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We present a calculation of Wigner distributions for gluons in a light-front dressed quark model. We
calculate the kinetic and canonical gluon orbital angular momentum and spin-orbit correlation of the gluons
in this model.

DOI: 10.1103/PhysRevD.91.054018 PACS numbers: 12.38.-t, 12.38.Bx, 13.88.+e

I. INTRODUCTION

To have a complete understanding of matter at the
subatomic level, it is important to understand the nucleon
spin structure. This means understanding how the spin (1

2
)

of the nucleon is shared by the quarks and gluons in the
nucleon and what contribution is made by their orbital
angular momentum (OAM). Earlier it was believed that all
nucleon spin is carried by quarks. The EMC experiment
showed that the contribution of quark spin to nucleon spin
is very small. So, an important question is, where does the
missing (remaining) angular momentum come from? As
the nucleon is made up of quarks and gluons, it is natural to
expect that the missing angular momentum comes either
from gluon spin or from quark or gluon OAM. This is
expressed by the spin sum rule [1]:

1

2
¼ 1

2

X
q

Δqþ
X
q

Lq

|fflffl{zfflffl}
quarkOAM

þ ΔGþ Lg|{z}
GluonOAM

:

Here 1
2

P
qΔq and ΔG are the quark and gluon spin angular

momentum, respectively. The above sum rule is called the
canonical spin sum rule. Except for the quark intrinsic part,
the terms depend upon specific gauge choice.
Recently, Chen et al. [2] introduced a gauge-invariant

extension (GIE) which is basically a prescription to find a
manifestly gauge-invariant quantity that coincides with a
gauge-noninvariant quantity in a particular gauge. In this
way, one can extend to any other gauge the validity of a
physical interpretation of the canonical OAM Lq and Lg in
the light-front gauge. There is another decomposition
called the kinetic decomposition of nucleon spin [3],

1

2
¼ Sq þ Lq þ Jg;

where Sq and Lq are quark spin and kinetic orbital angular
momentum, respectively. Jg is the total gluon contribution
to the angular momentum of the nucleon. Later,
Wakamatsu [4] further separated the Jg into a gluon orbital
part (Lg) and an intrinsic part (Sg), using a prescription
similar to [2]. Which of the two definitions of the OAM is

“physical” is a matter of intense debate. According to the
current understanding, the difference between kinetic and
canonical OAM is the choice of the Wilson line in the
definition of the nonlocal quark operator: a staple-type gauge
link gives the canonical OAM, whereas a straight line gauge
link gives the kinetic OAM. An interesting physical inter-
pretation of both types of OAM is given in [5,6].
Recently it has been shown that theWigner distribution can

provide useful information on the spin and angular momen-
tum correlation of quarks and gluons in the nucleon. Wigner
distributions [7] are quasiprobabilistic distributions in which
both position andmomentum space information are encoded.
They are directly related to generalized parton correlation
functions (GPCFs) [8]. GPCFs are fully unintegrated, off-
diagonal, quark-quark correlators and contain the maximum
amount of information about the structure of the nucleon. If
we integrate GPCFs over the light cone energy (k−), we get
generalized transverse momentum-dependent parton distri-
bution functions (GTMDs). These GTMDs are Fourier
transforms of Wigner distributions and vice versa.
In fact, the GTMDs are directly related to generalized

parton distributions (GPDs) [3] and transverse momentum-
dependent parton distribution functions (TMDs) [8], both of
which have been found to give very useful information about
the structure and spin of the nucleon in terms of quarks and
gluons. We can take two-dimensional Fourier transforms of
GPDswith respect to themomentum transfer in the transverse
direction to get impact parameter-dependent parton distribu-
tion functions (IPDPDFs) [9]. These give the correlation in
transverse position and longitudinal momentum for different
quark and target polarizations. On the other hand, TMDs
providemomentumspace information andalso the strength of
spin-orbit and spin-spin correlation. It has been shown that
both of these distributions are linked to GTMDs. So we can
consider theGTMDs or, equivalently,Wigner distributions as
mother distributions.
Wigner distributions, described above, are joint position

and momentum space distributions of quarks and gluons in
the nucleon. Due to the uncertainty principle, they are not
positive definite and do not have probabilistic interpreta-
tions. However, integration of Wigner distributions over
one or more variables relates them to measurable quantities
[10]. Here, model calculations of Wigner functions are
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important as these calculations play a significant role in
revealing what kind of information they can provide about
the correlations of quarks and gluons inside the nucleon.
Also, such calculations are useful for checking various
relations among the GTMDs and the TMDs and GPDs. In
fact, some relations have been found to hold only in a
certain class of models [11]. In this work, we calculate the
Wigner distributions in the light-front Hamiltonian
approach [12]. This approach gives an intuitive picture
of deep inelastic scattering processes, as it is based on field
theory but keeps close contact with parton ideas [13]. Here
the partons, i.e., quarks and gluons, are noncollinear,
massive, and they also interact. The target state is expanded
in Fock space in terms of multiparton light-front wave
functions (LFWFs). The advantage of using light-front
(infinite momentum frame) formalism is that such wave
functions are boost invariant, so one can work with a finite
number of constituents of the nucleon, and this picture is

invariant under Lorentz boost [14]. In order to obtain the
LFWFs of the nucleon, one needs a model light-front
Hamiltonian. However, much useful information can be
obtained if one replaces the bound state by a simple spin-1

2
composite relativistic state like a quark at one loop dressed
with a gluon [15,16]. In our previous work [17], we studied
the Wigner distribution of quarks for a simple relativistic
spin-1

2
composite system, namely, for a quark dressed with a

gluon, using the light-front Hamiltonian perturbation
theory. Here we calculate theWigner distribution for gluons
in the same model. This calculation is useful because in
most commonly studied phenomenological models,
gluonic degrees of freedom are not present [10], and a
study of the gluon spin and OAM is not possible there.

II. WIGNER DISTRIBUTIONS

TheWigner distribution for gluons can be defined as [18]

xWgðx; ~k⊥; ~b⊥Þ ¼
Z

d2 ~Δ⊥
ð2πÞ2 e

−i ~Δ⊥:~b⊥
Z

dz−d2z⊥
2ð2πÞ3pþ eik:z

�
pþ;

~Δ⊥
2

; σ

����ΓijFþi

�
−
z
2

�
Fþj

�
z
2

�����pþ;−
~Δ⊥
2

; σ

�����
zþ¼0

; ð1Þ

where ~Δ⊥ is the transverse momentum transfer from the target state, and ~b⊥ is a two-dimensional vector in impact parameter

space conjugate to ~Δ⊥. We calculate Eq. (1) for Γij ¼ δij and Γij ¼ −iϵij⊥.
We have

Fþi ¼ ∂þAi − ∂iAþ þ gfabcAþAi:

The gauge field can be written as [13], for i ¼ 1; 2,

Ai

�
z
2

�
¼

X
λ

Z
dkþd2k⊥
2kþð2πÞ3 ½ϵ

i
λðkÞaλðkÞe−

i
2
k:z þ ϵ�iλ ðkÞa†λðkÞe

i
2
k:z�:

We choose the light-front gauge, Aþ ¼ 0, and take the gauge link to be unity.
In our previous work [17], we calculated the quark Wigner distributions for a quark state dressed with a gluon. In this

work, we investigate the gluonWigner distribution in the same model using the light-front Hamiltonian perturbation theory.
The state can be expanded in Fock space in terms of multiparton light-front wave functions (LFWFs) as [19]

jpþ; p⊥; σi ¼ ΦσðpÞb†σðpÞj0i þ
X
σ1σ2

Z
½dp1�

Z
½dp2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3pþ

q
δ3ðp − p1 − p2ÞΦσ

σ1σ2ðp;p1; p2Þb†σ1ðp1Þa†σ2ðp2Þj0i; ð2Þ

where ½dp� ¼ dpþd2p⊥ffiffiffiffiffiffiffiffiffiffiffi
16π3pþ

p , and σ1 and σ2 are the helicities of

the quark and gluon, respectively. The LFWFs (ΦσðpÞ and
Φσ

σ1σ2) appearing in Eq. (2) are calculated by solving the
light-front eigenvalue equation in the Hamiltonian ap-
proach. ΦσðpÞ is the single particle (quark) LFWF and
gives the wave function renormalization for the quark,
and Φσ

σ1σ2 is the two-particle (quark-gluon) LFWF.
Φσ

σ1σ2ðp;p1; p2Þ gives the probability amplitude to find a
bare quark having momentum p1 and helicity σ1 and a bare

gluon with momentum p2 and helicity σ2 in the dressed
quark. The two-particle LFWF is related to the boost
invariant LFWF: Ψσ

σ1σ2ðx; q⊥Þ ¼ Φσ
σ1σ2

ffiffiffiffiffiffi
pþp

. Here we have
used the Jacobi momenta ðxi; qi⊥Þ,

pþ
i ¼ xipþ; qi⊥ ¼ ki⊥ þ xip⊥; ð3Þ

so that
P

ixi ¼ 1;
P

iqi⊥ ¼ 0. These two-particle LFWFs
can be calculated perturbatively as [19]:
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Ψσa
σ1σ2ðx; q⊥Þ ¼

1

½m2 − m2þðq⊥Þ2
x − ðq⊥Þ2

1−x �
gffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3
p Taχ†σ1

1ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
	
−2

q⊥
1 − x

−
ðσ⊥:q⊥Þσ⊥

x
þ imσ⊥ð1 − xÞ

x



χσðϵ⊥σ2Þ�: ð4Þ

We use the two-component formalism [20]. χ is the two-component fermion spinor. Ta are the usual color SUð3Þ
matrices, m is the mass of the quark, and ϵ⊥σ2 is the polarization vector of the gluon.
The gluon-gluon correlator in Eq. (1) for a quark state dressed with a gluon can be expressed in terms of the overlap of

two-particle LFWFs. The single particle sector of the Fock space expansion contributes only at x ¼ 1, and we exclude this.
For Γij ¼ δij, we get

Wσσ0
1 ðx; k⊥; b⊥Þ ¼ −

X
σ1;σ2;λ1

Z
d2Δ⊥
2ð2πÞ2 e

−iΔ⊥:b⊥ ½Ψ�σ0
σ1λ1

ðx̂; q̂0⊥ÞΨσ
σ1σ2ðx̂; q̂⊥Þðϵ1σ2ϵ�1λ1 þ ϵ2σ2ϵ

�2
λ1
Þ�; ð5Þ

and for Γij ¼ −iϵij⊥ we get

Wσσ0
2 ðx; k⊥; b⊥Þ ¼ −i

X
σ1;σ2;λ1

Z
d2Δ⊥
2ð2πÞ2 e

−iΔ⊥:b⊥ ½Ψ�σ0
σ1λ1

ðx̂; q̂0⊥ÞΨσ
σ1σ2ðx̂; q̂⊥Þðϵ1σ2ϵ�2λ1 − ϵ2σ2ϵ

�1
λ1
Þ�; ð6Þ

where x̂ ¼ ð1 − xÞ and q̂⊥ ¼ −q⊥. The Jacobi relation
for the transverse momenta in the symmetric frame is given
by q0⊥ ¼ k⊥ − Δ⊥

2
ð1 − xÞ and q⊥ ¼ k⊥ þ Δ⊥

2
ð1 − xÞ. We

represent the gluon Wigner distribution as Wλλ0 , where λ
and λ0 are polarizations of the target state and gluon,
respectively.
We consider only the longitudinally polarized target state

and then we have four gluon Wigner distributions as
follows, in a manner similar to the quark Wigner distribu-
tions [10]: the Wigner distribution of the unpolarized gluon
in the unpolarized target state as

WUU ¼ W↑↑
1 ðx; k⊥; b⊥Þ þW↓↓

1 ðx; k⊥; b⊥Þ; ð7Þ

the Wigner distribution corresponding to the distortion due
to the longitudinal polarization of the target as

WLU ¼ W↑↑
1 ðx; k⊥; b⊥Þ −W↓↓

1 ðx; k⊥; b⊥Þ; ð8Þ

the Wigner distribution corresponding to the distortion due
to the longitudinal polarization of the gluons as

WUL ¼ W↑↑
2 ðx; k⊥; b⊥Þ þW↓↓

2 ðx; k⊥; b⊥Þ; ð9Þ

and the Wigner distribution corresponding to the correla-
tion due to the longitudinal polarization of the target state
and the gluons,

WLL ¼ W↑↑
2 ðx; k⊥; b⊥Þ −W↓↓

2 ðx; k⊥; b⊥Þ: ð10Þ

The final expressions for these four gluon Wigner distri-
butions are given, using the two-particle LFWFs, by

WUUðx; k⊥; b⊥Þ ¼ N
Z

dΔx

Z
dΔy

cosðΔ⊥ · b⊥Þ
Dðq⊥ÞDðq0⊥Þ

	
−4ððq⊥q0⊥Þðx2 − 2xþ 2Þ þm2x4Þ

x3ðx − 1Þ2


; ð11Þ

WLUðx; k⊥; b⊥Þ ¼ N
Z

dΔx

Z
dΔy

sinðΔ⊥ · b⊥Þ
Dðq⊥ÞDðq0⊥Þ

	
4ð2 − xÞðq2q01 − q1q02Þ

x2ðx − 1Þ2


; ð12Þ

WULðx; k⊥; b⊥Þ ¼ N
Z

dΔx

Z
dΔy

sinðΔ⊥ · b⊥Þ
Dðq⊥ÞDðq0⊥Þ

	
4ðx2 − 2xþ 2Þðq2q01 − q1q02Þ

x3ðx − 1Þ2


; ð13Þ

WLLðx; k⊥; b⊥Þ ¼ N
Z

dΔx

Z
dΔy

cosðΔ⊥ · b⊥Þ
Dðq⊥ÞDðq0⊥Þ

	
4ððq⊥q0⊥Þð2 − xÞ þm2x3Þ

x2ðx − 1Þ2


; ð14Þ

where Ax; Ay are x; y components of A⊥ and

Dðk⊥Þ ¼
�
m2 −

m2 þ ðk⊥Þ2
1 − x

−
ðk⊥Þ2
x

�
; N ¼ g2

2ð2πÞ2 :
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III. GLUON GTMDS AND ORBITAL
ANGULAR MOMENTUM

In order to calculate the gluon GTMDs, we use the
parametrization as shown in [21], where the authors have
shown that the correlators like in Eq. (1) can, in general, be
written as

WO
Λ0;Λ ¼

Z
dz−d2z⊥
2ð2πÞ3 ei

xPþ
2
z−−i~k⊥:~z⊥hp0;Λ0∣OðzÞ∣p;Λi

¼ ūðp0;Λ0ÞMOuðp;ΛÞ; ð15Þ

whereOðzÞ stands for the relevant quark or gluon operators
and MO stands for the matrix in Dirac space with O
determined by the corresponding quark or gluon operator.
The amplitude shown in Eq. (15) takes the following
generic structure when the momentum transfer is purely
in the transverse direction:

WΔSz;cP
Λ0;Λ ¼ ūðp0;Λ0ÞMΔSz;cPuðp;ΛÞ

2Pþ ; ð16Þ

where cP is the parity coefficient of the partonic operator
andΔSz is the spin flip number given byΔSz¼ λ0−λþΔLz
such that λðλ0Þ is the initial (final) parton light-front helicity

and ΔLz is the eigenvalue of the operator ΔL̂z ¼ L̂z − L̂0
z.

Also, for twist-two partonic operators, we getΔLz ¼ 0 and,
hence, ΔSz ¼ λ0 − λ.
The gluon operators appearing in Eq. (1) correspond to

the case when ΔSz ¼ 0 and cP ¼ �1 as shown in
Eq. (3.12), Eq. (3.42), and Eq. (3.43) of [21]. So the
relevant parametrization of the gluon GTMDs which
correspond to Γij ¼ δij in Eq. (1) is

M0;þ ¼
�
M
Pþ

�
t−1

	
γþ

�
S0;þt;ia þ γ5

iϵkTΔT
T

M2
S0;þt;ib

�

þ iσjþ
�
kjT
M

P0;þ
t;ia þ

Δj
T

M
P0;þ
t;ib

�

; ð17Þ

where

ϵabT ¼ ϵijT a
ibj;

ϵijT ¼ ϵ−þ12 ¼ þ1.

tþ 1 is defined as the twist of the operator in [21], so for
twist twowe take t ¼ 1. Comparing and solving Eq. (1) and
Eq. (16), we get the following expression for the
gluon GTMDs:

S0;þ1;ia ¼
−2N

Dðq⊥ÞDðq0⊥Þ
	
m2x4 þ k2⊥ðx2 − 2xþ 2Þ

x3ðx − 1Þ2 −
Δ2⊥ðx2 − 2xþ 2Þ

4x3



;

S0;þ1;ib ¼
2N

Dðq⊥ÞDðq0⊥Þ
	
m2ð2 − xÞ
ð1 − xÞx2



;

P0;þ
1;ia ¼

2N
Dðq⊥ÞDðq0⊥Þ

	
m2Δ2⊥

xðk2Δ1 − k1Δ2Þ


;

P0;þ
1;ib ¼

2N
Dðq⊥ÞDðq0⊥Þ

	
−m2ðk⊥:Δ⊥Þ

xðk2Δ1 − k1Δ2Þ


: ð18Þ

The relations of these GTMDs with those in [8] are

S0;þ1;ia ¼ Fg
1;1;

S0;þ1;ib ¼ Fg
1;4;

P0;þ
1;ia ¼ Fg

1;2;

P0;þ
1;ib ¼ −

Fg
1;1

2
þ Fg

1;3: ð19Þ
So for the gluon case we get Fg

1;4 as shown below, and
this relation agrees with that in [22],

Fg
1;4 ¼

N
Dðq⊥ÞDðq0⊥Þ

	
m2ð2 − xÞ
ð1 − xÞx2



: ð20Þ

From this, we can calculate the gluon canonical OAM since
the canonical OAM is related to the GTMD F1;4 as follows,
similar to quarks [10,23,24]:

lgz ¼ −
Z

dxd2k⊥
k2⊥
m2

Fg
1;4: ð21Þ
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This gives

lgz ¼ −N
Z

dxð1 − xÞð2 − xÞ½I1 −m2x2I2�; ð22Þ
where

I1 ¼
Z

d2k⊥
m2x2 þ ðk⊥Þ2

¼ πlog

	
Q2 þm2x2

μ2 þm2x2



;

I2 ¼
Z

d2k⊥
ðm2x2 þ ðk⊥Þ2Þ2

¼ π

ðm2x2Þ :

Here Q and μ are the upper and lower limits of the k⊥
integration, respectively.

For the case when ΔSz ¼ 0 and cP ¼ −1 which corre-
sponds to Γij ¼ −iϵij⊥ in Eq. (1), the relevant gluon para-
metrization is given by [21]

M0;− ¼
�
M
Pþ

�
t−1

	
γþγ5

�
S0;−t;ia þ γ5

iϵkTΔT
T

M2
S0;−t;ib

�

þ iσjþγ5

�
kjT
M

P0;−
t;ia þ

Δj
T

M
P0;−
t;ib

�

: ð23Þ

Again by solving Eq. (23) and Eq. (1), we get the
corresponding GTMDs at twist two:

S0;−1;ia ¼
N

Dðq⊥ÞDðq0⊥Þ
	
4k2⊥ðx − 2Þ
2ðx − 1Þ2x2 þ

Δ2⊥
ðx − 1Þ2x2 −

4m2x2 þ Δ2⊥ðx2 − 4xþ 5Þ
2ðx − 1Þ2x



;

S0;−1;ib ¼
N

Dðq⊥ÞDðq0⊥Þ
	
2ðx2 − 2xþ 2Þm2

x3ð1 − xÞ


;

P0;−
1;ia ¼

N
Dðq⊥ÞDðq0⊥Þ

	
4ðk⊥:Δ⊥Þm2

xðx − 1Þðk2Δ1 − k1Δ2Þ


;

P0;−
1;ib ¼

N
Dðq⊥ÞDðq0⊥Þ

	
4k2⊥m2

xðx − 1Þðk1Δ2 − k2Δ1Þ


: ð24Þ

The relations of these GTMDs with those in [8] can be
written as

S0;−1;ia ¼ 2Gg
1;4;

S0;−1;ib ¼ −Gg
1;1;

P0;−
1;ia ¼

2m2Gg
1;2 − Δ2⊥G

g
1;1

2m2
;

P0;−
1;ib ¼

2m2Gg
1;3 þ k⊥:Δ⊥Gg

1;1

2m2
: ð25Þ

The spin-orbit correlation factor for the gluons Cg
z can be

defined, similarly to the quark case [25], in terms of the
GTMD Gg

1;1 as follows [22]:

Cg
z ¼

Z
dxd2k⊥

k2⊥
m2

Gg
1;1: ð26Þ

The GTMD Gg
1;1 calculated using Eq. (25) agrees with

that in [22]:

Gg
1;1 ¼ −

N
Dðq⊥ÞDðq0⊥Þ

	
2ðx2 − 2xþ 2Þm2

x3ð1 − xÞ


: ð27Þ

So the spin-orbit correlation factor for the gluons in the
dressed quark model is given by

Cg
z ¼ −N

Z
dx

2ðx2 − 2xþ 2Þð1 − xÞ
x

½I1 −m2x2I2�: ð28Þ

The kinetic OAM for the gluons can be calculated using
the sum rule for the gluon GPDs [3]:

Lg
z ¼ 1

2

Z
dxfx½Hgðx; 0; 0Þ þ Egðx; 0; 0Þ� − ~Hgðx; 0; 0Þg:

The gluon GPDs in the above relation can be related to
the GTMDs as follows:

Hgðx; 0; tÞ ¼
Z

d2k⊥Fg
1;1; ð29Þ

Egðx; 0; tÞ ¼
Z

d2k⊥
	
−Fg

1;1 þ 2

�
k⊥:Δ⊥
Δ2⊥

Fg
1;2 þ Fg

1;3

�

;

ð30Þ
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~Hgðx; 0; tÞ ¼
Z

d2k⊥Gg
1;4: ð31Þ

Using the above relation and the gluon GTMD calcu-
lated above, we can write the kinetic gluon OAM in the
dressed quark model as

Lg
z ¼ N

2

Z
dxf−fðxÞI1 þ 2πð1 − xÞg; ð32Þ

where

I1 ¼
Z

d2k⊥
m2x2 þ ðk⊥Þ2

¼ πlog

	
Q2 þm2x2

μ2 þm2x2



;

fðxÞ ¼ 2x2 − 3xþ 2:

Unlike for the quarks in [17], the canonical gluon OAM
and spin-orbit correlations are different in this model. Note
that the GTMDs F1;4 and G1;1 depend on the gauge link.

FIG. 1 (color online). Three-dimensional plots of the Wigner distributions WUU. Plots (a) and (b) are in b space with k⊥ ¼ 0.4 GeV.
Plots (c) and (d) are in k space with b⊥ ¼ 0.4 GeV−1. Plots (e) and (f) are in mixed space where kx and by are integrated. All the plots
on the left panel (a),(c),(e) are for Δmax ¼ 1.0 GeV. Plots on the right panel (b),(d),(f) are for Δmax ¼ 5.0 GeV. For all the plots

we kept m ¼ 0.33 GeV, integrated out the x variable, and took ~k⊥ ¼ kĵ and ~b⊥ ¼ bĵ.
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But up toOðαsÞ, the result does not depend on the choice of
the gauge link [22].

IV. NUMERICAL RESULTS

In Figs. 1–4, we have shown the three-dimensional plots
for the Wigner distributions of the gluon in the impact
parameter space ðbx-byÞ, momentum space ðkx-kyÞ, and also
in the mixed space ðky-bxÞ. Normally the upper limit of the

Fourier transform should be infinite. But in our numerical
calculation, we chose an upper limit of ∣Δ⊥∣ which we
calledΔmax. Plots on the left and right column are forΔmax¼
1GeV andΔmax ¼ 5 GeV, respectively. The dependence of
the gluon Wigner function on Δmax is similar to the quark
Wigner distributions: the peak of the Wigner distribution
increases in magnitude as Δmax increases. The first, second,
and third rows in Figs. 1–4 correspond to the impact
parameter, momentum, and mixed space plots, respectively.

FIG. 2 (color online). Three-dimensional plots of the Wigner distributions WLU . Plots (a) and (b) are in b space with k⊥ ¼ 0.4 GeV.
Plots (c) and (d) are in k space with b⊥ ¼ 0.4 GeV−1. Plots (e) and (f) are in mixed space where kx and by are integrated. All the plots on
the left panel (a),(c),(e) are for Δmax ¼ 1.0 GeV. Plots on the right panel (b),(d),(f) are for Δmax ¼ 5.0 GeV. For all the plots we kept

m ¼ 0.33 GeV, integrated out the x variable, and took ~k⊥ ¼ kĵ and ~b⊥ ¼ bĵ.
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The plots in mixed space have probabilistic interpretation
since we have integrated out the variable in the remaining
direction, i.e., kx and by, and for the impact parameter and
momentum space plots these remaining variables are held
constant. For all the plots, we have taken the mass of the
target state to be 0.33 GeV. Also, we integrated over x and
divided by the normalization constant N.
In Fig. 1, we show the three-dimensional plots for

the Wigner distribution of the unpolarized gluon in an

unpolarized target state (WUU). In Figs. 1(a) and 1(b)
we see the variation of WUU in the position space. The
magnitude ofWUU is maximum at the center (bx ¼ by ¼ 0)
and increases with an increase in Δmax, which is expected
from the analytic expression ofWUU. In Figs. 1(c) and 1(d)
we have plotted WUU in the momentum space for
~b⊥ ¼ bĵ ¼ 0.4. In momentum space, too, WUU peaks at
the center (kx ¼ ky ¼ 0), and its magnitude increases with
increasing Δmax. In Figs. 1(e) and 1(f) we have shown the

FIG. 3 (color online). Three-dimensional plots of the Wigner distributions WUL. Plots (a) and (b) are in b space with k⊥ ¼ 0.4 GeV.
Plots (c) and (d) are in k space with b⊥ ¼ 0.4 GeV−1. Plots (e) and (f) are in mixed space where kx and by are integrated. All the plots on
the left panel (a),(c),(e) are for Δmax ¼ 1.0 GeV. Plots on the right panel (b),(d),(f) are for Δmax ¼ 5.0 GeV. For all the plots we kept

m ¼ 0.33 GeV, integrated out the x variable, and took ~k⊥ ¼ kĵ and ~b⊥ ¼ bĵ.
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variation ofWUU in the mixed space. We observed thatWUU

is maximum for ky ¼ 0. As we move away from ky ¼ 0, it
first decreases and then increases. Hence, the probability to
find a gluon in the target state is maximum near ky ¼ 0. It is
worth mentioning here that similar plots for the quark
Wigner distributions in [17] are rotated through an angle
π
4
because there we tookΔ⊥ to be positive only, whereas here

we took Δ⊥ to be both positive and negative.
In Fig. 2, we show the three-dimensional plots for

the Wigner distribution of the unpolarized gluon in the

longitudinally polarized target state. In Figs. 2(a)
and 2(b) we see how WLU varies in position space. We
observe the dipole structure whose magnitude increases
with an increase in Δmax. In Figs. 2(c) and 2(d), we plotted

WLU in the momentum space for a fixed ~b⊥ ¼ bĵ ¼ 0.4.
Again we observe a dipole structure, but the polarity is
flipped when compared to the plots in position space. Also,
the magnitude of the peak increases with increasing Δmax,
which is expected from the analytic expression of WLU. In
Figs. 2(e) and 2(f), we have shown the variation of WLU in

FIG. 4 (color online). Three-dimensionalWLL. Plots (a) and (b) are in b space with k⊥ ¼ 0.4 GeV. Plots (c) and (d) are in k space with
b⊥ ¼ 0.4 GeV−1. Plots (e) and (f) are in mixed space where kx and by are integrated. All the plots on the left panel (a),(c),(e) are for
Δmax ¼ 1.0 GeV. Plots on the right panel (b),(d),(f) are for Δmax ¼ 5.0 GeV. For all the plots we keptm ¼ 0.33 GeV, integrated out the

x variable, and took ~k⊥ ¼ kĵ and ~b⊥ ¼ bĵ.
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the mixed space. Here we observe the quadrupole structure
whose magnitude increases with an increase in Δmax.
In Fig. 3, we show the three-dimensional plots for the

Wigner distribution showing the distortion due to the
longitudinal polarization of the gluons. In Figs. 3(a)
and 3(b), we show that the variation of WUL varies in

position space for fixed ~k⊥ ¼ kĵ ¼ 0.4. We observe that the
behavior is similar to the case of WLU, showing a dipole
structure. In Figs. 3(c) and 3(d), we have plottedWUL in the

momentum space for ~b⊥ ¼ bĵ ¼ 0.4. In the momentum
space, we observe a dipolelike structure again similar to the
case ofWLU, but here the polarity is not flipped, unlike that
in WUL, when compared to the plots in the position space.
In the mixed space, we again observe a quadrupole
structure with increasing magnitude as Δmax increases.
In Fig. 4, we show the three-dimensional plots for the

Wigner distribution, showing the distortion due to the
correlation between the longitudinal polarization of
the target state and the gluons. In Figs. 4(a) and 4(b),
we see how WLL varies in position space. In Fig. 4(a), the
b⊥ space behavior is similar to that shown by WUU and
the magnitude increases with increasing Δmax value. In
Figs. 4(c) and 4(d), we have plottedWLL in the momentum

space for ~b⊥ ¼ bĵ ¼ 0.4. In momentum space,WLL shows
a behavior similar to that of WUU, and its magnitude
increases with increasing Δmax. In the mixed space again
the nature is identical to that shown by WUU.
In Fig. 5 we have plotted the OAM of the gluon with

respect to the mass of the target state for different values of

Q where Q and μ are the upper and lower limits of
transverse momentum integration, respectively. μ can be
taken to be zero if the quark mass is nonzero. In fact, we
have taken μ to be zero. In Figs. 5(a) and 5(b), we show the
canonical and the kinetic gluon OAM, respectively, as a
function of the target mass. We observe that the magnitude
of both the OAMs decreases with the increasing mass of the
target state.

V. CONCLUSION

In this work, we presented a calculation of the gluon
Wigner distributions for a quark state dressed with a gluon.
This can be thought of as a simple composite spin-1

2
system

having a gluonic degree of freedom.We showed the various
correlations between the gluon spin and the spin of the
target. We calculated the gluon kinetic and canonical OAM
and also calculated the spin-orbit interaction of the gluons.
The kinetic and canonical OAM of the gluons differ in
magnitude. In most phenomenological models, there is no
gluonic degree of freedom and a study of gluonic con-
tribution to the spin and OAM is not possible in such
models. Our simple field theoretical model calculations
may be considered as a first step towards understanding the
gluon spin and OAM contribution.
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