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Coupled-channel πK and ηK scattering amplitudes are determined by studying the finite-volume energy
spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators,
including both those resembling a qq̄ construction and those resembling a pair of mesons with relative
momentum, a reliable excited-state spectrum can be obtained. Working at mπ ¼ 391 MeV, we find a
gradual increase in the JP ¼ 0þ πK phase shift which may be identified with a broad scalar resonance that
couples strongly to πK and weakly to ηK. The low-energy behavior of this amplitude suggests a virtual
bound state that may be related to the κ resonance. A bound state with JP ¼ 1− is found very close to the
πK threshold energy, whose coupling to the πK channel is compatible with that of the experimental
K⋆ð892Þ. Evidence is found for a narrow resonance in JP ¼ 2þ. Isospin-3=2 πK scattering is also studied,
and nonresonant phase shifts spanning the whole elastic scattering region are obtained.
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I. INTRODUCTION

Understanding the spectrum and properties of excited
hadron states directly from the underlying theory of quarks
and gluons, QCD, remains an unsolved problem. One
challenge lies in the fact that excited hadrons are not
asymptotically observable states but rather appear as
resonant enhancements in the scattering of lighter stable
hadrons. Another challenge is the difficulty of computation
within QCD which, at the energy scales of relevance, is a
nonperturbative, relativistic theory. One technique which
has shown significant progress when applied to hadron
spectroscopy is lattice QCD. Lattice QCD is a systemati-
cally improvable calculational scheme in which the quark
and gluon fields are discretized on a finite cubic grid,
rendering the theory amenable to numerical computation.
Monte Carlo sampling of possible field configurations
leads to estimates for hadronic correlation functions whose
spectral content can then be explored.
The interactions of the lightest octet of pseudoscalar

mesons are important since they are the stable particles to
which excited hadrons decay. In this manuscript we will
explore πK scattering using lattice QCD techniques. This
channel, having net strangeness, cannot proceed through
intermediate quarkless states, which simplifies the phe-
nomenology with respect to isospin-0 channels in which
glueball states may appear.

The bulk of our knowledge of kaon scattering amplitudes
comes from kaon beam experiments at Stanford Linear
Accelerator Center (SLAC) in the 1970s and 1980s. πK
scattering amplitudes were extracted from reactions using a
proton target by extrapolating to small momentum transfer,
t, where nearly on-shell pion exchange dominates. Phase-
shift analysis of the flavor-exotic isospin-3=2 amplitudes as
extracted from Kþp → Kþπþn and K−p → K−π−Δþþ by
Estabrooks et al. [1] indicates a weak repulsive interaction
in the S-wave and very weak interactions in the P-wave and
higher.
In isospin 1=2, as well as the phase-shift analysis of

Estabrooks et al., there is a considerable set of πK scattering
results provided by the LASS experiment—of particular
relevance here are the final states πK [2], ηK [3], and ππK
[4]. In the partial-wave analysis of πK → πK, a peaking
amplitude in the S-wave is interpreted as a broad K⋆

0ð1430Þ
resonance which appears to saturate unitarity. The narrow
elastic vector resonance, K⋆ð892Þ, presents itself as a rapid
rise in the P-wave phase shift. The D-wave amplitude has a
peak, well below the unitarity limit, that can be interpreted as
an inelastic K⋆

2ð1430Þ resonance. Further resonances in the
“natural-parity” series (JP ¼ 3−; 4þ; 5−) are observed at
higher energies.
ηK is the first inelastic channel to open, but LASS reports

no significant amplitude into ηK for Ecm < 2 GeV in S-, P-,
and D-waves. Indeed the inelasticity in P- and D-waves and
higher appears to come first from the ππK final state, where
a significant amplitude is seen in 1− above 1.3 GeV and a*dudek@jlab.org
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peak in 2þ at the K⋆
2ð1430Þ. ππK also couples to the

“unnatural-parity” series, notably to JP ¼ 1þ, where peak-
ing behavior is observed that is commonly described in
terms of two axial resonances, K1ð1270Þ; K1ð1400Þ.
Resonances may or may not appear as bumps in hadron

scattering amplitudes, and the least model-dependent way
to describe them is to consider them as pole singularities in
the analytic continuation of a scattering amplitude to
complex values of energy. Narrow resonances, correspond-
ing to sharp peaks in amplitudes, or rapid phase motion,
appear as poles that lie close to the real energy axis where
scattering amplitudes are determined experimentally. Poles
that lie further away can lead to less rapid variation in
the physical amplitudes—a relevant example is the κ
resonance (the strange analog of the σ in ππ), located atffiffiffi
s

p
≈ ð650 − i280Þ MeV. Strongly constrained analysis,

using both experimental data and theoretical constraints,
is required to determine the presence and location of such
poles [5].
Our task here is to compute hadron scattering amplitudes

within lattice QCD and to explore their singularity content.
The explicit relationship between elastic scattering ampli-
tudes and the discrete rest-frame spectrum in a finite
periodic volume has been known for some time [6,7],
along with later extensions considering the case of moving
frames [8–11]. We have previously utilized these relations
to determine, from first-principles lattice QCD computa-
tion, the detailed energy dependence of the scattering
amplitudes for nonresonant ππ isospin-2 elastic scattering
[12,13] as well as the resonant isospin-1 case in which the ρ
appears [14]. Recently we have seen the extension of the
finite-volume formalism to the case of coupled-channel
scattering [15–17].
To extract the discrete spectrum of eigenstates of QCD in

a finite volume, we will compute a matrix of two-point
correlation functions, h0jOiðtÞO†

jð0Þj0i, using a large basis
of operators, fOig, constructed from quark and gluon
fields. The basis will include constructions resembling a
single qq̄-like meson, ψ̄Γψ , as well as others which
resemble a pair of mesons having definite relative momen-
tum, ðψ̄Γ1ψÞ~p1

ðψ̄Γ2ψÞ~p2
. The matrix of correlation func-

tions, which can be efficiently computed using the
distillation framework [18], is analyzed variationally to
obtain a reliable extraction of many excited energy levels.
With the finite-volume spectrum from a range of

volumes and frames in hand, we can attempt to extract
scattering amplitudes as a function of energy. This is a
challenge since the energy of any single eigenstate of finite-
volume QCD is a function of the scattering amplitudes at
that energy for all kinematically open scattering channels.
The approach we will follow in this paper (following
Ref. [17]) is to parameterize the energy dependence of
scattering amplitudes and attempt to describe the energy
spectrum of many states at once by varying the parameters.
The analytic forms for the scattering amplitudes can then be

examined for their resonant pole content and relative
couplings to scattering channels.
Our calculations herein will use an artificially heavy light

quark mass, such that the pion has a mass of 391 MeVand
the kaon has a mass of 549 MeV. As such these first results
can only be compared qualitatively to the experimental
situation. We will present a determination of the scattering
amplitudes for the lowest few natural-parity partial waves,
JP ¼ 0þ; 1−; 2þ, with I ¼ 1

2
and 3

2
.

πK scattering has been studied previously using lattice
QCD methods. Beane et al. [19] studied I ¼ 3

2
scattering at

threshold with 2þ 1 flavors of dynamical quarks and
extracted the S-wave scattering length at four different
pion masses by obtaining the energy levels corresponding
to the mesons at rest on the lattice. Sasaki et al. also
performed a calculation to extract the I ¼ 3

2
threshold

behavior and furthermore obtained the I ¼ 1
2
scattering

length [20] by including a qq̄–like operator and allowing
for quark line annihilation. An earlier study of the scatter-
ing lengths in the quenched approximation appears in
Ref. [21]. Fu obtained scattering lengths [22] in the S-
wave at six quark masses, and Fu et al. have studied the
I ¼ 1

2
, JP ¼ 1− interactions [23], although their determi-

nation neglects S-wave interactions which are known to be
sizable. Lang, Prelovsek et al. [24,25] have studied both
isospin combinations and have extracted scattering lengths
and resonance parameters in small volumes and without
dynamical strange quarks. Alternative strategies to extract
πK scattering information from finite-volume lattice QCD
computations, based upon unitarization of a chiral
Lagrangian, are presented in Refs. [26,27].
Some results described in this paper previously appeared

in Ref. [28]—herein we expand considerably upon the
details of the calculation. The remainder of the manuscript
is structured as follows. In Sec. II we summarize the details
of the lattices used and present relevant parameters, masses,
and thresholds. In Sec. III we discuss consequences of the
reduced symmetry of a finite cubic lattice and the partial-
wave mixing that occurs. In Sec. IV we introduce our
methods for constructing operators and obtaining correla-
tion functions and describe some typical spectra. In Sec. V
we describe the methods used to obtain infinite-volume
scattering amplitudes from finite-volume energy spectra.
Section VI contains our analysis of isospin-1=2 scattering;
beginning with a limited set of data obtained at rest, we
obtain the coupled-channel S-wave amplitudes in isolation,
and then, adding information from in-flight spectra, we
simultaneously describe S- and P-waves in the elastic
scattering region below ηK threshold. We then present
our main result using a large set of data to constrain the
coupled-channel S- and P-waves, before presenting an
extraction of the D-wave amplitude. Section VI concludes
with a discussion of the resonant state content of the
determined amplitudes. In Sec. VII we present the case of
πK I ¼ 3

2
scattering, before we summarize our findings in
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Sec. VIII. Appendixes follow, discussing SUð3Þ flavor
relations, the Chew–Mandelstam phase space and present-
ing the operator basis used to determine finite-volume
spectra.

II. CALCULATION DETAILS

The discrete energy spectrum of a quantum field theory
in a finite volume can be determined from the exponential
time dependence of Euclidean correlation functions. These
functions are averaged over a finite ensemble of gauge
fields, and as such, there is some statistical uncertainty in
their determination which complicates a reliable extraction
of the energy. To ameliorate this issue, we have employed
the use of an anisotropic lattice formulation with a temporal
lattice spacing that is smaller than the spatial lattice
spacing. This fine temporal resolution allows for a more
precise determination of the energy while reducing the
computational cost relative to a fully isotropic lattice
calculation with equivalently fine resolution.
We have chosen to use an anisotropic Symanzik

improved gauge action and a dynamical Clover fermion
action with two flavors of light quarks and one heavier
strange quark. The boundary conditions are periodic in
space and antiperiodic in time. Details of the formulation
are presented in Refs. [29,30].
We work in the isospin limit where the u; d quark

masses are set equal, with a strange quark somewhat
heavier. The dynamical quark mass parameters are set to
atml ¼ −0.0840 and atms ¼ −0.0743 which gives a pion
mass of around 391 MeVand a kaon around 549 MeV. The
anisotropy of the lattice, determined from the dispersion
relation of the pion, is ξ≡ as=at ¼ 3.444ð6Þ [13]; the
spatial lattice spacing is ∼0.12 fm, and the temporal lattice
spacing is about 0.035 fm. The lattice volumes used in this
work, 163 × 128; 203 × 128, and 243 × 128, correspond to
spatial extents L ∼ 2; 2.5; 3 fm. Some details of the lattices
and quark propagators used in the correlation function
construction are provided in Table I.
This anisotropic lattice formulation has been used

successfully in previous calculations of the light meson
spectrum [14,18,31–34], baryon spectrum [35–37], ππ
scattering [12,13], and observables involving charm quarks
[38–40].

Some computed masses and thresholds on these lattices
are listed in Table II. The kaon mass, computed on the three
volumes, is extrapolated to infinite volume to give the value
in Table II (using the same method presented in Ref. [13]
for the pion mass). From the kaon dispersion relation, we
determine an anisotropy ξK ¼ 3.449ð4Þ which is compat-
ible with the value determined from the pion dispersion
quoted above.
In this work we will make use of the volume dependence

of the spectrum which arises from hadronic interactions.
There can also be exponentially suppressed volume correc-
tions to hadron energies that are not related to interactions—
the largest of these typically fall off exponentially withmπL,
and so, with mπL ranging from 3.8 to 5.7 in this work, we
expect these effects to be small; previous investigations
[13,41] have not found a large variation of the pion mass
with L on these lattices. In addition, here and in other studies
[13,14], we obtain a good fit when data from the three
volumes are fit simultaneously, and when scattering phase
shifts are extracted on each volume independently, these are
generally consistent between volumes.
We will primarily present dimensionful results in units of

the inverse temporal lattice spacing to avoid unnecessary
ambiguitywith howone sets the lattice scale.When required
to quote a value in physical units, we will choose our usual
scale setting procedure where at ¼ atmΩ

mphys
Ω
, using theΩ baryon

mass determined on these lattices, atmΩ ¼ 0.2951, and the
physical Ω baryon mass mphys

Ω ¼ 1672 MeV.

III. REDUCED SYMMETRY OF A FINITE
CUBIC LATTICE

The symmetry of a lattice in a finite volume is reduced
compared to that of continuous space in an infinite volume.
Our implementation, a spatially cubic lattice discretization

TABLE I. The lattice ensembles and propagators used in this
paper. Shown are the lattice sizes, the number of configurations,
the number of time sources (which varies somewhat according to
the correlator momentum and irrep), and the number of distil-
lation vectors Nvecs featuring in the correlator construction [18].

ðL=asÞ3 × ðT=atÞ Ncfgs Ntsrcs Nvecs

163 × 128 479 4–8 64
203 × 128 603 2–6 128
243 × 128 553 2–6 162

TABLE II. Stable meson masses, atm, determined on the lattice
ensembles in Table I. Pion and kaon masses are from an infinite-
volume extrapolation, while the η, ω, and η0 are those evaluated
on the 243 lattices. Also shown are the threshold energies, atEthr.

atm

π 0.06906(13)
K 0.09698(9)
η 0.10406(56)
ω 0.15678(41)
η0 0.1750(54)

atEthr

πK 0.16604(15)
ηK 0.20104(57)
ππK 0.23510(28)
ωK 0.25376(42)
πηK 0.27010(58)
η0K 0.2764(54)
πππK 0.30416(40)
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in a cubic box with periodic boundary conditions, has the
symmetry of a cube. The relevant symmetry group for a
system of hadrons overall at rest is therefore the double
cover of the octahedral (or cubic) group with parity, OD

h .
For a system “in flight” with overall nonzero momentum,
~P ≠ ~0, the appropriate symmetry is reduced further to that
of the little group [42], LGð~PÞ, the subgroup of OD

h which

leaves ~P invariant.1 The spatially periodic boundary con-
ditions quantize the allowed momenta, ~p ¼ 2π

L ðn;m; pÞ,
where L is the spatial extent of the lattice in physical units
and n;m; p are integers; we write this in a compact notation
as ~p ¼ ½n;m; p� or ½nmp�.
The consequences of this reduced symmetry for scatter-

ing have been discussed in detail in Refs. [13,14]. In brief,
at zero momentum the continuum spin, J, is not a good
quantum number, and states are instead labelled by
irreducible representations, irreps, of OD

h . Parity, P, and

any relevant flavor quantum numbers are still good. For
~P ≠ ~0, J and the helicity, λ, are not good quantum numbers,
and states are classified by the irreps of LGð~PÞ. Any
relevant flavor quantum numbers are still good, but, in
general, parity is not apart from for the λ ¼ 0 components
where ~η≡ Pð−1ÞJ is a good quantum number [43]. In this
study we consider scattering of two unequal-mass hadrons,
and so there is no “extra” symmetry that arises with two
identical hadrons, or two hadrons degenerate in mass
related by some flavor symmetry [14], which forbids
odd and even partial waves (of opposite parities) from

mixing when ~P ≠ ~0.
The manner in which the various components of a spin J

state (for ~P ¼ ~0) or various helicities (for ~P ≠ ~0) are
distributed, or subduced, across the relevant lattice irreps,
Λ, is presented in Table II of Ref. [13]. The subduction of
πK partial waves with l ≤ 4 into lattice irreps is shown in
Table III—the pattern is the same for both isospins and for
ηK scattering. It is apparent from the table that odd and
even partial waves (with P ¼ − andþ, respectively) appear
in the same irreps when ~P ≠ ~0—this features arises when
the scattering particles are of unequal mass.

IV. SPECTRUM DETERMINATION

We obtain the finite-volume spectrum in a given irrep by
analyzing a matrix of Euclidean time correlation functions,

CijðtÞ ¼ h0jOiðtÞO†
jð0Þj0i; ð1Þ

where a basis of hadronic creation operators, fO†
i g, trans-

forming with the desired quantum numbers, has been
constructed from quark and gluon fields. Each correlation
function in this matrix has a spectral decomposition
featuring a common discrete spectrum of finite-volume
eigenstates jni,

CijðtÞ ¼
X
n

e−Ent
1

2En
h0jOið0ÞjnihnjO†

jð0Þj0i: ð2Þ

Within the chosen operator basis, we seek the optimal
linear combination for interpolation of each possible low-
lying finite-volume eigenstate from the vacuum. This can
be achieved in a variational manner [44,45] by solving a
generalized eigenvalue problem [46],

CðtÞvnðtÞ ¼ λnðtÞCðt0ÞvnðtÞ; ð3Þ
where the eigenvalues λn ∼ e−Enðt−t0Þ are fitted to determine
the state energy, En, and where the eigenvectors provide
the weights in construction of the optimal operators,
Ω†

n ∼
P

iv
n
i O

†
i . The eigenvectors, which we extract inde-

pendently on each time slice, should be constant in time
for t > t0. They are related to the matrix elements,
hnjO†

i ð0Þj0i, whose relative values can provide some
information on the internal structure of each eigenstate.

TABLE III. The pattern of subductions of πK (or equivalently
ηK) partial waves, l ≤ 4, into lattice irreps, Λ, where N is the
number of embeddings of this l in the irrep and n is a nonzero
integer. This is derived from Table II of Ref. [13] by considering
the subductions of l when ~P ¼ ~0 or the various helicity
components for each l when ~P ≠ ~0, effectively Table VII of
Ref. [13] and Table III of Ref. [14] combined. The LGð~PÞ column
shows the double-cover little group (the corresponding single-
cover little group relevant for only integer spin is given in
parentheses). Also shown are the various J ≤ 4 or jλj ≤ 4 that
appear in each of the relevant irreps. The JP values and jλj~η ¼ 0−

in italics are in the unnatural-parity [P ¼ ð−1ÞJþ1] series and do
not contribute to pseudoscalar-pseudoscalar scattering.

~P LGð~PÞ Λ
JPð~P ¼ ~0Þ

πK lN

jλjð~ηÞð~P ≠ ~0Þ
Aþ
1 0þ; 4þ 01; 41

T−
1 1−; 3−; ð4−Þ 11; 31

Eþ 2þ; 4þ 21; 41

[0, 0, 0] OD
h (Oh) Tþ

2 2þ; 4þ; ð3þÞ 21; 41

Tþ
1 4þ; ð1þ; 3þÞ 41

T−
2 3−; ð2−; 4−Þ 31

A−
2 3− 31

A1 0þ; 4 01; 11; 21; 31; 42

E2 1,3 11; 21; 32; 42

½0; 0; n� Dic4 (C4v) B1 2 21; 31; 41

B2 2 21; 31; 41

A2 4; ð0−Þ 41

A1 0þ; 2; 4 01; 11; 22; 32; 43

B1 1,3 11; 21; 32; 42

½0; n; n� Dic2 (C2v) B2 1,3 11; 21; 32; 42

A2 2; 4; ð0−Þ 21; 31; 42

A1 0þ; 3 01; 11; 21; 32; 42

½n; n; n� Dic3 (C3v) E2 1,2,4 11; 22; 32; 43

A2 3; ð0−Þ 31; 41

1For notational convenience we define LGð~0Þ ¼ OD
h .
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The spectral decomposition in Eq. (2) is strictly complete
only in the limit that the time extent of the lattice is infinite,
T → ∞. For finite values of T, there are small additional
contributions which enter with amplitudes suppressed by a
factor which is at worst e−mπT . As discussed in Ref. [13],
we can remove these, without invalidating any of the
requirements for a variational solution, using a procedure
of weighting the correlators with an appropriate exponen-
tial time dependence before forming the shifted correla-
tor, CðtÞ − Cðtþ δtÞ.
The Hadron Spectrum Collaboration has utilized these

techniques previously to extract a large number of excited
states. See Refs. [32,47] in which further implementation
details can be found.

A. Operator construction

In Ref. [14], which considered the ρ resonance in ππ
elastic scattering, it was found that in order to reliably extract
the complete low-energy spectrum of finite-volume eigen-
states operators resembling both single hadrons and multi-
hadrons must be included in the basis. In a series of papers,
we have developed general methods for constructing such
operators [13,31,32,43] having a range of different spin and
spatial structures, respecting the symmetries of a finite-
volume cubic lattice. This technology has proven effective in
applications to ππ scattering [12–14]—we use analogous
constructions in this work and so refer to Ref. [14] for a more
extensive summary and to the aforementioned references for
details of the constructions. The only differences in the
current work are in the flavor structure of the operators and
in the particular combinations of momenta used to construct
“meson-meson”-like operators.
Our “single-meson” operators, projected onto the defi-

nite quantized momentum, ~k, are fermion bilinearsP
~xe

i~k·~x
P

ijwijq̄ið~x; tÞΓtqjð~x; tÞ, where the Γt are operators
acting in space, color, and Dirac spin space on a time slice,
t, containing a Dirac gamma matrix structure combined
with some number of gauge-covariant derivatives. The
quark fields qi include the up, down, and strange quarks,
½u; d; s�. The sum over the quark-field labels and weights
wij project the bilinear into a SUð3ÞF flavor representation
with strangeness and total isospin, ðS; IÞ, and z-component
of the isospin, Iz. Examples of the isospin construction
include strangeness-0, isospin-0 states with 8F or 1F in
flavor. In this case, the isospin weights are diagonal in
flavor with w ¼ diagð 1ffiffi

6
p ; 1ffiffi

6
p ; −2ffiffi

6
p Þ and diagð 1ffiffi

3
p ; 1ffiffi

3
p ; 1ffiffi

3
p Þ,

respectively. Since we consider u and d quarks which
are lighter than the strange quark, SUð3ÞF is not exact, and
the optimal operator to interpolate the lightest S ¼ 0; I ¼ 0
state, the η meson, may be a linear superposition of these
two flavor constructions.
Calculations using these operators for light isovectors

and kaons are discussed in Refs. [31,32] and for light
isoscalars in Refs. [33,34]. These operators are constructed

to have definite continuum JP, and then, for ~k ¼ ~0, their
various Jz-components are subduced into the relevant irreps

of the octahedral group. For ~k ≠ ~0, from the JP operators,
we first form operators with definite helicity, λ, and then
subduce the components into irreps of the little group,

LGð~kÞ [43]. At both zero and nonzero momentum, the
result is an operator labelled by the lattice irrep, Λ, and irrep
row, μ. The octahedral group construction of the fermion
bilinears is done independently of the flavor representation.
In this study we construct multimeson operators from

products of operators for pseudoscalar π, K, and η mesons.
The single-meson operators are in the one-dimensionalΛP ¼
A−
1 irrep at rest and the one-dimensional A2 irrep for all the

nonzero momenta we consider; in addition, the π and η
operators have negative and positive G-parity respectively.
We use “optimized” operators, constructed as the optimal

linear combination of single-meson operators to interpolate
each ground-state pseudoscalar, allowing us to perform
analyses at smaller Euclidean times. For operators at rest,
up to three spatial derivatives are used, while in flight, up to
two derivatives are used. The optimal linear combinations of
operators to interpolate theη, containingboth octet and singlet
components, are obtained from a variational analysis [34],
and the weights of the dominant octet constructions are used
to formour projected η operators—this is done independently
in each moving frame. The efficacy of the optimized operator
procedurewas demonstrated in Ref. [13]—as a shorthand we

represent them by πð~kÞ, Kð~kÞ, and ηð~kÞ.
Following Ref. [13] we construct a general πK creation

operator as

ðπKÞ½~k1;~k2�†~P;Λ;μ
¼

X
~k1∈f~k1g�
~k2∈f~k2g�
~k1þ~k2¼~P

Cð~P;Λ; μ; ~k1; ~k2Þπ†ð~k1ÞK†ð~k2Þ; ð4Þ

where the operator has overall momentum ~P and is in
irrep Λ (row μ) of LGð~PÞ. For clarity we have suppressed
the sum over isospin components to give total I ¼ 1

2
or 3

2
.

An exactly analogous construction is used to build a ηK

operator: π†ð~kÞ is replaced with η†ð~kÞ. In this equation C is
a generalized Clebsch–Gordan coefficient for Λ1⊗Λ2→Λ

with Λi ¼ A−
1 of OD

h if ~ki ¼ ~0 and Λi ¼ A2 of LGð~kiÞ if
~ki ≠ ~0. Subject to the constraint that ~k1 þ ~k2 ¼ ~P, the sum

over ~ki is over all momenta in the star of ~ki, denoted f~kig⋆,
i.e. all momenta related to ~ki by an allowed lattice rotation
(in the cases we consider, this is all momenta of magnitude

j~kij). Reference [13] gives further details and explicit
values of C. In some cases we will use a shorthand notation

where we label operators by j~kj2; for example π1K2

indicates ~k1 ¼ ½001�; ~k2 ¼ ½011�.
In this study we extract spectra for the hadronic system

with overall momentum ~P ¼ ½0; 0; 0�, [0, 0, 1], [0, 1, 1],
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[1, 1, 1], and [0, 0, 2]. The combinations of ~k1; ~k2 used to
construct πK and ηK operators for I ¼ 1

2
and πK operators

for I ¼ 3
2
are given in Tables V, VI, VII, VIII, and IX of

Appendix C.
In this calculation we do not include three-meson (or

higher) operator constructions, nor do we include local
qqq̄q̄ (or higher) constructions. While all the operator
constructions we have chosen should have some overlap
with all states of a given quantum number, the overlap may
be too small for adequate resolution via the variational
method, in which case the obtained energy spectrum may
not be precisely determined. This situation can happen in
the energy region above a multimeson threshold and was
observed and discussed in the study of isospin-1 ππ in
Ref. [14]. The analogous situation in this work is the
opening of three-meson thresholds, the lowest of which is
ππK. We will comment more on the implications of such
thresholds in later sections of the paper.

B. Correlator construction

Wemake use of the distillation framework [18] to evaluate
the two-point correlation functions constructed from the
operators defined in the previous section. Distillation is a
quark-field smearing method that is designed to increase
overlap onto the low modes relevant in low-lying hadronic
states. We define a smearing operator on a time slice, t,
which acts in 3-space, ~x, and color space, a,

□ð~xa; ~yb; tÞ ¼
XN
n¼1

ξnð~xa; tÞξ†nð~yb; tÞ;

where we choose the fields fξng to be the lowest N
eigenvectors of the gauge-covariant Laplacian on time
slice t. The smearing of the quark fields in a correlation
function can be factorized allowing the “perambulators,”
the combination of eigenvectors and the inverse of
the lattice representation of the Dirac matrix, M−1

q ,

ξ†nðt0ÞM−1
q ðt0; tÞξmðtÞ≡ τ½q�nmðt0; tÞ, to be constructed as

matrices in distillation space for each quark, q. Similarly,
the quark smeared operators presented in Sec. IVA can be
factorized into a matrix representation in distillation space,

ðξ†nðtÞΓtξmðtÞÞ~k ≡ Φnmð~k; tÞ. The resulting correlation func-
tion traces are over the set of eigenvectors, which is much
smaller than the full lattice space. The perambulators used in
this work, corresponding to the light and strange quark Dirac
inversions, have been previously computed and reused in
several other computations which also spell out the advan-
tages of the method [13,14,31,32]. Some details are provided
in Table I.
Construction of correlators in isospin 3=2 necessarily

involves only πK operator constructions, while in isospin
1=2 we include single-meson operators as well as πK and
ηK multimeson operator constructions as in Eq. (4). In the

case of meson-meson operators at both source and sink, the
correlation function takes the formX

~k1;~k2

C�ð~P;Λ; μ; ~k1; ~k2Þ
X
~k3;~k4

Cð~P;Λ; μ; ~k3; ~k4Þ

×
D
ðq̄□wAΓA

t □qÞ~k1ðq̄□wBΓB
t □qÞ~k2

× ðq̄□wCΓC
0□qÞ†~k3ðq̄□wDΓD

0 □qÞ†~k4
E
; ð5Þ

where the source is at time slice 0 and the annihilation
operator is at time slice, t. The bilinears are projected into
an appropriate flavor representation with weights w. As
indicated in Table I, we will average over several time
sources. The sums over Clebsch–Gordan coefficients
project the creation operator, featuring the single particle
constructions of operators C and D, and the annihilation
operators A and B, onto total momentum ~P. Integration of
the quark fields, replacing the up and down quark labels
with a light quark l, leads to terms featuring Wick
contractions which include those of form

Tr
h
τ½q1�ð0; tÞΦAð~k1; tÞτ½q2�ðt; tÞΦBð~k2; tÞ

× τ½q3�ðt; 0ÞΦC†ð~k3; 0Þτ½q4�ð0; 0ÞΦD†ð~k4; 0Þ
i
;

where the trace is over the distillation and Dirac spin
indices with perambulators of some quark flavor qi, either l
or s. A schematic representation of the required single-
meson and meson-meson operator contractions is shown in
Fig. 1. For correlators with ηK constructions at source and

FIG. 1 (color online). Schematic Wick contractions required to
compute correlation functions with the πK, ηK, and kaon single-
meson operators described in the text. Also required is each of
these contractions with source ↔ sink.
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sink, there are 20 such diagrams. The Clebsch–Gordan
projection of the creation and annihilation operators onto
definite momentum imply there are many such sums for

each set of momentum ~ki. The largest number of such pairs

is 12 for momentum type ~k ¼ ½011� projected onto total

momentum ~P ¼ ~0. In this case, there are 2880 diagrams
after the Wick contractions of Eq. (5). When evaluating
correlation functions, we include all required Wick
contractions.

C. Typical determined spectra

As an example of the quality of determined spectra, we
present in Fig. 2 the eigenvalues of Eq. (3), λnðtÞ, for the
lowest 12 states in the isospin-1=2 ½001�A1ð243Þ channel
extracted from the 27-dimensional correlation matrix built
using the operator basis listed in the figure. We are clearly
able to obtain a detailed spectrum, including near-degen-
erate states, with statistical precision on the energy values at
or below 1%.
The matrix elements hnjO†

i ð0Þj0i are also well deter-
mined in the solution of Eq. (3), and their relative size can
give us some insight into the makeup of the states in our
excited spectrum. As an example, we show in Fig. 3 the
spectrum and relative overlap matrix elements (normalized

as in Ref. [31]) of the lowest 15 states in the [011] A1ð243Þ
channel extracted from a 27-dimensional correlation
matrix. In the main we observe a separation between states
with significant overlap onto πK operators from those with
overlap onto ηK operators. This likely reflects the relatively
small breaking of SUð3Þ flavor symmetry in our calculation
with mπ ¼ 391 MeV; mK ¼ 549 MeV; mη ¼ 589 MeV.
With SUð3Þ flavor symmetry, the J ¼ 0; 2… channels
have much reduced coupling to ηK compared to πK
[3,48]. On the other hand, the J ¼ 1; 3… channels have
equal coupling to πK; ηK, but since the first vector
resonances above ηK threshold likely lie off the top of
the scale we have presented, we are unlikely to see this
coupling manifested. The origin of these SUð3Þ flavor
arguments is presented in Appendix A.
If QCD were such that hadrons had no residual inter-

actions, our meson-meson operator basis would be diago-
nal, with for example an operator πn2πKn2K

producing

an eigenstate of energy En:i:
cm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEn:i:

lat Þ2 − n2~Pð
2π
L Þ2

q
where

En:i:
lat ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ n2πð2πL Þ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ n2Kð2πL Þ2
q

. If states appear

in the spectrum that differ from these energies, there is
some indication of interactions, including the possibility of
resonances.
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FIG. 2 (color online). Eigenvalues of Eq. (3), λnðtÞ, in the isospin-1=2 case ~P ¼ ½001�, Λ ¼ A1 on the 243 lattice. Plotted as
eEnðt−t0ÞλnðtÞ are the data points and a time-slice-correlated fit of the form λnðtÞ ¼ ð1 − AnÞe−Enðt−t0Þ þ Ane−E

0
nðt−t0Þ. The set of 27

operators used in the variational basis is listed beneath the plot.
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The presence in Fig. 3 of a state below the πK threshold,
significantly below the first noninteracting πK level, and
which has strong overlap onto single-meson operators,
likely suggests a J ¼ 1 K⋆ state that is either bound or
barely above threshold. Above the πK threshold, we
observe several states displaced somewhat from noninter-
acting πK positions, which show some degree of overlap
onto both πK-like constructions and single-meson oper-
ators. Above the ηK threshold, we observe states with
strong overlap onto ηK-like constructions lying quite close
to noninteracting ηK positions. High in the spectrum, above
the ππK threshold2 a state is observed having strong
overlap onto single-meson operators which in the rest
frame would overlap with J ¼ 2. These operators can
overlap onto other J at nonzero momentum—a detailed
discussion of this point can be found in Ref. [43].
While these qualitative features can guide us toward the

resonant content of the theory, ultimately, rigorously correct
determinations will come from a quantitative description of
the scattering amplitudes which we can extract from the
volume and frame dependence of the discrete spectra. In the
next section, we will describe how this can be achieved.

V. SCATTERING AMPLITUDES FROM
FINITE-VOLUME SPECTRA

To connect the discrete finite-volume spectra obtained in
our lattice calculation to infinite-volume scattering ampli-
tudes, we make use of the formalism originally proposed by
Lüscher [6] for elastic scattering in the rest frame and
subsequently extended to in-flight systems [8,9], scattering
of particles of unequal mass [10,11], and multiple coupled
channels [15–17,49]. For an L × L × L box with periodic
boundary conditions, the condition determining the spec-

trum in the irrep Λ, for a moving frame ~P ¼ 2π
L
~d, relevant to

the case of any number of pseudoscalar-pseudoscalar
scattering channels, can be expressed as

det
h
δijδll0δnn0 þ iρit

ðlÞ
ij ðδll0δnn0 þ iM

~d;Λ
ln;l0n0 ðq2i ÞÞ

i
¼ 0:

ð6Þ

In this expression the channels are labelled by an
index i, with ρiðEcmÞ ¼ 2ki

Ecm
the phase space for that

channel where ki is the momentum in the cm frame,
k¼ 1

2Ecm
ðE2

cm−ðm1þm2Þ2Þ1=2ðE2
cm−ðm2−m1Þ2Þ1=2. The

scattering amplitudes for partial wave l appear in the

t-matrix, tðlÞij ðEcmÞ. The matrix

M
~d;Λ
ln;l0n0δΛΛ0δμμ0 ¼ S

~dΛμn
lm M~d

lm;l0m0S
~dΛ0μ0n0
l0m0 ð7ÞFIG. 3 (color online). The spectrum and relative operator over-

laps with overall momentum [011] in the A1 irrep on the 243 lattice
for isospin 1=2. The grey boxes represent finite-volume energy
levels. The thin solid lines in the center indicate noninteracting
energy levels while the dashed lines show kinematic thresholds.

2But recall that we are not including ππK-like operators in the
basis.
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is a known function of the dimensionless variable
q2i ¼ ðkiL

2π Þ2. The angular-momentum basis Mlm;l0m0 is
projected into the appropriate little-group irreps, Λ, using
the subduction matrices, S, presented in Ref. [43]. The
index n indicates the nth subduction of partial wave l
into irrep Λ—Table III presents the subduced angular-

momentum content of each irrep. M~d
lm;l0m0 is as given in

Ref. [11], as the extension to unequal scattering masses of
Eq. (89) of Ref. [8].
In the case of elastic scattering, where only a single

channel is open, scattering in partial wave l can be
described by a single real energy-dependent parameter,
the phase shift, δlðEcmÞ, which appears in the scattering
amplitude as tðlÞ ¼ 1

ρ e
iδl sin δl. If only a single partial

wave appears in the quantization condition, Eq. (6), then for
each finite-volume energy eigenvalue, En, a value of δðEnÞ
can be extracted by solving Eq. (6). Unfortunately such a
situation is never realized exactly—the matrix in Eq. (7) is
formally a matrix of infinite dimension in l, and thus
Eq. (6) is simultaneously a function of many δl.
The difficulty is illustrated in Table III which shows the

lowest few l values appearing in each irrep. For example,
the at-rest Aþ

1 irrep, which we might expect to be the cubic
analog of l ¼ 0, contains also l ¼ 4 and higher partial
waves. In-flight irreps are seen to be even more dense in the
low-lying l space. In practice, close to threshold, the
angular-momentum barrier ensures that phase shifts have
the behavior, δl ∼ k2lþ1

cm , which typically suppresses higher
partial waves relative to lower l such that we are justified in
truncating the number of partial waves included.3

At higher energies, as new two-body channels open up,
the full form of Eq. (6), as the determinant of a matrix in
both angular-momentum and channel space, becomes the
relevant quantization condition determining the spectrum in
a finite volume.4 Given knowledge of the energy depend-

ence of a scattering matrix, tðlÞij ðEcmÞ, one can solve this

condition for a discrete spectrum, fE~P;Λ
n gðLÞ, in volume

L × L × L. Of course the practical problem at hand is the
reverse of this, to find the t-matrix given a lattice QCD

calculation of the spectrum fE~P;Λ
n gðLÞ. The challenge is

that, even in the case of dominance of a single partial wave,
l, for each level En, the quantization condition contains
multiple unknowns, namely the elements of the t-matrix.
Even accounting for the constraints from S-matrix unitarity
and time-reversal invariance, this is an underconstrained
problem once more than one channel is open.

One approach to solving this problem is to parameterize

the energy dependence of tðlÞij ðEcmÞ in a manner satisfying
S-matrix unitarity and time-reversal invariance and to then
attempt to describe the entire spectrum fEng simultane-
ously by varying free parameters in the parametrization.
Describing the spectrum for a range of volumes and in
several moving frames with a relatively small number of
parameters allows us to build an overconstrained system.
The effectiveness of the procedure was tested in a toy
model in Ref. [17]. Including multiple partial waves is
straightforward: an independent parametrization is con-
structed for each l and included in Eq. (6).
Explicitly we minimize a χ2 function describing the

difference between the lattice QCD obtained spectra,
EcmðL; ~PΛnÞ, and the spectra corresponding to a particular
scattering parametrization,

χ2ðfajgÞ ¼
X
L

X
~PΛn

~P0Λ0n0

½EcmðL; ~PΛnÞ − Epar
cmðL; ~PΛn; fajgÞ�

× C−1ðL; ~PΛn; ~P0Λ0n0Þ
× ½EcmðL; ~P0Λ0n0Þ − Epar

cmðL; ~P0Λ0n0; fajgÞ�;
ð8Þ

where Epar
cmðL; ~PΛn; fajgÞ is the nth solution of Eq. (6)

with a parametrized t-matrix depending upon parameters
fajg. Data covariance, C, whose off-diagonal elements
between energies evaluated on the same ensemble can be
nonzero, can be estimated using jackknife.

A. t-matrix parametrizations

In parametrizing scattering amplitudes, as well as ensur-
ing that S-matrix unitarity is respected, we should aim to
use forms which can be analytically continued in the
complex s ¼ E2

cm plane. This will allow us to examine
the resulting amplitudes for poles, argued to be the least
model-dependent way to describe bound states and
resonances.
In the case of elastic scattering, two convenient para-

metrizations are the effective-range expansion and the
relativistic Breit–Wigner form. The effective-range expan-
sion,

k2lþ1
cm cot δl ¼ 1

al
þ 1

2
rlk2cm þOðk4cmÞ; ð9Þ

builds in the correct threshold behavior imposed by the
angular-momentum barrier and characterizes the scattering
by a series of constants, the first two of which, al; rl, are
known as the scattering length and the effective range. This
parametrization is quite flexible, being capable of describ-
ing repulsive scattering, the presence of a bound state, or
even a resonance.

3See for example Ref. [13] where the role of higher partial
waves was explored in ππ isospin-2 scattering.

4A kinematically closed channel can have an effect on the
quantization condition in a limited energy region below its
threshold as the elements of M are not exactly zero below
threshold but rather decay exponentially to the constant required
to decouple the channel.
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A common procedure to describe an elastic resonance is
to use the relativistic Breit–Wigner form,

tðlÞðsÞ ¼ 1

ρðsÞ
ffiffiffi
s

p
ΓlðsÞ

m2
R − s − i

ffiffiffi
s

p
ΓlðsÞ

; ð10Þ

where mR is the “Breit–Wigner mass” and ΓlðsÞ is the
energy-dependent width which may be parametrized in a
form that ensures the correct behavior near threshold,

ΓlðsÞ ¼ g2R
6π

k2lþ1
cm

sm2ðl−1Þ
R

, with gR being a coupling. More sophis-

ticated forms for the width capable of damping out the
k2lþ1
cm behavior well above the threshold were discussed
in Ref. [14].
For Eq. (6) to have solutions, we require our para-

metrizations to satisfy S-matrix unitarity—this is somewhat
harder to ensure in the coupled-channel case than in the
elastic case. One very convenient method is to use the
K-matrix formalism in which we express the elements of
the inverse of the t-matrix for partial wave l as

t−1ij ðsÞ ¼
1

ð2kiÞl
K−1

ij ðsÞ
1

ð2kjÞl
þ IijðsÞ: ð11Þ

The factors ð2kiÞ−l ensure the correct behavior at
kinematic thresholds [50], while KðsÞ is a real symmetric
matrix to be parametrized. S-matrix unitarity is ensured if
ImIijðsÞ ¼ −δijρiðsÞ for energies above the kinematic
threshold in channel i, and ImIijðsÞ ¼ 0 below the thresh-
old. There is, however, some flexibility in the choice of the
real part of IðsÞ, with the simplest option being to set it
equal to zero above threshold. A choice which captures
more of the correct analytic properties of scattering
amplitudes, known as the Chew–Mandelstam prescription
[51], relates the real part to the imaginary part using a
dispersion relation—our implementation is described in
Appendix B.
The main freedom in this method lies in the para-

metrization of the K-matrix—a simple choice, which can
accommodate a wide range of scattering behaviors, is to
construct it from a sum of poles plus a polynomial in s,

KijðsÞ ¼
X
p

gðpÞi gðpÞj

m2
p − s

þ
X
n

γðnÞij sn; ð12Þ

where gðpÞi are real “couplings” for pole p in channel i, the
mp are real, and γ

ðnÞ
ij form constant real symmetric matrices.

The presence of poles in the K-matrix does not guarantee
that the t-matrix will have poles close to the real-s axis, but
including a K-matrix pole is often an efficient way to
describe a t-matrix pole if one needs to be present.
Another alternative is to parametrize the inverse of the

K-matrix as a symmetric matrix of polynomials,

K−1
ij ðsÞ ¼

XNij

n¼0

cðnÞij sn; ð13Þ

with cðnÞij being real parameters.

VI. πK, ηK COUPLED-CHANNEL SCATTERING
IN ISOSPIN 1=2

Utilizing the methods described in Sec. IV, we obtain
matrices of correlation functions in a large number of irreps
with j~Pj2 ≤ 4. Each of these are analyzed independently
using the variational method, and the energy levels
obtained potentially provide information on the partial
waves subduced into that irrep. We begin by considering
the Aþ

1 irrep at rest, which is likely to be dominated by
l ¼ 0 at low energies, with the next lowest partial wave,
l ¼ 4, being heavily suppressed by the angular-momentum
barrier.

A. S-wave at rest

In Fig. 4 we show the spectrum of finite-volume
eigenstates in the ~P ¼ ½000�, Aþ

1 irrep. Our use of three
volumes provides 15 energy levels in the region of interest,
between πK and πππK thresholds.
Before attempting a description in terms of coupled

πK; ηK scattering amplitudes, we may examine the quali-
tative features of the spectrum in Fig. 4. We note that there
is always a state below πK threshold—these overlap
strongly onto the operator π0K0 (see Fig. 5) and likely
indicate that πK in the S-wave is attractive at low energy.
The presence of levels close to, but slightly above, each ηK
noninteracting level may be interpretable as a weak,
repulsive interaction in ηK S-wave scattering. At each

0.16

0.20

0.24

0.28

 16  20  24

FIG. 4 (color online). ~P ¼ ½000� Aþ
1 spectrum. The data points

are the energies obtained from variational analysis of a correlation
matrix featuring up to eight single-meson and up to six meson-
meson operators at L=as ¼ 16; 20; 24. The red bands are the πK
noninteracting level positions, while the green bands represent
the ηK noninteracting level positions (the width of the bands
follows from the uncertainty on the meson masses). The dashed
grey line shows the η0K threshold.
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volume there is clearly an “additional” state beyond the
number expected on the basis of noninteracting meson
pairs that appears between atEcm ¼ 0.20 and 0.24. The
position of this level, which has significant overlap onto the
single-meson operators in our basis, as well as to πK-like
operators (see Fig. 5), is strongly volume dependent. This
may be an indication of a broad scalar resonance coupling
to πK. This qualitative description does not suggest strong
coupling between the πK and ηK channels. We include
three points which lie slightly above the η0K threshold
without having included η0K-like operators in the varia-
tional basis. We will proceed assuming that these levels are
reliable, and we will not consider η0K to be an open channel
in the t-matrix.
We will explore a parametrization for the coupled

πK; ηK scattering matrix in the S-wave which has sufficient
freedom to describe the presence of resonances which may
couple to one or both channels, as well as nonresonant
features including repulsion. We consider a simple K-
matrix representation [cf. Eq. (12)], including a single pole
plus a constant term:

K ¼ 1

m2 − s

� g2πK gπKgηK

gπKgηK g2ηK

�
þ
�
γπK;πK γπK;ηK

γπK;ηK γηK;ηK

�
:

ð14Þ

The resulting t-matrix is constructed using the Chew–
Mandelstam phase space with ReIijðs ¼ m2Þ ¼ 0 (see
Appendix B for more details). Were this parametrization,
with its six free parameters, to prove incapable of describ-
ing the data, it could be augmented with additional poles or
a higher-order polynomial. Should parameters be redun-
dant, this would be visible in the parameter correlation
matrix. Later in the manuscript, we will consider a broader
set of possible parametrizations.
As described in Sec. V, we minimize a χ2, varying the

free parameters in the model, until the best agreement is
obtained between the energy levels from the variational
description of lattice QCD correlation functions, shown
in Fig. 4, and the discrete set of energies that satisfy
Eq. (6) for a given model t-matrix. The result of this
fit is

m ¼ ð0.2466� 0.0020� 0.0009Þ · a−1t
gπK ¼ ð0.165� 0.006� 0.002Þ · a−1t
gηK ¼ ð0.033� 0.010� 0.003Þ · a−1t
γπK;πK ¼ 0.184� 0.054� 0.030

γπK;ηK ¼ −0.52� 0.20� 0.06

γηK;ηK ¼ −0.37� 0.07� 0.05

2
666666664

1 0.35 −0.38 0.17 0.27 −0.19
1 −0.05 −0.16 0.85 0.08

1 0.26 −0.11 0.64

1 0.10 0.25

1 0.05

1

3
777777775

χ2=Ndof ¼
6.40
15 − 6

¼ 0.71: ð15Þ
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FIG. 5 (color online). ~P ¼ ½000� Aþ
1 spectrum. For each state we show a histogram indicating the relative value of overlap hnjOij0i for

each operator in the basis: πK (red), “single meson” (orange), and ηK (green).
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In these fit results, the first quoted error is statistical and
corresponds in the usual way to an increase in χ2 by one unit,
while the second reflects the uncertainty in the scattering
meson masses, atmπ , atmK , atmη, and anisotropy, ξ. The
parameter correlation matrix is also shown, indicating that in

general there are not particularly large correlations between
parameters. We can plot the finite-volume energy levels
corresponding to this best-fit model t-matrix obtained by
solving Eq. (6) for the parametrization in Eq. (14) with
parameter values given by Eq. (15) alongside those obtained
in the lattice QCD calculation—this is shown in Fig. 6,
where the agreement is clear, as one would expect from a fit
with a χ2=Ndof close to unity.
In Fig. 7 we take the t-matrix resulting from this

minimization and plot the multichannel phase shifts,
δiðsÞ, with i ¼ πK; ηK and inelasticity, ηðsÞ, defined in
the usual manner,

tij ¼
8<
:

ηe2iδi−1
2iρi

ði ¼ jÞffiffiffiffiffiffiffi
1−η2

p
eiðδiþδjÞ

2
ffiffiffiffiffiffi
ρiρj

p ði ≠ jÞ
; ð16Þ

where ρiðsÞ ¼ 2ki=
ffiffiffi
s

p
is the phase space for channel i.

To assess whether features present in Fig. 7 are truly
required to describe the finite-volume spectra, or whether
they are artifacts of the particular parametrization
utilized, we also attempt a description using a different
form for the K-matrix. This second fit uses Eq. (13) with
NπK;πK ¼ NπK;ηK ¼ NηK;ηK ¼ 1 and is able to describe the
spectra with χ2=Ndof ¼ 12.2=ð15 − 3Þ ¼ 1.02. The result-
ing phase shifts and inelasticity are plotted in Fig. 8 along
with the previous fit. We see that the large-scale behavior is
the same in both fits, although two detailed features prove
to not be robust under the change in paramatrization: the
visible cusp in δπK at the opening of the ηK threshold and
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FIG. 7 (color online). The curves show the phase shifts and
inelasticity as defined in Eq. (16) for the parametrization in
Eq. (14) with parameter values given by Eq. (15). The inner and
outer error bands reflect the two sets of errors (statistical and
variation in meson masses and anisotropy) quoted. Top: δπKl¼0

and δηKl¼0 in degrees. Middle: minimization result, model energies
with uncertainties in orange and lattice QCD energies in black.
Bottom: the inelasticity. Note the position of the three lowest
points below the πK threshold that enter in the fit and tightly
constrain the t-matrix near threshold.
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FIG. 8 (color online). Dashed curves as in Fig. 7. Solid curves
show the phase shifts and inelasticity for an alternative para-
metrization of the K-matrix given by Eq. (13) and described in
the text.
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FIG. 6 (color online). ~P ¼ ½000� Aþ
1 spectrum. Orange boxes:

spectrum at each integer value of L=as obtained by solving
Eq. (6) for the parametrization in Eq. (14) with parameter values
given by Eq. (15); the parameter errors and correlations are
propagated through the calculation with the resulting uncertainty
on the energy shown by the vertical size of the box. The original
lattice QCD spectrum is shown in black.
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the degree of deviation from unity of the inelasticity
below atEcm ∼ 0.24.
Note that our earlier suspicion that πK and ηK are

essentially decoupled is manifested in the fit results; Fig. 8
shows the inelasticity which, while it has a large uncer-
tainty, and does vary somewhat under a change in para-
metrization, hardly deviates away from unity, indicating
complete decoupling, over the entire constrained energy
region. Arguments based upon SUð3ÞF flavor symmetry,
outlined in Appendix A, suggest than in even-l partial
waves, the resonant octet coupling to πK is strongly
enhanced over coupling to ηK, leading to an approximate
decoupling. As mentioned in Sec. I, such a decoupling is
observed experimentally in the JP ¼ 0þ; 2þ channels [2,3].
The S-wave amplitudes we have constrained using this

limited set of data contain some suggestive properties. A
phase shift rising through 90°, as shown in Figs. 7 and 8 is
often indicative of a resonance. It appears from this fit that
such a resonance may be coupled to πK and not ηK, but the
uncertainty on the inelasticity is large. To obtain a more
constrained description of the scattering, we require more
data—we now proceed to investigate a much larger set of
irrep spectra.

B. Finite-volume spectra

We now begin the task of improving our description of
the S-wave and determining the behavior of higher par-
tial waves.
In Fig. 9 we show the spectrum in the T−

1 irrep on our
three volumes, which we expect to be dominated by the
l ¼ 1 partial wave. We have not included ππK-like
operators in our basis, and as such we expect our spectrum
near and above the ππK threshold to be incomplete and/or
inaccurate. Even if we had obtained the complete spectrum,
the formalism for relating scattering amplitudes to finite-
volume spectra when three-body channels are open is not
yet completely mature [52–54]. As such we will largely
limit our consideration to energies below the ππK threshold
at atEcm ¼ 0.235. We note that for each volume there is a
state very close to the πK threshold, which would not be
expected in a noninteracting theory where the first level
would appear much higher and correspond to π1K1 (the
lowest red curve in Fig. 9). The observed near-threshold
level overlaps strongly with the single-meson operators in
the variational basis—this, along with the lack of any
significant volume dependence, is strongly suggestive of a
low-lying vector meson; we will explore this further below.
πK and ηK scattering with l ¼ 2 are the lowest

angular-momentum contributions in the Eþ and Tþ
2 irreps

shown in Fig. 10. We note that there may be an excess
of states around atEcm ¼ 0.28 compared to the noninter-
acting spectrum—this may signal the presence of a narrow
JP ¼ 2þ resonance.
In Figs. 11 and 12, we show the energy levels

extracted when the scattering system is in flight with
respect to the lattice. There are typically more levels in
the same energy region compared to the at-rest case since
the allowed values of lattice momentum lead to many
more noninteracting energy combinations. In the unequal-
mass case that we consider here, there is a “duplication”
of certain levels when compared to the equal mass case

since πð~k1ÞKð~k2Þ ≠ πð~k2ÞKð~k1Þ when j~k1j ≠ j~k2j.
In Table III, considering in-flight irreps, we see that all

partial waves appear in A1. In [001] B1 and B2, the lowest
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FIG. 9 (color online). As for Fig. 4 but for the T−
1 irrep

(JP ¼ 1−; 3−…). Note that there are no noninteracting energy
levels at thresholds in this case. The ππK threshold is indicated by
a dashed gray horizontal line.
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FIG. 10 (color online). As for Fig. 9 but for the Eþ (JP ¼ 2þ; 4þ…) and Tþ
2 (JP ¼ 2þ; 3þ; 4þ…) irreps. Note that in the Tþ

2 case a
spectrum was computed only on the 243 volume.
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allowed partial wave is l ¼ 2, while the other irreps we
consider have l ¼ 1 as their lowest partial wave. In flight,
typically, unless there is some symmetry preventing it, there
is a lowest allowed partial wave, and all higher partial
waves contribute.
A near-threshold state, as noted earlier in the ½000�T−

1

case, appears in every irrep where the l ¼ 1 partial wave
features. In particular, since l ¼ 1 has a helicity zero
component that is subduced into all in-flight A1 irreps, it
will always appear there, complicating the extraction of an
S-wave amplitude near threshold.
As was hinted at in the at-rest Eþ; Tþ

2 discussion, there
appears to be a JP ¼ 2þ resonance near atEcm ¼ 0.27
which can be seen most clearly in Fig. 11 as the lowest
level, overlapping strongly with single-meson operators, in
the ½001�B2 spectrum.
We will begin analyzing these spectra by considering the

P-wave at low energies.

C. Near-threshold JP ¼ 1− state

In every irrep which contains a subduction of l ¼ 1,
we observe a finite-volume eigenstate very close to the
πK threshold. We begin by considering irreps in which
l ¼ 1 is the lowest allowed partial wave, these being T−

1 at
rest, ½001�E2, ½011�B1;2, and ½111�E2. The l ¼ 2 amplitude
is expected to be very small in this region as we will
verify later.
We will explore single-channel elastic parametriza-

tions to describe the spectrum in the energy region

0.16 < atEcm < 0.18 which, on the basis of the qualitative
observations made above, we expect to feature either a
bound state or a resonance only very slightly above
threshold. A form capable of describing either of these
possibilities is the relativistic Breit–Wigner of Eq. (10); this
describes a bound state if the mass parameter takes a value
below the threshold energy, since then the “width” term
becomes real and acts as a self-energy correction to the
mass of the bound state. We make use of the energy levels
from all relevant irreps on the 203 and 243 volumes and the
at-rest T−

1 energy level from the 163 lattice, leading to 11
data points to constrain the fit. The best fit description is
given by

mR ¼ ð0.16488� 0.00014� 0.00012Þ · a−1t
gR ¼ 5.72� 0.45� 0.27

�
1 −0.77

1

�

χ2=Ndof ¼
7.84
11− 2

¼ 0.87;

where we observe that the mass parameter is found to be
below the πK threshold (at atEcm ¼ 0.16604ð15Þ) and that
we are describing a bound state rather than a resonance.
The zero of the denominator of tðsÞ is shifted very slightly
from

ffiffiffi
s

p ¼ mR by the continuation of i
ffiffiffi
s

p
Γ1ðsÞ which

becomes real below threshold. That the width term is
appearing as what amounts to a “self-energy” correction
likely explains the relatively large correlation between the
mR and gR parameters.
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FIG. 11 (color online). ~P ¼ ½001� finite-volume spectra for irreps A1; E2; B1, and B2. Light grey points in A1; E2 have large overlap
onto single-meson operators that we identify with unnatural parity JP ¼ 1þ states which cannot couple to πK or ηK.
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There is additional information we can utilize to
further constrain our description of this amplitude, which
comes from the helicity zero components of the P-wave
amplitude that are subduced into the in-flight A1 irreps.
There is a state near threshold in each of those irreps, as
can be seen in Figs. 11 and 12. The challenge presented
in using these is that we require knowledge of the l ¼ 0
amplitude at the corresponding energy to reliably extract
information for the l ¼ 1 amplitude from Eq. (6).
We attack this by taking the coupled-channel K-

matrix fit result described in Eqs. (14) and (15),
obtained from the Aþ

1 spectrum at rest, shown in
Fig. 7, to fix the value of the l ¼ 0 phase shift at
the appropriate level energies. Making the reasonable
assumption that l ≥ 2 amplitudes are negligible, with
the known value of δl¼0 in hand, the coupled Eq. (6) for
δl¼0; δl¼1 has only δl¼1 unknown which can be solved
for. In this way we may refit including a further eight
points to constrain the amplitude:

mR ¼ ð0.16482� 0.00009� 0.00009Þ · a−1t
gR ¼ 5.93� 0.26� 0.14

�
1 −0.46

1

�

χ2=Ndof ¼
9.23
19− 2

¼ 0.54: ð17Þ

We notice that the statistical uncertainties are reduced
with the larger set of data, and we also observe a smaller
degree of correlation betweenmR and gR which may be due
to the fact that we are making use of data over a larger
energy region such that the energy dependence in the
i

ffiffiffi
s

p
Γ1ðsÞ term of the denominator is being sampled.

Since the energy levels span the scattering threshold,
plotting the elastic phase shift, which changes from real to
imaginary as we cross the threshold from above, is not
ideal. One convenient option is to plot k2lþ1 cot δl against
energy—this quantity is continuous and real through the
threshold, and for the relativistic Breit–Wigner, Eq. (10), it
vanishes at Ecm ¼ mR,
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FIG. 12 (color online). As Fig. 11 for ~P ¼ ½011�; ½111�; ½002�. Note the noninteracting levels very close to thresholds in the case
½002�A1.
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k3 cot δ1 ¼ ðm2
R − sÞ 6π

ffiffiffi
s

p
g2R

: ð18Þ

We plot this quantity in Fig. 13. The spread of points in
energy is to be expected even for a bound state, as the M
function in the finite-volume quantization condition,

Eq. (6), varies irrep to irrep. Note that A1 points are
systematically lower in energy than those from the E and B
irreps which is a consequence of this (the effect of the
attractive S-wave interaction is found to be small at these
energies). The fit curve, corresponding to Eq. (17), is also
shown, where it is clear that inclusion of the A1 irrep levels
better constrains the slope, which determines gR.
We conclude that there is a vector meson bound state in

this calculation, and we will return to the interpretation of
this state later.

D. πK elastic scattering below ηK threshold

We now briefly study the elastic πK scattering region
below the ηK threshold where single-channel parametriza-
tions are justified. For the S-wave, an effective-range
expansion is adopted, while for the P-wave we first consider
a Breit–Wigner as in the previous section. Since now we are
considering a larger energy region (out to atEcm ¼ 0.201), it
is not guaranteed that the Breit–Wigner will still be capable
of describing the amplitude.
We proceed with simultaneous inclusion of l ¼ 0 and

l ¼ 1 waves in Eq. (6) with the parametrizations described
above, where we are assuming that l ¼ 2 and higher
amplitudes play a negligible role at these low energies.
Fitting to all energy levels below atEcm ¼ 0.201 in irreps
Aþ
1 , T

−
1 from all three volumes, and irreps ½001�A1, ½001�E2,

½011�A1, ½011�B1, ½011�B2, ½111�A1, ½111�E2, and ½002�A1

from the 203 and 243 volumes, we obtain

al¼0 ¼ ð17.2� 0.9� 1.2Þ · at
mR ¼ ð0.16498� 0.00009� 0.00024Þ · a−1t
gR ¼ ð4.72� 0.17� 0.28Þ

2
64
1 0.1 0.2

1 −0.2
1

3
75

χ2=Ndof ¼
42.8
37 − 3

¼ 1.26; ð19Þ

in the case that we restrict the S-wave effective-range expansion to a scattering length. Adding an effective-range term to
the S-wave amplitude does not improve the fit, and thus we explore adjusting the P-wave parametrization. Replacing the
Breit–Wigner with a single-channel version of a P-wave K-matrix featuring a single pole plus a constant,
KðsÞ ¼ g2=ðm2 − sÞ þ γ, and using the Chew–Mandelstam phase space subtracted at the pole, improves the χ2=Ndof ,

al¼0 ¼ ð17.4� 0.9� 1.2Þ · at
m ¼ ð0.16480� 0.00014� 0.00011Þ · a−1t
g ¼ 0.480� 0.023� 0.027

γ ¼ ð10.5� 2.3� 2.4Þ · a2t

2
6664
1 0.0 0.1 0.0

1 −0.6 −0.5
1 0.9

1

3
7775

χ2=Ndof ¼
20.5
37 − 4

¼ 0.62: ð20Þ

In Fig. 14 we show the phase shifts corresponding to
these two fits. We obtain the elastic phase-shift points for
each energy level using Eq. (6). For the irreps where P-
wave is the lowest, it is straightforward to neglect the

D-wave and higher. For irreps where the S-wave is lowest,
we fix the P-wave using the fit result given in Eq. (17) and
use Eq. (6) again assuming the D-wave and higher may be
neglected. The Breit–Wigner parametrization gives a good

 0
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FIG. 13 (color online). The πK threshold region in the l ¼ 1
partial wave plotted as k3 cot δ. The darker points are obtained
from irreps where l ¼ 1 is the lowest allowed, while the lighter
points are extracted from A1 irreps where the l ¼ 0 contribution
is accounted for as described in the text. The curve shows the fit
to a relativistic Breit–Wigner with the parameters in Eq. (17).
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description in the energy region around the bound state;
however, there is one P-wave point at higher energy that is
poorly described. The added freedom in the P-wave K-
matrix resolves this.

E. πK;ηK amplitudes constrained by 80 energy levels

We now embark upon a description of the bulk of the
spectrum data presented in Figs. 4, 9, 10, 11, and 12, in terms

of a coupled πK; ηK scattering system. We will restrict
ourselves initially to energies below the ππK threshold,
except for the Aþ

1 at-rest irrep which is dominated by JP ¼
0þ which does not couple to ππK—in this case we consider
energy levels up to πππK threshold at atEcm ¼ 0.304.
A description of the spectra is sought using K-matrix

parametrizations in each partial wave as defined in
Eqs. (11) and (12). We have explored many variations
of this, including using a simple phase space rather than the
Chew–Mandelstam type, using powers of the phase space
instead of momenta to provide the threshold behavior,
varying the subtraction point of the Chew–Mandelstam
functions and using the K-matrix parametrization of
Eq. (13) with a range of different polynomial orders.
The resulting phase shifts and inelasticities are found to
be broadly the same in every fit with error bands that
overlap for much of the region—further discussion of these
systematic variations will appear in Sec. VI H.
Our preferred choice is to parametrize the coupled

πK; ηK t-matrix using a K-matrix featuring a single pole
coupled to both channels plus a constant matrix [see
Eq. (14)]. We opt to use the Chew–Mandelstam phase
space subtracted such that ReIijðs ¼ m2Þ ¼ 0 where m2 is
the K-matrix pole position. Such a parametrization can be
used in both S- and P-waves according to Eq. (11). Initially
we will assume that the D-wave makes no significant
contribution—we will explore the sensitivity to this
assumption later in the manuscript.
Weused levels from the irreps ½000�T1 onL=as¼16;20;24,

½001�E2 on L=as ¼ 20; 24, ½011�B1; B2 on L=as ¼ 20; 24,
and ½111�E2 onL=as ¼ 20; 24—in total 19 energy levels—to
constrain a fit describing theP-wave amplitude. In this casewe
choose to use a constant term only in the γηK;ηK position, with
γπK;πK ¼ γπK;ηK ¼ 0. The result of the fit, which has
χ2=Ndof ¼ 15.0=ð19 − 4Þ ¼ 1.00, is

m ¼ ð0.16497� 0.00012� 0.00002Þ · a−1t
gπK ¼ 0.321� 0.022� 0.032

gηK ¼ 0.65� 0.11� 0.11

γηK;ηK ¼ ð17.3� 7.8� 6.1Þ · a−2t

2
6664
1 0.0 −0.6 −0.5

1 −0.4 −0.2
1 0.8

1

3
7775:

Fixing the P-wave amplitude to that presented above, we vary S-wave parameters to describe 61 energy levels
taken from A1 irreps: [000](16,20,24), [001](20,24), [011](20,24), [111](20,24), and [002](20,24). The result, with
χ2=Ndof ¼ 49.1=ð61 − 6Þ ¼ 0.89, is

m ¼ ð0.2458� 0.0014� 0.0004Þ · a−1t
gπK ¼ ð0.156� 0.004� 0.001Þ · a−1t
gηK ¼ ð0.027� 0.008� 0.008Þ · a−1t
γπK;πK ¼ 0.082� 0.046� 0.022

γπK;ηK ¼ 0.33� 0.13� 0.06

γηK;ηK ¼ −0.41� 0.05� 0.07

2
666666664

1 0.5 −0.3 0.0 0.1 −0.1
1 −0.4 −0.7 0.5 −0.1

1 0.3 −0.6 0.3

1 0.1 −0.1
1 −0.3

1

3
777777775
: ð21Þ
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FIG. 14 (color online). πK S-wave (upper) and P-wave (lower)
elastic scattering phase shifts. Red curve: scattering length in S-
wave and Breit–Wigner in P-wave [Eq. (19)]. Orange curve:
scattering length in S-wave and K-matrix pole plus constant in P-
wave [Eq. (20)]. The points were determined using Eq. (6) as
described in the text. In the P-wave there are three overlapping
points very slightly above threshold.
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The phase shifts and inelasticity corresponding to this fit
are shown in Fig. 15 for the S-wave and in Fig. 16 for the P-
wave. An alternative approach in which all 80 levels are
considered together, varying the S- and P-wave parameters
simultaneously, leads to a solution statistically compatible
with the one presented above.

As with the S-wave fit using only at-rest points, we find
only very weak coupling between the πK and ηK channels,
with an apparent weak repulsive interaction in the ηK
channel and a gradual rise in the πK phase shift. As
previously we note the rapid rise in the πK phase shift at
threshold, followed by a slow increase through 90° at
higher energies. In Sec. VI G we will analyze the resulting
t-matrix for its singularity structure and corresponding
resonance interpretation and consider a wider range of
amplitude parametrization forms.
Comparing to the earlier description of the at-rest Aþ

1

data alone, Eq. (15), we observe in Fig. 17 that the
additional in-flight data have reduced the statistical uncer-
tainties, weakened the prominent cusp in δπK0 , and reduced
the degree of inelasticity.

F. D-wave πK;ηK scattering

In the energy region below the ππK threshold, in the
volumes we have considered, there are insufficient energy
levels in irreps which have l ¼ 2 as the lowest partial wave
to constrain the amplitude. As we have previously dis-
cussed, the spectrum we have computed without ππK-like
operators should not necessarily be either complete or
accurate above the ππK threshold, nor are we strictly
justified in describing it solely using the 2 → 2 scattering
formalism of Sec. V. Nevertheless we will proceed in a
cavalier manner and attempt to describe the spectrum up to
the πππK threshold, assuming without justification that
there is negligible coupling between ππK and πK; ηK in the
D-wave.
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FIG. 15 (color online). S-wave phase shifts (in degrees) and
inelasticity from the K-matrix description, with parameters given
in Eq. (21), of a large set of energy levels. Finite-volume energy
levels constraining the fit are shown as points in the middle with
the at-rest data marked with filled circles and the in-flight data
with hollow circles.
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FIG. 16 (color online). As Fig. 15 for the P-wave.

-30

 0

 30

 60

 90

120

150

180

0.16 0.18 0.20 0.22 0.24 0.26 0.28
24
20
16

0.7

0.8

0.9

1.0
0.16 0.18 0.20 0.22 0.24 0.26 0.28

FIG. 17 (color online). S-wave phase shifts and inelasticity
from the K-matrix description, with parameters given in Eq. (21),
of a large set of energy levels (colored curves), compared to the
at-rest-only fit, Eq. (15) (grey dashed curves).
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We refer the reader to Ref. [55], in particular to their
Fig. 16, where the result of applying a 2 → 2 formalism in
an energy region where higher-multiplicity scattering is
occurring is shown. They observe that the resulting phase-
shift points do not lie on a single curve in the inelastic
region. Such an observation would be a signal that our
assumption of a negligible role for ππK is unjustified.

We proceed with an attempt to describe the spectra in
irreps having l ¼ 2 as their lowest partial wave—there are
24 such levels which come from Eþ, Tþ

2 , ½001�B1; B2

irreps. Under the assumption that the l ≥ 3 partial waves
are negligible in this energy region, we fit the energy levels
using a coupled πK; ηK K-matrix model of the “pole plus
constant” form we have used previously and find

m ¼ ð0.2789� 0.0011� 0.0002Þ · a−1t
gπK ¼ ð1.25� 0.06� 0.01Þ · at
gηK ¼ ð0.29� 0.64� 0.03Þ · at
γπK;πK ¼ ð21� 13� 5Þ · a4t
γπK;ηK ¼ ð34� 55� 7Þ · a4t
γηK;ηK ¼ ð−8� 30� 13Þ · a4t

2
666666664

1 −0.03 −0.34 0.50 0.04 0.45

1 −0.41 −0.34 −0.27 0.30

1 −0.26 0.64 −0.67
1 −0.03 0.35

1 0.10

1

3
777777775

χ2=Ndof ¼
16.0
24 − 6

¼ 0.89: ð22Þ

The resulting phase shifts and inelasticity are presented
in Fig. 18. As with the S-wave, this description is entirely
consistent with πK–ηK decoupling. The same SUð3ÞF
logic, outlined in Appendix A, applies to the D-wave as
applied to the S-wave. Under the assumption of complete
decoupling, we can attempt to independently directly
extract πK and ηK phase shifts using Eq. (6) from levels
identified as being “πK” or “ηK” by their overlaps (states
which overlap strongly with qq̄-like operators typically

also overlap with πK and not ηK and are included in the πK
list). These points are included in Fig. 18, where we note
immediately that the πK phase-shift points are compatible
with lying on a single curve. This, and the quite reasonable
χ2=Ndof for the fit in Eq. (22), may suggest that our neglect
of ππK scattering in the D-wave is justified at these
energies.
Figure 18 clearly shows a resonancelike behavior in πK

between atEcm ¼ 0.26 and 0.29. The rapid rise in the phase
shift suggests a narrow resonance, and indeed an elastic
relativistic Breit–Wigner description of just the levels with
large overlap onto πK-like operators is very successful with
atmR ¼ 0.2785ð8Þ and gR ¼ 9.26ð36Þ, where the energy-

dependent width is given by Γl¼2ðsÞ ¼ g2R
6π

k5

sm2
R
.

The description of the spectrum in Eþ by the model of
Eq. (22) is shown in Fig. 19 where it is seen to be quite
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FIG. 18 (color online). The D-wave phase shifts (in degrees)
and inelasticity as obtained from our lattice data from states with
energies up to the πππK threshold.
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FIG. 19 (color online). The finite-volume spectrum in the Eþ
irrep at integer values of L=as determined by solving Eq. (6) for
the model in Eq. (22) (orange), compared with the lattice QCD
energies (black).
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successful and where we explicitly see the expected
avoided level crossings (for L=as ¼ 16; 24) as πK non-
interacting levels cross the energy region where the
resonant behavior is present. Note that at L=as ¼ 20,
where an ηK noninteracting level is crossing the resonance,
there is not an avoided level crossing, indicative that the
resonance is not coupled to ηK as is born out in the
fit, Eq. (22).
Importantly, in the energy region below the ππK thresh-

old, where we obtained the S- and P-wave amplitudes
above, the D-wave phase shifts are tiny as can be seen in
Fig. 18. We implemented the fitted D-wave amplitude as a
fixed entry into the S- and P-wave fit to explore whether
our earlier neglect of the D-wave introduced a significant
error in the above S- and P-wave amplitudes and found that
including it induced negligible changes in the determined
amplitudes.

G. Resonance poles

Resonances and bound states may be identified with pole
singularities of the t-matrix when it is analytically con-
tinued to complex values of s. S-matrix unitarity implies
that tðsÞ is a multisheeted function of s, with a square-root
branch point at the opening of each kinematic threshold—a
common choice is to have the resulting branch cut run
along the positive real-s axis and to consider physical
scattering to occur just above that cut (at sþ iϵ). Passing
through the cut from above takes one from the “first” or
“physical” sheet to the “second” or “unphysical” sheet.
Poles off the real axis should not appear on the physical
sheet but may be present on unphysical sheets where they
appear in complex-conjugate pairs, sr � isi. These poles
correspond to resonances, and a common convention is to
express the pole position in the lower half-plane asffiffiffi
s

p ¼ m − iΓ=2, calling m and Γ the pole mass and width
of the resonance, respectively.
Close to a pole, the elements of the t-matrix can be

expressed as

tijðs ∼ s0Þ ∼
cicj
s0 − s

; ð23Þ

where the residue of the pole has been factorized into
couplings that can be interpreted as the coupling of the
resonance to the channels i; j (not to be confused with the
couplings gi in the K-matrix which do not in general have a
simple physical interpretation).
In single-channel scattering, there are just two sheets,

and they may be differentiated by the sign of the imaginary
part of k—on the physical sheet, we have Imk > 0, while
on the unphysical sheet, we have Imk < 0. If there are
multiple scattering channels, the number of sheets
increases, but it remains possible to label them in a similar
manner. For example, in our two-channel case, πK, ηK, the
physical sheet, sheet I, corresponds to ImkπK > 0,
ImkηK > 0. The most relevant unphysical sheet, usually

called sheet II, reached by going through the πK cut, but
not the ηK cut, has ImkπK < 0, ImkηK > 0. Another
unphysical sheet, sheet III, has ImkπK < 0, ImkηK < 0,
while sheet IV has ImkπK > 0, ImkηK < 0. In coupled-
channel scattering, a pole corresponding to a single
resonance can appear on more than one unphysical sheet
and may not have precisely the same position or residue
on different sheets.
It is also possible to have pole singularities of tðsÞ on the

real axis below threshold. If such a pole occurs on the
physical sheet, it corresponds to a bound state, while if it
appears on an unphysical sheet, it is termed a “virtual
bound state.” A familiar example is in nucleon-nucleon
scattering where the attractive triplet channel contains a
bound-state pole (the deuteron), while the singlet channel is
not attractive enough to support a bound state but does
feature a virtual bound-state pole.
In the previous section, we obtained parametrized

descriptions of scattering amplitudes. These were con-
strained by comparison between the finite-volume spec-
tra such amplitudes imply [according to Eq. (6)] and the
finite-volume spectra obtained in explicit lattice QCD
computation. Thus far we have presented only the
behavior of these amplitudes for real values of s. We
now turn to the structure of these amplitudes for
complex values of s, and in particular the presence
of any pole singularities.
In the πK P-wave, we described spectra over a limited

energy region around threshold by a Breit–Wigner form,
Eq. (17), and over a larger region up to the ηK threshold
using a single-channel K-matrix, Eq. (20). The Breit–
Wigner amplitude has a pole on the physical sheet on
the real axis at at

ffiffiffiffiffi
s0

p ¼ 0.16477ð17Þ, and the K-matrix
has a pole on the physical sheet on the real axis,
at

ffiffiffiffiffi
s0

p ¼ 0.16474ð10Þ, with couplings cπK ¼ ið9.8�
1.4Þ × 10−3 · a−1t in the Breit–Wigner case and ið10.0�
0.7Þ × 10−3 · a−1t in the K-matrix case. We thus interpret
this as a vector bound state.
In the coupled πK; ηK S-wave, we obtained a description

of spectra using a two-channel K-matrix with parameters
given in Eq. (21). The corresponding t-matrix is found to
have poles in the lower half-plane of the unphysical sheets
II and III at positions

at
ffiffiffiffiffi
s0

p jII ¼ 0.2473ð37Þ − i
2
0.099ð14Þ

at
ffiffiffiffiffi
s0

p jIII ¼ 0.2563ð27Þ − i
2
0.089ð7Þ;

with couplings

atcπK atcηK

sheet II 0.191ð18Þeiπ0.015ð23Þ 0.076ð32Þeiπ0.41ð8Þ
sheet III 0.164ð11Þeiπ0.064ð14Þ 0.052ð11Þeiπ0.27ð10Þ

which may admit an interpretation as a broad resonance
with large coupling to πK and small coupling to ηK.
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The same S-wave amplitude, Eq. (21), is found to
have another set of poles fairly close to the physical
scattering region—on each of sheets II and III there is a
pole on the real-s axis below πK threshold, located at
at

ffiffiffiffiffi
s0

p ¼ 0.120ð8Þ on sheet II and at
ffiffiffiffiffi
s0

p ¼ 0.147ð7Þ on
sheet III. The coupling to πK on II is atcπK ¼ 0.114ð5Þi,
while the coupling to the ηK channel is smaller and badly
determined. Thus, we find that this amplitude features a
virtual bound state as well as a broad resonance, and this
feature may account for the relatively rapid rise of the phase
shift at threshold.
The poles presented above might be considered to be

relatively far from the physical scattering region, and this
leads us to question whether poles at those positions are
truly required to describe the real-s behavior of the
scattering amplitudes. In the next section, we will find
corresponding poles in roughly the same locations when
describing the data using a wider range of K-matrix
parametrizations, which does suggest that the singularity
structure is not merely a result of the particular para-
metrization form utilized.
We have so far not considered another important class of

singularities in the t-matrix, the “left-hand” cuts which
occur in the simplest case on the real-s axis below all
kinematic thresholds. These can be thought of as being
related to the “forces” between hadrons, or as the effects of
crossed-channel processes. For example, exchange of a
meson of mass μ in the t channel, when projected into
s channel partial waves gives a logarithm with a cut starting
at s ¼ −μ2 þ 2ðm2

1 þm2
2Þ. The kind of K-matrix para-

metrizations we have used do not feature any such cuts and

thus can only be considered to provide a description of the
scattering amplitude in a limited energy region. If the left-
hand cuts of an amplitude are sufficiently close to the
energy region being considered, then they should not be
neglected—an example would be ππ I ¼ 0 scattering near
threshold, where the left-hand cut, beginning at s ¼ 0, is as
close to the physical scattering region as the nearest
resonant pole, the σ. We can estimate the position of the
onset of the left-hand cut in our case using K⋆ exchange in
the t channel using the K⋆ bound-state mass determined
above. This leads to a cut starting at s ¼ ð0.032ð1Þa−1t Þ2.
We note that the virtual bound-state pole discussed above is
much closer to the physical region than this cut. The
possibility of an Adler zero in the amplitude has not been
explored at this stage—it is not clear whether such features
of chiral symmetry breaking are relevant in a calculation
with mπ ∼ 400 MeV.
We found a description of the D-wave coupled πK; ηK

amplitude in Eq. (22). We remind the reader that this result
is not as rigorous as the S-,P-waves presented above, owing
to our lack of consideration of the ππK channel which is
kinematically open in the energy region we described. The
resulting t-matrix has resonance poles at

at
ffiffiffiffiffi
s0

p jII ¼ 0.2784ð12Þ − i
2
0.0110ð21Þ

at
ffiffiffiffiffi
s0

p jIII ¼ 0.2785ð12Þ − i
2
0.0117ð13Þ; ð24Þ

with a coupling to ηK that is consistent with zero and a
coupling to πK of value atcπK ¼ 0.0628ð31Þe−iπ0.030ð10Þ on

TABLE IV. Parametrizations of coupled-channel JP ¼ 0þ t-matrix.

Name Equation Number of parameters χ2=Ndof

K-matrix poleþ const Kij ¼ gigj
m2−s þ γij 6 0.89

K-matrix poleþ linear Kij ¼ gigj
m2−s þ γijs 6 0.93

K−1 poly f1; 0; 1g K−1 ¼
"
cð0ÞπK;πK þ cð1ÞπK;πKs cð0ÞπK;ηK

cð0ÞπK;ηK cð0ÞηK;ηK þ cð1ÞηK;ηKs

#
5 0.93

K−1 poly f2; 0; 1g K−1 ¼
"
cð0ÞπK;πK þ cð1ÞπK;πKsþ cð2ÞπK;πKs

2 cð0ÞπK;ηK

cð0ÞπK;ηK cð0ÞηK;ηK þ cð1ÞηK;ηKs

#
6 0.90

K−1 poly f1; 1; 1g K−1 ¼
"
cð0ÞπK;πK þ cð1ÞπK;πKs cð0ÞπK;ηK þ cð1ÞπK;ηKs

cð0ÞπK;ηK þ cð1ÞπK;ηKs cð0ÞηK;ηK þ cð1ÞηK;ηKs

#
6 0.95

K−1 poly f1; 0; 0g K−1 ¼
"
cð0ÞπK;πK þ cð1ÞπK;πKs cð0ÞπK;ηK

cð0ÞπK;ηK cð0ÞηK;ηK

#
4 0.93

K−1 poly f2; 0; 0g K−1 ¼
"
cð0ÞπK;πK þ cð1ÞπK;πKsþ cð2ÞπK;πKs

2 cð0ÞπK;ηK

cð0ÞπK;ηK cð0ÞηK;ηK

#
5 0.93

K−1 poly f2; 1; 0g
K−1 ¼

"
cð0ÞπK;πK þ cð1ÞπK;πKsþ cð2ÞπK;πKs

2 cð0ÞπK;ηK þ cð1ÞπK;ηKs

cð0ÞπK;ηK þ cð1ÞπK;ηKs cð0ÞηK;ηK

#
6 0.87
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sheet II and a statistically compatible value on sheet III. This
JP ¼ 2þ pole is much closer to the real axis than the 0þ
pole presented earlier, corresponding to a narrower reso-
nance that appears to be only coupled to πK.

H. Varying the parametrizations

Parametrizing the t-matrix using the K-matrix given in
Eqs. (11) and (12) is an arbitrary choice that was selected
because it respects physically important properties of the
t-matrix such as unitarity but also has the flexibility to
describe the physics present in resonant and nonresonant
coupled-channel scattering. It is important to establish that
the resonance properties presented above are generic
properties of the scattering amplitude and not specific to
the particular choice of parametrization we have made.
A range of possible parametrizations has been explored

to describe the finite-volume spectra—a subset is presented
in Table IV. Many of them are based upon the form given in
Eq. (13) and are labelled by the order of the polynomial in
each entry of K−1: fNπK;πK; NπK;ηK; NηK;ηKg. The resulting
amplitudes are presented in Fig. 20 where we observe that
they all show the same gross structure. The pole positions
and residues in the corresponding t-matrices prove to vary
rather little under the parametrization changes, indicating
that the particular form of the amplitude is not overly
biasing the resonance determination. We plot the positions
of the resulting poles and their associated residues
in Fig. 21.

In Fig. 21, the only place that we see any significant
variation between parametrizations is for the virtual bound
state in the JP ¼ 0þ channel. The variation occurs when-
ever we use a simple phase-space description (rather than
the Chew–Mandelstam form), and the effect may be due to
the form of the analytic continuation of the phase-space
factors through the lowest threshold. For example, scatter-
ing length fits implicitly use a simple phase-space pre-
scription, and this is not particularly well behaved far below
threshold. Conversely, the Chew–Mandelstam form varies
only slowly below threshold, which is one of the principal
reasons for using it. Using the simple phase space in a
coupled πK; ηK K-matrix description can lead to spurious
poles with large ηK coupling below πK threshold which
originate in the unrealistic behavior of the ηK phase space
far below the ηK threshold.

I. Experimental and theoretical comparisons

With a description of the resonant content of our
amplitudes in hand, we proceed to compare our results
to previous lattice QCD calculations and, recalling that the
computation is performed with 391 MeV pions, to compare
qualitatively to experimental observations. We present
results in physical units using the scale-setting procedure
outlined at the end of Sec. II.
Beginning with the JP ¼ 1− πK amplitude, we may

compare with the corresponding ππ I ¼ 1 amplitude that
we computed on the same lattices in Ref. [14]. There we
found a narrow ρ resonance, lying only slightly above the
ππ threshold. In this case we find that the strange vector
resonance, the K⋆, appears to be a bound state only slightly
below the πK threshold. That the K⋆ does not appear as a
resonance is almost certainly an accident of the quark
masses used; a slightly larger quark mass would lead to a
more deeply bound state and a slightly lighter quark mass
to a resonant state whose width would increase with
decreasing quark mass as the available phase space
increases. At this quark mass, we find the vector bound
state to lie at a pole position m ¼ 933ð1Þ MeV for any
sensible parametrization. Using a relativistic Breit–Wigner
form, Eq. (10), even in this case of a bound state, to
describe energies straddling the πK threshold gives
mR ¼ 933ð1Þ MeV and gR ¼ 5.93ð26Þ. This coupling
can be compared to the coupling extracted from the
physical mass and width [56], gphysR ¼ 5.52ð16Þ. There is
reasonable agreement which may signal that the proposed
approximate quark-mass independence of gR for vector
mesons [57–59] may even extend to the case when the state
goes below threshold.
In this calculation we are restricted from saying anything

about higher vector resonances owing to our neglect of
ππK and other multihadron channels. Our large basis of
qq̄-like operators does show overlap onto high-lying levels
that we might identify as corresponding to the presence
of excited vector mesons [32], but without including
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FIG. 20 (color online). Variation of the JP ¼ 0þ scattering
amplitudes under changes in K-matrix parametrization—
described in Table IV. The solid line shows the result of the
“pole plus constant” form, Eq. (21), previously presented. Each
band shows the 1σ statistical variation on the phase shifts and
inelasticity for the entries in Table IV.

WILSON et al. PHYSICAL REVIEW D 91, 054008 (2015)

054008-22



three-meson operators and considering an extension of
Eq. (6) to include three-body channels, we cannot rigorously
determine scattering amplitudes and their resonant content.
The JP ¼ 0þ πK, ηK partial wave contains a broad

scalar resonance with pole mass and width5 of m ¼
1370ð45Þ MeV, Γ¼530ð45ÞMeV. The couplings jcπKj ¼
1050ð110Þ MeV, jcηKj ¼ 400ð170Þ MeV indicate that the
resonance dominantly couples to πK. This state has a
significantly larger width than the experimental K⋆

0ð1430Þ,
which it otherwise resembles.
Lang et al., Ref. [24], in a calculation without dynamical

strange quarks in a 2 fm box with 266 MeV pions, compute
the rest-frame Aþ

1 spectrum and extract a subthreshold
energy level plus one other level below their πππK

threshold. They did not attempt to describe the resonant
content of the amplitude.
Considering S-wave scattering close to threshold, we

may describe the amplitude in terms of a scattering length,
limk→0k cot δl¼0 ¼ 1=al¼0. The value we extract depends
slightly upon whether we describe only the elastic scatter-
ing region with a scattering length parametrization,
Eq. (20), or if we extract the threshold behavior of our
more global fit, Eq. (21), which also describes the scalar
resonance discussed above. For these two descriptions, we
find mπ · al¼0 ¼ 1.20ð6Þ; 1.00ð6Þ, or in physical units,
al¼0 ¼ 0.60ð3Þ; 0.50ð3Þ fm, respectively. This scattering
length is consistent with values found in other lattice QCD
computations [20,24] at similar quark masses.
The physical πK JP ¼ 0þ amplitude at low energy has

long been suspected to be strongly influenced by the
presence of a broad resonance called the κ, the strange
analog of the σ in ππ scattering. The most precise estimate
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FIG. 21 (color online). Complex-s plane singularities of the S-wave amplitude. (a) Virtual bound-state position (left) and channel
couplings (right) under parametrization variation. In the left plot, the red points indicate the pole position on sheet II, while the orange
points indicate sheet III. The lowest two points correspond to fits to the elastic πK scattering region using a scattering length or scattering
length plus effective-range parametrization. In the right plot, red/orange points represent cπK on sheets II/III, and blue/green points
represent cηK on sheets II/III. (b) Resonance pole position (left) and channel couplings (right). The color scheme is as above.

5In this section we expand our uncertainties to include a
spread over reasonable parametrizations forms—see the previous
section.
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of the low-energy physical amplitude is obtained from
the Roy–Steiner equations that incorporate analyticity,
unitarity, and crossing symmetry [5,60] together with the
available low-energy scattering data, through dispersion
equations, to show that the amplitude features a somewhat
distant pole on the unphysical sheet identified as the κ.
Nebreda and Pelàez [59] consider what happens to the κ as
the pion mass increases away from its physical value. Using
the inverse amplitude method to unitarize SUð3Þ chiral
perturbation theory at one-loop level, they find that as the
pion mass increases from its physical value the distant κ
poles on the unphysical sheet of πK scattering move toward
the real axis, becoming a single pole on the real axis below
threshold but still on the unphysical sheet, i.e. a virtual
bound state. As the pion mass is increased further, the pole
separates into two which then leap onto the physical sheet
becoming bound states.
In the qualitative picture laid out by Nebreda and Pelàez,

our calculation at mπ ¼ 391 MeV appears to be in the
intermediate region in which the κ appears as a virtual
bound state. In all successful descriptions of the finite-
volume spectrum, we found a virtual bound state, although
its precise pole position did depend upon the parametriza-
tion used.
The JP ¼ 2þ πK; ηK partial wave was found to

feature a narrow resonance, essentially decoupled from
ηK, with pole mass m ¼ 1576ð7Þ MeV and pole width
Γ ¼ 62ð12Þ MeV. This state closely resembles the exper-
imental K⋆

2ð1430Þ in most regards apart from one: we
extracted this state neglecting altogether the kinematically
open ππK channel, while the physical state has a 50%
branching fraction into ππK.

VII. πK SCATTERING WITH I ¼ 3=2

In addition to πK; ηK scattering with I ¼ 1
2
, we have also

obtained correlation functions for the πK I ¼ 3
2
channel. In

this flavor-exotic sector, the calculation is somewhat
simpler: Quark line annihilations do not feature, and
single-meson operators with qq̄-like structure cannot
appear. Inelasticity can appear through ππK in P-wave
and higher and πππK in all waves. Experimentally [1] we
know that the scattering is weak and repulsive in S-, P-, and
D-waves with no sign of resonant behavior in the energy
region up to 1.72 GeV.

A. Finite-volume spectrum

The spectra are obtained as described above for the I ¼ 1
2

case. The key difference is that there are no single-meson
operators, so our basis is built entirely from πK operators as
described by Eq. (4). The contributions of each partial wave
in each lattice irrep are as given in Table III.
In Fig. 22 we show the energies determined when the

system is at rest with respect to the lattice. In Aþ
1 , which has

overlap onto the S-wave, significant positive shifts with

respect to the noninteracting energies are observed, which
likely indicates some repulsion in the system. In T−

1 , which
overlaps onto the P-wave and higher, small negative shifts
are observed which only become significant above the ππK
threshold. In Eþ and Tþ

2 , the D-wave is the lowest
contributing partial wave, and we see no significant shifts
from the noninteracting spectrum.
Similar patterns are visible in the data obtained when the

πK systems are considered in flight, Fig. 23. The largest
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FIG. 22 (color online). πK I ¼ 3=2 spectra with ~P ¼ ½000�.
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shifts are observed in the in-flight A1 irreps, presumably
due to the S-wave interaction.
The situation is very similar to that observed in the

corresponding ππ I ¼ 2 calculations [13]. Investigating the
πK operator overlaps for each extracted eigenstate, we find
that the basis is approximately orthogonal, corresponding
to the eigenstates being relatively similar to the noninter-
acting states, as was presented in Fig. 11 of Ref. [13].

B. Scattering amplitudes

We proceed as for the I ¼ 1
2
case, parametrizing the

infinite-volume t-matrix using a simple model. In this case
we only consider elastic amplitudes in the channel
πK → πK. We begin with the Aþ

1 irrep, having overlap
onto l ¼ 0; 4 and higher. We will neglect the role of an
l ¼ 4 amplitude (and higher) over the energy region we
consider on the grounds that it will be highly suppressed by
the angular-momentum barrier. In the leftmost plot in
Fig. 22, seven levels are shown below the πππK threshold,
and we begin by fitting these using a scattering length
parametrization, given by Eq. (9) with rl¼0 ¼ 0, obtaining

a0 ¼ ð−3.81� 0.14� 0.14Þ · at
χ2=Ndof ¼

2.03
7 − 1

¼ 0.34:

No improvement is obtained by allowing an effective-range
term in the fit, with the determined al¼0 and rl¼0 being
highly correlated.

In addition to A1 irreps at rest and in flight, which have
l ¼ 0 as their lowest contributing partial wave, we may
consider irreps which have l ¼ 1 and l ¼ 2 as the lowest
partial wave. We first assume l ¼ 3 and higher are
negligible. There are eight data points in the elastic region
below the ππK threshold at atEcm ¼ 0.235, and para-
metrizing the l ¼ 1; 2 amplitudes by scattering lengths, we
obtain a fit,

a1 ¼ ð−2.1� 29.3� 25.8Þ · a3t
a2 ¼ ð−2.8� 1.8� 2.1Þ × 103 · a5t

�
1 −0.34

1

�

χ2=Ndof ¼
2.33
8 − 2

¼ 0.39;

indicating no significant interaction in the elastic region for
P- and D-waves. If we assume that there is negligible
inelasticity into ππK at low energy, we may consider the
other energy level values we have obtained up to the πππK
threshold. There is a total of 31 points relaxing this
restriction, and a scattering length description gives

a1 ¼ ð42.4� 4.7� 13.9Þ · a3t
a2 ¼ ð−1.19� 0.25� 0.53Þ × 103 · a5t

�
1 0.04

1

�

χ2=Ndof ¼
22.5
31 − 2

¼ 0.77;

which suggests there may be a slight attractive tendency in
the P-wave at higher energy.
With the l ¼ 1 and l ¼ 2 partial-wave amplitudes

determined above, we may now make use of the in-flight
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FIG. 23 (color online). πK I ¼ 3=2 spectra with ~P ¼ ½001�; ½011�; ½111�; ½002�. Note that in the ~P ¼ ½002�, A1 case there is a
noninteracting level only slightly above threshold.
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A1 irreps to better constrain the S-wave scattering ampli-
tude. The most conservative approach is to fix the con-
tribution of P- and D-waves in the A1 irreps according to
the above fits and to then determine what the S-wave
contribution must be. Doing so proves to give results
essentially identical to performing a global fit where all
of the l ¼ 0; 1; 2 amplitude parameters are allowed to float
in a fit to all irreps. Considering a scattering length
description of each partial wave, the following fit describes
the complete set of Aþ

1 energy levels at rest and levels below
the ππK threshold in all other irreps:

a0 ¼ ð−4.03� 0.08� 0.20Þ ·at
a1 ¼ ð50.1� 17.1� 24.7Þ ·a3t
a2 ¼ ð−1.08� 2.80� 1.62Þ× 103 ·a5t

2
64
1 −0.07 −0.51

1 −0.30
1

3
75

χ2=Ndof ¼
24.9
37− 3

¼ 0.73:

Again, extending the energy region up to the πππK
threshold by assuming that ππK amplitudes are negligible,
we obtain

a0 ¼ ð−4.04� 0.05� 0.15Þ · at
a1 ¼ ð43.2� 3.7� 15.4Þ · a3t
a2 ¼ ð−1.13� 0.14� 0.58Þ× 103 · a5t

2
64
1 0.01 0.04

1 0.01

1

3
75

χ2=Ndof ¼
69.2
75− 3

¼ 0.96;

and as previously, including an effective range in the
S-wave amplitude does not improve the description.
Adding a scattering length amplitude for l ¼ 3 and
minimizing leads to a negligible change in the l¼0;1;2
scattering lengths and a value of al¼3 that is statistically
compatible with zero, justifying our previous neglect of the
F-wave.
In Fig. 24 we show phase-shift values extracted from

Eq. (6) assuming elastic scattering. In all cases, if more than
one partial wave appears in Eq. (6), the final parametriza-
tion given above is used to specify the higher partial waves,
with the remaining lowest partial wave δ being extracted.
We clearly see what was being described in the fits above,
that the S-wave is significantly repulsive, while the P-wave
may have some slight attraction at large energies, and the
D-wave is compatible with no interaction. Figure 25 super-
imposes the phase-shift points over a plot of the para-
metrized solution presented above.
Scattering with the exotic quantum numbers S ¼ 1;

I ¼ 3=2 is similar to ππ I ¼ 2 scattering, and in the limit
of equal light and strange quark masses, they are identical.
In our lattice calculation with mK=mπ ¼ 1.4, we are closer
to having an SUð3Þ flavor symmetry than in the physical
limit where mK=mπ ¼ 3.6, and as such we might expect
relatively small differences within multiplets of SUð3ÞF.
In S- and D-waves, the I ¼ 3=2 πK scattering channel is
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FIG. 24 (color online). The phase-shift points obtained by
applying Eq. (6) directly to the energy levels shown in Figs. 22
and 23. In l ¼ 1 and l ¼ 2, effects due to ππK inelasticities
above atEcm ¼ 0.235 have been neglected. The innermost error
bars follow from the statistical uncertainty on the energy levels,
while the outer error bars include variation of mK;mπ , and ξ
within their uncertainties.
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FIG. 25 (color online). The l ¼ 0; 1 I ¼ 3=2 πK phase shifts
and fits described in the text. Also shown is a fit including an S-
wave effective-range term which is observed to be negligibly
different from the fit with only a scattering length.
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part of a 27, which also contains ππ scattering with I ¼ 2.
In Ref. [13] we computed the corresponding ππ scattering
amplitudes on the same gauge-field configurations using
very similar techniques to those used in this paper.
In Fig. 26 we compare the I ¼ 3=2; S ¼ 1 and I ¼ 2;
S ¼ 0 elements of the 27, observing that indeed there is
very close agreement. On the other hand, the πK P-wave
amplitude lies in a 10 multiplet which does not contain
I ¼ 2; S ¼ 0. The 10 can be constructed at the quark level if
qqq̄q̄ configurations appear [61]—the absence of any
significant phase-shift behavior suggests that any putative
qqq̄q̄ resonance must be at higher energy, although we
remind the reader that we have not included explicit local
qqq̄q̄ operators in our basis.
Within this calculation in which the u; d quark masses

are somewhat heavier than the true physical values, we are
not justified in making a direct comparison of our deter-
mined phase shifts with experimental data. Nevertheless,
we may superimpose the two and observe that we are
replicating the qualitative features of the Estabrooks et al.
partial-wave analysis [1], Fig. 27.

C. Comparison to other studies

Our best estimate of the S-wave scattering length when
the pion mass is 391 MeV is mπ · a

I¼3=2
l¼0 ¼ −0.278ð15Þ, or

expressed in physical units, aI¼3=2
l¼0 ¼ −0.140ð8Þ fm.

A number of previous lattice QCD calculations have
considered πK scattering in isospin 3=2 at threshold
[19,20,22,24]. They typically extract a scattering length
from the single energy level near threshold corresponding
to a pion and a kaon each at rest. The scattering length has
been determined for a range of quark masses. Our result for
aI¼3=2
l¼0 is in good agreement with Refs. [19,20] which

present this quantity at similar values of mπ .
Our result is based on a description of a much larger set

of finite-volume energy levels compared to the studies
above. Our aim was to obtain the energy dependence of
the scattering amplitude and not just the threshold behavior.
As it happens, we find that, at this pion mass, the next term
in the effective-range expansion, the range parameter, is
consistent with zero, and the extra data in our fit does not
significantly improve the precision on the determination of
the scattering length.

VIII. SUMMARY

In this paper we have reported on the first application of
the formalism relating coupled-channel scattering ampli-
tudes to the discrete spectra of hadrons in a finite volume.
To overcome the underconstrained nature of the problem,
where the position of each energy level is a volume-
dependent function of multiple scattering amplitudes, we
parametrized the energy dependence of the t-matrix and
attempted to describe the entire spectrum globally. We
found that relatively simple parametrizations, satisfying
S-matrix unitarity, could be used successfully.
To strongly constrain the energy dependence of the

scattering amplitudes, we required detailed and precise
excited-state spectra across a range of irreducible repre-
sentations of the lattice symmetry in many moving frames.
Variational analysis of correlation matrices computed
using a large basis of operators, including some resem-
bling qq̄-like single mesons and others resembling meson-
meson pairs with definite relative and total momentum,
leads to such spectra. Distillation offers an efficient
method of correlation construction in this case where
quark-line annihilation features in a large number of
required Wick contractions.
When, as in the case considered here, the scattering

hadrons have unequal masses, the typical situation is for an
irrep to receive contributions from a dense set of low-lying
partial waves. By computing a wide range of irreps, each
featuring different combinations of partial waves, we were
able to decompose into a partial-wave basis even in this
case where mixing is significant.
The parametrized scattering amplitudes obtained, con-

strained by over 100 real values of the energy variable, can
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FIG. 26 (color online). l ¼ 0; 2 scattering phase shifts for πK
with I ¼ 3=2 (this paper) and ππ with I ¼ 2 [13]. These two
channels correspond to different rows of the 27-plet that appears
in 8 ⊗ 8 scattering.
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FIG. 27 (color online). I ¼ 3=2 πK scattering. Colored points
show the l ¼ 0; 1; 2 phase shifts determined in this calculation
with mπ ¼ 391 MeV, with the energy scale set using the
Ω-baryon mass as described in Sec. II. Black and gray points
show the Estabrooks et al. partial-wave analysis of experimental
πK scattering [1].
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be analytically continued into the complex energy plane,
where their pole singularities correspond to resonances,
bound states, etc. The residues of the amplitudes at the
poles can be used to determine couplings of the states to
their allowed decay channels. In our calculation at
mπ ¼ 391MeV, we examined the determined amplitudes
for their singularity content, finding a set of states in isospin
1/2 which can be compared qualitatively with those
observed in experiment.
In the JP ¼ 0þ channel, we found a broad resonance,

coupled dominantly to πK and not ηK with a pole mass
of m ¼ 1370ð45Þ MeV and width of Γ ¼ 530ð45Þ MeV.
In this same S-wave amplitude, we found a second
singularity—a pole on the real axis below the πK threshold
on unphysical sheets, a “virtual” bound state. These
features appeared to be robust under changes in the para-
metrization form utilized.
We extracted a JP ¼ 1− bound state at 933(1) MeV,

barely below our πK threshold. By determining the
position of the corresponding finite-volume state in many
irreps, we were able to map out the phase shift across
the threshold, giving a degree of energy dependence
which allows us to extract a Breit–Wigner coupling
of gR ¼ 5.93ð26Þ.
In the JP ¼ 2þ channel, if we assumed that ππK was not

significantly coupled to πK or ηK, we found that the
spectrum obtained (without ππK-like operators) could be
described consistently in terms of πK; ηK scattering with a
narrow resonance coupled dominantly to πK. The reso-
nance had a pole mass m ¼ 1576ð7Þ MeV and width
Γ ¼ 62ð12Þ MeV.
In addition to the isospin-1=2 channel, we also obtained

75 energy levels constraining scattering amplitudes in
isospin 3=2 for the entire elastic scattering region for the
lowest three partial waves. This flavor-exotic process was
found to have interactions that are rather weak, and each
partial wave could be adequately described by a scattering
length approximation. The S-wave scattering length was
found to be aI¼3=2

l¼0 ¼ −0.140ð8Þ fm at mπ ¼ 391 MeV, in
line with earlier lattice QCD calculations.
To compare quantitatively with experimental observa-

tions, we should perform calculations at the physical light
quark mass, but even here at mπ ¼ 391 MeV, we may
make some qualitative comparisons.
The broad scalar resonance we extract resembles some-

what the experimental K⋆
0ð1430Þ, although we find a

significantly larger width. The high-energy side of the
projection of this resonance onto the real axis lies in the
region above the η0K threshold, which in this first study we
did not consider rigorously. Inclusion of η0K operators into
the variational basis may lead to an adjusted finite-volume
spectrum and correspondingly altered resonance parame-
ters. The tensor resonance we extract has some of the
properties of the K⋆

2ð1430Þ, notably the decay into πK
and not ηK, but we lack a coupling to ππK—something that

must be generated as the pion mass is reduced if the
experimental state is to be described. The vector bound
state we extract is expected to become a resonance as the
pionmass is decreased, the πK threshold falls, and the phase
space for decay increases. There are theoretical expectations
that the coupling does not change significantly with quark
mass, and indeed we find a value that is in reasonable
agreement with the value extracted from the Particle Data
Group (PDG) width. The property of the scattering ampli-
tudes that we expect to change most drastically is the κ pole;
the virtual bound state we found must, if our understanding
of the experimental amplitude is correct, evolve into a
resonant pole just above threshold, but far from the real
axis, as the quark mass is reduced toward its physical value.
We note that this is precisely the behavior suggested within
unitarized chiral perturbation theory [62].
In the case of coupled πK, ηK scattering, we have

observed that there is relatively little coupling between the
channels for even-l partial waves in the energy region
considered, and as such the true diversity of possible
behaviors in a coupled-channel system has not yet been
explored. Further calculations are now warranted in such
systems as πη; KK̄ scattering, in which the a0ð980Þ is
expected to appear as a resonance coupled strongly to both
channels, and ππ; KK̄; ηη, where explanation of the scalar
sector remains a phenomenological challenge.
A restriction was placed on the energy region we could

consider in this calculation by the opening of the three-
body ππK channel. Such restrictions will only become
more severe as the light quark mass is reduced toward its
physical value. Including into the calculation operators
resembling three-meson states presents no serious problem;
a simple extension of the two-meson constructions used
in this paper can be utilized. The difficulty lies in the
formalism relating the finite-volume spectrum to scattering
amplitudes featuring three-body states, which is not at this
time completely mature, although significant progress is
being made [54]. We have reason to believe that the fullest
possible complexity of many-body final states may not be
present within QCD—experimentally it is observed that
true high-multiplicity final states are not significantly
directly populated in hadron resonance decays, rather that
most decays proceed through intermediate two-body states
featuring isobar resonances. Whether this simplification
can be observed in amplitudes computed within QCD is a
question for future computations.
The successful extraction of coupled-channel amplitudes

in several partial waves presented in this paper is an
important milestone in progress toward a QCD description
of the excited hadron spectrum.
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APPENDIX A: SUð3Þ FLAVOR RELATIONS

ðS; I; IzÞ ¼ ð1; 3
2
;þ 3

2
Þ states lie in two irreducible rep-

resentations of SUð3ÞF, the 27 and the 10. Two-meson
states in the rest frame with definite angular momentum
ðl; mÞ which transform irreducibly under SUð3Þ can
be obtained using the isoscalar factors tabulated in
Ref. [66]:

���27; S ¼ 1; I ¼ 3

2
; Iz ¼ þ 3

2
;l; m

E
¼

Z
dp̂Ym

l ðp̂Þ
�
1ffiffiffi
2

p jKþ
~p π

þ
−~pi þ

1ffiffiffi
2

p jπþ~pKþ
−~pi

�

¼ ½1þ ð−1Þl� 1ffiffiffi
2

p
Z

dp̂Ym
l ðp̂ÞjKþ

~p π
þ
−~pi;���10; S ¼ 1; I ¼ 3

2
; Iz ¼ þ 3

2
;l; m

E
¼

Z
dp̂Ym

l ðp̂Þ
�
1ffiffiffi
2

p jKþ
~p π

þ
−~pi −

1ffiffiffi
2

p jπþ~pKþ
−~pi

�

¼ ½1 − ð−1Þl� 1ffiffiffi
2

p
Z

dp̂Ym
l ðp̂ÞjKþ

~pπ
þ
−~pi:

It thus follows that even-spin waves, l ¼ 0; 2…, lie in
the 27 representation, while odd-spin waves, l ¼ 1; 3…,
lie in the 10 representation. Both representations are flavor
exotic, in the sense that they cannot be constructed from qq̄,
but there need not be any simple relationship between them,
unless specific dynamics causes there to be.
ππ scattering in I ¼ 2 is restricted to l ¼ even and also

lies in the 27 representation. In the computation presented
in this paper, mπ ¼ 391 MeV and mK ¼ 549 MeV, such
that SUð3Þ flavor is an even better approximate symmetry
than for physical quark masses, and as shown in Fig. 26,
we observe rather good agreement between πK and ππ in S-
and D-wave scattering.

Turning to nonexotic scattering channels, we note that the Clebsch–Gordan series for 8⊗8¼27⊕10⊕10⊕81⊕82⊕1
contains two octet representations. The 81 representation contains symmetric even-l ππ scattering and thus couples to
isoscalar states like f0; f2… (the 1 representation also couples to these states), while the 82 representation contains odd-l
ππ scattering and hence the ρ; ρ3….
Two-meson states with ðS; I; IzÞ ¼ ð1; 1

2
;þ 1

2
Þ in the rest frame with definite angular momentum ðl; mÞ which transform

irreducibly under SUð3Þ in nonexotic multiplets are

���81; S ¼ 1; I ¼ 1

2
; Iz ¼ þ 1

2
;l; m

E

¼
Z

dp̂Ym
l ðp̂Þ

�
3

ffiffiffi
5

p

10

�
−

ffiffiffi
2

3

r
jK0

~pπ
þ
−~pi þ

ffiffiffi
1

3

r
jKþ

~p π
0
−~pi −

ffiffiffi
2

3

r
jπþ~pK0

−~pi þ
ffiffiffi
1

3

r
jπ0~pKþ

−~pi
�
−

ffiffiffi
5

p

10
ðjKþ

~p η−~pi þ jη~pK−~piÞ
�

¼ ½1þ ð−1Þl�
Z

dp̂Ym
l ðp̂Þ

�
3

ffiffiffi
5

p

10

�
−

ffiffiffi
2

3

r
jK0

~pπ
þ
−~pi þ

ffiffiffi
1

3

r
jKþ

~p π
0
−~pi

�
−

ffiffiffi
5

p

10
jKþ

~p η−~pi
�

���82; S ¼ 1; I ¼ 1

2
; Iz ¼ þ 1

2
;l; m

E

¼
Z

dp̂Ym
l ðp̂Þ

�
1

2

�
−

ffiffiffi
2

3

r
jK0

~pπ
þ
−~pi þ

ffiffiffi
1

3

r
jKþ

~pπ
0
−~pi þ

ffiffiffi
2

3

r
jπþ~pK0

−~pi −
ffiffiffi
1

3

r
jπ0~pKþ

−~pi
�
þ 1

2
ðjKþ

~p η−~pi − jη~pK−~piÞ
�

¼ ½1 − ð−1Þl�
Z

dp̂Ym
l ðp̂Þ

�
1

2

�
−

ffiffiffi
2

3

r
jK0

~pπ
þ
−~pi þ

ffiffiffi
1

3

r
jKþ

~p π
0
−~pi

�
þ 1

2
jKþ

~p η−~pi
�
:

RESONANCES IN COUPLED πK; ηK SCATTERING … PHYSICAL REVIEW D 91, 054008 (2015)

054008-29



This indicates that, as in the nonstrange case, the even-l
waves couple to 81, and the odd-l waves couple to 82.
The relative couplings to πK and ηK differ significantly
though—in the even-l case, the amplitude for πK is three
times larger than for ηK, while in the odd-l case, the
couplings are equal.
These SUð3Þ flavor expectations appear to hold

qualitatively in experiment; LASS [3] observed the
K⋆

3 as an enhancement in the ηK final state but did
not observe at any significant level the K⋆

2 . The modern
PDG averages [56] have K⋆

3 decaying to πK and ηK
with 19(1)% and 30(13)% branches respectively. The
K⋆

2 , on the other hand, has a 50% branch to πK and less
than 1% into ηK.

APPENDIX B: THE CHEW–MANDELSTAM
PHASE SPACE

In Eq. (11), which relates the K-matrix to the t-matrix,
there appears a matrix IijðsÞ which is constrained by
S-matrix unitarity to have a certain imaginary part

above threshold ImIijðsÞ ¼ −ρiðsÞΘðs − sðiÞthrÞδij. A con-
venient choice for the real part is supplied by the
Chew–Mandelstam function, which relates the real
part to the imaginary part through a dispersion integral
and which provides a smooth transition across the kin-
ematic threshold. The matrix is diagonal IijðsÞ ¼ δijIiðsÞ,
and if in channel i the two scattering particles have
mass m1; m2, then the once subtracted dispersion
integral is

IðsÞ ¼ IðsthrÞ −
s − sthr

π

Z
∞

sthr

ds0
ρðs0Þ

ðs0 − sÞðs0 − sthrÞ
;

where

ρðsÞ ¼ 2kðsÞffiffiffi
s

p ¼
�
1−

ðm1þm2Þ2
s

�
1=2

�
1−

ðm1−m2Þ2
s

�
1=2

with a threshold at sthr ¼ ðm1 þm2Þ2.
The form of the integral is such that at sþ iϵ the real part

is given by the principal value, and the imaginary part,
ImIðsÞ ¼ −ρðsÞΘðs − sthrÞ, is as it should be to satisfy
unitarity. The integral can be performed [67] to give

IðsÞ ¼ IðsthrÞ

þ ρðsÞ
π

log

�
ξðsÞ þ ρðsÞ
ξðsÞ − ρðsÞ

�

−
ξðsÞ
π

m2 −m1

m1 þm2

log
m2

m1

with ξðsÞ ¼ 1 − ðm1þm2Þ2
s . In this closed form, the imaginary

part resides in the log½ξðsÞþρðsÞ
ξðsÞ−ρðsÞ� term when the argument is

negative, which occurs for s > ðm1 þm2Þ2.
We may choose IðsthrÞ as we see fit; a common choice is

to have the function zero at threshold. Another convenient
option arises when dealing with a resonance: as an example
consider a single-channel in S-wave where we parametrize

KðsÞ ¼ g2

m2−s such that we have tðsÞ ¼ g2

m2−sþg2IðsÞ. If we

choose IðsthrÞ such that ReIðs ¼ m2Þ ¼ 0, then in the region
around s ¼ m2, the t-matrix resembles a Breit–Wigner pole
with the mass m being the Breit–Wigner mass, mR.

APPENDIX C: OPERATOR TABLES

Table V presents a shorthand of the momentum con-
structions used in our meson-meson operators. In
Tables VI, VII, and VIII, we show the particular set of
πK, ηK operators and the number of single-meson oper-
ators used in our determination of the I ¼ 1=2 spectra. In
Table IX we show the set of πK operators used to determine
the I ¼ 3=2 spectra.

TABLE V. Meson-meson operator constructions presented for

each ~P; also shown is LGð~PÞ. Example momenta ~k1 and ~k2 are

given—all momenta in f~k1g⋆ and f~k2g⋆ are summed over in

Eq. (4). When j~k1j ≠ j~k2j, the distinct operators with ~k1↔~k2,
having the same distribution across irreps, are usually also
included as an independent operator in the basis.

~P ~k1 ~k2 ΛðPÞ

[0, 0, 0] OD
h

[0, 0, 0] [0, 0, 0] Aþ
1

[0, 0, 1] ½0; 0;−1� Aþ
1 ; T

−
1 ; E

þ

[0, 1, 1] ½0;−1;−1� Aþ
1 ; T

−
1 ; E

þ; Tþ
2

[1, 1, 1] ½−1;−1;−1� Aþ
1 ; T

−
1 ; T

þ
2

[0, 0, 1] Dic4

[0, 0, 0] [0, 0, 1] A1

½0;−1; 0� [0, 1, 1] A1; E2; B1

½−1;−1; 0� [1, 1, 1] A1; E2; B2

[0, 1, 1] Dic2

[0, 0, 0] [0, 1, 1] A1

[0, 1, 0] [0, 0, 1] A1; B1

½−1; 0; 0� [1, 1, 1] A1; B2

[1, 1, 0] ½−1; 0; 1� A1; B1; B2

[1, 1, 1] Dic3
[0, 0, 0] [1, 1, 1] A1

[1, 0, 0] [0, 1, 1] A1; E2

[0, 0, 2] Dic4

[0, 0, 0] [0, 0, 2] A1

[0, 0, 1] [0, 0, 1] A1

½0;−1; 1� [0, 1, 1] A1
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TABLE VII. Operator basis used to determine the I ¼ 1=2
spectrum on the 203 lattice. The final row shows the number of
single-meson operators included.

[000]

Aþ
1 T−

1 Eþ

π0K0

π1K1 π1K1 π1K1

π2K2 π2K2 π2K2

π3K3 π3K3

η0K0

η1K1 η1K1 η1K1

6 9 12

[001]

A1 E2 B1 B2

π0K1

π1K0

π1K2 π1K2 π1K2

π2K1 π2K1 π2K1

π2K3 π2K3 π2K3

π3K2 π3K2 π3K2

η0K1

η1K0

η1K2 η1K2

η2K1 η2K1

13 16 8 11

(Table continued)

TABLE VI. Operator basis used to determine the I ¼ 1=2
spectrum on the 243 lattice. The final row shows the number
of single-meson operators included.

[000]

Aþ
1 T−

1 Eþ Tþ
2

π0K0

π1K1 π1K1 π1K1

π2K2 π2K2 π2K2 π2K2

π3K3 π3K3

η0K0

η1K1 η1K1 η1K1

8 9 13 14

[001]

A1 E2 B1 B2

π0K1

π1K0

π1K2 π1K2 π1K2

π2K1 π2K1 π2K1

π2K3 π2K3 π2K3

π3K2 π3K2 π3K2

η0K1

η1K0

η1K2 η1K2

η2K1 η2K1 η2K1

η2K3

η3K2

17 16 11 8

[011]

A1 B1 B2

π0K2

π2K0

π1K1 π1K1

π1K3 π1K3

π3K1 π3K1

π2K2 π2K2 π2K2

η0K2

η2K0

η1K1 η1K1

η1K3

η3K1

η2K2 η2K2

15 18 13

[111]

A1 E2

π0K3

π3K0

(Table continued)

[111]

A1 E2

π1K2 π1K2

π2K1 π2K1

η0K3

η3K0

η1K2 η1K2

η2K1 η2K1

16 13

[002]

A1

π0K4

π4K0

π1K1

π2K2

η0K4

η4K0

η1K1

η2K2

17

TABLE VI. (Continued)
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TABLE VIII. Operator basis used to determine the I ¼ 1=2
spectrum on the 163 lattice. The final row shows the number of
single-meson operators included.

[000]

Aþ
1 T−

1 Eþ

π0K0

π1K1 π1K1 π1K1

π2K2 π2K2 π2K2

π3K3 π3K3

η0K0

η1K1 η1K1 η1K1

6 11 10

[001]

A1 E2

π0K1

π1K0

π1K2

π2K1

η0K1

η1K0

8 16

[011]

A1 B1 B2

π0K2

π2K0

π1K1 π1K1

π2K2 π2K2

π1K3

π3K1

η0K2

η2K0

η1K1 η1K1

12 15 20

[111]

A1 E2

π0K3

π3K0

π1K2 π1K2

π2K1 π2K1

η1K2 η1K2

η2K1 η2K1

15 12

[002]

A1

π0K4

π4K0

π1K1

η1K1

10

[011]

A1 B1 B2

π0K2

π2K0

π1K1 π1K1

π1K3 π1K3

π3K1 π3K1

π2K2 π2K2 π2K2

η0K2

η2K0

η1K1 η1K1

14 16 18

[111]

A1 E2

π0K3

π3K0

π1K2 π1K2

π2K1 π2K1

η0K3

η3K0

η1K2 η1K2

η2K1 η2K1

16 12

[002]

A1

π0K4

π4K0

π1K1

π2K2

η0K4

η4K0

η1K1

η2K2

16

TABLE VII. (Continued)
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