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We present an attempt using the maximum entropy principle to determine valence quark distributions in
the proton at a very low resolution scale Q2

0. The initial three valence quark distributions are obtained with
limited dynamical information from quark model and QCD theory. Valence quark distributions from this
method are compared to the lepton deep inelastic scattering data, and the widely used CT10 and MSTW08
data sets. The obtained valence quark distributions are consistent with experimental observations and
the latest global fits of parton distribution functions. The maximum entropy method is expected to be
particularly useful in cases where relatively little information from QCD theory is given.
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I. INTRODUCTION

Determination of parton distribution functions (PDFs) of
the proton is of high interest in high energy physics [1–5],
as PDFs are an essential tool for standard model phenom-
enology, theoretical prediction study, and some new phys-
ics searches. In perturbative quantum chromodynamics
(QCD) theory, factorization allows for the computation
of the hard partonic scattering processes involving initial
hadrons, which requires the knowledge of the PDFs in the
nucleon. The widely used PDFs are extracted from a global
QCD analysis of experimental data on deep inelastic
scattering (DIS), Drell-Yan, and jet production processes.
The initial parton distributions at low scaleQ2

0 are called the
nonperturbative input. Valence quarks form the main part of
the nonperturbative input, for they carry most of the
momentum of the proton. In the global analysis, the
nonperturbative input is parametrized and evolved to high
Q2 to fit with the experimental measurements.
To date, the nonperturbative input has not been calculated

in theory due to the complexity of nonperturbative QCD.
However, there are many calculations of valence quark
distributions from models, such as the MIT bag model
[6,7] and the Nambu– Jona-Lasinio model [8]. These model-
calculated valence quark distributions in the nucleon are in
agreement with the global analysis. Determination of the
nonperturbative input apart from the global fit procedure is
not only a complement to a current extraction of PDFs, but
also helps us understand the structure and the nature of the
hadrons. In addition, a precise determination of valence
quark distributions is important for the detailed study of sea
quarks in the intermediate x region [9].
In this article, we try to determine the valence quark

distributions of the proton using the maximum entropy
method, based on some already known structural

information and properties of the proton in the naive quark
model and QCD theory. The maximum entropy principle is
a rule for converting certain types of information, called
testable information, to a probability assignment [10–13].
In this analysis, the known properties of the proton are the
testable information, and the valence quark distributions are
the probability density functions that need to be assigned.
The maximum entropy method gives the least biased
estimate possible on the given information. It is widely
used in lattice QCD (LQCD) [14,15], with reliable results
and high efficiency.
The organization of the paper is as follows. A naive

nonperturbative input is introduced in Sec. II. Section III
discusses the standard deviations of parton momentum
distributions, which are related to quark confinement and
the Heisenberg uncertainty principle. In Sec. IV, the
maximum entropy method is demonstrated. Section V
presents comparisons of our results with experimental data
and the global analysis results. Finally, discussions and a
summary are given in Sec. VI.

II. A NAIVE NONPERTURBATIVE INPUT FROM
THE QUARK MODEL

The quark model is very successful in the hadron
spectroscopy study and in describing the reaction dynam-
ics. The quark model is based on some basic symmetries
which uncover some important inner structures of the
hadrons. The proton consists of a complex mixture of
quarks and gluons in hard scattering processes at high Q2.
In view of the quark model, the origin of the PDFs is the
three valence quarks. In the dynamical PDF model, the sea
quarks and gluons are radiatively generated from three
dominated valence quarks and “valencelike" components
which are of small quantities [4,16,17].
The solutions of the QCD evolution equations for parton

distributions at high Q2 depend on the initial parton*rwang@impcas.ac.cn
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distributions at low Q2
0. An ideal assumption is that the

proton consists of only valence quarks at extremely lowQ2
0.

Thus, a naive nonperturbative input of the proton includes
merely three valence quarks [18–21], which is the simplest
initial parton distribution. All sea quarks and gluons at high
Q2 (> Q2

0) are dynamically produced from the QCD
evolution. In fact, there are other types of sea quarks at
the starting scale, such as intrinsic sea [22,23], connected
sea [24–26] and cloud sea [27–29]. Nonetheless, the naive
nonperturbative input is generally a good approximation
because other origins of sea quarks are of small contribu-
tions. The naive nonperturbative input with three valence
quarks is very natural in the quark model.
In our analysis, valence quark distribution functions at

Q2
0 are parametrized to approximate the analytical solution

of nonperturbative QCD. The simplest function form to
approximate valence quark distribution is the time-honored
canonical parametrization fðxÞ ¼ AxBð1 − xÞC [1]. Hence,
the simplest parametrization of the naive nonperturbative
input is written as

uvðx;Q2
0Þ ¼ AuxBuð1 − xÞCu; dvðx;Q2

0Þ ¼ AdxBdð1 − xÞCd:

ð1Þ
The parametrization above has poles at x ¼ 0 and x ¼ 1 to
represent the singularities associated with Regge behavior
at small x and quark counting rules at large x.
In the quark model, the proton has two up valence quarks

and one down valence quark. Therefore, we have the
valence sum rules for the naive nonperturbative inputZ

1

0

uvðx;Q2
0Þdx ¼ 2;

Z
1

0

dvðx;Q2
0Þdx ¼ 1: ð2Þ

Since there are no sea quarks and gluons in the naive
nonperturbative input, valence quarks take the total
momentum of the proton. We have the momentum sum
rule for valence quarks at Q2

0,Z
1

0

x½uvðx;Q2
0Þ þ dvðx;Q2

0Þ�dx ¼ 1: ð3Þ

III. STANDARD DEVIATIONS OF QUARK
DISTRIBUTION FUNCTIONS

The confinement of quarks is a basic feature in non-
Abelian gauge field theory [30]. Phenomenologically,
Cornell potential is successful for describing heavy quar-
konium, which has linear potential at a large distance
[31,32]. The linear potential is also realized in LQCD
[33,34]. In the MIT bag model [35–37], fields are confined
to a finite region of space. Without a doubt, valence quarks
inside a proton are confined in a small space region.
According to the Heisenberg uncertainty principle, the

momenta of quarks in the proton are uncertain, which have
the probability density distributions. The Heisenberg uncer-
tainty principle is

σXσP ≥
ℏ
2
: ð4Þ

To avoid misidentification, the capitalX in the above formula
denotes the ordinary space coordinate, as the lowercase x
already denotes the Bjorken scaling variable. P denotes the
momentum in X direction. σX is the standard deviation of the
spacial position of one parton in the X direction and σP,
accordingly, is the standard deviation of momentum. In
quantum mechanics, the uncertainty relation is σXσP ¼
0.568ℏ for a particle in a one-dimensional box, and σXσP ¼
ℏ=2 for the quantum harmonic oscillator at the ground state.
In order to constrain the standard deviations of quark
momentum distributions, σXσP ¼ ℏ=2 is taken for the three
initial valence quarks in our analysis instead of σXσP ≥ ℏ=2.
σX is related to the radius of the proton. A simple

estimation is to transform the sphere proton into a cylinder
proton, which gives σX ¼ ð2πR3=3Þ=ðπR2Þ ¼ 2R=3, with

R ¼
ffiffiffiffiffiffiffiffiffi
hr2pi

q
being the charge radius of the proton. The

proton charge radius is precisely measured in muonic
hydrogen Lamb shift experiments, which is obtained as
0.841 fm [38,39]. σX of each up valence quark is divided by
21=3, for there are two up valence quarks sharing the same
space region. The confinement space region for the up
valence quark is half of the total confinement space. This is
an assumption we proposed, not the Pauli blocking
principle. The two up valence quarks have positive electric
charges; therefore, it is very hard for them to approach each
other closely. Consequently, we have σXd

¼ 2R=3 and
σXu

¼ 2R=ð3 × 21=3Þ.
The Bjorken variable x is the momentum fraction one

parton takes from the proton momentum in the quark parton
model. Therefore, we define the standard deviation of x at
the extremely low resolution scale Q2

0 as

σx ¼
σP
Mp

: ð5Þ

Mp is the mass of the proton, which is 0.938 GeV [40].
The natural unit is used in all of the calculations of this
work. Finally, constraints for valence quark distributions
from QCD confinement and the Heisenberg uncertainty
principle are expressed as follows:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ui − hxui2

q
¼ σxu ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2di − hxdi2

q
¼ σxd ;

hxui ¼
Z

1

0

x
uvðx;Q2

0Þ
2

dx; hxdi ¼
Z

1

0

xdvðx;Q2
0Þdx;

hx2ui ¼
Z

1

0

x2
uvðx;Q2

0Þ
2

dx; hx2di ¼
Z

1

0

x2dvðx;Q2
0Þdx:

ð6Þ

IV. MAXIMUM ENTROPY METHOD

From the above analysis, we do know a lot of informa-
tion about the valence quark distributions, but we still
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cannot get the exact distributions. By applying the maxi-
mum entropy principle, we can find the most reasonable
valence quark distributions from the testable information,
which are the constraints discussed above. The generalized
information entropy of valence quarks is defined as

S ¼ −
Z

1

0

�
2
uvðx;Q2

0Þ
2

ln

�
uvðx;Q2

0Þ
2

�

þ dvðx;Q2
0Þ lnðdvðx;Q2

0ÞÞ
�
dx: ð7Þ

The best estimated nonperturbative input will have the
largest entropy. Valence quark distributions are assigned by
taking the maximum entropy.
With the constraints given by Eqs. (2), (3), and (6), there

is only one free parameter left for the parametrized naive
nonperturbative input. We take Bd as the only free
parameter. Figure 1 shows the information entropy of
valence quark distributions of the proton at the starting
scale as a function of the parameter Bd. By taking the
maximum of the entropy, Bd is optimized as 0.427. The
corresponding valence quark distributions are

uvðx;Q2
0Þ ¼ 4.589x0.095ð1 − xÞ1.000;

dvðx;Q2
0Þ ¼ 7.180x0.427ð1 − xÞ2.456: ð8Þ

V. RESULTS

By performing Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution [41–43], we can determine
valence quark distributions at high scale with the input
obtained in Eq. (8). There are only three valence quarks in
the proton. Higher twist corrections to the DGLAP equa-
tion for valence evolution are small, for the density of
the valence quark is not big. With the DGLAP equation, the
obtained naive nonperturbative input can be tested with the
experimental measurements at high Q2. In this work, we
use leading order (LO) and next-to-next-to-leading order

(NNLO) evolution. We get the specific starting scale Q2
0 ¼

0.064 GeV2 for the LO evolution (with ΛQCD ¼
0.204 GeV for f ¼ 3 flavors) by using QCD evolution
for the second moments of the valence quark distributions
[44] and the measured moments of the valence quark
distributions at a higher Q2 [4]. This energy scale is very
close to the starting scale for bag model PDFs, which is
0.0676 GeV2 [6]. The running coupling constant αs and the
quark masses are the fundamental parameters of perturba-
tive QCD. The running coupling constant for the LO
evolution we choose is

αsðQ2Þ
4π

¼ 1

β0 lnðQ2=Λ2Þ ; ð9Þ

in which β0 ¼ 11 − 2f=3 and Λ3;4;5;6
LO ¼ 204; 175; 132;

66.5 MeV [4]. For the αs matchings, we take
mc ¼ 1.4 GeV, mb ¼ 4.5 GeV, mt ¼ 175 GeV for the
LO evolution. For the NNLO DGLAP evolution, we use
the modified Mellin transformation method by CANDIA
[45], with αsðM2

zÞ ¼ 0.1155 and mc ¼ 1.43 GeV,
mb ¼ 4.3 GeV, mt ¼ 175 GeV. The starting scale for
the NNLO evolution we choose isQ2

0 ¼ 0.22 GeV2, which
is close to Λ2

f¼3;NNLO ¼ 0.2 GeV2. In the NNLO evolution,
we have αsðQ2

0Þ=ð2πÞ ¼ 0.3.
The isoscalar structure function xF3 from neutrino and

antineutrino scattering data provides valuable information
of valence quark distributions. The connection between
xF3 and the valence quark distributions is given by
xF3ðx;Q2Þ ¼ xuvðx;Q2Þ þ xdvðx;Q2Þ. Our predicted
xF3 as a function of x at high Q2 is shown in Fig. 2,
compared with results from the NuTeV and CCFR experi-
ments. The predicted xF3 is in excellent agreement with the
experimental data in the large x region (x > 0.3). On the
whole, the LO and NNLO results are consistent with

dB
0.2 0.4 0.6 0.8 1

S

-0.76

-0.74

-0.72

-0.7

-0.68

FIG. 1. Information entropy S is plotted as a function of the
parameter Bd.
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FIG. 2 (color online). Comparisons of our predicted structure
function xF3 (solid and dot-dashed lines) with experimental data
from NuTeV (squares) [46] and CCFR (open circles) [47]. Only
statistical errors of the experimental data are plotted. Results of
CT10 (dashed line) [2] and MSTW08(LO) (dotted line) [3] from
a global fit are also shown here.
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the experiments except for a small discrepancy around x ¼
0.1 and around x ¼ 0.2, respectively. CT10 and MSTW08
(LO) data sets of the QCD global analysis are also plotted
in the figure. Our predicted xF3 is close to that of CT10 and
MSTW08(LO).
Structure function F2 plays quite a significant role in

determining PDFs, for it is related to quark distributions
directly. As we know, valence quarks dominate in the large
x region. Therefore, F2 at large x is mainly from con-
tributions of valence quarks. By assuming that there are no
sea quarks at x ≥ 0.4, the calculated F2’s as a function of
Q2 are shown in Fig. 3, compared with the recent results
from HERA [48]. Basically, our predicted F2’s are con-
sistent with the e�p neutral-current DIS data.
Structure function ratio Fn

2=F
p
2 is sensitive to both up and

down quark distributions. In the large x region, it is mainly
related to the up and down valence quark distributions.
Under the assumption of isospin symmetry between the
proton and the neutron, up valence quark distribution in the
proton is identical with down valence quark distribution in
the neutron. Figure 4 shows the predicted structure function
ratios Fn

2=F
p
2 from valence contribution only. Sea quarks

are ignored in the calculation. Experimental results from
NMC [49] and Arrington et al. [50] are also shown in the
figure. Data from Arrington et al. represent a detailed
analysis of previous experimental data within the frame-
work of relativistic quantum mechanics for the deuteron
structure. Our results are in excellent agreement with the
experimental data in the large x region.
Up and down valence quark ratios dv=uv are extracted in

neutrino DIS and charged π semi-inclusive DIS processes.

Our predicted dv=uv ratios are shown in Fig. 5 with
experimental results from CDHS [51], WA21 [52], and
HERMES [53]. Predicted dv=uv ratios at Q2 ¼ 4 GeV2 are
plotted in the figure. dv=uv ratios have weak Q2 depend-
ence. The predicted dv=uv ratios agree well with the
experimental data.
Figure 6 shows the comparisons of our predicted up and

down valence quark momentum distributions, multiplied
by x, at Q2 ¼ 10 GeV2 with the global fits from CT10 [2]
and MSTW08(LO) [3]. In general, our obtained up and
down valence quark momentum distributions are consistent
with the popular parton distribution functions from QCD
global analysis.
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FIG. 3. Solid lines and dot-dashed lines are LO and NNLO
predictions, respectively. The combined HERA data [48] are
shown in circles. Errors shown in the figure are the total
experimental uncertainties. Our predicted F2’s are from valence
contribution only, assuming sea quarks are negligible at large x.
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FIG. 4. The predicted F2 ratios of neutron to proton (solid and
dot-dashed lines) are shown with the experimental data. Our
predicted F2 ratios are calculated without the contributions of sea
quarks. NMC data (open squares) is taken from [49]. Detailed
analysis data (circles) [50] is from Arrington et al. The plotted
errors of experimental data are the total uncertainties.
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FIG. 5. Comparisons of our predicted dv=uv ratios (solid and
dot-dashed lines) with experimental results from CDHS (open
triangle) [51], WA21 (open circle) [52], and HERMES (squares)
[53]. The plotted errors are the total errors. Our predicted ratios
are at Q2 ¼ 4 GeV2. HERMES data is at mean Q2 ¼ 2.4 GeV2.
Q2 of the CDHS data varies from 3.3 to 42.9 GeV2; Q2 of the
WA21 data varies from 3.4 to 36.5 GeV2.
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VI. DISCUSSIONS AND SUMMARY

Valence quark distributions are given using the maxi-
mum entropy method. This is an interesting attempt to
determine the parton distribution functions using a new
method instead of the conventional global fit. The obtained
valence quark distributions are consistent with the exper-
imental observations from the high energy lepton probe and
PDFs from global analysis. The determined valence quark
distributions are reasonable and can be used for making
theoretical predictions. Furthermore, if we make a more
complicated parametrization for the nonperturbative input
and include more constraints, the result possibly gets better.
The Gross– Llewellyn Smith sum rule [54–56] could be the
further constraint which would provide more information
on valence quark distributions at high Q2. The Ellis-Jaffe
sum rule [57,58] could be practically useful to constrain the
polarized PDFs.
Determining valence quark distributions from the maxi-

mum entropy method helps us to understand the primary
aspects of the nucleon structure and to search for more
details of the nucleon. First, our analysis shows that the
origin of PDFs at high Q2 is mainly the three valence
quarks. A simple and naive nonperturbative input is

introduced, and obtained, though it is just an approximation
of the complex proton. Second, the basic features of
valence quark distributions are related to the classic quark
model assumption, the radius of the proton, and the mass of
the proton. Third, the equation of the uncertainty relation
for valence quarks is taken to be the relation for the
quantum harmonic oscillator at the ground state. The
uncertainty of the momentum could be a little larger.
With the uncertainty being 10% larger, the obtained
prediction becomes a little worse compared to the experi-
ments. A more detailed study of the confinement potential
will put on more accurate constraints to the uncertainty
relation. Finally, the time-honored canonical parametriza-
tion scheme for valence quarks is very simple, but
acceptable.
The maximum entropy method is applicable for

obtaining details of interest with the least bias in situations
where detailed information is not given. It is difficult to
calculate the radius and the mass of the proton from
nonperturbative QCD. LQCD has not acquired the detailed
information of nucleon structure so far. However, we do
know the radius and the mass of the proton from mea-
surements in experiments and the confinement of quarks in
QCD theory. With these experimental observations and
some assumptions, the best estimates of valence quark
distributions are obtained from the maximum entropy
method. Because of its simplicity, this method can be
easily applied to other types of PDFs, such as polarized
PDFs, generalized parton distributions, and transverse
momentum dependent PDFs. The maximum entropy
method is particularly useful for digging reasonable results
in situations where relatively little information from QCD
calculations is given.
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