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The zero-degree calorimeters (ZDC) installed in the ALICE, ATLAS and CMS experiments at the LHC
make possible simultaneous detection of forward-backward leading neutrons, pp → nX n. Such data with
sufficiently high statistics could be a source of information about the pion-pion total cross section at high
energies, provided that the absorption corrections, which are expected to be strong, are well understood.
Otherwise, making a plausible assumption about the magnitude of the pion-pion cross section, one can
consider such measurements as a way to study the absorption effects, which is the main focus of the present
paper. These effects introduced at the amplitude level are found to be different for the pion fluxes, which
either conserve or flip the nucleon helicity. The pion fluxes from both colliding protons are essentially
reduced by absorption; moreover, there is a common absorption suppression factor, which breaks down the
factorized form of the cross section. We also evaluate the feed-down corrections related to the initial/final
state inelastic processes possessing a rapidity gap, and found them to be small in the kinematic range under
consideration. The contribution of other isovector Reggeons, spin-flip natural parity ρ and a2 and spin-
nonflip unnatural parity a1, are also evaluated and found to be rather small.
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I. INTRODUCTION

The proton-proton elastic scattering cross section has
been measured in a wide range of energies, and recently
up to the highest energy of the LHC,

ffiffiffi
s

p ¼ 7 TeV [1,2].
At the same time, measurements of the pion-nucleon
cross section have been restricted so far to rather low
energies, up to about

ffiffiffi
s

p ¼ 35 GeV [3]. The pion-pion
cross section cannot be measured directly, and has been
extracted from data only at very low energies near
threshold [4]. The theoretical description of elastic
scattering has been based so far only on phenomeno-
logical models. Even the simplest versions of Regge
models, assuming Pomeron pole dominance (no cuts) [5]
still describe the available data reasonably well, in spite
of the obvious problems with the unitarity bound at
higher energies. Among the unitarized models [6–11], a
precise prediction of the elastic cross section at the LHC
was done in [12,13]. In contrast to the models treating the
Pomeron as a simple Regge pole, an increasing rate of
the energy dependence was predicted. Even a steeper rise
of the cross sections at high energies is expected for π-p
and π-π scattering. The models [14] based on non-
perturbative interaction dynamics fixed at low energies
predict an increasing cross section with energy. These
models provided predictions for pp, πp and ππ cross
sections.

The possibility of having a pion-pion collider does not
seem to be realistic, and it has not been seriously consid-
ered so far. However, one can make use of virtual pion
beams. Indeed, nucleons are known to have pion clouds,
with low virtuality, so high-energy proton beams are
accompanied by an intensive flux of high-energy pions,
which participate in collisions. This way to measure
electron-pion collisions was employed in the ZEUS [15]
and H1 [16] experiments at HERA. Pion contribution was
singled out by detecting leading neutrons with large frac-
tional momentum, z. The main objective of these mea-
surements was the determination of the pion structure
function Fπ

2ðx;Q2Þ at low x. This task turned out to be
not straightforward, because of absorptive corrections,
which suppress the cross section. In fact, recent study of
these effects [17] found them to be quite strong, reducing
significantly the cross section. A good description of data
was achieved. A weaker effect of absorption was expected
in Refs. [18–21].
Detecting leading neutrons with large z in pp collisions

one can access the π-p total cross section at energies much
higher than with real pion beams. Apparently, the absorp-
tive corrections in this case should be similar or stronger
than in γ�-p collisions. A detailed study of these effects was
performed in [22]. However, no data from modern colliders
have been available so far, except for a few points with
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large error bars from the PHENIX experiment [23,24] and
old data from ISR [25]. The normalization of the latter was
found unreliable in [22].
Earlier attempts to extract the ππ and πp cross sections

from neutron production at low energies of fixed target
experiments were made in [26,27], although no absorptive
corrections were introduced. An attempt to calculate the
effect of absorption for these processes was made in
[28,29]; however only the shadow of the interaction
between the colliding protons was included, while the
main source of absorption was missed. The latter comes
from the higher Fock components of the projectile proton,
which contain a color octet-octet dipole as was demon-
strated in [17,22]. This explains in particular the observed
cross section of leading neutron production in deep-
inelastic scattering, which is independent of Q2 [15–17].
On the contrary, if the absorption effects were caused by
γ� − p interactions in accordance with [28], then the
fractional cross section of neutron production would
steeply vary with Q2 (see in [17]).
The experiments ATLAS, CMS and ALICE at the

LHC are equipped with zero-degree calorimeters,
which are able to detect neutrons at very small angles.
This is ideal for experimenting with pions accompanying
the colliding protons. In particular, detecting leading
neutrons, simultaneously produced in both directions,
one can accesses pion-pion collisions at high c.m. energy,
sππ ¼ ð1 − z1Þð1 − z2Þs, where z1;2 are the fractional
momenta of the detected neutrons. Naturally, this process
is also subject to strong absorptive corrections, which have
not been studied so far. Our objective in this paper is to
calculate these corrections, which would allow us to extract
a pion-pion total cross section from the process pp → nXn
with two forward/backward neutrons detected with
large z1;2.
The paper is organized as follows. In Sec. II we describe

the kinematics for the double-leading neutron production,
and the cross section in the Born approximation, i.e.
without any absorptive corrections. Section III is devoted
to calculations of the absorptive corrections. This is done
by switching the amplitude to impact parameter represen-
tation, where the absorptive corrections factorize (Sec. III
A), and then coming back to momentum representation.
The absorption suppression factors, also called gap survival
amplitudes, are evaluated in Sec. IV. They originate from
different types of initial/final state absorption effects.
Interaction with the produced multiparticle system X is
described in Secs. IVA and IV B, while the effects of
interaction between the spectator nucleons is considered in
Sec. IV C. Factorization of the cross section into the
product of two pion fluxes turns out to be heavily broken
by NN-absorption effects.
In addition to pions, other isotriplet Reggeons, ρ; a2, and

a1, also contribute to neutron production. This background
is evaluated in Sec. V.

II. DOUBLE-LEADING NEUTRONS
IN PP COLLISIONS

The double rapidity gap process with two leading
neutrons in the final state,

pþ p → nþ X þ n; ð1Þ

where both neutrons are produced with large fractional
light-cone momenta z1 and z2, can naturally be interpreted
as a collision of two pion fluxes from the colliding protons,
as is illustrated in Fig. 1.
The invariant mass of X, i.e. the ππ c.m. energy squared,

is related to that of the pp as

sππ
s

≡ τ ¼ ð1 − z1Þð1 − z2Þ; ð2Þ

Also, the produced neutrons are characterized by trans-
verse momenta ~qi and 4-momenta squared

−ti ¼
1

zi
½~q2i þ ð1 − ziÞ2m2

N �; ð3Þ

where i ¼ 1, 2.
The cross section of the process (1) in the Born

approximation (no absorptive corrections) can be presented
in the form,

dσBðpp → nXnÞ
dz1dz2dq21dq

2
2

¼ fBπþ=pðz1; q1Þσπ
þπþ

tot ðτsÞfBπþ=pðz2; q2Þ; ð4Þ

where the pion flux in the proton (also called the pion
distribution function) with fractional momentum 1 − z
reads [30]

fBπþ=pðz; qÞ

¼ −tG2
πþpnðtÞ

���� α0πηπðtÞÞ8

����2 1z ð1 − zÞ1−2απðtÞ: ð5Þ

Here ηπðtÞ is the phase factor, which can be expanded near
the pion pole as

FIG. 1. Graphical representation for double neutron production
with large z in pp → nXn.
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ηπðtÞ ¼ i − cot

�
παπðtÞ

2

�
≈ iþ 2

πα0π

1

m2
π − t

: ð6Þ

We neglect the small imaginary part in what follows.
The pion Regge trajectory is assumed to be linear,

απðtÞ ¼ α0πðt −m2
πÞ, with α0π ≈ 0.9 GeV−2. The effective

vertex function GπþpnðtÞ ¼ gπþpn expðR2
πtÞ, where

g2πþpnðtÞ=8π ¼ 13.85. For further calculations we fix

R2
π ¼ 0.3 GeV−2, which was adjusted to data and chosen

in [20,21,30–32] as the most reliable value.
As an example, we calculate the flux fBπþ=pðz; qÞ at

q ¼ 0, plotted by a dashed curve in Fig. 2.
In experiments with a sufficiently large aperture one can

accept all the leading neutrons and rely on the cross section
integrated over transverse momenta,

dσBðpp → nXnÞ
dz1dz2

¼ FB
πþ=pðz1Þσπ

þπþ
tot ðτsÞFB

πþ=pðz2Þ; ð7Þ

where the q-integrated flux reads

FB
πþ=pðzÞ ¼ −z

Z
∞

q2L

dtfBπþ=pðz; qÞ; ð8Þ

and

qL ¼ 1 − zffiffiffi
z

p mN: ð9Þ

The q-integrated pion flux FB
πþ=pðzÞ is plotted in Fig. 3 as

a function of neutron fractional momentum z.
To enhance the statistics more, one can make use of all

registered neutrons to extract the ππ total cross section,

σðpp → nXnÞjz1;2>zmin
¼ ΦBðτÞσπþπþtot ðτsÞ; ð10Þ

where the pp → nXn cross section is integrated over
z1;2 > zmin. The fractional coefficient ΦðτÞ, within the
Born approximation, is given by

ΦBðτÞ ¼
Z

zmax

zmin

dz1
1 − z1

FB
πþ=pðz1ÞFB

πþ=pðz2Þ; ð11Þ

with z2 ¼ 1 − τ=ð1 − z1Þ. The choice of zmin defines the
maximum value of τ ≤ τmax ¼ ð1 − zminÞ2. Further on we
fix zmin ¼ 0.5. The upper integration limit is fixed by the
relation ð1 − zmaxÞð1 − zminÞ ¼ τ. ΦBðτÞ correlates with the
amount of events detected in the interval zmin < z < zmax.
The interval of integration in (11) shrinks to zero towards
τ ¼ τmax ¼ 0.25, so the value of ΦBðτÞ drops down. On the
other hand, at small τ one of the rapidity gaps, shown in
Fig. 1, becomes large (because s is very large) and the pion
exchange vanishes due to its low Regge intercept. Again,
ΦBðτÞ is falling due to Eq. (11). Values of the coefficient
ΦBðτÞ, calculated at ffiffiffi

s
p ¼ 7 TeV are plotted in Fig. 4 vs τ.

Notice that a pion flux can originate from a transition
p ⇒ nþ π with or without spin-flip of the nucleon helicity
[22,33]. Correspondingly, we identify two different types
of pion fluxes. At this point we switch to amplitudes,
because the survival amplitude introduced in the next
section is very different for spin-flip and nonflip amplitudes
[22,33]. The amplitude of the process (1) reads

AB
pp→nXnðz1; ~q1; z2; ~q2Þ
¼ Aπþπþ→XðτsÞ

×

�
χ̄n1

�
σ3qL1 þ

1ffiffiffiffiffi
z1

p ~σ · ~q1

�
χp1

�
ψB
π ðz1; ~q1Þ

×

�
χ̄n2

�
σ3qL2 þ

1ffiffiffiffiffi
z2

p ~σ · ~q2

�
χp2

�
ψB
π ðz2; ~q2Þ; ð12Þ
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FIG. 3 (color online). The q-integrated pion flux, calculated in
the Born approximation, vs neutron fractional momentum z.
Correspondingly the pion flux carries fraction 1 − z. The fluxes
of pions flipping or nonflipping the nucleon helicity are depicted
by dashed curves, while the solid curve presents the full pion flux.
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FIG. 2. The forward flux of pions fð0Þπþ=pðz; qÞ at q ¼ 0,

calculated in the Born approximation with Eq. (16) and including
absorption, Eq. (29), plotted by dotted and dashed curves
respectively, and by a solid curve after adding the feed-down
corrections.
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where ~σ are Pauli matrices; χp;n are the proton or neutron
spinors; and ~q1;2 are the transverse components of the
neutrons momenta.
At small 1 − z ≪ 1 the pseudoscalar amplitudes ψB

π have
the triple-Regge form,

ψB
π ðz; ~qÞ ¼

α0π
8
GπþpnðtÞηπðtÞð1 − zÞ−απðtÞ: ð13Þ

The amplitude of ππ collision is related to the total cross
sections as

X
X

jAπþπþ→XðτsÞj2 ¼ τsσπ
þπþ

tot ðτsÞ: ð14Þ

Accordingly, the pion flux Eq. (5) can be split into two
parts, corresponding to pion emission by the proton
conserving or flipping its helicity,

fBπþ=pðz; qÞ ¼ fBð0Þπþ=pðz; qÞ þ fBðsÞπþ=pðz; qÞ; ð15Þ

where

fBð0Þπþ=pðz; qÞ ¼
ð1 − zÞ

z
q2LjψB

π ðq; zÞj2 ð16Þ

fBðsÞπþ=pðz; qÞ ¼ −
ð1 − zÞ

z
ðq2L þ tÞjψB

π ðq; zÞj2: ð17Þ

The corresponding q-integrated fluxes, Eq. (8), FBð0Þ
πþ=pðzÞ

and FBðsÞ
πþ=pðzÞ, are plotted by dashed curves in Fig. 3.

III. ABSORPTIVE CORRECTIONS

The initial/final state inelastic interactions lead to multi-
particle production, which will fill the gaps, i.e. essentially
reduce the fractional momenta, either z1 or z2, or both. The
no-interaction probability, usually called gap survival
probability, certainly reduces the cross section compared
with Eq. (4).
The absorptive corrections to the amplitude of a reaction

are known to factorize in impact parameter representation.
Therefore, we Fourier transform Eq. (12) to impact param-
eter space, introduce absorptive factors, and transform the
amplitude back to the momentum representation [17,22].

A. The amplitude in impact parameters

In the rest frame of one of the colliding protons (p2) the
reaction Eq. (1) can be seen as the interaction of the pion
flux in the proton p1 (the upper pion in Fig. 1), i.e.
π þ p2 → X þ n2. The spin structure of this amplitude is
given by the second factor in curly brackets in Eq. (12) and
all the factors having subscript 2 in (9). A Fourier transform

of this part of the amplitude,
R
d2q2 expði~q2 · ~b2Þ, results in

an amplitude which depends on the relative impact param-
eter b2 between the colliding pion and p2. Symmetrically,
in the rest frame of the proton p1, we obtain an amplitude

dependent on the impact parameter ~b1 between p1 and the
bottom pion in Fig. 1. Thus, making a double Fourier
transformation we arrive at

AB
pp→nXnð~b1; z1; ~b2; z2Þ

¼
Z

d2q2ei~q2·
~b2

Z
d2q1ei~q1·

~b1AB
pp→nXnð~q1; z1; ~q2; z2Þ

¼ Aπþπþ→XðτsÞ

×

�
χ̄n2

�
σ3qL2θ

ð0Þ
B ðb2; z2Þ− i

~σ · ~b2ffiffiffiffiffi
z2

p
b2

θðsÞB ðb2; z2Þ
�
χp2

�

×

�
χ̄n1

�
σ3qL1θ

ð0Þ
B ðb1; z1Þ− i

~σ · ~b1ffiffiffiffiffi
z1

p
b1

θðsÞB ðb1; z1Þ
�
χp1

�
;

ð18Þ

where the partial amplitudes, spin nonflip and spin-flip,
have similar structures [17,22,33], but depend on either
b1; z1 or on b2; z2,

θð0ÞB ðb; zÞ ¼
Z

d2qei~b ~qψB
π ðq; zÞ

¼ ΩπðzÞ
1 − β2πϵ

2
π
½K0ðϵπbÞ − K0ðb=βπÞ�; ð19Þ

θðsÞB ðb; zÞ ¼ 1

b

Z
d2qei~b ~qð~b · ~qÞψB

π ðq; zÞ

¼ ΩπðzÞ
1 − β2πϵ

2
π

�
ϵπK1ðϵπbÞ −

1

βπ
K1ðb=βπÞ

�
: ð20Þ

10-3 10-2 10-1

τ

10-4

10-2

1

Φ
 (

τ)

zmin=0.5

0.60.70.80.9

FIG. 4 (color online). The integrated flux of two pions at
zmin ¼ 0.5 calculated in the Born approximation, Eq. (8), and
with absorption corrections, Eq. (52), depicted by dotted and
dashed curves respectively. The solid curves, including also the
feed-down corrections, are calculated with zmin ¼ 0.5–0.9 (from
right to left) as is marked on the plot.
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Here

ΩπðzÞ ¼
1

2
gπþpnzð1 − zÞα0πðm2

πþq2LÞe−R2
πq2L ð21Þ

contains the q-independent part of the flux Eq. (5):

ϵ2π ¼ zðq2L þm2
πÞ;

β2π ¼
1

z
½R2

π − α0π lnð1 − zÞ�: ð22Þ

IV. RAPIDITY GAP SURVIVAL AMPLITUDES

The process (1) results in the production of three
colorless objects, n1, n2 and X. Correspondingly, the
overall survival amplitude contains three absorptive
suppression factors,

Spp→nXnð~b1; z1; ~b2; z2Þ ¼ SπNabs

�
b1; z1;

s0
1 − z1

	

× SπNabs

�
b2; z2;

s0
1 − z2

	
SNN
absðbNN; sÞ: ð23Þ

Here SπNabs are the survival amplitudes for the rapidity gaps
between the produced system X and neutrons n1 and n2
respectively. The invariant mass squared of the on-mass-
shell fluctuations p → nπþ is sπN ¼ s0=ð1 − zÞ, where
s0 ∼ 1=R2

π is the mean value of q2. In the survival
amplitudes S only possible inelastic interactions of the
system X with one of the two nucleons are included. The
inelastic interaction between the spectator nucleons is
excluded from S in order to avoid a double counting,
and is presented in Eq. (23) by a separate factor SNN

abs, which
depends on the impact parameter bNN of the pp collision.

A. Final state interactions of the system X

The inelastic π þ π → X collision occurs at very high
energy τs, and is a result of color gluonic exchange, leading
to production of two color octet q̄q pairs, which are the
debris of the colliding pions, as is illustrated in Fig. 5
(compare with Fig. 5 in [22]). Here we deal with absorptive
corrections for leading neutron production in reaction

πp → Xn, which is natural to compare with the reaction
pp → Xn studied in [22]. Correspondingly, the absorption
suppression factor S4qðbÞ, caused by possible inelastic
interactions of the fq̄qg8-fq̄qg8 color octet-octet dipole
with the nucleon, can be evaluated in close analogy
with S5qðbÞ, calculated in [22]. One should only replace
Bπp
el ⇒ Bππ

el in the dipole size distribution, given by
Eq. (27) in [22], and in the gap survival amplitude (28).
We estimated Bππ

el ðτsÞ relying on the known slope Bpp
el ðsÞ

[13] and assuming that Bpp
el − Bππ

el ≈ 4 GeV−2. Notice that
the dipole-nucleon amplitude depends on impact parameter
b, which is the transverse distance between the center of
gravity of the dipole and the nucleon.
Further details of the calculations can be found in

[17,22]. The result for the absorptive correction factor
S4qðbÞ, calculated at

ffiffiffi
s

p ¼ 7 TeV and z1 ¼ z2 ¼ 0.7, is
shown in Fig. 6 by the dashed curve.
Apparently, the radiated gluons, depicted in Fig. 5, also

can interact and enhance the absorption corrections. The
corresponding modification of the suppression factor
S4q ⇒ ~S4q was evaluated in [17],

~S4qðbÞ ¼ S4qðbÞe−hngihfq̄qðbÞi: ð24Þ

Here the set of radiated gluons was replaced by q̄q dipoles,
with a size corresponding to the transverse glue-glue
separation rgg. The mean value of the elastic partial
amplitude of a q̄q dipole colliding with a proton at impact

parameter ~b, hfq̄qð~b; ~rgg; sgpÞi, was calculated in [17].
Here we evaluate it at the mean gluon-proton energy,
hsgpi ¼ ð1 − zÞs= lnðτs=s0Þ.
The important parameter, controlling the dipole size

distribution, is the mean glue-glue separation, r0 ¼ 0.3 fm,

FIG. 5 (color online). Production of a color octet-octet dipole in
π-π color-exchange collision in reaction πþ þ p → X þ n.
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FIG. 6 (color online). Partial survival amplitudes including
( ~S4q) and excluding (S4q) interactions with the radiated
gluons, as function of b, at collision energy

ffiffiffi
s

p ¼ 7 TeV
and z1 ¼ z2 ¼ 0.7.
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which was adjusted in [34] to reproduce the small triple-
Pomeron coupling.
The mean number of radiated gluons hngi in Eq. (24) was

evaluated for a soft Pomeron in [12] at

hngi ¼
4αs
3π

ln

�
τs
~s0

	
ð25Þ

where ~s0 ¼ 30 GeV2. The QCD coupling at the semihard
scale Q2 ∼ 1=r20 was estimated in [12] within different
models, which arrive at a similar value of αs ≈ 0.4. Notice
that with this set of parameters the total and elastic pp cross
sections at LHC [1] were predicted in [12] with amazing
accuracy [13].
The gluon absorption effect can be seen from compari-

son of ~S4q with S4q presented in Fig. 6. Although the
density of radiated gluons Eq. (25) for a soft Pomeron is
smaller than in deeply-inelastic scattering (DIS) [13], the
dipole amplitude in (24) steeply rises with energy, and
overcompensates for the smallness of hngi at the high
energy of LHC. Nevertheless, the effect of gluon absorption
is significant only at small b. Notice that the z and s
dependences of ~S4qðbÞ are rather weak within the energy
range of the LHC.
As far as the absorption suppression factor,

SπNabsðbÞ ¼ ~S4qðbÞ, is known, we are in a position to
calculate the amplitude of the process, corrected for
absorption. Let us forget for a moment the third factor
SNN
absðbNNÞ in Eq. (23). Then, introducing the absorption

factors into the partial amplitudes (19) and (20) and Fourier
transforming them back to momentum representation, we
arrive at the amplitude in the same form as it was in Born
approximation, Eq. (12), but with the new functions
ψπðz; qÞ. Their dependence on z and ~q, which are either
z1; ~q1 or z2; ~q2, has the form,

ψ ð0Þ
π ðz; qÞ ¼ ΩπðzÞ

2πð1 − β2πϵ
2
πÞ
Z

∞

0

db b J0ðbqÞ

×

�
K0ðϵπbÞ − K0

�
b
βπ

	�
SπNabsðb; zÞ; ð26Þ

qψ ðsÞ
π ðz; qÞ ¼ ΩπðzÞ

2πð1 − β2πϵ
2
πÞ
Z

∞

0

db b J1ðbqÞ

×

�
ϵπK1ðϵπbÞ −

1

βπ
K1

�
b
βπ

	�
SπNabsðb; zÞ:

ð27Þ

Thus, without the factor SNN
absðbNNÞ in Eq. (23), including

only the absorption corrections SπNabsðb1;2Þ, we recover the
factorized form of the cross section, Eq. (4), although with
pion fluxes considerably modified by absorption. Such a
flux, fπþ=p, contains two terms corresponding to pion
emission by the proton, p → nπ, either preserving or
flipping its helicity,

fπþ=pðz; qÞ ¼ fð0Þπþ=pðz; qÞ þ fðsÞπþ=pðz; qÞ; ð28Þ

where

fð0Þπþ=pðz; qÞ ¼
ð1 − zÞ

z
q2Ljψ ð0Þ

π ðq; zÞj2 ð29Þ

fðsÞπþ=pðz; qÞ ¼
ð1 − zÞ
z2

q2jψ ðsÞ
π ðq; zÞj2: ð30Þ

We show the effect of absorption for fð0Þπþ=pðz; qÞ at q ¼ 0 in
Fig. 2. The absorption corrected flux (solid curve) turns out
to be quite suppressed compared with the Born approxi-
mation (dashed curve).
The absorption corrected and q-integrated flux consists

of spin nonflip and flip terms,

Fπþ=pðz1;2Þ ¼ Fð0Þ
πþ=pðz1;2Þ þ FðsÞ

πþ=pðz1;2Þ; ð31Þ

which have the form,

Fð0Þ
πþ=pðzÞ ¼

ð1 − zÞ3m2
NΩ2

πðzÞ
4π3z2ð1 − β2πϵ

2
πÞ2

Z
d2b½SπNabsðb; zÞ�2

×
�
K0ðϵπbÞ − K0

�
b
βπ

	�
2

; ð32Þ

and

FðsÞ
πþ=pðzÞ ¼

ð1 − zÞΩ2
πðzÞ

4π3z2ð1 − β2πϵ
2
πÞ2

Z
d2b½SπNabsðb; zÞ�2

×
�
ϵπK1ðϵπbÞ −

1

βπ
K1

�
b
βπ

	�
2

: ð33Þ

In Fig. 7 we present the full effective flux of pions,
corrected for the absorption factor SπNabsðbÞ and integrated
over q, as well as its spin-flip and nonflip components.
Notice that the q-integrated pion flux Fπþ=pðzÞ includes

the contribution of large q, which is the kinematic region
rather far from the pion pole. So, the correctness of
extrapolation, the pion-nucleon form factor, and the pion
dominance become questionable. Therefore one should try
to restrict the range of integration, q < qmax, to exclude
large q. As usual, this is subject to a compromise between
the desirable smallness of qmax and statistics. Besides, the
available zero-degree calorimeters (ZDCs) have a limited
range of q anyway. To demonstrate the variation of
Fπþ=pðzÞ as function of qmax we performed calculations
with different qmax ¼ 0.1–0.4 GeV as is marked in Fig. 8.

B. Feed-down corrections

The absorption suppression factors reject any possibility
of inelastic interactions between the participating partons,
assuming that it would lead to multiparticle production and
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termination of the rapidity gap, related to the pion
exchange. This is why this suppression is also called
gap survival probability. However, a part of the inelastic
cross section is related to other rapidity-gap processes, e.g.
diffraction. A nucleon experiencing such an interaction re-
appears with a reduced fractional momentum z0 < 1 and
still can contribute to the process under consideration. This
effect, named “migration” in [20], was found to produce a
sizable excess of neutrons at medium-large values of z. We,
however, calculate these corrections differently and arrive
at a smaller effect. First of all, the momentum distribution
of the produced nucleons was calculated in [20] according
to the Kancheli-Mueller graph, which is reasonable only at
small z0 ≪ 1, while we are interested in z > 0.5, i.e.
z0 ≳ 0.7, because according to Fig. 3 the p → n transition
peaks at z ≈ 0.7–0.8. At large z0 the triple-Regge descrip-
tion is more appropriate, and the diffractive term, which

steeply rises at z0 → 1, essentially reduces energy loss, i.e.
the shift in z (migration).
Another drawback of the calculations performed in [20]

was the probabilistic treatment of multiple interactions. The
energy loss was calculated in the Bethe-Heitler regime, i.e.
assuming that the full spectrum of particles is produced in
each rescattering. However, coherence, or the Landau-
Pomeranchik effect, is known to reduce significantly the
rate of energy loss [35]. In what follows we rely on a fit to
the rapidity-gap cross sections, so multiple interactions are
included by default.
Treating energy loss in terms of the Fock state decom-

position, one can say that the higher components of the
proton contain besides the pion also a flux of Reggeons, R
(f;ω), or Pomeron, P, etc. In those fluctuations, which are
released to mass shell by the interaction, energy sharing
leads to a reduction of the neutron momentum, i.e. to a
feed-down of the smaller z-regions (migration).
Keeping the feed-down corrections in the lowest order,

the pion flux can be modified as

fπ=pðz; qÞ ⇒ fπ=pðz; qÞ þ Δfπ=pðz; qÞ; ð34Þ

Fπ=pðzÞ ⇒ Fπ=pðzÞ þ ΔFπ=pðzÞ: ð35Þ

Let us start with the Pomeron contribution to Δfπ=p.
While the uncorrected pion flux is related to the collision,
ππ → X with M2

X ¼ τs, the correction includes a double
collision: (i) PðRÞπ → X0 with M2

X0 ≡ s0; and (ii) ππ → X00

with M2
X00 ≡ s00, as is illustrated in Fig. 9. We treat the

interaction of the pair flux, fPþ πg, from one of the
colliding protons, with the pion flux originated from
another proton, in a Glauber-like way. The amplitude is
a sum of two terms, the ππ one, corresponding to (28); and
the double-scattering term, which has positive sign, differ-
ently from the shadowing term in the Glauber formula, in
accordance with the Abramovsky-Gribov-Kancheli (AGK)
cutting rules. Interaction with only the Pomeron flux does
not lead to neutron production, so is excluded.
Since we employ the phenomenological cross section for

the Pomeron exchange in Fig. fig:feeddown, it includes
all possible rescattering corrections. What is missing,
however, is a possibility of nucleon excitation in the
intermediate state between the pion and multi-Pomeron
exchanges, as is illustrated in Fig. 10. This correction has
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FIG. 8 (color online). The same as in Fig. 7, but integrated over
q up to qmax ¼ 0.1–0.4 GeV, as is marked on the plot. The effects
of absorption and the feed-down corrections are included.
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FIG. 9. Graphical illustration for the double-step correction to
neutron production.
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FIG. 7 (color online). The q-integrated pion flux Fπþ=pðzÞ
calculated with Eqs. (31)–(33), which include absorption. The
dotted and dashed curves show the spin parts and the full flux
respectively. The full flux enhanced by the feed-down corrections
is depicted by solid curve.
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not been discussed so far in previous calculations of
absorptive corrections. It includes a nontrivial overlap of
the final state in proton excitation, either diffractive, or via
pion exchange. Apparently, many states are excluded (large
mass diffraction, Δ excitations, etc.); moreover, we found
this correction zero, or at least much suppressed. Indeed,
relying of the concept of duality, the sum of different
s-channel excitations can be replaced by t-channel
Reggeons, as is shown in the middle diagram of Fig. 10.
The Reggeon, which undergoes the unitarity cut, must be
isovector with negative G-parity. The pion and its daughter
Reggeons are real at t ¼ 0 and give no contribution. The
axial-vector a1 is an extremely weak singularity, whose
couplings in pp collisions are suppressed by more than an
order of magnitude compared with vector mesons [36].

Thus, we can safely neglect this kind of intermediate
excitation.
As long as the corrections depicted in Fig. 10 can be

neglected, the amplitudes of the double-step process
depicted in Fig. 9 factorize in impact parameters; corre-
spondingly in momentum representation the correction
term in (34) reads

Δfπ=pðz; qÞ

¼ 1

σππðτsÞ
Z

z0max

z

dz0

z0

×

����
Z

d2q0

ð2πÞ2 Apπ→pX0 ðz0; ~q0ÞApπ→nX00 ðz=z0; ~q − ~q0Þ
����2;
ð36Þ

where z0max ¼ minfz0=zmax; 1g.
To make use of the triple-Regge phenomenology, we

need to switch from convolution of amplitudes to cross
sections. This is easy if we assume that the q-dependence of
the amplitudes has a Gaussian form, as is confirmed with a
good accuracy by direct calculation of the q dependence in
[17] and by data [15,16]. Then the amplitude convolution,
Eq. (36), can be replaced by

Δfπ=pðz; ~qÞ ¼
X

i;j;k¼P;R

Z
z0max

z

dz0

ðz0Þ2 ð1 − z0Þαkð0Þ−αiðt0minÞ−αjðt0minÞ
�
~s
s0

	
αkð0Þ−1 Gπp

ijkðt0minÞ
ðBijk þ BπÞ2

× exp

�
−q2

BijkBπ

Bijk þ Bπ

�
fπ=pðz=z0; q ¼ 0Þ σππðs

00Þ
σππðτsÞ

: ð37Þ

Here s0 ¼ ð1 − z0Þð1 − z2Þs; s00 ¼ ð1 − z=z0Þð1 − z2Þs;
~s ¼ ð1 − z2Þs; t0 is given by (3) replacing z ⇒ z0;
and t0min ¼ t0ðq ¼ 0Þ.
The ratio of ππ cross sections in Eq. (37) can be

estimated assuming a power dependence sϵ with ϵ ≈ 0.1,

σππðs00Þ
σππðτsÞ

¼
�
1 − z=z0

1 − z

	
ϵ

: ð38Þ

The effective triple-Regge vertices GijkðtÞ were fitted in
[37] to data for the rapidity-gap process pp → pX, and the
results are presented in Table I of Appendix A. This
40-year-old fit predicts the recent data for diffractive
inclusive production at the LHC amazingly well, as is
demonstrated in Appendix A.
Assuming approximate Regge factorization (certainly

broken by absorption), the effective triple-Regge coupling
Gπp

ijPðtÞ in the process pπ → pX0 can be related to Gpp
ijPðtÞ,

known from data on pp → pX, Gπp
ijPðtÞ ¼ ðσπptot=σpptot ÞGpp

ijP.
The πp total cross section at high energies is not known,
but for our estimate it can be approximated by

σπptot=σ
pp
tot ≈ 2=3. The same relation is natural to assume

for the ijR vertex, because it is dominated by the
f-Reggeon exchange (R ≈ f), while ω exchange is
suppressed [37].
The triple-Regge q2-slopes Bijk in (37) according to

Eq. (A1) are given by

Bijk ¼
1

z0
½R2

ijk − ðα0i þ α0jÞ lnð1 − z0Þ�; ð39Þ

where α0i is the slope of the corresponding Regge
trajectory, and the slope parameters R2

ijk fitted to
pp → pX data are also presented in Table I in
Appendix A. The slope parameter Bπ describes the q
dependence of the pion flux fπ=pðz1; qÞ, which we assumed
above to have the Gaussian form. It can be estimated
as Bπ ¼ fπ=pðz1=z0; q ¼ 0Þ=Fπ=pðz1=z0Þ.
Now we are in a position to perform numerical calcu-

lations for the feed-downcorrections. The corrected pion flux
Eq. (34) at q ¼ 0 is depicted by the solid curve in Fig. 2. The
difference between the dashed and solid curves is hardly
visible, so the feed-down correction is very small. On the

FIG. 10. Correction to the eikonal approximation due to
nucleon excitations in the intermediate state between the pion-
exchange and absorption amplitudes.
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other hand, the q-slope of the double-step process is
significantly smaller compared with π , as one can see from
Eq. (37). Therefore, the feed-down correction to the
q2-integrated flux, Eq. (35), is much bigger, as one can
see in Fig. 7. The fluxesFπ=pðzÞ including and excluding the
feed-down corrections are plotted in Fig. 7 by solid and
dashed curves respectively. The correspondingly corrected
combined fluxof twopions,ΦðτÞ, is shownby the solid curve
in Fig. 4.

C. Absorption caused by the spectator nucleons

Although the factorized form of the cross section,
Eq. (4), still holds for the fluxes suppressed by the
absorption damping factors SπNabsðbÞ, the introduction of
the third factor SNN

absðbNNÞ in Eq. (23) leads to a breakdown
of such a factorized relation.
The absorption factor SNN

absðbNNÞ presented by the grey
strips in Fig. 11 has the form [22],

SNN
absðbNN; sÞÞ ¼ 1 − ImfNN

el ðbNN; sÞ; ð40Þ

where fNN
el ðbNN; sÞ is the partial elastic amplitude of pp

scattering. If the amplitude is taken directly from data (see
below), it includes all effects of unitarization, so can be used
as is.What is missed, however, is the possibility of excitation
of the nucleon between the multi-Pomeron and pion
exchanges (see Fig. 11). This correctionwas discussed above
in Sec. IV B and found to be vanishingly small (see Fig. 10).

The impact parameter bNN is related to b1 and b2, which
control the absorptive factors SπNabsðb1;2Þ in Eq. (23), as
~bNN ¼ ~b1 þ ~b2. Indeed, b1 is the impact parameter
between the center of gravity of the color octet-octet
dipole, which is treated as a Fock component of the
incoming pion π1 (see Fig. 1), relative to the proton target.
And vice versa, b2 is the transverse distance between the
same center of the dipole and another colliding proton.
For further calculations it is convenient to switch to

momentum representation,

SNN
absð~b1 þ ~b2Þ ¼

Z
d2bNNSNN

absð~bNNÞδð~bNN − ~b1 − ~b2Þ

¼ 1

ð2πÞ2
Z

d2kd2bNNSNN
absð~bNNÞ exp ½i~kð~bNN − ~b1 − ~b2Þ�

¼
Z

d2kSNN
absð~kÞ exp ½−i~kð~b1 þ ~b2Þ�: ð41Þ

The two new factors from Eq. (41), e−i~k~b1 and e−i~k~b2 , should be included into Eqs. (26) and (27) in the integration over b1
and b2 respectively. The final expression for the absorption corrected cross section reads

dσBðpp → nXnÞ
dz1dz2dq21dq

2
2

¼ 2

Z
d2kd2k0Imfππel ð~kþ ~k0; τsÞSNN

absð~kÞSNN
absð~k0Þ

×
1 − z1
z21

½z1q2L1ψ0ðz1; ~q1 þ ~kÞψ�
0ðz1; ~q1 þ ~k0Þ þ q21ψ sðz1; ~q1 þ ~kÞψ�

sðz1; ~q1 þ ~k0Þ�

×
1 − z2
z22

½z2q2L2ψ0ðz2; ~q2 þ ~kÞψ�
0ðz2; ~q2 þ ~k0Þ þ q22ψ sðz2; ~q2 þ ~kÞψ�

sðz2; ~q2 þ ~k0Þ�: ð42Þ

This integral is presented graphically in Fig. 11.
According to Eqs. (40) and (41), in momentum representation

SNN
absðk; sÞÞ ¼ δðkÞ − ImfNN

el ðk; sÞ: ð43Þ

Here and in what follows we do not discriminate between pp, nn and pn cross sections at the LHC energies, so label them
as NN. The elastic amplitude is related to the differential NN cross section as

FIG. 11 (color online). Graphical representation for the
absorption corrected cross section of reaction pp → nXn.
Dashed lines show the pions; the double line shows the Pomeron

exchange. The flows of transverse momenta, ~k, ~k0, ~q1 and ~q2, are
depicted by red lines.
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dσNN
el

dk2
¼ 1þ ρ2ðkÞ

4π
jImfNN

el ðk; sÞj2; ð44Þ

where ρðkÞ ¼ RefelðkÞ=ImfelðkÞ gives in (44) a small
correction of about 2% (at small k), so can be neglected.
The differential elastic cross section is known directly from
data, and it includes by default all the effects of unitariza-
tion. These effects lead to a small deviation from the
Gaussian k dependence, i.e. a k dependence of the slope
BðkÞ, as is demonstrated in [13]. Nevertheless the available
rather precise data from the TOTEM experiment [1] agree
also with a constant B. So for the sake of simplicity we
adopt the Gaussian parametrization from [1,2] for the
elastic amplitude in (44),

ImfNN
el ðk; sÞ ¼ 1

2
σNN
tot ðsÞe−k2BNN

el ðsÞ=2; ð45Þ

where the slope measured at
ffiffiffi
s

p ¼ 7 TeV is quite large,
BNN
el ¼ 20 GeV−2. Therefore the k dependence of SNN

absðkÞ
is much steeper compared with the other terms in the square
brackets under the integral in (42), which comes mainly
from the amplitude of elastic π − π scattering,

Imfππel ð~kþ ~k0; τsÞ ¼ 1

2
σππtotðτsÞe−ð~kþ~k0Þ2Bππ

el ðτsÞ=2: ð46Þ

The k dependence of the πþpn vertices is weak, and the
slope used in our calculations R2

π ¼ 0.3 GeV−2 is negli-
gibly small compared to the elastic slopes of NN and ππ
amplitudes. Therefore, we can safely neglect it and fix
k ¼ k0 ¼ 0 in all four πþpn vertices shown in Fig. 11, i.e.
in all expressions in square brackets in (42). Then we arrive
at the final form of the cross section,

dσðpp → nXnÞ
dz1dz2dq21dq

2
2

¼ fπþ=pðz1; q1Þσπþπþtot ðτsÞ

× fπþ=pðz2; q2ÞDNN
absðs; z1; z2Þ: ð47Þ

The absorption corrected effective pion fluxes,
fπþ=pðz1;2; q1;2Þ are given by Eqs. (28)–(30). The effect
of interaction of the spectator nucleons is given by the last
damping factor,

DNN
absðs; z1; z2Þ ¼ 1 − 2I1 þ I2; ð48Þ

where

I1 ¼
2

ð2πÞ2σππtotðτsÞ
Z

d2kImfππel ðk; τsÞImfNN
el ðk; sÞ

¼ σNN
tot ðsÞ=4π

BNN
el ðsÞ þ Bππ

el ðτsÞ
; ð49Þ

I2 ¼
2

ð2πÞ4σππtotðτsÞ
Z

d2kd2k0Imfππel ð~kþ ~k0; τsÞ

× ImfNN
el ðk; sÞImfNN

el ðk0; sÞ

¼ ðσNN
tot =4πÞ2

ðBNN
el ðsÞÞ2 þ 2BNN

el ðsÞBππ
el ðτsÞ

: ð50Þ

As an example, we can estimate the damping factor DNN
abs atffiffiffi

s
p ¼ 7 TeV and the mean value of τ ¼ 0.5. According to
[1,2] σNN

tot ¼ 98 mb and BNN
el ¼ 20 GeV−2. Relying on

Regge factorization, we expect an energy independent
difference Δ ¼ BNN

el − BπN
el ≈ 3 GeV−2. Correspondingly,

the difference with the ππ slope is twice as big,
Bππ
el ¼ BNN

el − 2Δ ¼ 14 GeV−2. With the standard energy
dependence of elastic slopes, given by the term
2α0IP lnðs=s0Þ, with α0IP ¼ 0.25 GeV−2 and s0 ¼ 1 GeV2,
the energy shift s ⇒ τs results in a quite small decrease
of the slope, by only 0.35 GeV−2, which we can neglect.
Then the damping factor turns out to be DNN

abs ¼ 0.25.
After integration of the pion fluxes over q1.2, the relation

(47) between the pp and ππ cross sections simplifies as

dσðpp → nXnÞ
dz1dz2

¼ Fπþ=pðz1Þσπþπþtot ðτsÞFπþ=pðz2ÞDNN
absðs; z1; z2Þ; ð51Þ

where the absorption corrected and q-integrated effective
fluxes of pions are presented in Eqs. (31)–(33).
To maximize the statistics one can include all registered

pairs of neutrons in the analysis, as was done within the
Born approximation in Eq. (11),

dσðpp → nXnÞz>zmin

σπ
þπþ

tot ðτsÞ ≡ ΦðτÞ

¼
Z

zmax

zmin

dz1
1 − z1

Fπþ=pðz1ÞFπþ=pðz2ÞDNN
absðs; z1; z2Þ:

ð52Þ

The results of the integration,ΦðτÞ, are plotted in Fig. 4 vs τ
by the upper solid curve and the dashed curve next to it,
which include and exclude the feed-down corrections
respectively.
The calculations have been done so far with the bottom

integration limit in (52) zmin ¼ 0.5. The corresponding
longitudinal momentum transfer is rather large, creating
problems with extrapolation far away from the pion pole, as
we already mentioned above. Therefore if experimental
statistics allows, one should try to do measurements with
possibly larger zmin. The corresponding total integrated
fluxes ΦðzÞ calculated with zmin ¼ 0.5–0.9 are depicted vs
τ in Fig. 4 by solid curves.
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V. OTHER ISOVECTOR EXCHANGES

Besides the pion, other isovector Reggeons contribute to
the meson flux in the proton. The natural spin-parity
Reggeons, ρ and a2, have intercepts, αRð0Þ ¼ 1=2, higher
than the pion, so should dominate at sufficiently small 1 − z
[30]. However, they are predominantly spin-flip, so vanish
in the forward direction. The contribution of these
Reggeons to the meson spin-flip flux is evaluated and
compared with the pion term in Appendix B.
The unnatural parity a1 Reggeon does not flip the

nucleon helicity [38]. It has a low intercept, so may be
important only at small z. It was argued in [33] that the a1
pole is rather weak, while the dispersion relation for the
axial current is dominated by the ρ − π cut, which closely
imitates the a1 pole. Such an effective ~a1 pole is discussed
and evaluated in Appendix C.
The contributions of other isovector Reggeons to the

meson flux are found to be relatively small. They should be
either added to the pion contribution before comparing with
data, or vice versa, extracted from data. In any case, this
correction is found to be smaller than the pion contribution.

VI. SUMMARY

Detecting leading neutrons produced in pp collisions,
with the ZDCs installed in the ALICE, ATLAS and CMS
experiments at the LHC, provides a unique opportunity to
study pion collisions at very high energies, due to the
presence of intensive pion fluxes in the colliding protons.
The result, however, is subject to strong absorptive cor-
rections, which is the main objective of the present paper.
Thus, experimental data on double neutron production,
pp → nXn, can be treated as a way to study either the pion-
pion cross section, provided that the absorption effects are
under control, or, vice versa, as a study of the absorptive
effects, making a plausible assumption about the pion cross
section (like was done in [17,22]).
Absorptive corrections emerge due to initial/final state

interactions of the participating nucleons with the produced
hadronic state X (see Fig. 1), as well as among themselves.
Such a classification allows us to avoid double counting.
We describe the interaction of the state X in the dipole
representation, replacing the multihadron state X by a
4-quark color octet-octet dipole, fq̄qg8 − fq̄qg8. If only
such an effect of absorption were presented, the factorized
form, Eq. (4) or (7), would be valid, like in the Born
approximation, but with about twice weaker pion fluxes. In
this situation, one could probably talk about renormalized
fluxes, like was proposed in [39]. However, the interaction
of the nucleons with each other breaks down factorization,
introducing an overall suppression factor Dðs; z1; z2Þ ≈
0.25 in the absorption corrected cross section, Eq. (47)
or (51).
A background to the pion exchange comes from other

isovector Reggeons. The natural parity and exchange

degenerate Reggeons ρ and a2 contribute to the meson
flux, which flips the nucleon helicity, while the unnatural
parity axial-vector a1 and its interference with the pion
exchange are added to the helicity conserving meson flux.
Nevertheless, making the plausible assumption that the
cross sections of interaction of these mesons with pions and
with each other are similar to the pion-pion one, we found
these corrections to be relatively small.
The calculations presented here unavoidably involve

different assumptions and approximations leading to a
theoretical uncertainty of the results. Although the magni-
tude of such an uncertainty is difficult to evaluate (as usual),
based on the previous experience and available data for
neutron production in hadronic collisions and DIS, we
would estimate the accuracy to range within 10%–30%,
depending on kinematics. We expect a better accuracy at
higher z1;2 and smaller q1;2, where one approaches the pion
pole and eliminates the background from other Reggeons.
Notice that the q-dependent cross section can be cur-

rently measured only with the ZDC installed in the ATLAS
experiment, while the CDF and ALICE experiment can
measure only the cross section integrated over a certain
range of q. Our exposed numerical results were calculated
as examples for ad hoc kinematics and experimental
constraints. We can perform calculations for a concrete
experimental setup upon request.
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APPENDIX A: THE STATUS OF THE
TRIPLE-REGGE PHENOMENOLOGY

The triple-Regge fit to data for large rapidity gap process
pp → pX was performed in [37]. The cross section of the
process aþ b → cþ X, pictorially presented in Fig. 12,
was parametrized as

dσðpp → pXÞ
dxdt

¼
X

i;j;k¼P;R

GijkðtÞð1 − xÞαkð0Þ−αiðtÞ−αjðtÞ

×
�
s
s0

	
αkð0Þ−1 þ

�
dσ
dxdt

	
ππP

; ðA1Þ

where diagonal terms have the form,

GiikðtÞ ¼ Giikð0ÞeR2
iikt: ðA2Þ

The off-diagonal R-P terms were written as

GPRkðtÞ þGRPkðtÞ ¼ 2ReGPRkðtÞ

¼ 2
ffiffiffi
2

p
ReGPRkð0ÞeR2

PRkt cos

�
π

2
½αPðtÞ− αRðtÞ�

	
: ðA3Þ
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The last ππP term in (A1) is calculated with the pion flux
Eq. (5), reduced by the isotopic factor 1=2.
The six parameters fitted in [37] to data (first solution)

are listed in Table I. We keep the same values of parameters
of the Regge trajectories, as in [37], and in particular the
Pomeron intercept αPð0Þ ¼ 1. These parameters are effec-
tive ones, because they include the effects of various types
of Regge cuts, in particular absorption corrections, which
steeply increase with energy, significantly compensating
for the rise of the cross section generated by the high
Pomeron intercept. Of course the choice of αPð0Þ ¼ 1 was
made in [37] without a strong justification, simply because
it was the common belief in early days of the Regge theory,
but it reproduces data at LHC quite correctly as is
demonstrated below.
The TOTEM experiment [40] found the cross section

integrated within the interval of invariant masses
3.4 < MX < 1100 GeV, σsd ¼ 3.25� 0.65 mb, which
also agrees with the expected value of σsd ¼ 4.2 mb.
Moreover, the t-slope of the differential single-diffractive
cross section was measured within different mass intervals,
and the results are presented in Table II. The measured

slopes are compared with calculated ones, which are
averaged over the corresponding mass intervals,

hBiMX
¼

R
z2
z1
dzdσsd=dzdtjt¼0R
z2
z1
dzdσsd=dz

; ðA4Þ

where z1;2 correspond to the minimal and maximal values
of the invariant mass, respectively, and z ¼ 1 −M2

X=s. The
measured values and predictions agree well.
The CMS experiment [42] measured the one-side single-

diffraction cross section at
ffiffiffi
s

p ¼ 7 TeV integrated within
10−5.5 < 1 − z < 10−2.5 and found σsd ¼ 2.14� 0.02þ0.33

−0.29 .
This agrees well with σsd ¼ 2.43 mb predicted by Eq. (A1)
with the parameters in Table I.
The ATLAS experiment [43] measured the single-dif-

fractive cross section at
ffiffiffi
s

p ¼ 7 TeV integrated within
10−5.1 < 1 − z < 10−3.8 at σsd ¼ 1.52� 0.12 mb, which is
to be compared with σsd ¼ 1.08 mb obtained with
Eq. (A1).
The ALICE experiment [41] measured the single-

diffraction cross section at MX < 200 GeV and different
energies, as is presented in Table III.
Data for single-diffractive cross section, measured atffiffiffi
s

p ¼ 7 TeV by the CMS, TOTEM and ATLAS

j

k

i

a c c a

b b

FIG. 12. The triple-Regge graph presenting the cross section of
the process aþ b → cþ X. The Reggeons i, j and k can be either
the Pomeron P or the leading Reggeon R. The vertical dashed
line shows the unitarity cut.

TABLE I. The parameters in Eq. (A1) fitted to data on pp →
pX [37].

GPPP GRRP 2ReGPRP GPPR GRRR 2ReGPRR

Gijkð0Þ 3.24 7.2 6.9 3.2 5.19 −9.3
ð mb
GeV2Þ �0.35 �1.9 �1.1 �0.6 �7.8 �2.2

R2
ijk 4.25 −1.2 8.5 1.7 0 0

(GeV−2) �0.24 �0.5 �3.7 �0.4

TABLE II. The slope of the single-diffractive cross section
averaged over three intervals of invariant masses measured atffiffiffi
s

p ¼ 7 TeV in the TOTEM experiment [40] vs that calculated
with Eq. (A1).

MX (GeV) 3.4–8 8–350 350–1100

B (GeV−2) TOTEM 10.1 8.5 6.8
hBiMX

(GeV−2) Eq. (A1) 10.96 9.06 7.25

TABLE III. The single-diffractive cross section measured in
[41] for invariant masses MX < 200 GeV at

ffiffiffi
s

p ¼ 0.9, 2.76 and
7 TeV, in comparison with expectations based on Eq. (A1).ffiffiffi
s

p
(TeV) 0.9 2.76 7

σexpsd ðmbÞMX < 200 GeV 5.6þ0.8
−1.05 6.1þ1.95

−2.65 7.45þ1.7
−2.95

σtheorsd ðmbÞ Eq. (A1) 5.13 4.3 3.86

TABLE IV. The single-diffractive cross section measured atffiffiffi
s

p ¼ 7 TeV in different invariant mass intervals by the CMS
[42], TOTEM [40] and ATLAS [43] experiments. The data are
compared with the results of Eq. (A1).

MX (GeV)
12.5–393.6
(CMS)

3.4–1100
(TOTEM)

9.7–88.1
(ATLAS)

σexpsd (mb) 2.14� 0.02þ0.33
−0.29 3.25� 0.65 1.52� 0.12

σtheorsd ðmbÞ
Eq. (A1)

2.43 4.2 1.08

TABLE V. The single-diffractive cross section measured in the
CDF experiment at the Tevatron [44,45] at

ffiffiffi
s

p ¼ 546 and
1800 GeV for x > 0.95 in comparison with expectations based
on Eq. (A1).ffiffiffi
s

p
(GeV) 546 1800

σexpsd ðmbÞ z > 0.95 4.17� 0.18 4.56� 0.23
σtheorsd ðmbÞ Eq. (A1) 4.6 5.24
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experiments within different mass intervals are compared
with predicted values in Table IV. Also data from the
TEVATRON for single-diffractive cross section at

ffiffiffi
s

p ¼
545 and 1800 GeV and xF > 0.95 are compared with the
predicted values in Table V.
We conclude that the old triple-Regge fit [37] success-

fully predicts the magnitude and q dependence of the single
diffraction cross section measured at LHC, so can be
employed for calculation of the feed-down corrections
presented in Sec. IV B.

APPENDIX B: ρ AND a2 REGGEONS

The isovector ρ and a2 Reggeons are mostly spin-flip
[38,46], so we neglect their small nonflip part in what
follows. These Regeon exchanges can be treated as a spin-
flip meson flux in the proton, in addition to the pion one,
Eq. (30):

fðsÞρþ=pðz; qÞ ¼ fðsÞaþ
2
=pðz; qÞ ¼ q2

1 − z
z2

jψ ðsÞ
ρ ðz; qÞj2: ðB1Þ

We rely here on Regge duality, which leads to the exchange
degeneracy of ρ and a2, i.e. equality of their Regge
trajectories and RNN vertices.
Equation (B1) ψρ

sðq; zÞ, compared with Eq. (30), con-
tains the imaginary part neglected for pions, and several
other modifications [17]:

ψρ
sðz; qÞ ¼ ΩρðzÞ

2πqβ3ρ

Z
∞

0

db b J1ðbqÞK1ðb=βρÞSπNabsðb; zÞ:

ðB2Þ

Here we made a natural assumption that SρN ¼ SπNabs, and

ΩρðzÞ ¼
πα0ρ
4

gρþpnηρð0Þzð1 − zÞ−αρð0Þþα0ρq2Le−R
2
ρq2L ;

β2ρ ¼
1

z
½R2

ρ − α0ρ lnð1 − zÞ�; ðB3Þ

with ηρð0Þ ¼ −i − 1. ΩρðzÞ contains an additional z
dependence, a factor ∼1=

ffiffiffiffiffiffiffiffiffiffi
1 − z

p
, compared to the pion

exchange, Eq. (30), because the ρ intercept is higher.
For the vertex function GρNNðtÞ ¼ gρNN expðR2

ρtÞ
we rely on the phenomenological global Regge analysis
[46] of high-energy hadronic data, which resulted in
gρNN ¼ 0.5gπNN , and R2

ρ ¼ 1 GeV−2.
Notice that the fluxes of pions, ρ and a2, can be added

without interferences, which are suppressed as 1=ðτsÞ
because the quantum numbers of these mesons do not
allow diffractive π → ρ transitions.
Thus, the ρ and a2 can be added to the spin-flip flux of

the pions, Eq. (30), and then the overall absorption factor
SNN
abs should be applied, as described above.

Correspondingly, ρ contributes to the q-integrated spin-
flip meson flux as

FðsÞ
ρþ=pðzÞ ¼

ð1 − zÞΩ2
ρðzÞ

4π3z2β6ρ

Z
d2bK2

1

�
b
βρ

	
½SπNabsðb; zÞ�2;

ðB4Þ

and the same amount comes from a2.
Figure 13 presents the results of calculations for the

q-integrated spin-flip flux, the pion term, in comparison
with the ρ and a2 contributions, and the full flux. The pion
term dominates within the presented interval of z, except at
small and very large z. Notice that these Reggeons are
relatively enhanced at large q because they have much
smaller t-slope than the pion. Besides, they are spin-flip, so
do not contribute at q ¼ 0 and are much suppressed in the
meson flux integrated up to certain values of qmax as was
done above in Sec. IVA.

APPENDIX C: EFFECTIVE ~a1 REGGEON

The unnatural spin-parity a1 exchange is predominantly

spin nonflip [38], contribute to fð0ÞM=p. Moreover, it inter-
feres with the pion flux, because the diffractive cross
section πp → a1p is nearly energy independent.
However, in the dispersion relation for the axial current

the a1 pole is a weak singularity. Differently from the vector
current, dominated by the ρ-pole, an analogous assumption
for the axial current leads to a dramatic contradiction with
data [36,47]. It was proposed in [36,48] to replace the a1
pole by an effective one ~a1, which gets the main contri-
bution from the ρ-π cut, located in the complex Q2 plane
close to the a1 pole, and which can imitate it. Indeed, data
on diffractive production π → ρπ in the 1þS wave show a
strong and narrow peak near the a1 mass [33], formed by

0

0.05

0.1

0.5 0.6 0.7 0.8 0.9 1
z

F
(s

)

M
/p

 (
z)

π

ρ+a2

FIG. 13 (color online). The q-integrated spin-flip meson flux

FðsÞ
M=pðzÞ, including pion (upper dashed) and ρ and a2 mesons

(bottom dashed) contributions. The solid curve shows the
full flux.
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the Deck effect. Inclusion of such an effective Reggeon ~a1,
representing the ρ-π cut, into the calculation of the single-
spin asymmetry of leading neutrons [33], and neutron
production in deep-inelastic scattering [17], led to a good
agreement with data without adjustment of any parameters.
The main features of the effective ~a1 Reggeon are as

follows [33]. The Regge trajectory, corresponding to the
ρ-π cut, is

α ~a1ðtÞ ¼ απρðtÞ ¼ απð0Þ þ αρð0Þ − 1þ α0πα0ρ
α0π þ α0ρ

t; ðC1Þ

so α ~a1ð0Þ¼−0.5 and α0~a1 ¼ 0.45 GeV−2. Correspondingly,
the phase factor reads

η ~a1ðtÞ ¼ −i − tan

�
πα ~a1ðtÞ

2

�
: ðC2Þ

Notice that the Regge trajectory Eq. (C1) crosses α ~a1ðt0Þ ¼
−1 at t ¼ t0 ¼ −1=ð2α0~a1Þ, which is within the kinematic
interval under consideration. At this point the signature
factor Eq. (C2) has a ghost pole, which must be compen-
sated for by a zero in the residue function, in order to
eliminate the wrong signature nonsense pole from the
Regge trajectory [46,49]. So we introduce into the ampli-
tude an additional factor, γðtÞ ¼ 1þ t=t0, which eliminates
the wrong pole and does not much affect the amplitude far
away from it. Expanding the real part in (C2) near the pole
we get

γðtÞη ~a1ðtÞ ≈
2

πα0~a1t0
: ðC3Þ

Here we are focused on the small-z region, where the ~a1
contribution is much enhanced due to its low Regge
intercept. In this region one approaches the ghost pole in
the real part and can neglect the relatively small imaginary
part. This is not an accurate approximation at large z → 1
and small q, where the ~a1 contribution is very small
anyway (see Fig. 14). In this region of z the real part
has no singularity, and the imaginary part might be
essential, like in single-spin asymmetry of neutrons, mea-
sured in [23,24] at z > 0.8. In this case, one should rely on
the phase factor Eq. (C2), as was done in [33], rather than
on the approximation (C3).
The ~a1NN vertex is parametrized as

G ~a1pnðtÞ ¼ g ~a1pn expðR2
~a1
tÞ. We fix the radius at

R2
~a1
¼ R2

ρ ¼ 1 GeV−2, because ρ and a1 are the chiral
partners. The ~a1NN coupling was evaluated in [33] based
on partially conserved axial current (PCAC) and the second
Weinberg sum rule, in which the spectral functions of the
vector and axial currents are represented by the ρ and the
effective ~a1 poles respectively. This allows us to fix the
~a1NN coupling at g ~a1NN=gπNN ≈ 0.5. The ~a1 contributed to
the spin nonflip flux of mesons, in addition to the pion one,
Eq. (29),

fð0Þ~a1=p
ðz; qÞ ¼ ð1 − zÞ

z
q2Ljψ ð0Þ

~a1
ðz; qÞj2: ðC4Þ

In the Born approximation ψ ð0Þ
~a1
ðz; qÞ reads [33]

ψBð0Þ
~a1

ðz; qÞ ¼ 1

8
ξðz; qÞα0~a1ðγη ~a1Þ

×G ~a1pnðtÞð1 − zÞ−α ~a1
ðtÞ; ðC5Þ

while ψ ð0Þ
~a1
, corrected for absorptive factors S ~a1Nðb1;2; z1;2Þ

(assumed to be the same as SπNabs), has the form,

ψ ð0Þ
~a1
ðz; qÞ ¼ ξðz; qÞ zΩ ~a1ðzÞ

2πR2
~a1

Z
∞

0

db b J0ðbqÞ

× K0ð
ffiffiffi
z

p
b=R ~a1ÞSπNabsðb; zÞ: ðC6Þ

The coefficient

ξðz; qÞ ¼ 2mNffiffiffiffiffijtjp ðC7Þ

is related to the spin structure of the axial-vector-nucleon
vertex, eLμ n̄γ5γμp, compared with the pion pseudoscalar
vertex n̄γ5p [17,33], and

Ω ~a1ðzÞ ¼
πα0~a1
4

g ~a1pnðγη ~a1Þe
−R2

~a1
q2Lð1 − zÞ−α ~a1

ð0Þþα0
~a1
q2L :

ðC8Þ

Now we should correct the term fð0Þπþ=pðz; qÞ in the meson
spin nonflip flux in Eq. (47), adding the ~a1 contribution,

0.02

0.04

0.5 0.6 0.7 0.8 0.9 1
z

F
(0

)

M
/p

 (
z) π

a1+Interference

FIG. 14 (color online). The q-integrated spin nonflip meson

flux Fð0Þ
M=pðzÞ, including the pion (upper dashed) and the

combined contribution of ~a1 exchange and its interference with
the pion (bottom dashed). The solid curve shows the full meson
flux conserving helicity.
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fð0ÞM=pðz; qÞ ¼
1 − z
z

q2L½jψ ð0Þ
π ðq; zÞj2 þ jψ ð0Þ

~a1
ðq; zÞj2

þ 2Reψ ð0Þ
π ~a1

ðq; zÞ�: ðC9Þ

As far as both the pion and ~a1 amplitudes are real, the
interference term reads

2Reψ ð0Þ
π ~a1

ðq; zÞ ¼ 2κψ ð0Þ
π ðq; zÞψ ð0Þ

~a1
ðq; zÞ; ðC10Þ

where the factor κ controls the relative magnitude of the
interference term,

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dσðπp → πρpÞ=dp2

T

dσðπp → πpÞ=dp2
T

����
pT¼0

s
¼ 0.29: ðC11Þ

This was evaluated in [33] from data in π-p collisions
at c.m. energy squared 150 GeV2. Although data for
single diffraction at high energies agree with energy
independence, these are absorptive corrections to the
single-diffractive cross section. Since we already cor-
rected for absorption to the contributions of π and ~a1, to
avoid double counting we should employ a net diffraction
π → ~a1, i.e. without absorptive corrections. Then the
diffractive cross section is expected to have the same
energy dependence as elastic, resulting in an energy
independent κ, Eq. (C11).
The contribution to the q-integrated meson flux con-

serving helicity of the effective Regge pole ~a1 and its
interference with the pion exchange are plotted in Fig. 14,
in comparison with the pion exchange.
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