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We present a detailed study of the variation of shear viscosity η, with temperature and baryon chemical
potential within the framework of the Polyakov–Nambu–Jona-Lasinio model. η is found to depend strongly
on the spectral width of the quasiparticles present in the model. The variation of η across the phase diagram
has distinctive features for different kinds of transitions. These variations have been used to study the
possible location of the critical end point and are cross-checked with similar studies of variations of specific
heat. Finally, using a parametrization of the freeze-out surface in heavy-ion collision experiments, the
variation of the shear viscosity to entropy density ratio has also been discussed as a function of the center-
of-mass energy of collisions.
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I. INTRODUCTION

The relativistic heavy-ion collision experiments provide
us with the unique opportunity to understand the physics of
strongly interacting matter expected to be present in the
Universe after a few microseconds of the big bang and
possibly present in the interior of neutron stars. In the
experiments, two heavy ions colliding at relativistic ener-
gies are expected to form a fireball consisting of deconfined
quarks and gluons, popularly known as the quark-gluon
plasma (QGP). The search for the QGP has continued for
almost the last 30 years using several generations of higher
energy accelerators such as BEVALAC, AGS, SPS, RHIC,
and LHC, while covering a large energy range of a few
AGeV to a few ATeV. Various observables, such as J=Ψ
suppression [1] and strangeness enhancement [2], had been
proposed as signatures of such a state of matter. All such
proposed signatures are based on the medium’s properties,
which differ substantially in hadronic and quark phases.
The possibility of observing charmonium suppression, for
example, was proposed on the basis of the properties of
deconfinement and plasma screening [1], whereas strange-
ness enhancement was proposed on the basis of chiral
symmetry restoration, which may be fully realized in the
QGP but only partially in a hadron gas [2,3].
If the main interest lies in the identification of a new form

of bulk matter, then it is essential to choose observables
corresponding to unique collective properties of this matter.
For example, radial, azimuthal, and longitudinal flow are
some of the relevant observables in heavy-ion collisions

[4]. In general, such observables may be obtained from
azimuthal Fourier components [5] vnðy; pT; Np; hÞ of the
triple differential inclusive distribution of hadrons which
are selected based on their impact parameter range.
The observation of elliptic flow in noncentral heavy-ion

collisions at the RHIC may be considered as the most
important evidence for the hydrodynamical behavior of the
QGP. Elliptic flow occurs when the plasma collectively
responds to pressure gradients in the initial state.
Hydrodynamic evolution converts the initial pressure
gradients to velocity gradients in the final state. In a
heavy-ion collision one cannot control the deformation
of the initial state. Instead, the deformation of the plasma is
determined by the shape of the overlapping region of the
colliding nuclei. This shape is governed by the impact
parameter b. The impact parameter can be measured on an
event-by-event basis using the azimuthal dependence of the
spectra of produced particles. Once the impact parameter
direction is known, the particle distribution can be
expanded in Fourier components of the azimuthal angle
ϕ. The Fourier coefficients (v2, v4, etc.) carry information
about the deformation of the final state. For example, a
positive v2 implies the preferential emission of particles in the
short direction, i.e., the presence of elliptic flow. Since shear
viscosity η is expected to oppose the elliptic flow (and reduce
v2), it is necessary to incorporate η in the analysis.Moreover, a
dimensionless quantity η=s, where s is the entropy density,
tells us about the actual behavior of the fluid. The ratio η=s is
akin to the inverse of the Reynolds number.
In general, η for a system of quasiparticles is expected

to vary as ∼ϵtmft, where ϵ is the energy density and tmft is
the average mean free time. The entropy density varies as
s ∼ kBn, where kB is the Boltzmann constant and n the
number density. Since ϵ

n is the average energy per particle,
considering the uncertainty principle one would get a lower
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bound on the product of ϵ=n and tmft. In other words one
would get η=s ≥ ℏ

kB
. For the strong coupling limit of

superconformal QCD, Policastro et al. [6] found
η=s ¼ ℏ

4πkB
. On the other hand, Kovtun et al. [7] conjectured

η
s ≥

ℏ
4πkB

to be the lower bound (popularly known as Kovtun-
Son-Starinets bound or in short KSS bound) for a wide
class of systems. Interestingly, such a finite but low value of
η=s is found to be consistent with the analysis of RHIC data
through hydrodynamical simulations [8,9].
Thus, heavy-ion experiments suggest the formation

of a QGP with a behavior of near-perfect fluidity, i.e., very
low viscosity. There are different ð2þ 1Þd [10–13] and
ð3þ 1Þd [14,15] viscous hydrodynamic codes which are
used to estimate QGP viscosity from the experimental data
using the elliptic flow coefficient v2. The initial spatial
deformation of the fireball created in relativistic heavy-ion
experiments is converted into final state momentum anisot-
ropies through hydrodynamic simulations. Viscosity comes
into play via the degradation of this conversion efficiency. As
in experimental detections only the final state hadrons are
tracked; the most efficient observable to be related to these
studies is the charged hadron elliptic flow vch2 . Therefore, the
best description is provided with the amalgamation of the
viscous hydrodynamic approach to the QGP phase and a
microscopic description for the rescattering of the late
hadronic stage. Such hybrid approaches include VISHNU
[16], which incorporates the VISH2þ 1 [10,17] algorithm
with the UrQMD cascade model [18], and the McGill code,
which connects ð3þ 1Þd viscous hydrodynamics to
UrQMD. The pioneering study in this regard was carried
out by Luzum and Romatschke [12] using ð2þ 1Þd viscous
hydrodynamics. One of the points of uncertainty in these
studies is the initial condition. Different initial conditions
like in MC-KLN or MC-Glauber lead to uncertainties in the
values of ðηsÞQGP by a factor of 2 to 2.5 [19]. A recent study
carried out using MUSICþ UrQMD [20], with the IP-
Glasma initial conditions [21], shows an excellent match to
multiplicity and flow distributions at the RHIC and LHC. In
fluid dynamical descriptions of the created fireball, the shear
viscosity to entropy density ratio η

s is usually taken to be
temperature independent. Predictions made in order to
explain the azimuthal anisotropies of the spectra, like the
elliptic flow coefficient v2, reveal very a small value for this
η
s ∼ 0.1 [11,12,22,23]. However, there are some works
including the temperature dependence of η

s [24] as well,
where the authors have taken different parametrizations to
get a thorough understanding of the effect on elliptic flow as
well as higher harmonics. Lattice studies of transport
coefficients of a gluon plasma have also been carried out
[25,26] indicating an ideal fluid behavior of the QGP.
There are different techniques which can be used for the

evaluation of η in strongly interacting systems, namely, the
relaxation time approach [27], the Chapman-Enskog
method [28], and the Green-Kubo formalism [29]. In the

relaxation time approach (RTA), it is assumed that the
collisional effects drive the perturbed distribution function
close to the equilibrium one with a relaxation time of the
order of the time required for particle collisions. On the
other hand, the Chapman-Enskog approximation is based
on the fact that on a slight shift of the distribution function
from its equilibrium value, the former can be expressed in
terms of hydrodynamical variables and their gradients. One
advantage of the Chapman-Enskog (CE) method is that one
can do a successive approximation to get results closer to
the Kubo formalism. The Green-Kubo formalism relates
linear transport coefficients to near-equilibrium correlations
of dissipative fluxes and treats them as perturbations to
local thermal equilibrium. A comparative study of the three
different methods has been carried out by Wiranata and
Prakash [30]. In the varied cases considered there, the
Green-Kubo technique is found to be more reliable. In
Ref. [31] it has been argued that while in the case of CE, the
variational method may yield solutions with arbitrary
accuracy depending on the order of approximation, the
RTA has no control over its accuracy. The RTA result was
found to differ from that obtained using the Green-Kubo
formalism by a factor of 2. On the other hand, the CE
method, already at first order, was found to display
satisfactory agreement with the Green-Kubo results.
Comparisons in the context of the nonrelativistic hard
sphere can be found in classical literature [32], from which
it is inferred that higher order approximations of the CE
method approach the Green-Kubo one. Notwithstanding
this fact the RTA method has often been used due to its
simplicity. It has been used to evaluate η for two-flavor
matter in the Nambu–Jona-Lasinio (NJL) model [33–35].
On the other hand, in Refs. [36–40], a combination of large-
Nc expansion and Kubo formalism was used to calculate η
in the NJL model. In the present work we have used the
framework of the 2þ 1-flavored Polyakov–Nambu–Jona-
Lasinio (PNJL) model to study the behavior of η at finite
temperature and density. The variation of η with temper-
ature and density is then used to discuss the location of the
critical end point (CEP).
The present article is organized as follows. The outline of

the formalism adopted for this work is given in Sec. II
followed by a brief introduction to the PNJL model in
Sec. III. In Sec. IVA, we look for the variational nature of η
with T for different choices of the spectral width Γ. Further,
we compute η as a function of quark chemical potential μq
for three different choices of T, viz., one in the expected
range of the first order phase transition, another in the
crossover range, and finally the last one beyond the
crossover region. We also discuss the variation of η

s as a
function of μq for a wide range of T. In Sec. IV B, variation
of η

s with T at various μq has been used to draw the phase
diagram and identify the CEP region. The location of the
CEP is further validated with the behavior of the specific
heat CV in Sec. IV C. In Sec. IV D, we calculate η

s under
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different experimental conditions considering the freeze-
out parametrization. Finally, the results are summarized
in Sec. V.

II. KUBO FORMALISM

Kubo formalism, as mentioned earlier, involves the
spectral width of the degrees of freedom of the system
involved. This is realized through the fact that the shear
viscosity coefficient η is related to retarded correlators
of the energy-momentum (EM) tensor. The energy-
momentum tensor is defined as Tμν ¼ iψ̄γμ∂νψ − gμνL,
where L is the PNJL Lagrangian. The Kubo formula for
shear viscosity gives [40]

ηðωÞ ¼ 1

15T

Z
∞

0

dteiωt
Z

d~rðTμνð~r; tÞ; Tμνð0; 0ÞÞ; ð1Þ

where Tμν is the ðμ; νÞ component of the EM tensor of
quark matter. The Kubo formula can also be rewritten in
terms of only one component of the EM tensor, viz.,

ηðωÞ ¼ β

Z
∞

0

dteiωt
Z

d~rðT21ð~r; tÞ; T21ð0; 0ÞÞ: ð2Þ

The conversion factor 15 between the above two equations
comes from the following identity

Z
d3xx2i x

2
jfðx2Þ ¼

1

15

Z
d3xx4fðx2Þ: ð3Þ

Starting from Eq. (2) and neglecting the surface terms at
infinity, we arrive at the following expression of η in terms
of the retarded correlators:

ηðωÞ ¼ i
ω
½ΠRðωÞ − ΠRð0Þ�; ð4Þ

where ΠRðωÞ is the retarded correlator defined as

ΠRðωÞ ¼ −i
Z

∞

0

dteiωt
Z

d3~rh½T21ð~r; tÞ; T21ð0Þ�i ð5Þ

considering only one component of the energy-momentum
tensor. The static shear viscosity is then given by

η ¼ −
d
dω

ImΠRðωÞjω¼0: ð6Þ

To calculate the retarded correlator, one can switch to the
Matsubara formalism in the form of Eq. (11) of Ref. [40].
Now, if we apply large-Nc expansion and consider scalar
and pseudoscalar interactions [i.e., the vertex function Γ
incorporating (I; iγ5)], the interaction kernels can be organ-
ized into ring diagrams with n loops. However, by doing so,
the correlator is not affected at all as the trace in the first
ring vanishes [37]

T
X
n

Z
d3p
ð2πÞ3 Tr½γ2Gβð~p;ωnÞΓGβð~p;ωnÞ� ¼ 0; ð7Þ

where Gβð~p;ωnÞ¼ pþM
ω2
nþ~p2þM2 with ωn¼ð2nþ1ÞπT− iμþ

A4, A4 being the temporal component of the Euclidean
gauge field through which the Polyakov line is represented.
Other higher order corrections to this group will be least
effective simply because every increase in the rank will
generate a suppression factor ∼ 1

Nc
. Effectively, we can

restrict ourselves to the simple one-loop diagram for the
correlation function in Matsubara space which upon using
the one-component form of the energy-momentum tensor
in Eq. (5) becomes [36]

ΠðωnÞ ¼
1

β

X
l

Z
d3p
ð2πÞ3 p

2
xTr½γ2Gð~p;ωl þ ωnÞγ2Gð~p;ωlÞ�:

ð8Þ

To evaluate the Matsubara frequency summation, we use
the spectral representation of the full propagator as

Gð~p;ωlÞ ¼
Z

∞

−∞

dϵ
2π

ρð~p; ϵÞ
iωl − ϵ

ð9Þ

with the effect of the background Polyakov loop incorpo-
rated accordingly. Here, ρð~p; ϵÞ is the spectral function.
Substituting Eq. (9) in Eq. (8) and replacing the summation
by contour integration, we can write the trace as

S≡ T
X
l

Tr½γ2Gð~p;ωl þ ωnÞγ2Gð~p;ωlÞ�

¼ −
Z
C

dz
2πi

fΦðzÞTr½Gð~p; zÞγ2Gð~p; zþ iωnÞγ2�; ð10Þ

where fΦðzÞ is the modified Fermi-Dirac distribution
function in the presence of the background Polyakov-loop
field Φ and its conjugate Φ̄. The effect of incorporating the
background Polyakov loop can be fully absorbed into the
modified Fermi-Dirac distribution function [41,42]. To
realize this, one can use the elements of the diagonalized
A4 matrix [43]. Thus, the usual Fermi-Dirac distribution
function is replaced by the modified one in the following
manner

nFðϵÞ ¼ ð1þ eβϵÞ−1

→ −
1

β

X
i

∂ lnð1þ e−βϵe−iβðA4ÞiiÞ
∂ϵ → fΦðϵÞ:

Now, the contour C can be divided into pieces in order to
avoid the branch cuts on z ¼ ϵ and z ¼ ϵ − iωn. As the
integrals along large circles vanish on extending the real
axis to infinity, one is left with the four lines infinitesimally
close enough to the branch cuts and hence
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S ¼ −
Z

∞

−∞

dϵ
2πi

fΦðϵÞTr½Gðϵþ iδÞγ2Gðϵþ iωnÞγ2
− Gðϵ − iδÞγ2Gðϵþ iωnÞγ2
þ Gðϵ − iωnÞγ2Gðϵþ iδÞγ2
− Gðϵ − iωnÞγ2Gðϵ − iδÞγ2�; ð11Þ

where δ is an infinitesimally small positive number. Using
the relation Gðϵþ iδÞ − Gðϵ − iδÞ ¼ −iρðϵÞ and applying
the analytic continuation iωn → ωþ iδ, we can extract the
imaginary part of S to be used in Eq. (6) [38]

ImS ¼
Z

∞

−∞

dϵ
2π

1

2
fΦð1 − fΦÞTr½ρðϵþ ωÞγ2ρðϵÞγ2� ð12Þ

and hence

η¼ π

T

Z
∞

−∞
dε

Z
d3p
ð2πÞ3p

2
xfΦð1− fΦÞTr½γ2ρðϵ;pÞγ2ρðϵ;pÞ�:

ð13Þ

Using the standard form of the spectral function in terms of
the advanced and retarded Green’s function [36,40] we
evaluate the trace to finally arrive at

η½ΓðpÞ� ¼ 16NcNf

15π3T

Z
∞

−∞
dε

Z
∞

0

dpp6
M2Γ2ðpÞfΦðεÞð1 − fΦðεÞÞ

ððε2 − p2 −M2 þ Γ2ðpÞÞ2 þ 4M2Γ2ðpÞÞ2 ; ð14Þ

where Nc and Nf are the number of colors and flavors,
respectively. This is the expression for shear viscosity to
be applied for this work. In the conventional notation,
ΓðpÞ and M are the spectral width and the quasiparticle
mass, respectively, coming through the definition of
Green’s functions. In the present context the thermal
constituent quark mass M is modified with the eight-
quark interaction term being incorporated into the PNJL
Lagrangian as [44]

M ¼ m0 − 2gSσf þ
gD
2
σfþ1σfþ2

− 2g1σfðσ2u þ σ2d þ σ2sÞ − 4g2σ3f

with gS and gD being the four-quark and six-quark
interaction couplings, respectively, whereas g1 and g2
refer to the eight-quark coupling. σf ¼ hψ̄fψfi is the
chiral condensate. If one considers σf ¼ σu, then σfþ1 ¼
σd and σfþ2 ¼ σs or in cyclic order.

III. PNJL MODEL

The PNJL model [45–49] is a QCD-inspired phenom-
enological model developed by coupling the Polyakov-
loop potential to the NJL model. In the NJL model, the
interactions between quarks are accounted for by multi-
quark terms which respect the global symmetries of QCD.
Spontaneous breaking of chiral symmetry takes place due
to the dynamical generation of fermion mass. Since the
only effects of gluons come in effectively through the
multiquark interactions, the NJL model fails to simulate
various important facets of strong interactions. On the
other hand some more features of the gluon physics are
introduced into the PNJL in terms of the dynamics of a
background field corresponding to the Polyakov loop.
This helps in studying the important dynamics of chiral
and deconfinement physics in an unified framework. Also,

the thermodynamic properties in terms of pressure,
entropy, conserved charge densities, and their fluctua-
tions, etc., give more reliable estimates vis-à-vis lattice
QCD results [49–51]. In the present work we have
considered the SUð3Þf version of the PNJL model
including an eight-quark interaction [44]. The current
quark masses used here are mu ¼ md ¼ 8.7 MeV and
ms ¼ 179.5 MeV along with the three momentum cutoff
Λ ¼ 640 MeV [44].
While computing the shear viscosity η as in Eq. (14), we

incorporated the modified Fermi-Dirac distribution func-
tions (fΦ) in which the effect of the background Polyakov-
loop fields is taken into account. The forms of the
distribution functions for the particles and antiparticles
as realized in the PNJL model are

fþΦðEpÞ ¼
ðΦ̄þ 2Φe−βðEpþμÞÞe−βðEpþμÞ þ e−3βðEpþμÞ

1þ 3ðΦ̄þ Φe−βðEpþμÞÞe−βðEpþμÞ þ e−3βðEpþμÞ ;

ð15Þ

f−ΦðEpÞ ¼
ðΦþ 2Φ̄e−βðEp−μÞÞe−βðEp−μÞ þ e−3βðEp−μÞ

1þ 3ðΦþ Φ̄e−βðEp−μÞÞe−βðEp−μÞ þ e−3βðEp−μÞ ;

ð16Þ

where “�” refer to the particle and antiparticle, respec-
tively. Φ and Φ̄ are the Polyakov-loop fields, μ and β being
the chemical potential and inverse temperature, respec-
tively. Starting from the PNJL thermodynamic potential
we can calculate the fields (degrees of freedom of the
system involved), pressure, and constituent masses at
corresponding temperatures and chemical potentials.
The details of the technique for two- and 2þ 1-flavor
cases can be found in Refs. [48,49] and Refs. [44,52],
respectively. With these inputs, we proceed to determine η
and s.
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IV. RESULTS

A. Parametrization of Γ

The spectral width ΓðpÞ, in the PNJL model, is supposed
to have contributions from the Landau damping of quarks
and mesons along with the recombination processes,
i.e., the formation of collective mesonic modes due to
quark-antiquark rescattering. The spectral width for the
two-flavor case including both σ and π has been evaluated
at next-to-leading order in the large-Nc expansion includ-
ing one-loop mesonic contributions [40,53]. Spectral
widths evaluated this way would depend on both T and
μ. In the case of the SUð3Þf PNJL model all the scalar and
pseudoscalar meson channels will contribute to this proc-
ess. Moreover, the decay widths themselves may become
comparable to or larger than the mass, especially at lower
temperatures. Under such circumstances, one should really
express η explicitly in terms of spectral functions which
should then be evaluated considering all possible channels
[54]. Since such a calculation is extremely involved, in our
present work, we have considered the forms of ΓðpÞ as
given in Ref. [40]. The configurations of Γ proposed to
ensure the convergence of η are

Constant∶ Γconst ¼ 100 MeV;

Exponential∶ Γexp ¼ Γconste−βp=8;

Lorentzian∶ ΓLorðpÞ ¼ Γconst
βp

1þ ðβpÞ2 ;

Divergent∶ ΓdivðpÞ ¼ Γconst

ffiffiffiffiffiffi
βp

p
.

Γ may also have some implicit dependence on Nf which is
whatsoever not considered in the present work. The authors
of Ref. [40] have calculated an effective spectral width at
the one-loop level considering pseudoscalar and scalar
channels under the two-flavor NJL model. There, the
individual spectral widths for the scalar as well as the

pseudoscalar channels are weighted by corresponding
multiplicities. Such flavor dependence of the spectral width
can be considered once Γ is obtained under the framework
of the PNJL model and will be addressed in the future.
Figure 1 shows the variation of η with T, at μq ¼ 0,

for different choices of Γ as given earlier, whereas in the
inset, the result considering two flavors for a constant
Γ ¼ 100 MeV is shown with the parameter set adopted
from Refs. [50,51]. For a given Γ, η is found to increase
with temperature. This behavior is similar to a gaseous
system where viscosity increases with temperature due to
the increase in the average momentum of the particles [55].
In the present case, the sudden increase in η for T ≥
160 MeV may be attributed to the decrease in the con-
stituent quark mass to the current quark mass. In the low
temperature region, because of the large constituent quark
masses, η is expected to fall asM−6. It can also be seen that
ηLor > ηexp > ηconst > ηdiv. This behavior simply depends
on the value of Γ at a given temperature. A lower value of Γ
corresponds to weaker interaction and hence a larger mean
free path [40]. It is evident from Eq. (14) that the η for two-
flavor matter will be less than the three-flavor matter for
equal masses. Since the s quark mass is higher than the u
and d masses, the difference is less than the equal
mass case.
Variation of η with the quark chemical potential μq is

shown in Fig. 2. Here, we have chosen three different
temperatures T ¼ 100, 150, and 200 MeV, corresponding
to the first order phase transition and the crossover and
beyond crossover regions. Similar to the zero chemical
potential case, Fig. 2 also shows an increase in η with μq at
fixed T. However, the nature of the curves is different
for the three different choices of temperature. For
T ¼ 100 MeV, moving along the μ axis, one is expected
to encounter the first order phase transition line. Here, η
shows a jump for all forms of Γ at μq ≃ 280 MeV. On the
other hand, both for T ¼ 150 MeV and T ¼ 200 MeV
Fig. 2 shows, as expected, a smooth variation in η along the
μq direction.
It has already been mentioned that smaller Γ correspond

to a larger η. Hence, the different forms of Γ, as observed
earlier, only affect the rate at which η changes with T and
μq. But these forms do not change the qualitative behavior
of η, as seen from Figs. 1 and 2. As mentioned earlier, in
an explicit calculation one should evaluate the spectral
width ΓðpÞ considering the contributions from all meson
channels in the SUð3Þf PNJL model. This ΓðpÞ will
depend on both T as well as μq. In the absence of such
a rigorous evaluation, we would use the sum rule essential
for the choice of the Breit-Wigner form, as a guiding
principle [36,56],

1

4
Trspin

Z
∞

−∞

dϵ
2π

½ρðϵ; pÞγ0� ¼ 1: ð17Þ

 0

 0.02

 0.04
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e
V

3
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T
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ηLor
ηdiv

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03
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FIG. 1 (color online). η as a function of temperature at the
vanishing chemical potential for different forms of Γ.
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Equation (17) is satisfied approximately when the value of
Γ ≤ M. So, for our further discussions we choose a
constant spectral width Γconst ¼ 100 MeV so that the
sum rule is in general violated to a considerable extent
only in the low momentum region. In fact, as the quark
masses drop sharply around Tc, from its T ¼ μq ¼ 0

value, the violation is expected to be more pronounced
for T > Tc only. But again the smaller contribution from
low momentum at these high temperatures keeps the
violation to a minimum level. For Γ > 100 MeV, the η
variation is similar to that for Γdiv, whereas, for
Γ < 100 MeV, it is similar to that for ΓLor. At the same
time, in the regime of momentum transfer comparable to
the QCD scale (∼200 MeV), ΓðpÞ becomes ∼100 MeV
considering contributions from one-loop mesonic chan-
nels at next-to-leading order in the large-Nc expansion as
shown in Ref. [40]. There, the authors have included
Landau damping and the recombination process as the
leading dissipative effects to calculate shear viscosity at
the one-loop level taking all mesons influencing the
spectral width. However, going further up in the quark
momentum leads towards a decrease in spectral width
which in turn increases the shear viscosity.

Let us again look at the variation of η with μq for
different values of T with Γ ¼ 100 MeV. From Fig. 3, two
distinct regimes are clearly visible. For T ¼ 70 to 100MeV,
we get a jump in η, whereas for T ¼ 120 to 180 MeV, η has
a smooth behavior analogous to the results displayed
in Fig. 2. The temperature ranges T ¼ 70–100 MeV and
120–180 MeV lie in the first order and crossover regions of
the transition, respectively. The region around T ¼
110–120 MeV calls for special attention and will be
discussed in details below.

B. η=s and the phase diagram

In general, η for different fluids vary widely differing by
orders of magnitude [55]. In such circumstances, the
Reynolds number, the ratio of inertial to viscous forces
in the Navier-Stokes equation, is traditionally used as a
measure of fluidity. In the case of relativistic fluids, the
Reynolds number (more specifically its inverse) may be
defined in terms of η=s, s being the entropy density. Here,
we present this ratio in Fig. 4 for μq ¼ 0 for the 2þ 1-
flavor quark matter in the PNJL model. We have shown
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FIG. 2 (color online). η as a function of the quark chemical potential at fixed temperatures for different forms of Γ.
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comparative plots for different constant values of the
spectral width to get a better understanding of the effect
of Γ on the specific shear viscosity η

s.
As shown in Fig. 4 η

s starts from high values
at low temperatures and decreases to a minimum of 1

4π
corresponding to ideal fluids near T ¼ Tc. Though the η
itself is extremely small for T < Tc,

η
s increases with

decreasing temperature. The behavior of η
s for this region

of temperature is due to a larger drop in entropy density of
the system. A simple calculation for pion gas shows η

s to be

proportional to ðfπT Þ4 where fπ is the pion decay constant
[57,58]. Hence, for T → 0, ηs should diverge. Similar results
have also been obtained by Lang et al. [59] who have
computed η

s for an interacting pion gas considering different
pion masses. In the inset of Fig. 4, the region from T ¼ 80
to 140 MeV has been zoomed in for a better comparison
with the system of the interacting pion gas [59]. A
comparison of our results in this temperature region with
a corresponding result for meson gas (T < Tc) obtained
from chiral perturbation theory [60] is also shown in Fig. 4.
In general, for an ideal gas of quarks, the η and hence η

s
should diverge at the large-T limit. As shown in Fig. 4 η

s
does show an increasing trend for T > Tc. The behavior of
η
s up to about T ∼ 1.5Tc seems to closely resemble the
features of a fluid having a liquid-gas phase transition, for
which a minimum is expected near the transition point
[55,61]. However, since all the quark masses drop to their
respective current masses for T > 1.5Tc, entropy starts
dominating. As a result η

s starts decreasing slowly with
increasing T and hence displays a behavior of an interacting
liquid. In lattice studies a similar behavior has been
observed for pure glue plasma (GP) as shown in Fig. 4.
The results of perturbation theory [62,63] are around 1 as
both η and s vary as T3 at higher temperatures. Eventually,
for asymptotic temperatures an ideal gas behavior is
expected to be restored. Near the phase transition region,
the specific shear viscosity comes down to reach the KSS
bound. This would then explain the results from the flow
measurements in heavy-ion collision experiments if the

system freeze-out occurs close to the transition. This
reflects an important observation regarding the advantage
of using PNJL over NJL. Though the behavior of η

s in the
PNJL model is qualitatively similar to those obtained in the
NJL model [33,37,40], the modification of the quark
distribution function, as well as the contribution to the
entropy from the Polyakov loop, is vital in determining the
quantitative results.
Similar features are observed with the increase in μq as

shown in Fig. 5. To summarize the situation we see that η
s

initially decreases with an increase in T and reaches a
minimum near the transition for the corresponding μq.
Thereafter, it increases with T rather slowly after the
transition before stabilizing/slowly decreasing in accordance
with the behavior found in Refs. [25,26,64]. The minimum
occurs close to the KSS bound as for μq ∼ 100–150 MeV.
On the other hand, for μq ≥ 200 MeV, the system undergoes
a transition at lower temperatures and η

s has a minimum
shifting upward from the KSS bound. Moreover, for
μq ≥ 260 MeV, η

s shows a jump which may be attributed
to a first order phase transition. Therefore, a possibility of
observing a CEP arises near these ranges of T and μq.
The critical end point bears special significance in the

QCD phase diagram, where transport coefficients exhibit
critical behavior. In Ref. [65], the authors have analyzed the
dynamics near the critical point by constructing the
Langevin equation near it and applying the dynamic
renormalization group. It is seen that bulk viscosity and
thermal conductivity strongly diverge and can be more
important than shear viscosity near the QCD critical point.
Another work using the same approach has been done
in the framework of the O(N) scalar field theory [66] where
the authors investigated the critical dynamics to determine
the critical exponents of transport coefficients. The shear
viscosity is found to remain finite for both single- and
multicomponent theories in comparison to bulk viscosity
which diverges for single-component theory. However, in
this work we focus on locating the critical region in terms
of changes in the behavioral pattern of the shear viscosity.
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The QCD critical end point is supposed to be described by
model H [67]. η is expected to diverge, with a small power
of correlation length, near the CEP [68,69]. On the other
hand, for weakly coupled real scalar field theories, ηs is most
likely to develop a cusp at the CEP [70]. A discontinuity in
the behavioral pattern of η

s around the CEP region has also
been discussed in Ref. [33] using the NJL model.
In our study the location of the minima and the

discontinuities of η
s in Fig. 5 enable us to extract the critical

values of T and μ to draw the phase diagram. However, in
the very low temperature region extrapolation has been
done considering the fitting function in the form of the
polynomial

T ¼ a0 þ a1μþ a2μ2 ð18Þ

with a0 ¼ 50 MeV, a1 ¼ −2.5, and a2 ¼ −0.04 MeV−1.
The phase diagram along with the CEP region (black dot)
has been plotted in Fig. 6.

C. On the location of the CEP

The understanding of the behavior of the strongly
interacting system near the CEP along with its location

is extremely important. Various efforts are being under-
taken, both theoretically as well as experimentally, to
determine the position of the CEP [64,71]. In general,
second order derivatives of thermodynamic quantities are
expected to diverge near the CEP which is a second order
transition point. These quantities may provide additional
information regarding the CEP. Here, in the PNJL model,
we have observed that at or around the CEP, wide variations
in order parameters, fluctuations of conserved charges like
net electric charge [72], can occur as far as dynamic as well
as static properties of the system are concerned.
In order to cross-check the location of the CEP obtained

from the behavior of η=s, we have estimated the specific
heat CV , which is expected to show diverging behavior near
the CEP. One can define CV as

CV ¼ ∂ϵ
∂T ¼ T

∂2P
∂T2

¼ T
∂s
∂T : ð19Þ

The divergence in CV near the CEP will translate into
highly enhanced transverse momentum fluctuations or
highly suppressed temperature fluctuations for a system
passing close to the CEP. In Fig. 7, we have shown the
variation of the dimensionless quantity CV

T3 with T separately
in the regions of crossover, the CEP, first order and beyond,
along the μq direction. As is seen CV

T3 has a divergent
behavior at around T ¼ 100 MeV and μq ∼ 260 MeV but
shows continuous behavior or at most a sharp peak else-
where. Thus, we confirm that the CEP is expected to exist
around T ¼ 100–120 MeV and μq ¼ 250–270 MeV as
inferred from the behavior of η

s in the previous subsection.

D. Connection with experiments

In experiments, the observables are studied as a function
of the center-of-mass collision energy (

ffiffiffi
s

p
). In our thermo-

dynamic studies the independent variables are T, the
baryon chemical potential μB, the electric charge chemical
potential μQ, and the strangeness chemical potential μS. So,
to get the collision energy dependence one needs to get a
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FIG. 6 (color online). Phase diagram for the 2þ 1-flavor PNJL
model.
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parametrization of
ffiffiffi
s

p
with the various thermodynamic

variables at freeze-out. Different parametrizations of the
freeze-out conditions as a function of

ffiffiffi
s

p
are available in

the literature [73,74]. For a given set of the thermodynamic
variables, the variations in

ffiffiffi
s

p
are within 10% for different

parametrizations. In the present study we have used the
following parametrization [73]:

TfðμfBÞ ¼ a − bμfB
2 − cμfB

4 with μfB;Q;Sð
ffiffiffi
s

p Þ ¼ d
1þ e

ffiffiffi
s

p ;

ð20Þ

where the superscript f denotes values at freeze-out,
a ¼ ð0.166� 0.002Þ GeV, b ¼ ð0.139� 0.016Þ GeV−1,
c ¼ ð0.053� 0.021Þ GeV−3, and d and e are given by
Table I.
The variation of η

s as a function of
ffiffiffi
s

p
at the freeze-out is

displayed in Fig. 8. We have plotted the specific shear
viscosity considering a spectral width of 100 and 200 MeV.
We have already seen that an increase in Γ results in the
decrease in η. This is true for the nonvanishing chemical
potential as well. It can be seen that ηs saturates to the KSS
bound for Γ ¼ 200 MeV whereas for Γ ¼ 100 MeV sat-
uration occurs at higher values. Therefore, as expected a
stronger interaction (in terms of Γ) seems to be necessary to
attain the KSS bound.
At the RHIC, the large azimuthal anisotropy of trans-

verse momentum (pT) spectra, often expressed by the
elliptic flow coefficient v2, has been observed and this is
considered to be a signature for the formation of the QGP.

The observed transverse momentum spectra of the hadrons
and their centrality dependence [8,21–24,75] in relativistic
heavy-ion collision experiments can be explained satisfac-
torily using fluid dynamic descriptions. In fact, the notion
of small ηs for the QGP arose from analysis of the RHIC data
through hydrodynamical simulations [9,11,19,23,75]
which indicate nonviscous fluid properties for the QGP.
Though there have been predictions from various hydro-
dynamic calculations and simulations regarding temper-
ature-independent η, uncertainties occur because of
different initial conditions used. For example, use of data
from Auþ Au collisions at the RHIC leads to ðηsÞQGP ∼
0.08 with MC-Glauber initializations, whereas that with
MC-KLN results in 0.16 [19]. Moreover, analysis at LHC
energies for Pbþ Pb collisions provides a bit higher result
∼0.2 with various parametrizations incorporating different
initial conditions [24,76].
Our results as shown in Fig. 8 are close to η

s ∼ 0.09�
0.015 [64,77] as extracted from the RHIC data for Auþ Au
collisions. Gavin and Abdel-Aziz [78] estimated, from the
STAR data analysis, η

s to lie in the range of 0.08–0.3.
Another estimate done for the top RHIC energies renders a
value of η

s ¼ 0.12 [76] which is also close to our model
results.
However, it should be noted that the results presented

here are those of a system that has frozen out at complete
thermodynamic equilibrium. Moreover, along the freeze-
out curve, we always reside in the hadronic phase. So, the
value of ηs in Fig. 8 corresponds to different conditions in the
hadronic sector. Initially, η

s decreases with
ffiffiffi
s

p
and then

saturates at a value close to the KSS bound for higher
ffiffiffi
s

p
.

This is a reflection of the variation of η
s as shown in Figs. 4

and 5. Whether the signatures of crossover or the CEP
survive the dynamics of fireball evolution cannot be
addressed within the present formalism. A detailed hydro-
dynamical flow study incorporating both equilibrium and
possible out-of-equilibrium features would be necessary to
estimate such effects. Such signatures may show up in
experimental analysis if the data points are found to be
substantially higher than those in Fig. 8. Since the
upcoming CBM experiments at the FAIR facility are going
to look for the high density system for low

ffiffiffi
s

p
it would be

interesting to look for such signatures of the CEP there.

V. CONCLUSION

In the present study the PNJL model has been used to
calculate shear viscosity η at finite temperature and
chemical potential using the Kubo formalism. The effect
of spectral width Γ has been discussed and finally constant
Γ has been used to present the rest of our results. The
behavior of ηs with T and μq has been used to locate the CEP.
This location of the CEP has also been cross-checked from
the divergent behavior of specific heat CV with T and μq.
Finally, we have studied the variation of η

s with
ffiffiffi
s

p
to
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TABLE I. Parameters for extraction of chemical potentials
along the freezeout curve.

d½GeV� e½GeV−1�
B 1.308(28) 0.273(8)
Q 0.0211 0.106
S 0.214 0.161
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compare with the values extracted from the analysis of
RHIC and LHC data existing in the literature.
The salient points of the present study are the following.
(i) η by itself seems to show a gaslike behavior and

increases with increasing temperature. It has a strong
dependence on the spectral width Γ, especially at
higher temperatures.

(ii) At μq ¼ 0, ηs in the PNJL model seems to reproduce
the pion gas feature at low temperature and QGP
features at high temperatures. Near Tc,

η
s has a

minimum at the KSS bound. For T > Tc,
η
s initially

increases and then starts decreasing with increasing
temperature showing a liquidlike behavior.

(iii) The qualitative features in both the PNJL and NJL
models are quite similar. However, the results are
quantitatively quite different in the two models. The
satisfactory quantitative agreement with hadron gas
at low temperatures and QGP at high temperatures
shows the necessity of introducing the Polyakov-
loop effects to the NJL model.

(iv) For nonzero μq, the behavior of
η
s remains similar to

that at μq ¼ 0. However, the minimum value of η
s

occurring at the respective crossover or transitions is
found to increase for larger μq and does not reach the
KSS bound for μq ≥ 200 MeV.

(v) Variation of η across the phase boundary depends
strongly on the nature of the phase transition. In the
crossover region, η

s changes continuously with μq
whereas it shows a jump in the first order transition
region. The change in the nature of variation, in
going from crossover to first order, may be used to
extract the information of the CEP. According to the
present analysis, the CEP seems to lie in the range
T ¼ 100–120 MeV and μq ¼ 250–270 MeV.

(vi) η
s on the freeze-out curve seems to agree with the
values extracted from the RHIC and LHC flow
analysis. It would be interesting to see if signatures
of the CEP may be captured at lower

ffiffiffi
s

p
in the

upcoming CBM experiments at the FAIR facility.
It may be useful to discuss a flow analysis of the

experimental data with the inclusion of T and μq depend-
ence of η

s as obtained here, which we hope to pursue in the
future.
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