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We develop a technique to present Higgs coupling measurements, which decouple the poorly defined
theoretical uncertainties associated to inclusive and exclusive cross section predictions. The technique
simplifies the combination of multiple measurements and can be used in a more general setting. We
illustrate the approach with toy LHC Higgs coupling measurements and a collection of new physics
models.
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I. INTRODUCTION

The discovery of the Higgs boson [1–4] has initiated a
vigorous program of precision Higgs measurements at the
LHC. The primary focus is on the couplings of this new
state in terms of an effective Lagrangian based on the
Standard Model (SM) gauge structure. The key question is
if this Lagrangian is fully renormalizable, as predicted in
the Standard Model. Deviations in the properties of the
newly found particle from the Standard Model predictions
would indicate the first hint for physics beyond the
Standard Model.
These precision studies provide one of the key motiva-

tions for new accelerators [5,6]. Complicating the inter-
pretation of both the current results and future prospects of
the LHC is the presence of uncertainties on the theoretical
link between Lagrangian parameters and LHC observables.
In this paper, we outline a strategy to decouple the
theoretical uncertainties from the experimental results
while retaining the ability to incorporate those uncertainties
in a subsequent stage we refer to as recoupling.
In reporting results, experimentalists strive to find a

representation of the results that is as free of theoretical
assumptions as possible while still being convenient for
addressing specific theories of interest. For example, the
measurement of a cross section in a well-defined fiducial
region allows experiments to report results that are not tied
to a specific theory at the cost of requiring the reader to
estimate a model-dependent acceptance. This approach has
advantages but is difficult to generalize. For example,
extracting the Higgs couplings requires simultaneous
inference of multiple production and decay modes from
the combination of multiple searches with correlated
experimental systematic uncertainties [7–10]. A convenient
approach to combining multiple measurements is the best
linear unbiased estimator (BLUE) technique [11]; however,
that approach is limited to measurements that are well

within the Gaussian regime. The methodology presented
here addresses both of these challenges.
The first wave of Higgs coupling measurements

[2,12,13] involves signal strength modifiers μpd that scale
the total rate of events for a given combination of
production ðpÞ and decay ðdÞ modes,

μpd ¼
σp × BRd

ðσp × BRdÞSM
¼

�
σp
σSMp

��
Γd

ΓSM
d

��
ΓSM
H

ΓH

�
: ð1Þ

The ATLAS experiment has made such likelihood func-
tions available [14]. If we focus on measuring the Higgs
couplings in the Standard Model Lagrangian, we can link
the event rates to the set of shifted Higgs couplings gx=gSMx
to any Standard Model particle x. Kinematic distributions
(and, thus, selection efficiencies and detector acceptances)
will not change as long as the Higgs couplings are roughly
in their Standard Model ranges. While σp and Γd can
usually be directly linked to a specific coupling gx, the
appearance of the total width forces us to make nontrivial
assumptions and induces strong correlations. The LHC
Cross Section Working Group has defined a number of
benchmark scenarios that specify how the production cross
section and branching ratios are modified with respect to
the Standard Model values [15], and the ATLAS and CMS
collaborations are reporting their results in terms of these
benchmark scenarios.
Thus far, results for signal strengths and Higgs couplings

include the theoretical uncertainty as part of the Standard
Model prediction. Large uncertainties on the production
appear because of unknown higher orders in the perturba-
tive QCD expansion. The problem with these theoretical
uncertainties is twofold: First, the size of the associated
uncertainty in not known. Second, the uncertainties are not
statistical in nature; there is no random variable associated
to missing higher orders. While there has been effort to
assign a Bayesian degree of belief to these uncertainties
[16] and an effort to complete the perturbative series [17],
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we lack an objective probabilistic interpretation of these
uncertainties. While the field may be able to settle on a
consensus for both the size and shape of these uncertainties,
it is an area of debate and will certainly change with time as
theoretical progress is made. Therefore, our view is that we
should develop a technique in which the theoretical
uncertainties are factorized from the experimental result.
In Sec. II we describe the approach allowing us to

decouple and recouple the theoretical uncertainties from the
experimental measurement. This approach is independent
of our specific application to the Higgs coupling measure-
ments at the LHC. In Sec. III we briefly discuss the issues
with theoretical uncertainties at hadron colliders and how
they affect the Higgs couplings measurement. Section IV
demonstrates the procedure with a toy example based on
the ATLAS results presented in Ref. [13]. Next, we
consider some specific new physics scenarios that can
be tested through Higgs coupling measurements in Sec. V.
A simple example is worked in detail in Appendix A and
more details on the new physics models in Appendix B.

II. THE APPROACH

A. The statistical model

In this section we outline briefly the statistical modeling
approach used by the LHC experiments following Ref. [18].
Once the statistical model has been constructed, the LHC
experiments employ the profile likelihood ratio to define
confidence intervals [19] on the parameters of interest.
The coupling measurements require defining several

disjoint categories of events indexed by c, which satisfy
specific selection criteria designed, in part, to be particu-
larly sensitive to a particular production or decay mode.
Each category has associated to it an expected (observed)
number of events νc (nc). Each category may also have

some discriminating variable(s) x, such as an invariant mass
and a corresponding probability density function fðxÞ.
The data associated to the cth category is denoted
Dc ¼ fx1;…; xncg. In general, the expected number of
events and their distribution will depend on both the signal
strength parameters μ and nuisance parameters α. The
nuisance parameters α parametrize both theoretical and
experimental uncertainties. Typically, the expected number
of events is written as

νcðμ;αÞ ¼
X
p;d

μpdscpdðαÞ þ bcðαÞ; ð2Þ

where bcðαÞ is the background in this category, and

scpdðαÞ ¼ LðαÞσSMp ðαÞBRSM
d ðαÞϵcpdðαÞ ð3Þ

is the expected Standard Model signal for production mode
p and decay mode d predicted by the product of the
integrated luminosity, cross section, branching ratio, and
selection efficiency, each of which may depend on theo-
retical uncertainties parametrized by α.
Constraint terms associated with systematic uncertainties

are described as fiðaijαiÞ, where αi are nuisance param-
eters and ai are auxiliary or control measurements designed
to estimate those nuisance parameters. In the case of
experimental uncertainties, there are often real auxiliary
measurements that are summarized by fiðaijαiÞ. However,
in the case of most theoretical uncertainties, the auxiliary
measurement does not truly exist and an ad hoc fiðaijαiÞ is
introduced for convenience. The full likelihood function
used by the experiments [20] can be written as a product
of the main experimental measurement and the con-
straint terms

Lfullðμ;αÞ ¼
Y

c∈category

�
Poisðncjνcðμ;αÞÞ

Ync
e¼1

fcðxejμ;αÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡Lmainðμ;αÞ

Y
i∈syst

fiðaijαiÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≡LconstrðαÞ

: ð4Þ

Typically, confidence intervals are then defined by
contours of the profile likelihood ratio

λðμÞ ¼ Lðμ; ˆ̂αðμÞÞ
Lðμ̂; α̂Þ ; ð5Þ

where ˆ̂αðμÞ is the conditional maximum likelihood esti-
mate, and μ̂; α̂ are the unconditional maximum likelihood
estimates [19].

B. The effective signal strength

We are interested in inferring the values of the signal
strength parameters μ, which scale the signal expectation
scpd; however, the presence of experimental and theoretical

uncertainties means that the signal and background expect-
ations are functions of the nuisance parameters as in
Eq. (2). Alternatively, we can introduce an effective scale
factor with respect to some fixed reference scenario α0, so
the expected number of events can be rewritten,

νcðμ;αÞ ¼
X
p;d

μpdscpdðαÞ þ bcðαÞ

→
X
p;d

μeffcpdðμ;αÞscpdðα0Þ þ bcðα0Þ: ð6Þ

The key conceptual jump is to realize that we can think of
μeffcpd not as a function but as a well-defined parameter free
of theoretical uncertainty that we can infer directly.
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While the signal strength parameters μpd we ultimately
want to infer are independent of the details of the individual
analysis categories, the effective signal strength μeffcpd is
specific to the cth category due to the selection efficiency
[and, more generally, the distributions fcðxjμ;αÞ]. In
particular, selection requirements that leverage exclusive
or differential properties of a specific production and decay
will introduce category-specific theoretical uncertainties.
State-of-the-art Higgs property measurements can

include hundreds of categories of events. The full like-
lihood Lfull defined in Eq. (4) encodes a detailed description
of the correlated effect of common experimental systematic
uncertainties. In practice, we want to find some coarse
graining of the many categories into a few groups so that
we can ignore the category index within each group. By
taking a common category-weighted signal strength factor,
we can suppress the category index and make the replace-
ment μeffcpd → μeffpd. By doing so, we can define

LeffðμeffÞ≡ Lmainðμ ¼ μeff ;α ¼ α0Þ: ð7Þ

The goal is to show that by providing LeffðμeffÞ, the
reparametrization μeffðμ;αÞ, and the constraint terms
fiðaijαiÞ, that we can recouple these ingredients and
approximate the full likelihood

Lfullðμ;αÞ ≈ Lrecoupleðμ;αÞ≡ Leffðμeffðμ;αÞÞ · LconstrðαÞ:
ð8Þ

In the case of an inclusive cross section uncertainty, μeffcpd
is the same for all c—in which case, we say the effect of
that uncertainty is category universal. If all uncertainties are
category universal, then it is possible for this approach to be
exact. More generally, the grouping of categories will lead
to μeffðμ;αÞ encoding some weighted effect from the
individual categories. We will discuss some examples in
the next section.

C. Reparametrization templates

The art of this approach lies in choosing a template for
the reparametrization in which the coefficients of the
template can be effectively deduced from the likelihood.
We treat the likelihood as a “black box” since the diversity
and complexity of statistical models created by experimen-
talists and encompassed by Eq. (4) is so diverse. In the case
that the reparametrization μeffðμ;αÞ is category universal,
which can be trivially achieved if the ingredients are
explicitly provided for each category, this reformulation
of the likelihood can be exact.
For example, a natural way to parametrize the depend-

ence of the expected signal due to uncertainties that modify
inclusive production cross sections is

scpdðαÞ ¼ scpdðα0Þ
�
1þ

X
i

ηpiðαi − α0;iÞ
�

ð∀ c; dÞ;

ð9Þ

which is equivalent to

μeffpdðμ;αÞ ¼ μpd

�
1þ

X
i

ηpiðαi − α0;iÞ
�

ð∀ c; dÞ: ð10Þ

In this situation, μeffpdðμ;αÞ is not linear in the full set of
parameters but is bilinear in ðμpd;αÞ. This μ scaling is
important for capturing the behavior of the likelihood away
from the maximum likelihood estimate and distinguishes
this approach from techniques such as BLUE [11].
In the case of uncertainties that only affect the back-

ground through

bcðαÞ ¼ bcðα0Þ
�
1þ

X
i

ϕciðαi − α0;iÞ
�

ð∀ p; dÞ; ð11Þ

the equivalent form of the effective signal strength is

μeffpdðμ;αÞ ¼ μpd þ
bcðα0Þ
scpdðα0Þ

�X
i

ϕciðαi − α0;iÞ
�

ð∀ p;dÞ;

ð12Þ

which is linear in μpd and α. Because bcðα0Þ=scpdðα0Þ is a
constant, this prefactor can be absorbed into ϕci, and the
category-weighted effect would simply be written ϕi.
Another example is motivated by the large uncertainty

associated to gluon-fusion (ggF) Higgs production with
two additional jets, which populates the categories meant to
isolate weak boson fusion (VBF). We would expect the
uncertainty to modify the μeffc;p¼VBF;d signal strength for
weak boson fusion but be proportional to μggF. Thus, we
should anticipate templates of the form

μeffpdðμ;αÞ ¼ μpd þ
X
i;p0

μp0dη
p0
piðαi − α0;iÞ: ð13Þ

Combining these three situations, a fairly general template
would be

μeffpdðμ;αÞ ¼ μpd þ
X
i;p0

μp0dη
p0
piðαi − α0;iÞ

þ
X
i

ϕiðαi − α0;iÞ; ð14Þ

where we can identify ηpi ¼ ηppi from Eq. (9) and
bcðα0Þϕci=scpdðα0Þ ¼ ϕi. This general template involves
nαðn2p þ 1Þ coefficients (per grouping of categories).
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The LHC experiments must cope with additional com-
plications. First is the fact that uncertainties on αi can be
large, and linear extrapolation of the effect of this uncer-
tainty on a signal or background rate can lead to unphysical
expectations like scpd < 0 or bc < 0. To cope with this, the
LHC experiments typically implement log-normal priors
(constraint terms), which are implemented via reparamet-
rization so that fiðaijαiÞ is a Gaussian distribution and
scpdðαiÞ is an exponential response function. This approach
has two advantages: it ensures scpdðαiÞ > 0, and it allows
for multiple signal expectations with different sensitivities
to a common source of uncertainty to have a similar log-
normal behavior parametrized by αi.
Second, experiments often have a few numbers with

which to parametrize the signal (and background) expect-
ations. Typically, this is based on a nominal scpdðαi ¼ 0Þ
and “�1σ” variations on scpdðαi ¼ �1Þ (using a conven-
tional scaling of αi). Often the variation of scpdðαi ¼ �1Þ
with respect to scpdðαi ¼ 0Þ is asymmetric, which requires
some assumptions about the intermediate behavior and the
use of ad hoc interpolation algorithms, such as second
degree polynomial or higher degree polynomials that match
the exponential extrapolation up to the second deriva-
tive [21,22].
Finally, to ensure the positivity of scpdðαÞ under the joint

effect of several sources of uncertainty, it is common that
the interpolation/extrapolation template is multiplicative
over the nuisance parameters. In generic terms, this often
leads to signal expectations parametrized as

scpdðαÞ ¼ scpdðα0Þ
Y
i

IðαiÞ; ð15Þ

where IðαiÞ is some interpolation/extrapolation function
based on scpd evaluated at several points in αi. These
ad hoc choices influence the resulting inference and further
strengthen the motivation to decouple theoretical uncer-
tainties from the presentation of experimental results.

D. Determining the coefficients of the
reparametrization template

Following Eq. (8), our goal is to show that by providing
LeffðμeffÞ, the reparametrization μeffðμ;αÞ, and the con-
straint terms fiðai; αiÞ, we can “recouple” the ingredients to
approximate the original likelihood Lfullðμ;αÞ. Below we
develop two approaches to determine the coefficients of
these reparametrization templates.

1. Via the local covariance matrix

A direct path towards this goal is to use a reparamet-
rization template like the ones introduced in Sec. II C and
determine the coefficients that reproduce the local covari-
ance structure around the maximum likelihood estimate
ðμ̂; α̂Þ. The maximum likelihood estimate is defined by

−∇ lnL ¼ 0, while the Hessian of − lnL captures the local
covariance structure and is referred to as the observed
Fisher information matrix or precision matrix. In particular,
the observed Fisher information is an estimate of the
inverse of the covariance matrix

V−1
ij ¼ −∂i∂j lnL: ð16Þ

It is helpful to factorize the full likelihood in Eq. (4) as a
product of the main measurement and the constraint terms
for the nuisance parameters α. This is equivalent to
decomposing the full information matrix into two parts:

V−1
full ¼ V−1

main þ V−1
constr: ð17Þ

By fixing α ¼ α0, the experiments can provide the (profile)
likelihood for the effective signal strength LeffðμeffÞ via
Eq. (7). We denote the Fisher information for this effective
signal strength as V−1

eff . Reparametrizing LeffðμeffÞ via
μeff → μeffðμ;αÞ implies the following transformation to
the Fisher information matrix

V−1
effðμeffÞ → V−1

effðμ;αÞ ¼ JTV−1
effJ; ð18Þ

where the Jacobian of the transformation is defined by

J ¼ ∂ðμeffÞ
∂ðμ;αÞ : ð19Þ

Even though V−1
eff may be a constant matrix, the Jacobian in

Eq. (18) depends on ðμ;αÞ so that the resulting information
matrix need not be constant. This is an important point, as
the analysis below is only sensitive to the linear approxi-
mation of μeffðμ;αÞ at ðμ̂; α̂Þ although the template may
encode important nonlinear behavior. Combining Eqs. (17)
and (18) gives us

V−1
full ¼ JTV−1

effJ þ V−1
constr: ð20Þ

The final stage of this procedure is either to check if
Eq. (20) holds for a particular reparametrization μeff →
μeffðμ;αÞ or to determine the coefficients for a template by
imposing this equality.
Perhaps the most intuitive way to think of the effect of a

given uncertainty is the shift it induces in the best-fit value
of the signal strengths μ. This way of thinking requires
keeping the α fixed and considering the likelihood is only a
function of μ. For example, Fig. 1(b) shows the shift in the
LðμÞ contour due to a shift in the gluon-fusion inclusive
cross section. We denote the best-fit μ with fixed α as

μ̂fixðαÞ≡ argmaxμLfullðμ;αÞ ð21Þ

with μ̂fixðα̂Þ ¼ μ̂. Because of the definition Lfullðμ;α0Þ≡
LeffðμÞ in Eq. (7), this implies that μ̂fixðα0Þ ¼ μ̂eff . Finally,
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if the main measurement is not able to measure the nuisance
parameters, i.e., there is flat direction in the likelihood or a
degeneracy between μ and α, then α0 ¼ α̂. By using a
specific template—in this case, Eq. (10)—we can equate
μeffp ðμ̂fixp ; αiÞ ¼ μ̂fixp ð1þ ηipαiÞ ¼ μ̂p and then explicitly
evaluate the partial derivative that quantifies the shift to
the best-fit value of μ,

∂μ̂fixp
∂αi

����
μ̂;α̂

¼ −μ̂pηip: ð22Þ

These partial derivatives are visualized as vectors in the
signal strength plane in Fig. 2.
Another way to arrive at Eq. (22) is to approximate the

likelihood in the neighborhood of the maximum likelihood
estimate as a multivariate Gaussian Gðμ;αjμ̂; α̂;ΣÞ. The
conditional distribution of μ given α is also a multivariate
Gaussian with the mean given by

μ̂fixðαÞ ¼ μ̂þ ΣcΣ−1
α ðα − α̂Þ; ð23Þ

where Σc is the upper-right sub-block of the full covariance
matrix Σ,

ðV−1
fullÞ−1 ¼ Σ ¼

�
Σμ Σc

ΣT
c Σα

�
: ð24Þ

In situations that the main measurement does not constrain
or pull on the nuisance parameters, Σα is just the covariance
matrix associated to the constraint term defined in Eq. (4).
In general, Σc will depend both on the constraint terms and
the main measurement. Clearly, the conditional likelihood
with α fixed as in Eq. (21) is independent of the constraint
term; thus, the product ðΣcΣ−1

α Þ can only depend on the
details of the main measurement. Through the techniques
developed for regression in the general linear model [23],
one can show that
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FIG. 1 (color online). Likelihood contours for three different Higgs decays: (a) with (solid) and without (dashed) theoretical
uncertainties; (b) without theoretical uncertainties for the nominal gluon-fusion cross section (solid) and a shifted value (dashed)
estimated from QCD scale variations.
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FIG. 2 (color online). Visualization of ∂μfix=∂αi for the (a) H → γγ, (b) H → ZZ → 4l, and (c) H → WW → lνlν likelihoods.
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∂μ̂fixp
∂αi

����
α¼α̂

¼ ðΣcΣ−1
α Þip ¼ −μ̂pηip; ð25Þ

where the right-most equivalence is specific to the template
of Eq. (10) and explicit computation requires an
assumption about the constraint terms even though the
result is independent of those assumptions. This is shown
explicitly for a simple example in Appendix A. Note, one
can eliminate the constraint terms and only consider the
main measurement, in which case, Σ in Eq. (25) is a
singular matrix and one must use the pseudoinverse. While
this approach is mathematically cumbersome, it is equiv-
alent to Eqs. (22) and (26).
A third approach is to impose Eq. (18) with V−1

constr
subtracted from both sides

V−1
main ¼ JTV−1

effJ: ð26Þ

This allows us to proceed without assumptions on the
constraint terms, which we are trying to decouple from the
procedure. The upper-right sub-bloc of this matrix leads to
a system of equations that can be used to determine the
coefficients of the template. Again, in the case of template
of Eq. (10), these linear equations provide the same
solutions for ηip as Eqs. (22) and (25). These equations
are solved explicitly for a simple example in Appendix A.
It is worth noting that in the case of an arbitrary template

μeffðμ;α; ηÞ, these equations fix the linear behavior at α0

(i.e., ∂μeff=∂αijα¼α0), which may be nontrivially related to
the coefficients η. For example, this is the case for the most
common parametrizations encompassed by Eq. (15) and
used by the LHC experiments and to implement asym-
metric uncertainties [21,22].
The information matrix from the full likelihood function

has ðn2þnÞ=2 independent components, where n¼npþnα

is the sum of the number of parameters of interest and
nuisance parameters. An np × np sub-block describes Σμ or
V−1
eff and an nα × nα sub-block describes Σα or V−1

constr. Thus,
there are remaining np × nα numbers in the local covari-
ance encoded in Σc or V−1

main that can be used to determine
the coefficients of the template. This counting matches
precisely for the templates of Eqs. (9) and (11), but leaves
ambiguity for the more general template of Eq. (13).

2. The art of choosing the template

As mentioned above, the local information provided by
the observed information matrix evaluated at the maximum
likelihood estimate is only sensitive to the linear behavior of
μeffðμ;αÞ at ðμ̂; α̂Þ. For example, Eqs. (9) and (11) can have
the same linear behavior at ðμ̂; α̂Þ, though the effect of an
uncertainty αi scales with μ in the former and not in the latter.
This difference is illustrated in Fig. 3. Thus, while both
templates will be equivalent locally, if one wants to capture
the higher-order corrections encoded in the different tem-
plates, some additional information will be required. This
information can either be injected by hand or by using
information about the likelihood away from ðμ̂; α̂Þ, as
described below. For instance, one may know that a
particular nuisance parameter αi is associated to the uncer-
tainty in the inclusive cross section for the pth production
mode; thus, the coefficients of the general template can be
restricted by hand to ηp

0
pi ¼ δpp0ηip and ϕip ¼ 0. In another

extreme case, the uncertainty on gluon-fusion production
with two jets primarily affects the inference of μeffp¼VBF signal
strength for vector boson fusion, but the size of the shift is
proportional to μggF. Here, the general template would be

constrained so that ηp
0

pi ¼ 0 unless p0 ¼ ggF and p ¼ VBF
or vice versa. We explore a simple model for this situation in
scenario C of Appendix A.
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FIG. 3 (color online). Comparison of the effective model using different templates with the same local covariance.
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3. Via a global learning approach

Ideally, we would have a formalism that would work with
the black box likelihood Lfullðμ;αÞ and a general template
like Eq. (13) without having to introduce by hand restrictions
on that template as described above. In order to do that, we
must introduce information about the likelihood away from
ðμ̂; α̂Þ. A flexible approach to that problem is based on the
ideas of machine learning and function approximation in
which one aims to minimize a loss function with respect to
some model parameters (in this case, the template coef-
ficients). The loss function needs to be a scalar evaluated
over the ðμ;αÞ space, which in frequentist terms has no
measure. However, from the point of view of decision
theory, one can introduce someweighting over the parameter
space (without regarding it as a Bayesian prior) and evaluate

LossðηÞ ¼
Z

dμdαπðμ;αÞjLfullðμ;αÞ − Lrecoupleðμ;α; ηÞj2:
ð27Þ

The choice of the weighting function πðμ;αÞ is arbitrary, but
a reasonable choice is the Bayesian posterior with respect to
some baseline constraint terms interpreted as a prior on α,
which leads to

πðμ;αÞ ∝ Lmainðμ;αÞLconstrðαÞ: ð28Þ
This approach will put the highest weight for Lrecouple to
approximate Lfull near the best-fit point ðμ̂; α̂Þ and lesser
weight as one moves away from it. Importantly, this
minimum loss solution can be found numerically and is
well defined even when the number of parameters in the
template is larger than np × nα. Furthermore, this approach
may be more robust in the case of very complicated
likelihood functions where the numerical accuracy of the
covariance matrix, information matrix, and partial deriva-
tives needed in Eqs. (22), (25), and (26) may be poor.
In situations where additional experimental uncertainties

αexp have been profiled in providing LeffðμeffÞ—a situation
discussed in more detail in Sec. II E—one must take care
that the loss function makes the comparison for equivalent
values of the profiled nuisance parameters. For example,
when creating LeffðμeffÞ, one can keep track of the profiled
values ˆ̂αexpðμeffÞ and then in Eq. (27) make the replacement

Lfullðμ;αÞ → Lfullðμ;α; ˆ̂αexpðμeffðμ;αÞÞÞ: ð29Þ

We demonstrate the effectiveness of this approach in
Sec. IV and scenarios B and C of Appendix A.

4. Software

The software implementation of the reparametrization
templates described in Sec. II C as well as the three
strategies for determining the coefficients of those

templates from the local covariance matrix and the learning
approach described in Sec. II D are available in Ref. [24].
Experiments can use this software on their full ROOFIT/
ROOSTATS [25] models and obtain the effective likelihood
LeffðμeffÞ as well as the reparametrization μeffðμ;αÞ for
publication. These ingredients can be supplied in a tech-
nology-independent format enabling others to perform the
recoupling stage, modify constraint terms associated to
theoretical uncertainties, combine multiple results, and
create likelihood scans in benchmark models.

E. Grouping of categories and combinations

In Sec. II B we discuss the coarse graining of the many
categories into a few groups. By taking a common
category-weighted signal strength factor, we are able to
suppress the category index and make the replacement
μeffcpd → μeffpd for each group. In practice, this grouping is
often based on the Higgs decay mode indexed by d. For
example, ATLAS provided the profile likelihood
λðμggF; μVBFÞ for the three decay modes d ¼ γγ;WW; ZZ
[14]. These profile likelihoods are colloquially referred to
as “likelihoods”; however, they have eliminated several
nuisance parameters via profiling as defined in Eq. (5). In
addition to the common theoretical uncertainties, these
three likelihoods share common experimental systematic
uncertainties. Naively combining these likelihoods will,
thus, double count the common constraint terms fiðaijαiÞ
and lead to an artificial reduction in the uncertainty. This
effect can be seen by comparing a naive combination of the
three individual profile likelihoods provided by ATLAS
with the official ATLAS combined result (which avoids the
erroneous double counting). The same effect is demon-
strated with a toy example in Fig. 4.
The decouple/recouple procedure described here has

focused on theoretical uncertainties for reasons that will
be elaborated in Sec. III; however, the same technique can
be used for experimental uncertainties. In particular,
sources of systematic uncertainties that are anticipated to
be common to other analyses should not be profiled, or it
will not be possible to avoid double counting of constraint
terms. The luminosity uncertainty is an example of an
experimental uncertainty that should not be profiled, but
instead the effect of the uncertainty should be parametrized
in the template μeffðμ;αÞ. As a rule of thumb, one can safely
profile uncertainties that are specific to the categories in a
given analysis but should include common (correlated)
sources of uncertainty in the reparametrization.

F. Anticipating higher-dimension operators
and other effects

At this point, the Higgs coupling analysis is primarily
focused on small deviations in the coefficients of the SM
operators. This justifies the scaling of the SM Higgs
expectations as μpdscpd, since the efficiency and acceptance
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of the modified signal in the cth category is not affected.
The presence of non-SM operators will generically change
the pattern of the signal across the categories in a way
specific to the operators under consideration [26]. In
particular, operators that modify kinematic distributions
will affect the cut efficiencies and acceptances ϵcpdðαÞ of
Eq. (3) One approach to anticipate these studies is to
characterize the effect of a deviation in the number of
events in each individual category. In particular, by con-
sidering a perturbation of the form

νcðμ;αÞ ¼
X
p;d

μpdscpdðαÞ þ bcðαÞ þ αc; ð30Þ

where αc is some addition or reduction to the number of
events in that specific category. This would add one
nuisance parameter for each category, each of which would
have the effect of shifting μ̂eff . These αc can be seen as a
basis for possible new physics effects and can be incorpo-
rated into μeffðμ;αÞ using the same formalism. To use this
information in the context of a specific new physics model,
one would need to estimate the perturbation to the number
of events in each category (αc) through knowledge of the
details of the selection for that category. If that is possible,
then one can parametrize each αc in terms of the coef-
ficients of these new operators. This may involve para-
metrizing several αc in terms of just a few operator
coefficients.
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FIG. 4 (color online). Various comparisons of the combined γγ; ZZ;WW likelihoods in the ðκV; κFÞ (left) and ðκγ; κgÞ (right) planes.
Top: comparison of the full combined likelihood, a naive combination with inconsistent profiling and double-counted constraint terms,
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comparison of the full combined likelihood and the combination of recoupled likelihoods using the nominal uncertainties and modified
constraint terms with uncertainties inflated by 30%.
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III. THEORETICAL UNCERTAINTIES

In this section we focus on the dominant theoretical
uncertainties plaguing Higgs coupling measurements at the
LHC. There are several sources of uncertainties, which can
be associated with the theoretical description of LHC
processes [4]:
(1) the inclusive rate for a given production and

decay; for example, the total cross section
σtotðgg → H þ XÞ,

(2) efficiency and acceptance of kinematic cuts for the
signal process; for example, cuts on the transverse
momentum of the Higgs boson or a central jet veto,

(3) the parton densities describing the initial state, which
have both experimental and theoretical uncertainties,

(4) the parton shower, hadronization, underlying event,
and other key parts of the Monte Carlo description of
signal and background events.

Linking event rates in a given kinematic region to pertur-
bative theoretical predictions might be considered the
critical problem for the LHC’s precision Higgs program.
According to the above list, it can be separated into two
parts: First, the total Higgs production cross section para-
metrically depends on the Higgs coupling in a given
renormalization scheme. This relation is based, for example,
on collinear factorization, includes a small number of scales,
and can be computed in perturbative QCD. However, this
connection cannot be replaced or checked experimentally,
which means that Higgs coupling measurements will
eventually be limited by theory predictions [5,6].
Kinematic cuts linked to Higgs-plus-jet production [27],

tagging jets in weak boson fusion [28,29], or advanced
analysis methods lead to additional complications. They do
not automatically obey collinear factorization and induce a
large number of energy scales and possibly large loga-
rithms [30–34]. Already for the relatively safe inclusive
Higgs production cross section, the next-to-next-to-
leading-order corrections more than double the predicted
number of produced Higgs bosons [35–38]. The source of
these problems is the choice of protons as colliding
particles, combined with the large value of the strong
coupling constant, which leads to a poor convergence of the
perturbative QCD description.
Aside from the poor convergence in perturbative QCD,

the corresponding theoretical uncertainties face a more
fundamental problem: there does not exist any well-defined
estimate for an uncertainty on a production cross section
computed in perturbative QCD. Traditionally, we derive a
range of allowed cross section values using a variation of
the factorization and renormalization scales. This is based
on the fact that these scales are artifacts of the perturbative
expansion, so the scale dependence has to vanish once we
include all orders in perturbation theory. This recipe
captures some of the effects of the theoretical uncertainties,
but we know from the Drell-Yan process or Higgs pro-
duction in gluon fusion that it does not give a conservative

estimate. For Higgs production at the LHC, we know that
equal variation of the factorization and renormalization
scales leads to a cancellation of the two scale dependencies
as one possible reason for the underestimate of the
theoretical uncertainties [36]. On the other hand, a separate
variation of the factorization and renormalization scales
ruins the theoretical description of the scale-dependent
parton densities in terms of resummed large logarithms of
transverse jet momenta [4]. Independently varying the two
scales makes sense phenomenologically but not in terms of
a formal QCD description. A recent promising approach
might be to combine the scale variation with an extrapo-
lation of the perturbative series [17]. However, no matter
what recipe we choose, it is clear that the size of any
theoretical uncertainty is poorly defined.
In addition to the overall size of the uncertainty, most

statistical analysis techniques require the uncertainty to be
quantified in the likelihood, i.e., the constraint terms of
Eq. (4). Frequentist interpretation of the likelihood requires
one to be able to identify some random observable whose
probability is defined with a corresponding ensemble. No
traditional ensemble defined by repeated observation exists
for theoretical uncertainties. Missing higher-order terms in a
perturbative prediction are not random in nature; there is no
ensemble, thus, LconstrðαÞ is ill-defined. Attempts to provide
a meaningful degree of belief for the perturbative uncer-
tainties [16] require a Bayesian interpretation and attribute a
fundamental meaning to the perturbative QCD expansion.
In a practical sense, we must make some choice for the

likelihood Lconstr even if it is fundamentally ill-defined.
Unfortunately, the various choices have their own unique
pathologies. The often-used Gaussian and log-normal dis-
tributions inject information by ascribing a preferred (peak)
value and allowing for long tails into what are untenable
values for the theoretical prediction. Alternatively, we can
try to avoid introducing a peak by adopting a constant
likelihood function, as proposed in the RFIT scheme as
described in Refs. [10,39]. The choice of distributionsmight
not appear numerically relevant, but in combination with a
profile likelihood, it can lead to significant differences. For
instance, the combined effect of uncertainties described in
the RFIT scheme add linearly rather than in quadrature [4].
Given that the size as well as the shape of the theoretical

uncertainties entering the Higgs couplings measurements
are subject to variations in time, geography, and personal
taste, the best solution is to decouple them from the
experimental result as proposed in Sec. II. This allows
for efficient tests of different assumptions on the theoretical
uncertainties as well as an efficient implementation of a
perceived or actual improvement.

IV. A TOY EXAMPLE

We now consider a toy example that is representative of
the current ATLAS results for H → γγ;WW; ZZ [13]. The
statistical model here is based purely on a number of events

DECOUPLING THEORETICAL UNCERTAINTIES FROM … PHYSICAL REVIEW D 91, 054032 (2015)

054032-9



in various categories without including discriminating
variable distributions for mγγ, m4l, or mT [the terms
fcðxjμ;αÞ in Eq. (4)]. Each decay mode groups together
several categories of events that together provide sensitivity
to the underlying production modes. We model the uncer-
tainty on the signal expectation from luminosity, parton
distribution functions, the inclusive gluon-fusion cross
section, and the uncertainty on the cross section for gluon
fusion in association with two or more jets.
The H → γγ likelihood includes a simplified version of

the 14 categories considered by ATLAS including the low-
and high-pT categories, the low- and high-mass two-jet
categories, the high-ET significance category, and the
lepton-tagged category. The H → ZZ → 4l likelihood
includes three ggF-like categories (for 4μ, 2e2μ, and 4e)
as well as a VBF-like and a VH-like category. The H →
WW → lνlν likelihood includes zero-, one-, and two-jet
categories. The HISTFACTORY script and ROOFIT/
ROOSTATS workspace for this toy model can be found
in Ref. [40].
Figure 1(a) shows the likelihood contours for the three

different decays with and without theoretical uncertainties,
which are modeled using Gaussian constraint terms and a
linear response as in Eq. (9). Figure 1(b) shows the shift to
the contours without theory uncertainty due to fixing the
inclusive gluon-fusion cross section to its “þ1σ” value
estimated from QCD scale variation. The larger gluon-
fusion cross section leads to a smaller inferred value for
μggF. This can be repeated for each of the nuisance
parameters αi as in Eq. (22). The corresponding partial
derivatives are visualized in Fig. 2.
Next we demonstrate the recoupling stage based on the

local covariance structure at ðμ̂; α̂Þ. If we choose the
reparametrization template in Eq. (10), we can solve for
the ηpi coefficients that reproduce the local covariance
structure using either Eqs. (22), (25), or (26). Having
determined the ηpi coefficients, the reparametrization
μeffðμ;αÞ is specified, and we can create the decoupled
likelihood via Eq. (8). Figure 3(a) compares the full
likelihood to the recoupled likelihood using this template.
The result is not bad. The effect of the theoretical
uncertainties have been recovered; however, there is a
significant discrepancy for H → ZZ → 4l at the top of the
contour.
The source of this discrepancy between Lfull and Lrecouple

contours is the non-category-universal nature of the theo-
retical uncertainty associated to gluon fusion þ ≥ 2 jets,
which primarily affects the VBF-like categories.
Correspondingly, the effect of this uncertainty is a shift
in the μVBF direction, as illustrated in Fig. 2. The repar-
ametrization template in Eq. (10) implies that this uncer-
tainty would scale with μVBF, though in the full model this
source of uncertainty scales with gluon fusion. At the top of
the contour, μVBF ≈ 5, while μggF ≈ 1, which leads to a
large inflation on the effect of this uncertainty.

As discussed in Sec. II D, the local covariance structure
of Lrecouple is only sensitive to the linear behavior of the
template, so this physical insight must either be put in “by
hand” or one should instead use more global information
about the likelihood as in the learning approach. To
illustrate the by-hand approach, we can consider the more
general template in Eq. (14). The general template can be

constrained so that ηp
0

pi ¼ 0 unless p0 ¼ ggF and p ¼ VBF
(or vice versa), where i is the index for the nuisance
parameter associated to the gluon fusion þ ≥ 2 jet cross
section. In addition, we set ϕi ¼ 0 for all i. The same
procedures are followed to determine the coefficients that
reproduce the local covariance structure for this template.
The resulting contour is shown in Fig. 3(b), where the
agreement is improved, particularly near the top of the
H → ZZ → 4l contour. The alternative learning approach
works with the general template in Eq. (14) without
restricting the terms by hand. The optimized values of
the coefficients lead to even better agreement of the
contours compared to those shown in Fig. 3(b).
Next, we combine these three likelihoods. As discussed in

Sec. II E, the experiments typically present results grouped
by decay mode. In this example, the three likelihoods share
common sources of systematic uncertainty. Naively combin-
ing these likelihoods double counts the common constraint
terms fiðaijαiÞ and leads to an artificial reduction in the
uncertainty. This effect can be seen in the top plots of
Fig. 4, which compare a naive combination to the full
combined result that avoids the erroneous double counting.
There is no meaning to a combined contour in the signal
strength plane μggF;d − μVBF;d due to the decay index d.
Thus, two simple two-parameter benchmark models are
used to present the result. Figure 4(a) shows a benchmark
model that dictates all μp;d based on the scaling of the
fermionic couplings gf ¼ κfgSMf and weak boson couplings
gV ¼ κVgSMV . Similarly, Fig. 4(b) considers a simple two-
parameter benchmark in which we scale the effectiveHgg by
a factor κg and the effectiveHγγ coupling by a factor κγ [15].
The contours from the naive combination are considerably
smaller in the κV and κg directions, leading to poor agree-
ment with the full combination (based on all 22 categories of
events without double counting constraint terms).
In contrast, the recoupling approach allows one to avoid

double counting constraint terms and for a consistent
profiling over the common sources of uncertainty (both
theoretical and experimental), which leads to an improved
agreement. In addition, the learning approach of Eq. (27)
has been used for Lrecouple in Fig. 4. Note, in this example
the sources of experimental uncertainty that are unique to
one of the decays were profiled in LeffðμeffÞ, as would be
done by the experiments. Thus, there is a small effect that is
neglected due to the fact that the profiling of these analysis-
specific uncertainties is slightly affected by identifying the
common α in the combination.
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Perhaps the greatest benefit of this approach is that
the theoretical uncertainties have been decoupled from the
experimental result encoded in LeffðμeffÞ. Moreover, the
recoupling procedure in Eq. (8) allows one to replace
the constraint terms in LconstrðαÞ with some other constraint
terms L0

constrðαÞ. The bottom plots of Fig. 4 demonstrate the
change by using the same Leff and reparametrization
template but with uncertainties inflated by 30%. This
recouped approach is compared to the full model where
the same modification is made to the constraint term. In
addition, an example of replacing Gaussian constraint
terms with the RFIT scheme is given in Appendix A.

V. NEW PHYSICS EFFECTS VS THEORETICAL
UNCERTAINTY

Any coupling measurement based on a Lagrangian
description of underlying field theory assumes a set of
operators, specifically those describing the Higgs inter-
actions. In the Standard Model, this includes the renorma-
lizable Higgs Lagrangian with the tree-level interactions to
massive gauge bosons and fermions. The effective Higgs
couplings to photons and gluons are loop induced, but they
avoid the decoupling theorem and are only suppressed by
1=v. This means that at LHC energies, they have to be
included in the description of the Higgs signatures.
Additional higher-dimensional operators can be included
in the analysis once the corresponding measurements
separate them from deviations in the renormalizable
Higgs operators [26]. The prefactors of each operator,
combined with a renormalization scheme, constitute the
measurable couplings. When extracting the couplings of a
light Higgs boson with mass 126 GeV, we follow an
effective theory approach. This allows us to only consider
modifications of the light Higgs boson while keeping the
ultraviolet properties of a functioning partly decoupled
Higgs sector [41]. We analyze extensions of the SM Higgs
sector based on Higgs coupling modifications written as
[10,41–43]

gx ≡ gSMx ð1þ ΔxÞ;
gγ ≡ gSMγ ð1þ ΔSM

γ þ ΔγÞ: ð31Þ

For loop-induced Higgs couplings, it is important that we
first define the deviation due to a shift in the SM-like loops
and then separately treat additional particles in the loop.
The Higgs signal strength is given in Eq. (1). The three
ratios of the production rate, the decay width, and the total
width depend on one or more Higgs couplings. Because the
total Higgs width cannot be measured at the LHC, we
assume that it is given by the sum of all observable partial
widths, where we align the relevant second generation
modes with the corresponding third generation decay
measurements.

In different new physics models, we describe the leading
deviations from the Standard Model in terms of one free
parameter ξ. For more details and a complete set of
references, we refer to Appendix B and to Ref. [41].
Because new physics effects which violate custodial
symmetry are unlikely to be discovered in the Higgs sector,
we simplify our example analysis by assuming
ΔW ¼ ΔZ ≡ ΔV . In all models considered below, we also
find ΔV < 0. For example, two-Higgs-doublet models can
violate both of these features at the loop level, so eventually
we should release this simplification. We choose ξ such that
in the custodial limit the (effective) Higgs coupling to
gauge bosons gets modified as

gV
gSMV

¼ 1 −
ξ2

2
þOðξ3Þ or ΔV ¼ −

ξ2

2
þOðξ3Þ: ð32Þ

A. Dark singlet

Dark singlet models include an additional scalar S which
couples to the Higgs through dimension-four portal inter-
actions [44]. The extra scalar does not form a vacuum
expectation value (VEV), and its decays are precluded by a
discrete Z2 symmetry. Because it couples to the Higgs, it
leads to an invisible decay width and, hence, impacts the
Higgs measurements through an invisible width,

Γinv ¼ ξ2ΓSM with

μp;d ¼
ΓSM

ΓSM þ Γinv
¼ 1 − ξ2 þOðξ3Þ < 1: ð33Þ

In this case. the scaling pattern of Eq. (32) does not hold for
the actual coupling gV but for its apparent value from the
rate measurement.

B. Additional singlet

In the presence of an additional SUð2ÞL singlet with
nonzero VEV, its mixing with the Higgs boson is described
by an angle sin θ≡ ξ [45]. All Higgs couplings to fermions
and gauge bosons are rescaled by the common factor

1þ Δx ¼ cos θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
with

μp;d ¼ 1 − ξ2 þOðξ3Þ < 1: ð34Þ

The phenomenological equivalence of the dark singlet, the
singlet mixing, and the simplest strongly interacting single
form factor models can only be broken by an observation of
invisible Higgs decays.

C. Composite Higgs

Minimal composite Higgs models (MCHM) describe the
Higgs boson as a pseudo-Nambu-Goldstone boson in a new
strongly interacting sector with a spontaneously broken
global symmetry [46,47]. In the Randall-Sundrum picture,
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this global symmetry has to include the local gauge groups
of the Standard Model and can, in addition, include a global
custodial symmetry of the Standard Model. This way, one
of the states in the Higgs sector will be light, while the
others reside at f ≫ mH. The light Higgs couplings are
shifted proportionally to the ratio1

ξ ¼ v
f
: ð35Þ

Depending on the symmetry structure, this Goldstone-
protected strongly interacting Higgs sector predicts differ-
ent coupling patterns for fermions and gauge bosons. In the
MCHM5 setup, the ratio of production rates scales like

μVBF;d
μGF;d

¼
�
1þ ΔV

1þ Δf

�
2

¼ ð1 − ξ2Þ2
ð1 − 2ξ2Þ2 ¼ 1þ 2ξ2 þOðξ3Þ:

ð36Þ

D. Additional doublet

In the most general setup with an additional Higgs
doublet [48], the Yukawa-aligned two Higgs doublet model
(2HDM), the different Higgs couplings to the heavy
fermions vary independently. However, the light Higgs
couplings to the massive gauge bosons are universally
modified by the mixing angle cosðβ − αÞ≡ ξ,

1þ ΔV ¼ sinðβ − αÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
: ð37Þ

The decoupling parameter ξ parametrizes the distance from
the Standard Model limit. In the fermion sector, four setups
accommodate the flavor symmetry of the Standard
Model [49]:

(i) type I, where all fermions couple to just one Higgs
doublet Φ2,

(ii) type II, where up-type (down-type) fermions couple
exclusively to Φ2 (Φ1),

(iii) lepton specific, with a type-I quark sector and a type-
II lepton sector,

(iv) flipped, with a type-II quark sector and a type-I
lepton sector.

These natural flavor-conserving models correspond to
particular cases of the aligned 2HDM with specific align-
ment angles. The modification factors Δt;b;τ depend on the
mixing angles α and β. We vary sinðβ − αÞ while fixing
tan β ¼ 1.5. We also fix the charged Higgs contribution to
gγ via mH� ¼ 500 GeV and ~λ ¼ 1 for the relevant self-
coupling defined in Ref. [41]. This choice leads to a small
charged Higgs contribution with the same sign as the top
loop. It sharpens the destructive interference with the W
loop and yields μp;γγ < 1 in the limit ξ → 0.

E. Minimal supersymmetric Standard Model

The Higgs sector of the minimal supersymmetric
Standard Model (MSSM) is a particular case of a type-II
2HDM with a supersymmetric Higgs potential [50]. This
identifies the Higgs self-couplings with gauge couplings, so
neither the additional heavy Higgs masses nor the mixing
angle α are free quantities anymore. The decoupling limit
can be described in terms of the general 2HDM, as defined
in Eq. (37). The only difference is that for the MSSM, the
gauge couplings are related to the heavy Higgs masses as

ξ2 ¼ cos2ðβ − αÞ≃ m2
h0ðm2

Z −m2
h0Þ

m2
A0ðm2

H0 −m2
h0Þ

≃m4
Zsin

2ð2βÞ
m4

A0

ð38Þ
entering the gauge boson couplings just as in Eq. (37).
These tree-level Higgs mass and coupling patterns may be
strongly modified by the inclusion of quantum effects [51].
In the computation of the decoupling parameter ξ, we,
therefore, use αeff defined as the mixing angle of the two
scalar Higgs states with the loop-corrected mass matrix.
The ratio of the two vacuum expectation values is fixed to
tan β ¼ 10. The resulting size of ξ is limited by the range
mA0 ¼ 200–1000 GeV, which will mean that we never
reach ξ ¼ 0.2.
We use the MSSM Higgs boson cross sections and

branching ratios given by FEYNHIGGS [52]. The Higgs
signal strengths are defined after identifying the (lightest)
Higgs masses in both models mSM

H ¼ mMSSM
h0 ¼ 126 GeV.

We show a benchmark scenario with a maximum light
Higgs mass generated through large stop mixing ðmmax

h Þ.
Compared to the general 2HDM, the possible departures
from the linear correlations are milder. This can be under-
stood from the more constrained 2HDM potential in the
MSSM case, which implies a fast transition to the decou-
pling regime [41]. The largest deviations arise in the low-
mA0 regime or for light stop and stau masses.

F. Signal strengths

For the above-described modifications to a Standard-
Model-like Higgs sector, we find simple patterns in the
two-dimensional plane of coupling strengths. In Fig. 5, we
compare the correlated modifications as functions of the
decoupling parameter ξ. In general, the behavior in the
H → VV and H → γγ decay planes should be similar, as
long as the loop-induced Higgs-photon coupling is domi-
nated by theW loop. We focus on ξ < 0.4 corresponding to
a modification of gV by 8%, which the LHC is sensitive to
with sufficient luminosity. In addition, we mark a deviation
by ξ ¼ 0.2 equivalent to a 2% coupling deviation. The
latter could be considered the target of a linear collider
analysis.
For the simplest models, the dark singlet and the singlet

mixing, all correlations follow a straight diagonal line

1Note that for consistency reasons, this definition of ξ differs
from the original ξ ¼ ðv=fÞ2.
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towards reduced coupling strengths μp;d < 1. This is due to
the simple mixing pattern and the net scaling of the LHC
event rates as σ × BR ∝ g2. The same pattern appears for
the simplest strongly interacting models with a single Higgs
form factor. For the more complex strongly interacting
model MCHM5, we find both correlated (μGF;ττ − μVBF;ττ)
and anticorrelated (μGF;VV − μVBF;VV) patterns. It predicts
an increased number of weak-boson-fusion events when-
ever the couplings ΔV in the production process decrease
more slowly than the coupling Δf in the total width, as
shown in Eq. (36).
Larger departures from the Standard Model are possible

in the 2HDM, thanks to its more flexible coupling structure.
In the type-I setup, there is essentially no mechanism to
increase the number of weak-boson-fusion events as
compared to the Standard Model because of the increase
in the Higgs width combined with the reduced gauge boson
coupling. This is described in more detail in Appendix B.
For gluon-fusion production combined with a fermionic
decay, the suppression by the total width can be compen-
sated by the production and decay couplings. In the type-II
setup, both signal strengths can, unexpectedly, be enhanced
for bosonic Higgs decays. The reason is a strongly
decreased partial Higgs width to bottoms and taus which
cannot be generated in the type-I model. For fermionic
decays, the direct link between the bottom and tau down-
type Yukawas leads to a systematically decreased event
rate. The fact that for ξ → 0 the 2HDM rates do not match
the StandardModel is linked to the finite contribution of the
charged Higgs to the effective photon-Higgs coupling.
Finally, the MSSM as a constrained type-II 2HDM

shows limited signal strength variations because of the
supersymmetric constraints. Unlike the general 2HDM,
even in the type-II setup the MSSM does not allow for a
free variation of the two parameters α and β, which affect
the Yukawa couplings in a complicated manner. Departures

from the decoupling limit in this case lie below ξ≲ 0.2 for
the considered parameter space configurations. In the
MSSM, deviations from the Standard Model in the limit
ξ → 0 arise through contributions of the sfermions and the
charged Higgs to both the effective gluon-Higgs and
photon-Higgs couplings. In that sense, the parameter ξ
does not fully track down the decoupling limit for the loop-
induced Higgs couplings, similar to the 2HDM case. The
effect of a shifted bottom Yukawa is not sufficient to
overcome the reduction in gV , which means that unlike for
the 2HDM, both signal strength deviations for the VV and
γγ decays are negative, leading to a (almost linear)
correlated suppression. Moreover, we see that the typical
deviations in the signal strengths can be achieved for small
values ξ < 0.2 in the MSSM because quantum effects
dominate over the mere tree-level rescaling ΔV .

G. A heuristic for robustness to theory uncertainty

One of the great challenges of the Higgs coupling
program is to understand what type of deviation from
the Standard Model prediction would be compelling
enough to make a claim for new physics. It is clear that
the pattern of deviations in the various production and
decay modes carries much more information than consid-
ering them individually. Furthermore, the inability to
measure the total width of the Higgs necessitates either
assumptions on the total width or consideration of various
ratios in which the total width cancels. Both approaches
lead to strong correlations in the inferred couplings. If the
theoretical uncertainties were well defined and statistical in
nature, the significance of any given deviation could be
readily assessed by standard statistical methods. However,
the ill-defined nature of theoretical uncertainties is beyond
the scope of rigorous statistical procedures.
For example, if one were to see a 4σ deviation from the

Standard Model that could be reduced to a 2σ deviation by
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FIG. 5 (color online). Decay-diagonal correlations of signal strengths μGF;d vs μVBF;d for d ¼ γγ; VV; ττ in different models. The
coupling variation is limited to ξ < 0.4 and the value ξ ¼ 0.2 is singled out. The slight deviations from a complete decoupling are
discussed in the text.
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inflating a theoretical uncertainty by a factor of 2 or by
changing from a Gaussian constraint to a RFIT constraint,
then the deviation would most likely be met with healthy
skepticism by the community. However, a deviation that is
orthogonal to the effect of a theoretical uncertainty is much
more robust.
This motivates a heuristic to evaluate the robustness of an

observed deviation μ̂ to a theoretical uncertainty para-
metrized by αi, which we denote RiðμÞ. We want a larger
deviation from the Standard Model to be reflected as a
larger value for this robustness heuristic, so we begin with
the length of the vector jμ − 1j. We also want the robustness
to be larger as the deviation from the Standard Model
ðμ − 1Þ becomes more orthogonal to the shift in the signal
strength induced from varying αi as defined in Eq. (22) and
denoted as ∂αiμ

fix. Since the magnitude of the theoretical
uncertainty is poorly defined, it is natural that we only
consider the angle between ðμ − 1Þ and ∂αiμ

fix. This leads
to the robustness heuristic

RiðμÞ ¼
jμ − 1j2j∂αiμ

fixj
ðμ − 1Þ · ð∂αiμ

fixÞ : ð39Þ

This same heuristic can be used to assess an expected
departure from the Standard Model based on a new physics
model parametrized by ξ via composition RiðμðξÞÞ.
Figure 6 shows the heuristic for the new physics effects
in Fig. 5 combined with the theoretical uncertainties in the
toy model illustrated in Fig. 2. As expected from the
discussion of the different models, the different two-Higgs-
doublet models can be distinguished from the Standard
Model even for ξ ∼ 0. While for the type-I model, the VBF
topology is more robust with respect to potential QCD
effects, deviations due to a type-II model are more robust to
the inclusive Higgs production rate. The most reliable
signature for the strongly interacting MCHM5 model
would be observed in weak-boson-fusion Higgs production
with a decay H → WW. For the MSSM, the ξ axis is

rescaled because deviations ξ≳ 0.1 are hardly generated in
our scan over MSSM spectra. The robustness of a super-
symmetric Higgs sector is roughly equal for the inclusive
and VBF Higgs topologies.

VI. CONCLUSION

Motivated by the fact that ill-defined theoretical uncer-
tainties will eventually be the limiting factor in Higgs
coupling measurements at the LHC, we have developed a
technique to decouple the theoretical uncertainties from the
experimental results while retaining the ability to incorpo-
rate those uncertainties in a subsequent stage we refer to as
recoupling.
This approach is amenable to simultaneously measuring

multiple quantities, such as a vector of signal strength
parameters μ for different Higgs production and decay
signatures. Moreover, the technique lends itself well to
combinations with several common sources of uncertainty
that induce correlations among the contributing measure-
ments. In that respect, it is similar to the BLUE [11]
technique but not restricted to Gaussian measurements or
linear response to the source of uncertainty. We have
considered a toy example modeled after the current
ATLAS Higgs coupling measurements where the measure-
ments are not in the Gaussian regime, and these nonlinear
effects are important for approximating the full likelihood
function.
One of the most powerful features of this approach is that

it allows one to change the assumptions on both the
magnitude and the shape of the uncertainty in the recou-
pling stage, which may occur long after the experimental
groups have released their results. This includes the ability
to introduce a priori correlations in the source of the
systematics, which might have been neglected originally.
These same capabilities would be possible if the experi-

ments published the full statistical model using ROOFIT/
ROOSTATS [25] as suggested in Ref. [53]; however, the
approach outlined here is less technology dependent. The
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FIG. 6 (color online). The sensitivity heuristic RiðξÞ evaluated for various new physics models and the theoretical uncertainties i
associated to the gluon-fusion cross section for ≥ 0 jets and ≥ 2 jets.
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conceptual picture of these uncertainties leading to shifts in
the inferred values of the parameters is intuitive and
provides convenient visualizations as in Fig. 2.
In order for the experiments to present their results in this

way, they would need to
(i) publish the effective likelihood LeffðμeffÞ profiling

only parameters that are not anticipated to be
common to other measurements,

(ii) publish the reparametrization template μeffðμ;αÞ, and
(iii) document the conventions that establish meaning to

the nuisance parameters α.
In return, our approach allows for a flexible treatment of
systematic uncertainties and removes the burden of choos-
ing a description of theoretical uncertainties from the
experimental groups. It also allows for future improve-
ments in the theoretical description of Higgs processes at
the LHC to be easily incorporated. We have discussed
multiple strategies to determine the reparametrization
template in Sec. II.
In the absence of a reliable measure of theoretical

uncertainties, the key question becomes how easily an
apparent deviation of experimental measurements from the
Standard Model description can be explained by a change
in the assumed theoretical uncertainties. If we describe new
physics effects in the Higgs sector as one-parameter
deviations from the Standard Model decoupling limit in
the signal strength planes, the directions of these deviations
can be compared to the effects of a change in the theoretical
uncertainties in the same planes. The direct comparison of
these two possible explanations for an experimental obser-
vation leads us to the robustness heuristic presented
in Eq. (39).
While this paper has focused on the application of our

approach to Higgs coupling measurements and the theo-
retical uncertainties associated with QCD, the technique is
quite general and may find broad applications.
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APPENDIX A: A WORKED EXAMPLE

In this appendix, we work through a simple example that
illustrates explicitly the procedure described in Sec. II. A
MATHEMATICA notebook carrying out these calculations
can be found in Ref. [40]. We consider two Gaussian
measurements (indexed by c ¼ 1; 2), which can be thought
of as approximating the Poisson distribution for number
counting analyses or approximating the maximum like-
lihood estimator of some more complicated analysis. We
consider two signal processes (indexed by p ¼ 1; 2) with
nominal (e.g., Standard Model) expectations scp and signal
strength modifiers μp. Finally, we consider one systematic
effect parametrized by α that shifts the signal expectation
from the nominal α0 ¼ 0 so that the expectation is

νcðμ1; μ2;αÞ ¼
X
p¼1;2

μpscpð1þ ηcpαÞ þ bc: ðA1Þ

Including a Gaussian constraint term for the parameter α
leads to the full likelihood

Lfullðν1; ν2; αÞ ¼ Gausðx1jν1; σ1ÞGausðx2jν2; σ2ÞGausða ¼ 0jα; σαÞ: ðA2Þ
The maximum likelihood estimators are

μ̂1 ¼
s12ðx2 − b2Þ − s22ðx1 − b1Þ

s12s21 − s11s22
;

μ̂2 ¼
s21ðx1 − b1Þ − s11ðx2 − b2Þ

s12s21 − s11s22
;

α̂ ¼ 0: ðA3Þ

The full Fisher information matrix is straightforward to calculate but cumbersome to write explicitly. The results below only
require the off-diagonal block elements:
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V−1
full 13 ¼

1

σ21σ
2
2

½b1η1s11σ22 þ η2μ̂2ðs11s12σ22 þ σ21s21s22Þ

þ η1ðb2σ21s21 þ 2μ̂1ðs211σ22 þ σ21s
2
21Þ þ μ̂2ðs11s12σ22 þ σ21s21s22Þ − s11σ22x1 − σ21s21x2Þ�;

V−1
full 23 ¼

1

σ21σ
2
2

½b1η2s12σ22 þ η1μ̂1ðs11s12σ22 þ σ21s21s22Þ

þ η2ðb2σ21s22 þ μ̂1ðs11s12σ22 þ σ21s21s22Þ þ 2μ̂2ðs212σ22 þ σ21s
2
22Þ − s12σ22x1 − σ21s22x2Þ�: ðA4Þ

In order to decouple the uncertainty, the experiment
would provide the likelihood for an effective signal strength
with respect to the nominal prediction α0 ¼ 0. The effective
likelihood would be based on

νcðμeff1 ; μeff2 Þ ¼
X
p¼1;2

μeffp scp þ bc; ðA5Þ

which has the same maximum likelihood estimates above
and the following information matrix:

V−1
eff ¼

2
64

s2
11

σ2
1

þ s2
21

σ2
2

s11s12
σ2
1

þ s21s22
σ2
2

s11s12
σ2
1

þ s21s22
σ2
2

s2
22

σ2
2
þs2

12

σ2
1

3
75: ðA6Þ

The effective likelihood has the form:

Leffðμeff1 ; μeff2 Þ ∝ Gðμ̂1; μ̂2jμeff1 ; μeff2 ; V−1
eff Þ: ðA7Þ

Now we must choose a reparametrization template to be
used to recouple the uncertainty due to α. First, let us
choose the template of Eq. (10) so that μeffp ¼ μpð1þ ηpαÞ.
Note that the original model in Eq. (A2) had four ηcp while
the template only has two ηp. If the effect of α is category
universal so that ηc¼1;p ¼ ηc¼2;p, then recoupling based on
this template will reproduce the full model exactly; how-
ever, in the more general situation, ηc¼1;p ≠ ηc¼2;p, it
will not.

Now we solve for the coefficients of the template based
on the local covariance matrix as described in Sec. II D. We
outlined three equivalent approaches based on Eqs. (22),
(25), and (26). Let us demonstrate the last of these three
approaches. Based on the template of Eq. (10), the
reparametrization will lead to the Jacobian

J ¼ ∂ðμeff1 ; μeff2 Þ
∂ðμ1; μ2; αÞ ¼

� ð1þ η1αÞ 0 μ1η1
0 ð1þ η2αÞ μ2η2

�
:

ðA8Þ

As in Eq. (26), we use this Jacobian to relate the
information matrix of the effective likelihood and the main
measurement

V−1
mainðμ1; μ2; αÞ ¼ JTV−1

effJ: ðA9Þ

The ði ¼ μp; j ¼ αÞ sub-block of this matrix leads to the
following system of linear equations

μ̂1η1V−1
eff 11 þ μ̂2η2V−1

eff 12 ¼ V−1
main 13;

μ̂1η1V−1
eff 12 þ μ̂2η2V−1

eff 22 ¼ V−1
main 23; ðA10Þ

which can easily be inverted to provide solutions for ηp. In
practice, one would work with numerical representations of
the maximum likelihood estimators and Fisher information
matrices, but here we present the result symbolically:

η1 ¼ ½b1s22ð−η12s12s21 − η21s12s21 þ η22s12s21 þ η11s11s22Þ þ b2s12ðη21s12s21 − ðη11 − η12 þ η22Þs11s22Þ
þ η12s12s21s22x1 þ η21s12s21s22x1 − η22s12s21s22x1 − η11s11s222x1 − η21s212s21x2

þ η11s11s12s22x2 − η12s11s12s22x2 þ η22s11s12s22x2�=½ðs12s21 − s11s22Þðb2s12 − b1s22 þ s22x1 − s12x2Þ�;
η2 ¼ ½b2s11ðη11s12s21 − η12s12s21 − η21s12s21 þ η22s11s22Þ þ b1s21ðη12s12s21 − ðη11 − η21 þ η22Þs11s22Þ

− η12s12s221x1 þ η11s11s21s22x1 − η21s11s21s22x1 þ η22s11s21s22x1 − η11s11s12s21x2

þ η12s11s12s21x2 þ η21s11s12s21x2 − η22s211s22x2�=½ðs12s21 − s11s22Þð−b2s11 þ b1s21 − s21x1 þ s11x2Þ�: ðA11Þ

Note, in the category-universal situation, the solution simplifies to ηp ¼ η1p ¼ η2p as expected. In the non-category-
universal situation, it is possible for ηp to lie outside of the range ½η1p; η2p�.
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1. Three example scenarios

To make these examples more explicit, Table I specifies
three scenarios for the coefficients in Eq. (A1). Scenarios A
and B are meant to be representative of the LHC Higgs
measurements in which the first category is gluon-fusion-
like with significant background and signal dominated by
the first production mode (p ¼ 1 ¼ ggF), while the second
category is VBF-like with negligible background and
signal dominated by the second production mode
(p ¼ 2 ¼ VBF). The only difference between scenarios
A and B is the ηcp that quantify the response to the source
of uncertainty. Since scenario A is category universal, we
achieve an exact reproduction of the full likelihood, while
for scenario B we do not expect exact results. Scenario C is
meant to probe the extreme case in which the uncertainty
for the first production mode only affects the expectation in

the second category (which is representative of the theory
uncertainty of gluon fusion þ ≥ 2 jets).
Figure 7 shows a comparison of the full and recoupled

likelihood using the “aligned” template of Eq. (10) and the
solutions to the coefficients in Eq. (A11). Scenario A is
reproduced exactly; the non-category-universal property of
scenario B leads to a slight discrepancy, and the extreme
non-category-universal property of scenario C leads to a
substantial discrepancy. In particular, while the effect of the
uncertainty in scenario C is to change the inferred value of
μVBF, the size of this effect should scale with μggF. The
agreement can be improved dramatically by moving to the
more general template of Eq. (14) that includes ηp

0
pi. One

approach is to fix by hand the coefficients of the template
ηggFggF ¼ 0, ηVBFVBF ¼ 0, and ϕ ¼ 0 and determine the two
remaining coefficients using the local covariance matrix
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FIG. 7 (color online). Comparison of full likelihood (solid) and recouped (dashed) likelihood for scenarios A, B, and C. Scenario C
illustrates the impact of using three templates aligned (red), by hand (green), and learning (blue) as described in the text. The top row is
based on the nominal Gaussian constraint, and the bottom row shows the result of replacing it with an alternative RFIT constraint term.
The effective likelihood with α ¼ 0 is shown as a dotted line.

TABLE I. The values for the coefficients in Eq. (A1) used to define three example scenarios.

Scenario σα s11 s12 b1 x1 σ1 s21 s22 b2 x2 σ2 η11 η12 η21 η22

A 1 45 5 50 100 10 10 90 0 100 10 0.2 0.2 0.2 0.2
B 1 45 5 50 100 10 10 90 0 100 10 0.1 0.2 0.3 0.2
C 1 45 5 50 100 10 40 60 0 100 10 0 0 0.2 0
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(which proceeds as above with a different Jacobian trans-
formation). An alternate approach is to use the unrestricted
template of Eq. (14) and utilize the “learning” approach
of Eq. (27).
Finally, the second row of Fig. 7 shows a comparison of

the full and decoupled likelihood with a modified constraint
term. In particular, the Gaussian constraint is replaced with
a RFIT constraint term: Gausð0jα; 1Þ → Uniformð−1; 1Þ.
The coefficients for the templates are the same as for both
rows of Fig. 7.

APPENDIX B: NEW PHYSICS MODELS

In this appendix, we will give a more detailed picture of
the new physics models and their features briefly discussed
in Sec. V. In particular, we will motivate and discuss the
description of new physics effects by a single parameter ξ
defined as the modification of the Higgs couplings to
massive gauge bosons, i.e., ΔV ≃ −ξ2=2. Note that this
unified definition of ξ differs from Ref. [41] for some of the
new physics models. All signal strength deviations we
compute by rescaling the SM production cross section,
branching ratio, and total width [54], while for the MSSM
case, we use FEYNHIGGS [52].

1. Dark singlet

A dark singlet is defined as a model with an additional
scalar particle Swhich does not have a vacuum expectation
value and, hence, cannot mix with the Higgs boson. In
addition, we assume that its only interaction with the
Standard Model will be the dimension-four portal inter-
actions in the combined scalar potential [44],

VðΦ; SÞ ¼ μ21ðΦ†ΦÞ þ λ1jΦ†Φj2 þ λ3jΦ†ΦjS2: ðB1Þ
This interaction with strength λ3 can, if kinematically
allowed, lead to an invisible Higgs decay width [55]
directly linked to a possible dark matter agent [56]

Γinv ¼ Γðh → ssÞ ¼ λ23v
2

32πmh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
s

m2
h

s
≡ ξ2ΓSM: ðB2Þ

Such an invisible Higgs width contributes to the total Higgs
width and, hence, to the number of predicted Higgs events
at the LHC. This leads to an apparent reduction of all
couplings, including the Higgs coupling to massive gauge
bosons, shown in Eq. (33). Such a universal modification of
all predicted event numbers corresponds to a diagonal
pattern, for example, in the two-dimensional μVBF;d vs μGF;d
plane. In the upper panels of Fig. 8, we show these identical
diagonal correlations for a set of decay-diagonal channels
(left panels) and nondiagonal channels (right panels). The
correlations are all identical. In the lower panels, we show
the expected signal strengths relative to the Standard Model
as a function of the invisible width.

2. Additional singlet

If the additional SUð2ÞL singlet acquires a finite VEV vS,
the combined Higgs potential [45,57]

VðΦ; SÞ ¼ μ21ðΦ†ΦÞ þ λ1jΦ†Φj2 þ μ22S
2 þ κS3 þ λ2S4

þ λ3jΦ†ΦjS2 ðB3Þ
with the portal interaction λ3 leads to singlet-doublet
mixing. The rotation to mass eigenstates h and H defines
the angle
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tan2ð2θÞ ¼ λ23v
2
Hv

2
S

ðλ1v2H − λ2v2SÞ2
: ðB4Þ

All Higgs couplings to fermions and gauge bosons are
rescaled by cos θ < 1. In addition, the mostly Higgs state
can decay into two lighter mostly singlet states [58]

ΓðH → hhÞ ¼ jλHhhj2
32πmH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
h

m2
H

s
: ðB5Þ

The signature for such a decay depends on the lifetime and
the decay channels of the lighter state h. If sizeable, this
additional decay channel contributes to the total Higgs
width, entering the predicted number of LHC events as a
second universal modification.
This universal coupling modification again predicts

diagonal lines for all μp1;d1 − μp2;d2 correlations, as shown
in Fig. 9. If we do not observe the new Higgs decay modes
for each of the additional singlet scenarios, the degeneracy
in the signal strength deviations makes it impossible to
distinguish a dark singlet, an additional singlet, and the
simplest strongly interacting form factor models (as dis-
cussed in the next paragraph) [59].

3. Composite Higgs

Depending on the symmetry structure, this strongly
interacting but Goldstone-protected Higgs sector predicts
different coupling patterns for fermions and gauge bosons

[47]. The MCHM4 setup with ΔV ¼ Δf ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
− 1 is

experimentally equivalent to a mixing term in a singlet
extension. The reduced couplings of the lightest Higgs state

reflect the fact that at the energy scale f there exist many
strongly interacting Higgs fields which share the unitariza-
tion of the usual 2 → 2 scattering processes. The MCHM5
setup is more interesting. While ΔV is identical to the
MCHM4 case, the fermions follow a different pattern

1þ Δf ¼ ð1 − 2ξ2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
. If we ignore the heavy

states’ contributions to the effective Higgs-photon and
Higgs-gluon couplings, we find that the ratio of production
rates scales like

μVBF;d
μGF;d

¼
�
1þ ΔV

1þ Δf

�
2

¼ 1 − ξ2

ð1−2ξ2Þ2
1−ξ2

¼
�
1 − ξ2

1 − 2ξ2

�
2

¼ 1þ 2ξ2 þOðξ3Þ;
μVBF;VV
μGF;ff

¼
�
1þ ΔV

1þ Δf

�
4

¼ 1þ 4ξ2 þOðξ3Þ;
μVBF;ff
μGF;VV

¼ 1: ðB6Þ

Unlike all previous models, the MCHM5 setup accom-
modates μp;d > 1, for example,

μVBF;VV ≃ ð1 − ξ2

2
Þ4

0.3ð1 − ξ2

2
Þ2 þ 0.7ð1 − 3ξ2

2
Þ2

≃ 1þ 0.4ξ2 þOðξ3Þ > 1: ðB7Þ

The sharper suppression in the fermion couplings still leads
to depleted gluon-fusion channels. In Fig. 10, we show a set
of correlations between different signal strengths. The
different possibilities portrayed in Eq. (B7) explain some
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of the patterns in the signal strength planes. Corrections to
the straight linear correlations arise at Oðξ3Þ.

4. Additional doublet

An even richer structure, in particular, in separating the
gauge and Yukawa couplings of the light Higgs, appears
when we add a second Higgs doublet [48,49]. Up to terms
of Oðξ3Þ, the modification to the LHC signal strengths
ð1þ ΔpÞ2ð1þ ΔdÞ2 − 1 is displayed in Table II. These
expressions hold for the general Yukawa-aligned model
[41,60]. For example, a type-I model corresponds to
γb ¼ γτ ¼ π=2, while a type-II model appears if we set
γb ¼ γτ ¼ 0. The main feature is that the leading signal
strength deviations involving fermions arise at order ξ,
while gauge couplings only vary with ξ2 [61].
The detailed 2HDM signal strength patterns illustrated in

Fig. 11 are to a large extend model dependent, as they are
tied to the specific Yukawa structures. In the type-I setup, all
Yukawas couplings and, hence, the effective Higgs-gluon
coupling, are shifted by a common factor cos α= sin β. This
way, they are not suppressed for sinðβ − αÞ ≲ 1. The Higgs
couplings to gauge bosons scale like sinðβ − αÞ. As a result,

all gluon-fusion channels show an increased signal strength
as compared to their weak-boson-fusion counterparts. Type-
II models link uplike and downlike fermions to different
Higgs doublets, implying separate Yukawa modifications.
The bottom and tau final states are suppressed for a wide
range of sinðβ − αÞ, eventually leading to the unphysically
large signal strength deviations visible in the plots. For an
even larger deviation from sinðβ − αÞ≃ 1models of type-II
leptonspecific models, and flipped models feature sign-
inverted Yukawas. These sign ambiguities are visible in the
ellipsoidal correlated variations in the signal strength plane.
The additional charged Higgs-mediated contribution Δγ is
responsible for the mild offset μp;γγ ≠ 1 in the decou-
pling limit.

5. MSSM

A supersymmetric Lagrangian requires two Higgs dou-
blets to give mass to up-type and down-type fermions. At
tree level, the MSSM Higgs sector is a type-II 2HDM but
with the different quartic Higgs couplings fixed to gauge
couplings. If we assume the lighter of the scalar Higgs
bosons to lie at 126 GeV, the heavy Higgs masses are
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TABLE II. Higgs coupling modifications from an additional Higgs doublet.

bb̄ ττ VV

GF 2ξ½cot β − tanðβ − γbÞ�
−ξ2½2 − tan2ðβ − γbÞ − cot2β
þ4 cot β tanðβ − γbÞ�

2ξ½cot β þ tanðβ − γτÞ�
−ξ2½2 − tan2ðβ − γτÞ − cot2β
þ4 cos β tanðβ − γτÞ�

2ξ cot β
−ξ2ð2 − cot2βÞ

VBF −2ξ tanðβ − γbÞ
−ξ2½2 − tan2ðβ − γbÞ�

−2ξ tanðβ − γτÞ
−ξ2½2 − tan2ðβ − γτÞ�

−2ξ2
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almost degenerate at mH0 ≃mA0 ≃mH� up to Oðm2
Z=m

2
A0Þ

corrections. Just like for the general 2HDM, the decoupling
is described by ξ ¼ cosðβ − αÞ.
At tree level, the entire MSSM Higgs sector is fully

described by mA0 and tan β. Loop corrections in the top-
stop sector lead to significant corrections and yield an
additional parameter dependence, for example, on the stop
trilinear coupling At. The leading quantum corrections to
the Higgs couplings can be accounted for through an
effective mixing angle α → αeff which we use in the
definition of ξ. Additional contributions may further
modify the effective Higgs coupling pattern. One-loop
triangle corrections to the Yukawa couplings are governed
by gluino-sbottom loops [62] and shift the bottom quark

Yukawas by Δb ∼Oðm2
Z tan

2 β=m2
A0Þ. They give rise to a

delayed decoupling [50], meaning that the decoupling limit
now demands m2

Z tan
2 β ≪ m2

A0 for large tan β. These
effects depend on the detailed supersymmetric mass spec-
trum and have to be included in a full MSSM parameter
study [63]. In this discussion of the light Higgs couplings,
we omit any constraint from the new particles outside the
Higgs sector. This also means that we ignore the possibility
of light neutralinos 2mχ0

1
< mh0 contributing to the invis-

ible Higgs width. In specific supersymmetric models, the
coupling of the lightest neutralino to the light Higgs boson
can be important, leading to an accelerated dark matter
annihilation in the early Universe. Nevertheless, even the
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couplings required for this light Higgs funnel are
unlikely to give a measurable invisible Higgs decay rate
at the LHC.
Technically, we use the MSSM Higgs cross sections and

branching ratios given by FEYNHIGGS 2.9.5 [52]. The
corresponding Higgs signal strengths are obtained by
normalizing the individual production and decay rates to
their SM counterparts [54] after identifying the (lightest)
Higgs mass in both models mSM

H ¼ mMSSM
h0 . We consider

two benchmarks relevant to LHC searches [64], all com-
patible with the observed ∼126 GeV resonance: the mmax

h
case with maximum stop mixing, heavy squarks, and
tan β ¼ 10 and the light stop case with maximum stop

mixing, but generally light squarks, and tan β ¼ 35. Both of
them are numerically similar. The difference is that only the
light stop scenario generates sizeable Oð10%Þ corrections
to Δg and, at the same time, gives relatively large negative
Δb corrections to the bottom Yukawa. In Fig. 12, we see
that compared to the general 2HDM, the possible depar-
tures from the linear correlations are milder. The two
benchmarks predict very similar signal strengths. All this
can be understood from the more constrained Higgs
potential and the moderate negative corrections to the total
width. The largest deviations obviously arise in the low-
mA0 regime.
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