ð2pÞ
hπð2pÞ

Flowð4Þ
π ðsÞ: ðD7Þ

The quark mass function is directly related to the quark-
meson coupling, MqðpÞ ¼ hσihπð2pÞ=2. Moreover, in the
current approximation, we use a constant hπ ¼ hπð0Þ on

the right-hand side of the flows. With Γð2Þ
π ð0Þ ¼ V 0ðρ̄0Þ this

leads us to

∂tΔhπð0Þ ¼
V 0ðρ̄0Þ
hπð0Þ

Flowð4Þ
π ð0Þ; ðD8Þ

∂tΔMqðpÞ ¼ MqðpÞ
V 0ðρ̄0Þ
hπð0Þ2

λ̄πð0Þ
λ̄πðsÞ

∂tλ̄πðsÞ; ðD9Þ

with

λ̄πðsÞ ¼
Z

k

ΛUV

dk0

k0
Flowð4Þ

π ðsÞ: ðD10Þ

In (D9) we have used that

Γð2Þ
π ð2pÞ

ðhπð2pÞÞ2
≈
V 0ðρ̄0Þ
hπð0Þ2

λ̄πð0Þ
λ̄πðsÞ

ðD11Þ

up to higher-order terms in the mesonic potential. In the
present approximation we have a better access to the

momentum dependence of λ̄π than on that of Γð2Þ
π and

hπ . Consequently, using (D9) minimizes the error in our
computation ofMqðpÞ. For future work, it would, however,
be preferable to calculate the momentum dependence of the
right-hand side directly from momentum dependencies in
the mesonic sector.
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FIG. 7 (color online). Types of diagrams that contribute to flow of propagators and vertices. Quark (solid lines), gluon (wiggly lines),
ghost (dotted lines) and meson (dashed lines) propagators as well as the (1PI) vertices are dressed. Each diagram represents a sum of
diagrams with (anti)symmetric permutations and regulator function inserted once in each internal propagator line. Symmetry factors and
signs are not shown for better readability. Not shown are the flows of ghost and gluon propagators (see [66,67]) as well as those of the
effective potential.
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