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The recoil retardation effect in the K−d scattering length is studied. Using the nonrelativistic effective
field theory approach, it is demonstrated that a systematic perturbative expansion of the recoil corrections
in the parameter ξ ¼ MK=mN is possible in spite of the fact thatK−d scattering at low energies is inherently
nonperturbative due to the large values of the K̄N scattering lengths. The first-order correction to the K−d
scattering length due to single insertion of the retardation term in the multiple-scattering series is calculated.
The recoil effect turns out to be reasonably small even at the physical value of MK=mN ≃ 0.5.
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I. INTRODUCTION

Antikaon-nucleon scattering is an excellent testing
ground for understanding the SUð3Þ QCD dynamics at
low energies in the one-baryon sector. Starting from the
seminal paper [1], it is often described within the so-called
unitarized chiral perturbation theory (ChPT), which uses
the chiral potential calculated at a certain order (see, e.g.,
Refs. [2–10]). Different versions of the unitarized ChPTare
available in literature. However, a common feature of all
formulations is a relatively large number of free parameters,
which are fixed from the fit to the experimental data. An
important part of the input is coming from the S-wave K̄N
scattering lengths, which “nail down” the amplitudes at
the K̄N threshold and, thus, impose stringent constraints
both on the scattering in the K̄N channel as well as the
subthreshold behavior of the amplitudes. The latter plays an
important role in the study of the interaction of the K− with
nuclear medium (see, e.g., Ref. [11]).
The experiments with kaonic atoms have been carried

out in order to extract the precise values of the S-wave K̄N
scattering lengths—a goal that could be barely achieved
by using different experimental techniques. Recently,
the energy shift and width of kaonic hydrogen were
measured very accurately in the SIDDHARTA experiment
at DAΦNE [12] (for the earlier attempts, see, e.g.,
Refs. [13,14]). These two quantities can be related to the
K−p scattering lengths via the so-called modified Deser-
type formula, see Refs. [15,16] (a general discussion of the
procedure of extracting the scattering lengths from the
hadronic atom observables can be found, e.g., in a review
article [17]). The same experimental collaboration has
made an attempt to measure the energy and the width of
the ground state of the kaonic deuterium as well. However,
due to a small signal-to-background ratio, no clear signal
from the kaonic deuterium was detected [18]. Only an

upper limit on the yield of the kaonic deuterium Kα line
could be determined which is important for the evaluation
of the new experiments proposed at LNF [19] and J-PARC
[20]. In addition, the kaonic 3He and 4He atoms have also
been studied within the SIDDHARTA experiment.
What makes the experiments with kaonic deuterium

extremely important is the fact that the S-wave K̄N
scattering lengths are complex valued, in difference, e.g.,
to the πN scattering lengths, which are real quantities. The
πN scattering lengths can be, in principle, determined
directly on the basis of π−H data alone [21] while the level
shift of the pionic deuterium [22] is used as a comple-
mentary information to improve the accuracy in the
extraction of the πN scattering lengths, see Ref. [23] for
the results of the latest combined analysis of pionic atoms.
Meanwhile, extracting two complex scattering lengths
a0; a1 corresponding to the total isospin I ¼ 0; 1 in the
K̄N system implies the determination of four real quantities
and, thus, requires measurements of four independent
observables. Two observables are provided by the kaonic
hydrogen, and the remaining two can come from, e.g., the
kaonic deuterium. The problem is, however, that the kaonic
deuterium measurement would yield the K̄d scattering
length, and there is still a long way to go from this quantity
to the K̄N scattering lengths. Thus, unless one is able to
relate the K̄d and K̄N scattering lengths with each other
with a controlled accuracy using a consistent theoretical
framework, the main goal of the kaonic deuterium experi-
ment can not be achieved.
In the past decades, the calculations of the low-energy

K̄d scattering observables within the nonrelativistic three-
body Faddeev framework have reached an unprecedented
accuracy and sophistication (see here an incomplete list of
papers on this subject: [24–30]). However, despite all
efforts, these calculations do not address the core issue,
which consists of the feasibility of the extraction of the
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K̄N scattering lengths from data. To this end, one needs
an explicit expression of the K̄d scattering length in terms
of the K̄N scattering lengths of the type of Brueckner
formula [31] (see also Ref. [32]). Based on this expres-
sion, in Refs. [33,34] the extraction of the K̄N scattering
lengths from the combined data on the kaonic hydrogen
and kaonic deuterium has been analyzed. It should,
however, be stressed that the expression derived in
Refs. [31–33] is only an approximation and assumes that
nucleons are infinitely heavy (static). There exists no
a priori reason to believe that this is a good approxima-
tion, especially in view of the fact that, in the real world,
the mass ratio MK=mN ≃ 0.5 is not small. On the other
hand, numerical estimates, carried out within the Faddeev
approach, indicate that this approximation might be not so
bad as it seems at first glance (see Ref. [35]). One,
therefore, may conclude that, in order to have a reliable
estimate of the uncertainty of the method, it is necessary to
have a systematic framework for calculating corrections to
the static limit. This issue has been first addressed in
Ref. [36], where the recoil corrections in the double
scattering process have been studied within the non-
relativistic field-theoretical approach. This paper repre-
sents a continuation and extension of the work started
in Ref. [36].
Below we list some fundamental questions that the

systematic theory of kaonic deuterium should be able to
answer in the future.

(i) K̄d scattering at low energies is inherently non-
perturbative due to the large values of the S-wave
K̄N scattering lengths, so a resummation of the
multiple scattering series is necessary (in difference,
e.g., to πd scattering, where a perturbative approach
is justified). Such resummation, however, can be
carried out analytically only in the static limit.
Bearing in mind that MK=mN ≃ 0.5, it is legitimate
to ask, how should the recoil corrections be sys-
tematically taken into account in the above non-
perturbative scheme.

(ii) Numerical estimates in the potential models show
that the size of the recoil correction is moderate,
despite the fact that the kaon is quite heavy. One has
to understand this observation on the basis of robust
theoretical arguments.

(iii) The effective low-energy theory of QCD is ChPT.
Since experiments probe predictions of QCD, the
theoretical framework used to analyze the data,
should be chosen accordingly. This means, e.g.,
that the nucleon-nucleon and kaon-nucleon inter-
actions should be described on the basis of effective
chiral Lagrangians. Because of the nonperturbative
character of NN and K̄N interactions, it could,
however, be prohibitively complicated to try to
describe the three-body dynamics of the K̄d system
directly in ChPT. In Ref. [36] we have formulated

an alternative approach, based on the use of the
nonrelativistic (nonlocal) effective Lagrangian,
which have the (chiral) two- and three-body poten-
tials as an input (see Sec. II for more details).
Calculations of the K̄d scattering length can be
systematically done within this approach.

(iv) The presence of the subthreshold Λð1405Þ reso-
nance in K̄N scattering does not only lead to large
scattering length. It also causes a rapid variation of
the amplitudes near threshold. Therefore a system-
atic study of the (potentially large) effective-range
corrections is required.

(v) In the effective field theory approach, the three-body
forces are necessarily present and guarantee inde-
pendence of physical observables on the renormal-
ization scale. Consequently, a reliable estimate of
this contribution to the K̄d scattering length is
needed (see Refs. [36,37] for further discussions
of this subject).

In the present paper, we concentrate on the study of the
recoil effect and leave other issues for future publications.
In particular, our main aim is to formulate a procedure for
including the recoil corrections perturbatively into the
multiple-scattering series, in which the static interactions
are summed up to all orders.
The paper is organized as follows. In Sec. II we discuss

the general scheme of including the recoil corrections into
the multiple-scattering series and discuss the counting
scheme for such corrections. In Sec. III, we derive the
formulas for the single insertion of the recoil correction in
the multiple-scattering series. Explicit derivation of the
formulas for K̄d scattering is given in Sec. III, where the
numerical results for one “recoil insertion” are also shown.
In Sec. IV, we discuss the expansion of a single recoil
insertion in the (noninteger) powers of the parameter
ξ ¼ MK=mN , along the similar lines to Ref. [36], and
demonstrate the convergence of this expansion. In Sec. V,
the numerical results for the first-order recoil correction to
the K̄d scattering length are presented. Furthermore, we
also calculate the boundaries for the antikaon-deuteron
scattering length using various K̄N scattering lengths
existing in the literature as an input. Section VI contains
our conclusions.

II. THEORETICAL FRAMEWORK

The starting point of the analysis is the generalized
Deser-type relations between the energy shift/width of the
1 s level of the kaonic hydrogen ðΔE1s;Γ1sÞ and kaonic
deuterium ðΔEd

1s;Γd
1sÞ and the pertinent K̄N and K̄d

threshold amplitudes. These relations are well known in
the literature (see, e.g., Refs. [15–17,33]) and, at order
OðαÞ in isospin breaking, take the form

ΔE1s − iΓ1s=2 ¼ −2α3μ2apð1 − 2μαðln α − 1ÞapÞ; ð1Þ
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ΔEd
1s − iΓd

1s=2 ¼ −2α3μ2dAð1 − 2μdαðln α − 1ÞAÞ;

where μ and μd are the reducedmasses, and ap andA are the
threshold amplitudes of the K̄N and K̄d systems, respec-
tively. Moreover, it can be shown (see Ref. [36]) that all
logarithmically enhanced terms of type αnlnnα for n ¼
1; 2;… can be resummed to all orders, which leads to the
replacement 1−2μαðlnα−1Þap→ð1þ2μαðlnα−1ÞapÞ−1
and, similarly, to the replacement 1 − 2μdαðln α − 1ÞA →
ð1þ 2μdαðln α − 1ÞAÞ−1. This procedure substantially
improves the agreement between the modified Deser for-
mulas and the explicit solutions within the framework of the
potential models both for the kaonic hydrogen and kaonic
deuterium.1

As seen from the above formulas, the measurement of
the energy shift and width of the kaonic hydrogen allows
one to directly determine the (complex) K−p scattering
length ap that fixes two of four relations on the S-wave K̄N
scattering lengths a0 and a1. The remaining two relations
must be provided from the eventually measured value ofA.
A systematic expansion of the antikaon-deuteron scattering
length in terms of the K̄N scattering lengths (and higher-
order effective-range expansion parameters) naturally
emerges through the perturbative expansion of the thresh-
old amplitude A in the nonrelativistic effective field
theories. The resulting scattering length is written in a
form of a sum of all six-point K̄NN → K̄NN diagrams,
folded by the deuteron wave functions, and effective
couplings in these diagrams in a particular renormalization
scheme can be expressed in terms of the K̄N scattering
lengths, effective radii and so on. However, due to the large
values of the K̄N scattering lengths, the resulting multiple-
scattering series for the six-point function does not con-
verge. The only case when the multiple-scattering series
can be algebraically resummed to all orders is the so-called
static approximation mN → ∞. In this limit, the answer is
explicitly written as [32,33]2

Ast¼
1

1þ ξ=2

Z
d3rjΨðrÞj2

×
~anþ ~apþð2~ap ~an−b2xÞ=r−2b2x ~an=r2

1− ~ap ~an=r2þb2x ~an=r3
: ð2Þ

Here, ΨðrÞ stands for the wave function of the deuteron,
normalized to unity. In momentum space, it obeys the
equation

ðγ2þp2ÞΨðpÞ¼ 1

4mN

Z
d3q
ð2πÞ3VNNðp;qÞΨðqÞ; ð3Þ

where γ2 ¼ mNεd is the bound-state momentum in the
deuteron, while εd denotes the binding energy. Further,

~ap;n;x;u ¼ ð1þ ξÞap;n;x;u; b2x ¼ ~a2x=ð1þ ~au=rÞ; ð4Þ

where ap;n;x;u are the K̄N scattering lengths in the different
physical channels K−p → K−p, K−n → K−n, K−p →
K̄0n and K̄0n → K̄0n, respectively. In the isospin symmetry
limit, ap ¼ au ¼ ða0 þ a1Þ=2, an ¼ a1, ax ¼ ða1 − a0Þ=2.
Note that the factor ð1þ ξÞ is uniquely determined from
matching of the NREFT coupling constants to the scatter-
ing amplitudes. This stems from the fact that the relation
between the invariant K̄N amplitude and the scattering
length involves the kinematical factor proportional
to ð1þ ξÞ.
Numerically, in most cases, Eq. (2) is a rather good

approximation to the exact solution in spite of the relatively
large kaon mass. In this paper, we demonstrate that the
recoil corrections can be calculated perturbatively, order by
order, even though the original multiple-scattering series
(MSS) is inherently nonperturbative. Below, we describe,
how this goal can be achieved.
An appropriate framework to this problem is the one

based on the nonrelativistic effective Lagrangians. We have
described this framework in detail in Ref. [36]. Here we
only briefly mention the crucial properties of the approach,
focusing on the aspects which are new.
The approach relies on the existence of two distinct

momentum scales. The nucleon-nucleon and three-particle
interactions are characterized by a low scale (of the
order of the pion mass) and are described by nonlocal,
energy-independent potentials VNNðp;qÞ and V3ðp1;p2;p3;

q1;q2;q3Þ, respectively. It is understood that, ultimately,
these potentials should be taken from chiral effective field
theory in the two-nucleon sector. In the actual calculations
carried out in this paper we shall, however, use phenom-
enological nucleon-nucleon forces which yield results
similar to the chiral potentials and are easier to handle.
On the contrary, K̄N interactions are characterized by a
heavier scale (of the order of the mass of the ρ;ω;…
resonances). We shall describe these interactions by a tower
of local terms in the Lagrangian with zero, two,… space
derivatives. The couplings emerging in these terms are
expressed through the K̄N scattering lengths, effective
radii and so on in a standard manner. For this reason, a
perturbative expansion in such an effective theory auto-
matically yields the multiple-scattering series, known
from the potential scattering framework. The leading
contribution to this series is provided by the term with
no derivatives which after resummation yields Eq. (2).

1We thank A. Cieplý for his advanced communication to us of
his numerical results.

2In the kinematical prefactor, which appears in the rhs of
Eq. (2), we have neglected the deuteron binding energy as
compared to the nucleon mass.
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A generic term in the multiple-scattering expansion
contains the diagrams in which the kaons are exchanged
between two nucleons as well as kaons hopping on the
same nucleon (the self-energy-type diagrams) (see Fig. 1).
Since NN interactions are nonperturbative, they have to be
included to all orders. This is normally done by solving the
Lippmann-Schwinger-type equations which yield the NN
amplitudes at low energies. The NN amplitude in its turn is
to be included in each intermediate state of the K̄NN −
K̄NN Feynman diagrams (see e.g. diagram c in Fig. 1).
The renormalization prescription in the K̄N sector

should guarantee that the self-energy loop shown in

Fig. 1(a) vanishes at threshold in the K̄N center of mass
frame. Indeed, the self-energy loop in the two-body sector
is already included as a part of the relation between the
effective coupling in the Lagrangian and the scattering
length. Therefore in the calculation of the K̄NN − K̄NN
Feynman diagrams where the K̄N scattering lengths are
used in the vertices only that part of the loop survives which
appears due to the presence of the three-body dynamics.
The procedure was described in detail, e.g., in Ref. [38]
using πN scattering as an example. Using time-ordered
perturbation theory, the expression for the self-energy
diagram is given in the form

JS:E:ðp2; EÞ ¼
Z
reg

d3l
ð2πÞ3

1

l2=2MK þ ðp − lÞ2=2mN þ p2=2mN − E − i0

¼
Z
reg

d3l
ð2πÞ3

1

l2=2μþ p2=2ðmN þMKÞ þ p2=2mN − E − i0
; ð5Þ

where the subscript “reg” stands for some (unspecified) ultraviolet regularization prescription, and E stands for the energy
with respect to the K̄d threshold. In order to obtain the second expression, a shift of the integration variable
l → lþ ξ=ð1þ ξÞp was necessary. Consequently, the renormalized self-energy (after subtraction of the two-body term)
takes the form

JrS:E:ðp2; EÞ ¼
Z

d3l
ð2πÞ3

�
1

l2=2μþ p2=2ðmN þMKÞ þ p2=2mN − E − i0
−

1

l2=2μ

�
: ð6Þ

This expression indeed vanishes in the two-particle
center of mass frame at threshold (p ¼ 0, E ¼ 0). On
the other hand, when this loop is embedded in the
nuclear (deuteron) environment, the energy becomes
E ¼ −εd, and the nucleon momentum p does not vanish
anymore.
An appropriate parameter to establish the counting

scheme for the recoil corrections is ξ ¼ MK=mN . It can
be easily seen that, in the vicinity of the static limit
(ξ → 0) the renormalized self-energy graph vanishes as
Oðξ1=2Þ. Further, it can be also checked that the operator
with NN interactions in the intermediate state [see
Fig. 1(c)] also leads to the contributions suppressed as
Oðξ1=2Þ. Consequently, in the static limit, only diagrams of

the type shown in Fig. 1(b) survive. These are the diagrams
where the kaon is exchanged between two nucleons. In this
limit and assuming, in addition, εd → 0, the three-particle
K̄NN propagator simplifies to

g ¼ 1

l2=2MK þ ðp − lÞ2=2mN þ p2=2mN þ εd
→

1

l2=2MK
;

ð7Þ

so that the resulting series in the exchange diagrams can be
summed up to all orders. Taking the Fourier transform and
folding the result with the deuteron wave function, we
finally arrive at the expression displayed in Eq. (2).

FIG. 1. The types of the diagrams emerging in the multiple-scattering series: (a) the self-energy-type diagram, (b) the exchange
diagram, (c) any number of the “potential exchanges” between two nucleons in the intermediate state.
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Away from the static limit, the propagator in the exchange diagram can be rewritten in the following form

g ¼ 1

l2=2MK
þ
�

1

l2=2MK þ ðp − lÞ2=2mN þ p2=2mN þ εd
−

1

l2=2MK

�
≐gst þ Δg; ð8Þ

where the expression in the curly bracket, which is defined
as Δg, stands for the recoil correction. The splitting shown
above allows for the perturbative treatment of the recoil
effect in the K̄d scattering length. Schematically, the
procedure can be described as follows. Consider, for
example, the diagrams of a type shown in Fig. 1(b). Let
~a denote a generic K̄N scattering length which is related to
the nonderivative coupling in the effective Lagrangian.
Then, Feynman diagrams of type b correspond to con-
secutive scattering of the kaon off different nucleons
mediated by the K̄NN Green functions g from Eq. (8),
i.e. ~ag ~a � � �. The multiple-scattering series can, therefore, be
written as

~aþ ~ag ~aþ ~ag ~ag ~aþ � � � ¼ f ~aþ ~a2gst þ � � �g
þ f ~aþ ~a2gst þ � � �gðΔgÞf ~aþ ~a2gst þ � � �g þ � � � : ð9Þ

It is seen that the whole multiple-scattering series can be
rearranged so that the static contributions are resummed to
all orders [the expression in the first curly bracket in the rhs
of Eq. (9)], whereas the recoil corrections enter perturba-
tively, in the form of one, two,…“recoil insertions,” see the
terms ∼ðΔgÞn, with n ¼ 1; 2;…. In Sec. IV we shall prove
that each insertion counts as Oðξ1=2Þ (or, in some cases, as
OðξÞ) and, consequently, to carry out calculations at a given
order in the expansion parameter ξ, it suffices to consider a
finite number of insertions.
In the above equation, for illustration, only the contri-

bution from the exchange diagram was shown. The con-
tributions from the diagrams shown in Figs. 1(a) and 1(c)
are parts of the recoil insertions because they are absent
in the static case. We shall see later that they are also
vanishing at Oðξ1=2Þ.

Diagrams with one recoil insertion (∼Δg), which con-
tribute to the K̄d scattering length are shown explicitly in
Fig. 2. As noted already, the inclusion of the intermediate
NN interaction (see diagram (c) in Fig. 2) is crucial for the
consistent calculation of the recoil effect. This issue will be
further discussed in Secs. IV and V. The case with two and
more insertions can be treated similarly and is beyond the
scope of this work.
Up to now, to the best of our knowledge, the recoil

insertion has been treated in the literature only within a
perturbative EFT framework (see, e.g., [36,38]). In the
present paper, we present the perturbative evaluation of the
recoil insertions while the static diagrams are summed up to
all orders. Thus, the convergence of the multiple-scattering
series is not assumed, and does not hold, in general.

III. ONE RECOIL INSERTION

In this section, we shall present compact explicit
expressions for the recoil insertions in the multiple scatter-
ing series. As discussed in the previous section, the
antikaon-deuteron scattering length can be written as

A ¼ Ast þAð1Þ þAð2Þ þ � � � ; ð10Þ

where the individual terms correspond to the zero, one, two,
… recoil insertions. The lowest-order amplitude correspond-
ing to the static limit was defined by Eq. (2). Next, consider
one recoil insertion, as illustrated by the diagrams in Fig. 2.
At this order, one has the diagrams a and b, where the kaon
scatters either on the same nucleon or on different nucleons,
as well as the diagram c which takes into account the
intermediate NN interactions to all orders. Consequently,

Að1Þ ¼ AðaÞ þAðbÞ þAðcÞ; ð11Þ

FIG. 2 (color online). Diagrams with one recoil insertion, where dashed (solid) lines denote the kaon (nucleon) lines, respectively.
The whole diagram is folded by the deuteron wave functions (semicircles). The shaded boxes with kaon propagators symbolically
denote the resummed infinite series of kaon exchange graphs in the static limit, whereas the dashed lines outside of the boxes denote the
retarded kaon propagators. The nucleon-nucleon amplitude is referred to as MNN .
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where

AðaÞ ¼ 1

1þ ξ=2

Z
d3pd3l
ð2πÞ6 Grðp; lÞ½Φ2

pðpþ l=2Þ

þΦ2
nðpþ l=2ÞþΦ2

xðpþ l=2Þ�;

AðbÞ ¼ 1

1þ ξ=2

Z
d3pd3l
ð2πÞ6

�
Gðp; lÞ−GstðlÞ

�

½Φpðpþ l=2ÞΦnðp− l=2ÞþΦnðpþ l=2ÞΦpðp− l=2Þ
−Φxðpþ l=2ÞΦxðp− l=2Þ�;

AðcÞ ¼ 1

1þ ξ=2

Z
d3pd3ld3q

ð2πÞ9 Gðp; lÞ
�

ξ

8πmN
MNNðp;q; lÞ

�

×Gðq; lÞ½Φpðpþ l=2ÞþΦnðpþ l=2Þ�
× ½Φpðqþ l=2ÞþΦnðqþ l=2Þ�; ð12Þ

and the different Green functions corresponding to the
intermediate K̄NN state read

GstðlÞ ¼
4π

l2
; Gðp; lÞ ¼ 4π

l2ð1þ ξ=2Þ þ 2ξðp2 þ γ2Þ ;

Grðp; lÞ ¼ Gðp; lÞ − 1

1þ ξ
GstðlÞ: ð13Þ

The nucleon-nucleon amplitude MNN which enters AðcÞ is
determined from a solution of the Lippmann-Schwinger
equation for a given two-nucleon potential VNN ,

MNNðp;q; lÞ ¼ VNNðp;qÞ

þ ξ

2mN

Z
d3k
ð2πÞ3

VNNðp;kÞMNNðk;q; lÞ
l2ð1þ ξ=2Þ þ 2ξðk2 þ γ2Þ ;

ð14Þ

where we used explicitly that the energy relevant for the
study is E ¼ −εd − l2ð1þ ξ=2Þ=2mK . Further, the quantity
ΦiðqÞ ði ¼ p; n; xÞ represents the convolution of the deu-
teron wave function ΨðrÞ with the resummed static ampli-
tudes Ai

ΦiðqÞ ¼
Z

d3reiqrΨðrÞAiðrÞ: ð15Þ

The amplitudes AiðrÞ obey the system of algebraic equations
in the r space (see e.g. [32]),

Ap ¼ ~ap þ
~ap
r
An −

~ax
r
Ax;

An ¼ ~an þ
~an
r
Ap;

Ax ¼ ~ax þ
~ax
r
An −

~au
r
Ax; ð16Þ

where Ap, An and Ax are the amplitudes, in which the last (or
the first) interaction of K− takes place on the proton
ðK−p → K−pÞ, on the neutron ðK−n → K−nÞ or is of
the charge-exchange type ðK−p → K̄0nÞ. The solution of
this system yields the required amplitudes,

Ap ¼ ~ap þ ~ap ~an−b2x
r − ~anb2x

r2

1 − ~ap ~an
r2 þ ~anb2x

r3

; An ¼
~an þ ~ap ~an

r − ~anb2x
r2

1 − ~ap ~an
r2 þ ~anb2x

r3

;

Ax ¼
~axð1þ ~an

r Þ
1 − ~ap ~an

r2 þ ~anb2x
r3

1

1þ ~au
r

: ð17Þ

Here, the quantity bx is defined in Eq. (4). It is straightfor-
ward to see that if one does the replacement Ai → ~ai, the
expressions (12) transform exactly to those derived in
Ref. [36] for the double scattering diagrams. Note that the
symmetric combination Ap þ An represents the isoscalar
contribution to the K̄NN − K̄NN operator which does not
change the isospin state of the NN pair. Being convoluted
with the deuteron wave functions in the initial and final
states, it yields the static amplitude (2) of K̄d scattering.
Similarly, the antisymmetric combination of the amplitudes
Ap − An as well as the charge exchange amplitude Ax

represent the isovector contributions to the K̄NN − K̄NN
operator. When applied to the initial deuteron state, these
operators give rise to the isospin-1 NN pair. Following
Refs. [36,38] we, therefore, decompose the results (12) into
the contributions corresponding to the two-nucleon inter-
mediate states with a certain isospin,

Að1Þ ¼ AðaÞ þAðbÞ þAðcÞ

¼ fA1 þ ΔAst;1g þ fA0 þAðcÞ þ ΔAst;0g; ð18Þ
where the expression in the first curly bracket in the rhs of
Eq. (18) corresponds to the I ¼ 1 NN intermediate state,
while that in the second bracket corresponds to I ¼ 0. In
order to obtain Eq. (18), the expressions for AðaÞ and AðbÞ
were rewritten using the following rules:
(1) The combinations of the functions Φi [cf. Eq. (15)]

which enter the expressions forAðaÞ andAðbÞ can be
decomposed into the isoscalar and isovector parts
using the relations

Φ2
p1þΦ2

n1þΦ2
x1¼

1

2
ðΦp1þΦn1ÞðΦp1þΦn1Þ

þ1

2
ðΦp1−Φn1ÞðΦp1−Φn1ÞþΦ2

x1;

Φp1Φn2 þ Φn1Φp2 − Φx1Φx2

¼ 1

2
ðΦp1 þ Φn1ÞðΦp2 þ Φn2Þ

−
1

2
ðΦp1 − Φn1ÞðΦp2 − Φn2Þ − Φx1Φx2;
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where the second subscript indicates that the func-
tionsΦ in Eq. (12) depend on two different momenta
l1 ¼ pþ l=2 and l2 ¼ p − l=2, respectively. Since
the Φi are proportional to the Ai, the first term in the
rhs of these equations contributes to the I ¼ 0 NN
intermediate state, while the others correspond to
I ¼ 1. Using these relations one determines the
resulting I ¼ 0 and I ¼ 1 contributions in the curly
brackets of Eq. (18).

(2) It appears useful to further decompose the net I ¼ 0
and I ¼ 1 contributions in such a way that the terms
A0 and A1 contain the same renormalized K̄NN
Green function Gr [see Eq. (13)]. The trivial cor-
rections ΔAst;0 and ΔAst;1, which can be expanded
into the integer powers of ξ, appear as the result of
this separation as well.

Thus, one gets

A0 ¼
1

2

1

1þ ξ=2

Z
d3pd3l
ð2πÞ6 ½Φpðl1Þ þ Φnðl1Þ�

×Grðp; lÞ½Φpðl1Þ þ Φnðl1Þ þ Φpðl2Þ þ Φnðl2Þ�;

A1 ¼
1

2

1

1þ ξ=2

Z
d3pd3l
ð2πÞ6 Grðp; lÞ

× ½ðΦpðl1Þ − Φnðl1ÞÞðΦpðl1Þ − Φnðl1Þ
− Φpðl2Þ þ Φnðl2ÞÞ þ 2Φxðl1ÞðΦxðl1Þ − Φxðl2ÞÞ�;

ð19Þ
and

ΔAst;0 ¼ −
ξ

2ð1þ ξÞð1þ ξ=2Þ

×
Z

d3r
Ψ2ðrÞ
r

ðApðrÞ þ AnðrÞÞ2;

ΔAst;1 ¼
ξ

2ð1þ ξÞð1þ ξ=2Þ

×
Z

d3r
Ψ2ðrÞ
r

ððApðrÞ − AnðrÞÞ2 þ 2AxðrÞ2Þ:

ð20Þ
The expressions written in the isospin basis allow for a very
clear physical interpretation of the cancellations between
various individual recoil corrections, as will be discussed in
Sec. IV B.

IV. PERTURBATIVE EXPANSION OF THE
FIRST-ORDER CORRECTION IN

POWERS OF ξ

A. Formalism

The expression of the single recoil insertion, which was
given in the previous section, depends on the variable ξ
in a nontrivial way. In order to establish systematic

power-counting rules, it is, therefore, necessary to perform
an expansion of this expression in ξ. Further, considering
such an expansion helps one to reveal the pattern of
cancellations of the leading terms, which has been dis-
cussed already in Ref. [36]. Note that these cancellations
are crucial for discussing the convergence of the perturba-
tive method, which is described in the present paper.
Note also that the final numerical results presented in
Sec. V include the full expression of the one recoil insertion
and do not rely on this expansion.
As already shown in Ref. [36], the K̄d scattering length

can be systematically expanded in the half-integer powers
of ξ. As an illustrative example, the expansion of the double
scattering diagrams was performed, and a relatively rapid
convergence was observed. In this paper, we investigate the
convergence of this expansion for the case of multiple
scattering series with one recoil insertion.
Below, we shall use the uniform expansion method (see

Refs. [39,40]). In this method, different momentum regions
are identified, according to the scales appearing in the
problem. The integrand is expanded in each region before
performing the integration, and the results are summed up.
In our case, the relevant regions are defined by two
momentum scales in the full K̄NN Green function (13).
One, therefore, finds three relevant integration regions:

1. Low-momentum region

The internal kaon momentum l is much smaller than the
typical deuteron scale p ∼ h1=ri ∼mπ , but still of the same
order of magnitude as

ffiffiffi
ξ

p
p. In this region, the Green

function Gðp; lÞ “feels“the presence of the nearby three-
body singularity. Meanwhile, all other quantities, such as
the functions Φiðp� l=2Þ, can be systematically expanded,
assuming l ≪ p. Given that l ∼

ffiffiffi
ξ

p
p, noninteger orders of

ξ emerge after the integration.

2. High-momentum region

In this region, l ∼ p and all retarded terms in Gðp; lÞ are
suppressed by ξ. The direct expansion in ξ leads to the
appearance of integer orders in the expansion.

3. Intermediate region

The momenta in the intermediate region obey
ffiffiffi
ξ

p
p ≪

l ≪ p. The integrand in this region can be obtained, if
one applies the low-momentum expansion to the integrand
already expanded in the high-momentum region or
vice versa.
The original integrand (I) of the amplitude can then be

written as

I ¼ Ilow þ Ihigh − Iinterm: ð21Þ
Evaluating the integral over the whole momentum range,
we obtain the amplitudes at a given order in ξ. Note that the
integrand, being expanded in the regions 1 and 2, contains
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ultraviolet as well as infrared-divergent terms. However,
these divergences cancel exactly with those that emerge
from the intermediate region, rendering the result finite and
independent of the regularization scheme.

B. Leading-order recoil correction

It has been known for many years that, due to the
emerging cancellations, the recoil corrections to pion-
deuteron scattering at threshold are smaller than one would
naively expect (see, e.g., Refs. [41–43]). In the isovector
channel, relevant for πd scattering, the mechanism behind
this cancellation was identified in Ref. [38] (see also
Refs. [23,44] for further discussions). In Ref. [36], the
arguments were summarized and generalized to the iso-
scalar channel which is of importance for K̄d scattering.
In all these studies, however, the recoil effect was studied
for the double-scattering process only that is fully justified
for πd scattering but does not suffice for K̄d scattering.
Here we discuss, what happens with the leading Oðξ1=2Þ
correction in the presence of the static multiple-scattering
ladders. If this correction survives, it would give an
estimated 70% correction to A, in contradiction to a
relatively good agreement between the static MSS and
Faddeev calculations.
The origin of the cancellation of the leading isovector

correction in the quantity A1 from Eq. (19) lies in the fact
that the NN pair with total isospin I ¼ 1 must have orbital
momentum L ¼ 1, as a consequence of the Pauli selection
rules. Hence, the diagram c in Fig. 2, which accounts for
the S-wave NN interaction, does not contribute in this case.
Meanwhile, the diagrams a and b do produce Oðξ1=2Þ
corrections individually. Those, however, correspond to the
NN states in the S-wave and, thus, naturally cancel in the
sum. This can be seen immediately since, as argued above,
all corrections with the noninteger powers of ξ emerge from
the low-momentum region. Expanding then the integrand

in Eq. (19) in the assumption l ≪ p, one immediately finds
that the leading contribution to A1 vanishes.
On the contrary, in the isoscalar case, the NN inter-

mediate states can appear in the S-wave. This means that
all diagrams in Fig. 2 are relevant. Furthermore, for
the isoscalar K̄N interaction, the quantum numbers of
the intermediate NN pair must coincide with those of the
deuteron, i.e. the NN state appears in the 3S1 partial wave.
It was shown in Ref. [36] that the sum of the diagrams of
type shown in Fig. 2 gives the full Green function of the
NN state, which should be orthogonal to the bound-state
deuteron wave function due to the completeness condition.
This was the origin of cancellation of the isoscalar recoil
corrections in the double-scattering diagrams, considered
in Ref. [36]. The situation is, however, different in the
multiple-scattering case, since the infinite static ladders (see
the shaded blocks in Fig. 2) separate the bound-state and
continuum wave functions, providing the effect of screen-
ing. Therefore, the cancellation of the isoscalar Oðξ1=2Þ
recoil correction is not exact, although it is still largely
present, as will be shown below.

C. Convergence of the expansion in ξ

In Fig. 3 we demonstrate the convergence of the
expansion for the isoscalar case. The Hulthén NN potential
is used in the calculations.3 Note further that we found it
useful to introduce a modified expansion parameter
~ξ ¼ ξ=ð1þ ξ=2Þ. The convergence of the series in this
new parameter improves substantially (see A for the
explicit expressions). For illustrative purposes, we present
the results for ImA0 and ImAðcÞ separately, both dominated
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 A

0   
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] ξ
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FIG. 3 (color online). Expansion of the amplitudeA0 andAðcÞ in powers of ~ξ ¼ ξ=ð1þ ξ=2Þ: left panel—ImA0, right panel—ImAðcÞ.
Dashed, solid, dotted, and dot-dashed lines correspond to the expansion up to the order ~ξ1=2, ~ξ, ~ξ3=2, and ~ξ2, respectively. The result of
the full calculation is presented by the black dots.

3This potential is regular at short distances (does not depend on
the large mass scales). Consequently, there is no need for
introducing a short-distance regularization. This simplifies the
calculation substantially.
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by the leading-order Oð~ξ1=2Þ terms. Meanwhile, these
corrections appear with different signs and, thus, largely
cancel in the sum. It is interesting that already at the order ~ξ,
the expanded results nicely agree with the exact ones.
Analogous results for the isovector case are shown in Fig. 4
for ReA1 (left panel) and ImA1 (right panel). In this case,
the expansion starts from the order ~ξ, in accordance with the
Pauli selection rules. The expansion in half-integer powers
of ~ξ for the isovector case converges a little slower than for
the isoscalar one, but still provides a very good approxi-
mation to the unexpanded results already at the order ~ξ2.

V. NUMERICAL RESULTS FOR THE K̄d
SCATTERING LENGTH

A. The role of recoil effects for kaonic deuterium

We are now in the position to analyze the role of the
recoil corrections in the K̄d scattering length. The results of
our calculations for one recoil insertion are given in Table I.
As already mentioned, at this stage, we use the phenom-
enological nucleon-nucleon separable potentials instead of
the more complicated potentials, constructed within the
chiral EFT. In particular, the results of the calculations
shown in Table I are obtained for the Hulthén and PEST
NN potentials (see B). The following values of the K̄N
scattering lengths are used as an input [28]:

a0 ¼ ð−1.62þ i0.78Þ fm; a1 ¼ ð0.18þ i0.68Þ fm:

ð22Þ

The following conclusions can be drawn, based on the
results shown in Table I:

(i) In the isoscalar channel, the individual contributions,
which still contain the dominant Oð~ξ1=2Þ term, are
very large, especially the imaginary parts thereof.
However, they undergo significant cancellations,

yielding only about a 10% net correction to the
imaginary part of the static term.

(ii) The resulting isovector recoil correction appears to
be even smaller providing only about a 3% correc-
tion to the static term. Its smallness can be under-
stood from the exact cancellation of theOð~ξ1=2Þ term
along with some additional cancellations among
higher-order terms. This effect was already dis-
cussed in Ref. [36] (see also Fig. 4).

TABLE I. The recoil corrections to the K̄d scattering length
from one insertion of the retarded block. All quantities are given
in units of fm.

Hulthén potential
Ast −1.49þ i1.19

Að1Þ A1 −0.13þ i0.16
ΔAst;1 þ0.12 − i0.20

þ0.00 − i0.04
A0 −0.27þ i0.87
ΔAst;0 −0.12þ i0.33
AðcÞ þ0.35 − i1.06

−0.03þ i0.13
Sum: −0.03þ i0.09

Ast þAð1Þ −1.52þ i1.27

PEST potential
Ast −1.55þ i1.25

Að1Þ A1 −0.13þ i0.18
ΔAst;1 þ0.13 − i0.22

þ0.00 − i0.04
A0 −0.29þ i0.97
ΔAst;0 −0.11þ i0.34
AðcÞ þ0.36 − i1.19

−0.04þ i0.12
Sum: −0.04þ i0.08

Ast þAð1Þ −1.59þ i1.32
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FIG. 4 (color online). Expansion of the amplitude A1 in powers of ~ξ ¼ ξ=ð1þ ξ=2Þ: left panel—ReA1, right panel—ImA1. Solid,
dotted, dot-dashed and double-dot-dashed lines correspond to the expansion up to the order ~ξ, ~ξ3=2, ~ξ2, ~ξ5=2, respectively. The result of
the full calculation is presented by the black dots.
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(iii) The recoil contributions ΔAst;0 and ΔAst;1, which
start to contribute at the order ~ξ, are still sizable.
These are, however, largely canceled by other
contributions, pointing at cancellations that emerge
at this and higher orders in ~ξ. At this stage, the
mechanism of such cancellations is unclear and
needs to be addressed.

(iv) The net correction Að1Þ which stems from one recoil
insertion in the MS diagrams appears to be quite
small, of order of≃6%–8% of Ast, despite the large
value of ξ. An additional suppression is partly
accounted for by cancellations of the isoscalar and
isovector recoil corrections.

(v) Ref. [28] gives the value of the K̄d scattering length,
obtained by the solution of the Faddeev equations
with the one-channel energy-independent optical
potential. The parameters of this potential were
adjusted to reproduce the scattering lengths (22).
The calculation, carried in Ref. [28], yields A≃
ð−1.47þ 1.11iÞ fm (see the half-empty square in
Fig. 12 in that paper).
Although the input in the two calculations might

still differ in several aspects, such as different NN

models, or the use of the off-shell form factors,
needed to regularize the Faddeev calculations, it is
instructive to compare this result with the pertinent
results shown in Table I. In particular, one can see
that the differences between the static result and the
solution of the Faddeev equation are, generally, of
the same order as the full recoil correction Að1Þ.

Finally, few words should be said about the higher-order
recoil corrections (two or more recoil insertions). Albeit the
results with one insertion look encouraging, these do not
completely guarantee the convergence of the procedure,
since the smallness of the first-order correction could still
follow from some peculiar cancellations. In this respect,
according to the above discussion, the study of the
corrections to the isoscalar amplitude, where the cancella-
tion of the leading Oð~ξ1=2Þ terms is not complete due to the
presence of the static ladders, appears to be crucial.

B. Prediction for the K̄d scattering length

In this paper, we developed an EFT framework which
directly relates the K̄N scattering lengths to the K̄d
scattering length. Since the latter is not yet measured in

TABLE II. The K̄d scattering length for different input values of the K̄N scattering lengths.

Reference a0 [fm] a1 [fm] Ast [fm] A ¼ Ast þAð1Þ [fm]

Martin [46] −1.70þ i0.68 þ0.37þ i0.60 −1.65þ i1.23 −1.72þ i1.32
Ikeda, Hyodo, Weise [9] −1.87þ i0.90 þ0.57þ i0.72 −1.87þ i1.48 −1.95þ i1.61
Mai, Meißner [10] −1.81þ i0.92 þ0.48þ i0.87 −1.82þ i1.45 −1.87þ i1.56
Shevchenko (two pole) [29] −1.62þ i0.78 þ0.18þ i0.68 −1.55þ i1.25 −1.59þ i1.32
Guo, Oller [47] −1.74þ i1.27 þ0.39þ i0.56 −1.58þ i1.83 −1.56þ i1.96
Borasoy, Meißner, Nißler [6] −1.64þ i0.75 −0.06þ i0.57 −1.49þ i1.12 −1.53þ i1.18

a1a0 aK p

Martin

Ikeda, Hyodo, Weise

Mai, Meißner

Shevchenko two pole

Guo, Oller

2.0 1.5 1.0 0.5 0.0 0.5

0.5
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2.0

Re ai fm
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a i
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FIG. 5 (color online). The antikaon-deuteron scattering length A (purple dots) for given input values of the antikaon-nucleon
scattering lengths a0 (blue) and a1 (red). These lengths are chosen to be randomly distributed in the rectangular areas, restricted by
results from the SIDDHARTA experiment [12] [see Eq. (23)]. The full purple line shows the convex hull of all results for the K̄d
scattering length, whereas the purple dashed line is the convex hull for the static results (not shown explicitly).
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the experiment, we find it useful to predict in which region
this quantity could lie for various input values of the K̄N
scattering lengths, known from the literature. This pro-
cedure allows us to test the sensitivity of the final outcome
to the input and, what is equally important, the sensitivity of
the recoil correction to the same input.
We have adopted the following strategy. We assume that

the NN interaction is described by the PEST potential [45]
and examine a broad variety of the models for the K̄N
interaction. Some of the models are listed in Table II. For
each of the models, using the quoted values of the K̄N
scattering lengths a0 and a1, we calculate the K̄d scattering
length in the static approximation, as well as including the
first-order recoil correction. The results are presented
in Fig. 5.
Moreover, in order to minimize the dependence on the

input, we randomly generate K̄N scattering lengths from
the rectangular areas

−1.87≤Rea0 ≤−1.62; þ0.68≤ Ima0 ≤þ1.27;

−0.06≤Rea1 ≤þ0.57; þ0.56≤ Ima1 ≤þ0.87: ð23Þ

These intervals include most values of a0 and a1, known
in the literature. Further, for each random pair a0 and a1,
we check that ap ¼ ða0 þ a1Þ=2 obeys the constraints4

imposed by the SIDDHARTA experiment [12] and reject
the pairs for which this constraint is not fulfilled. Again, we
calculate the K̄d scattering length in the static approxima-
tion, as well as with first-order recoil correction. The dotted
and solid curves in Fig. 5 show the convex hulls for the
results of these calculations, determining the region where
the measured value of the K̄d scattering length is expected
to lie.
Several important observations can be made from

Table II and Fig. 5. First of all, the K̄d scattering length
turns out to be quite sensitive to the input values of a0 and
a1. Moreover, albeit non-negligible, the first-order recoil
correction seems to be moderate for very different input
values of a0 and a1. These two observations lead us to the
conclusion that rather stringent constraints on a0 and a1
would emerge once the K̄d scattering length is measured at
a reasonable accuracy.

VI. CONCLUSIONS

(i) In this paper we have studied the first-order recoil
correction in the multiple-scattering series for the
K̄d scattering length. The static K̄N interactions are
treated nonperturbatively and are summed up to all
orders. A perturbative framework is set up for the
calculation of the higher-order recoil corrections

(two and more insertions). We plan to address this
issue in our forthcoming publication.

(ii) The main message which we would like to convey to
the reader is that the recoil corrections, which, given
the large value of the parameter ξ≃ 0.5, were
a priori expected to be very large, are in fact rather
moderate. This conclusion is quite robust and holds
for all input values of a0; a1, randomly taken from
the literature. The smallness of the recoil corrections
can, in part, be attributed to large cancellations of
the leading contributions in the expansion in ξ,
which were discussed above in detail. Partial can-
cellations could be occurring in the subleading
contributions as well. This issue, however, requires
further investigation.

(iii) The investigation of the first-order recoil correc-
tions is only the first step towards the development
of a systematic EFT framework for the low-energy
K̄d system. The next steps would include, in
particular, estimation of the size of higher-order
recoil corrections and a careful investigation of
convergence of the perturbative approach; a study
of the role of the Λð1405Þ resonance in the K̄d
scattering; a systematic inclusion of higher-order
terms in the effective Lagrangian, such as e.g.
the effective range; employing the NN potentials
obtained in chiral EFT instead of the phenomeno-
logical models and a systematic inclusion of iso-
spin-breaking effects. These studies would provide
important steps towards a consistent theory of the
low-energy K̄d system which is necessary in order
to analyze forthcoming data on the kaonic deu-
terium atom [19,20].
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APPENDIX A: EXPANSION OF THE
INDIVIDUAL AMPLITUDES IN POWERS OF ξ

In this appendix, we discuss the expansion of the
amplitudes A0;A1 and AðcÞ in powers of ξ. Since the
Green function, entering the expression for these ampli-
tudes, can be written in the following form,

4Here, for consistency reasons, we have neglected the isospin-
breaking effects in the quantity ap. These effects might become
substantial (see Ref. [16]).
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Gðp; lÞ ¼ 4π

1þ ξ=2
1

l2 þ 2~ξðp2 þ γ2Þ ;

~ξ ¼ ξ

1þ ξ=2
¼ OðξÞ; ðA1Þ

one may argue that the quantity ~ξ is an appropriate
expansion parameter. Namely, in the high-energy region
we have l≃ p, and the function Gðp; lÞ should be Taylor-
expanded in the momentum p. On the other hand, in the
low-energy region l≃ ~ξ1=2p, the function Gðp; lÞ stays
intact, whereas other parts of the integrand, namely, the
wave functions and the NN amplitude, are Taylor-
expanded in the momentum l. It can be easily checked
that the convergence of the series in ~ξ is substantially better
than in ξ, since the latter series contains oscillating terms
that emerge from expanding ~ξ ¼ ξ=ð1þ ξ=2Þ in powers
of ξ.

Since the integrals we are dealing with are convergent,
we are free to choose the regularization scheme. Using
dimensional regularization, it can be easily shown that the
expansion of A0 and A1 reads

Ai ¼
8π

ð1þ ξ=2Þ2
�X∞

n¼1

Bn
i
~ξn þ

X∞
n¼0

Dn
i
~ξ
2nþ1
2

�
; ðA2Þ

where ði ¼ 0; 1Þ and

Bn
i ¼

ð−1Þn
4

Z
d3pd3l
ð2πÞ6

1

l2

�ð2ðp2 þ γ2ÞÞn
l2n

−
1

2n

�
Φiðp; lÞ

Dn
i ¼

ð−1Þnþ1

4

Z
d3p
ð2πÞ3

1

4π
ð2ðp2 þ γ2ÞÞ2nþ1

2 Φð2nÞ
i ðpÞ: ðA3Þ

Here the functions Φiðp; lÞ are defined as

Φ0ðp; lÞ ¼ ðΦpðl1Þ þ Φnðl1ÞÞðΦpðl1Þ þ Φnðl1Þ þ Φpðl2Þ þ Φnðl2ÞÞ;
Φ1ðp; lÞ ¼ ðΦpðl1Þ − Φnðl1ÞÞðΦpðl1Þ − Φnðl1Þ − Φpðl2Þ þ Φnðl2ÞÞ þ 2Φxðl1ÞðΦxðl1Þ − Φxðl2ÞÞ: ðA4Þ

These functions can be Taylor-expanded as

Φiðp; lÞ ¼
X∞
n¼0

l2n

ð2nþ 1Þ2n!Δ
n
lΦiðp; lÞjl¼0≐

X∞
n¼0

l2nΦð2nÞ
i ðpÞ: ðA5Þ

Similarly, the expansion of AðcÞ reads

AðcÞ ¼ 8π

ð1þ ξ=2Þ2
�X∞

n¼1

Bn
c
~ξn þ

X∞
n¼0

Dn
c
~ξ
2nþ1
2

�
: ðA6Þ

In general, explicit expressions for the coefficients Bc;Dc are very complicated. These, however, simplify somewhat, when
the potential VNN is separable. Below, we give the expressions for the first few coefficients in the case of the Hulthén
potential, defined in B,

B1
c ¼

1

4mN

Z
d3pd3qd3l

ð2πÞ9
Φcðp;q; lÞ

l4
VNNðp;qÞ;

B2
c ¼

1

4mN

Z
d3pd3qd3l

ð2πÞ9
Φcðp;q; lÞ

l6
VNNðp;qÞ

�
λ

16πmNβ
− 2ðp2 þ q2 þ 2γ2Þ

�
;

Dn
c ¼

1

4mN

Z
d3pd3qd3l

ð2πÞ9
VNNðp;qÞ
1 − AðlÞ

l2nΦ2n
c ðp;qÞ

ðl2 þ 2ðp2 þ γ2ÞÞðl2 þ 2ðq2 þ γ2ÞÞ for n ¼ 0; 1: ðA7Þ

Here, the function Φcðp;q; lÞ is defined as

Φcðp;q; lÞ ¼ ðΦpðpþ l=2Þ þ Φnðpþ l=2ÞÞðΦpðqþ l=2Þ þ Φnðqþ l=2ÞÞ: ðA8Þ

The Taylor expansion of this function at a small l takes the form

Φcðp;q; lÞ ¼
X∞
n¼0

l2n

ð2nþ 1Þ2n!Δ
n
lΦcðp;q; lÞjl¼0≐

X∞
n¼0

l2nΦð2nÞ
c ðp;qÞ: ðA9Þ
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Further, the quantity AðlÞ in (A7) is defined as

AðlÞ ¼ 1

2mN

Z
d3q
ð2πÞ3

VNNðq;qÞ
l2 þ 2ðq2 þ γ2Þ : ðA10Þ

APPENDIX B: NUCLEON-NUCLEON POTENTIALS USED IN THE CALCULATIONS

In this section, we specify the nucleon-nucleon potentials used in the calculations. For the kaon, nucleon masses and the
deuteron binding energy the following input values have been used:

MK ¼ 493.677 MeV; mN ¼ 938.92 MeV; εd ¼ 2.2249 MeV: ðB1Þ
1. Hulthén potential

The simplest form of the NN potential assumed in this work is the so-called Hulthén potential. This is a rank-1 separable
potential, defined by

VNNðp;qÞ ¼ λgðpÞgðqÞ; gðpÞ ¼ 1=ðp2 þ β2Þ: ðB2Þ

Here β ¼ 1.4 fm−1 while λ ¼ 32πmNβðβ þ γÞ2 for consistency reasons. In its ansatz, it is very similar to the more
sophisticated phenomenological potentials, such as those given in Refs. [45]. While being less realistic than the latter, it
contains only long-range physics and is, therefore, perfectly suited to study some basic properties of our framework, e.g.,
the expansion in ξ.

2. PEST potential

A more realistic potential is a separable one which is built from the Paris potential (see Ref. [48]) by applying the
Ernst-Shakin-Thaler method. This potential is, therefore, referred to as the PEST potential in Ref. [45]. It practically
coincides with the on- and off-shell behavior of the Paris potential and is given in a fairly simple form,

VNNðp;qÞ ¼ −gðpÞgðqÞ; gðpÞ ¼
X6
i¼1

Ci

p2 þ β2i
; ðB3Þ

where the parameters βi and Ci are given in the table below. It should also be mentioned that the Lippmann-Schwinger
equation, which is used in Ref. [45], has a different normalization than the one in the present paper:

ðγ2 þ p2ÞΨðpÞ ¼ mN

4π

Z
d3qVNNðp;qÞΨðqÞ: ðB4Þ

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 i ¼ 6

βi½fm−1� 1.5 3.0 4.5 6.0 7.5 9.0
Ci½MeV1=2 fm−1=2� 3.3786469 −637.41908 1750.2432 3561.3535 −12939.749 8656.6202
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